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This paper is devoted to robust, Predictor-based Model Reference Adaptive Control
(PMRAC) design. The proposed adaptive system is compared with the now-classical Model
Reference Adaptive Control (MRAC) architecture. Simulation examples are presented.
Numerical evidence indicates that the proposed PMRAC tracking architecture has better
than MRAC transient characteristics.

Nomenclature
Ap, Bp, Cp =
A, B, Bc, C=
A ref, Aprd =
A	 =

xp , x
y
np, n, m
d (x)

('d (xp

original system matrices
extended system matrices
Hurwitz matrices for reference model and predictor
unknown diagonal matrix, with positive elements
control input vector
system state vectors
controlled system output vector
state and control dimensions

= matched uncertainty

= known regressor vector

N	 = dimension of the regressor vector
OD 	= matrix of constant unknown parameters

r(t)	 = external bounded time-varying vector of commands

I. Introduction
his paper is devoted to the design and analysis of a state-predictor based direct adaptive controller for Multi-
Input-Multi-Output (MIMO) dynamical systems, with matched uncertainties. Our main intent is to evaluate

possibility of improving MRAC transient characteristics during a tracking task. Towards that end, we propose the
use of a state-predictor in formulating adaptive laws. Specifically, starting with a direct MRAC system, [1, 2, 4], we
design a state predictor, while using the system full state measurements. Then through Lyapunov’ stability analysis,
we propose a predictor-based modification to the MRAC laws. This modification constitutes the novelty of the
results that are reported here.

The rest of the paper is organized as follows. In Section II, MIMO system dynamics are defined and the control
goal is formulated. In section III, predictor-based MRAC laws are derived, and stability proof is conducted using
conventional (in adaptive control) Lyapunov-based arguments. Simulation example is presented in Section IV,
followed by conclusions that are given in Section V.

II. Model Definition
In this section, we formulate the system dynamics, pose the control problem, and derive tracking error dynamics

for adaptive control design. We begin by considering a class of MIMO uncertain systems in the form:
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(2.6)

(2.1)

where xp EX C R"p is the system state vector, 	 is the control input,

d (xp )= Od ('d (xp )	 (2.2)

is the linear-in-parameters state-dependent matched uncertainty, Od E RNxm is the matrix of unknown constant

parameters, and ('d (xp )ERN is the known N – dimensional regressor vector, whose components are piece-wise

continuous functions of xp . Also in (2.1),	 is constant and known, Ap ERnxn is constant and unknown,

and	 is constant, diagonal and unknown matrix with positive diagonal elements.

The control goal of interest is bounded tracking, that is one needs to define u such that the system controlled
output

y = Cp xp ER'	 (2.3)
tracks any bounded and possibly time-varying command	 , with bounded errors, in the presence of the

system uncertainties P, A,	 .

Let
ey (t)= y(t)—r(t) 	 (2.4)

denote the system output tracking error. 	

l
Augmenting (2. 1) with the integrated output tracking error,

(
I ev, (t ) = fe „ (r)d-r lI ^ I 

r 
ev, = ey I	 (2.5)

yields extended open-loop system dynamics:

where x = (ey xp )E X C R" is the extended system state vector, whose dimension is n = np + m . The system

matrices (A, B, Bc ) are

A — r O mxm Ap l , B — OMxm I Bc — I 1"' 1	
(2.7)

Il np xm	 p JJ 	Bp /
JfI
	

II` np xm JJ

and

y = (Opxm Cp )x = Cx	 (2.8)
c

represents the system controlled output. To summarize, in this paper we will consider MIMO uncertain systems in
the form of (2.6):

.i(t)= Ax(t)+BA(u+Oa (Dd (xp	r
(2.9)

y(t)= Cx(t)
with an unknown constant matrix A E Rnxn , known matrices B E R nxm , 	 , C E R mx" , an unknown constant

diagonal positive-definite matrix ,and an unknown matrix of constant parameters Od E RNxm . The state-

dependent regressor vector ('d (xp )ERN is assumed to be known. The control goal is bounded tracking of any

bounded time-varying reference signal r (t )E Rmx' by the system output y (t)E R mx' , in the presence of constant

parametric uncertainties (A, A, O d ) .

Assumption 2.1 (Model Matching Conditions)
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Given a reference Hurwitz matrix APef and an unknown positive-definite diagonal constant matrix , there must

exist a constant possibly unknown gain matrix KX such that

4,f = A+BAKz	 (2.10)

Using the assumed relation (2.10), we rewrite the system dynamics in the form:

z=Arf x+BA(u—KX x+Oa^ a (xp ))+Be r	 (2.11)

Control input u is chosen as:

u=Kx x—Oa^ a (xp )	 (2.12)

where Kx (t)ER` and Oa (t)ERN,' are adaptive time-varying matrices, whose dynamics will be defined later.

Substituting (2.12) into (2.11), yields:

x=Arf x+BA (KX —KX Ix—(Oa — Oa I(Da(xp ) +Bcr

(2.13)
Arcs 	A®,

= Ar f x + B A (OKs x — OOa Oa (xp ))+ Be r

Based on (2.13), consider the following reference model:

xref = 4e xref + Be r	 (2.14)

and let
e = x — xref	 (2.15)

represent the system tracking error. Subtracting (2.14) from (2.13) results in the tracking error dynamics ,

e = Ar fe+BA(AKx x—AOa^ a (xp ))	 (2.16)

Remark 2.1
Based on (2.16) and using Lyapunov arguments, direct Model Reference Adaptive Control (MRAC) laws can be

derived [1], [2] in the form

KX = —rx xeT PrefB	
(2.17)

T
Oa = ted ^a e P, ,B

where Pef = P ê > 0 is the unique symmetric positive definite solution of the algebraic Lyapunov equation,

A; f_ e +Pef Are = —QPef (2.18)

and QPef = Q f > 0 . Relations (2.12) and (2.17) solve the tracking problem, with globally asymptotically stable

closed-loop dynamics. This particular solution is valid for any symmetric positive definite rates of adaptation r.

and	 . However, if these matrices have large singular values, then unwanted transient oscillations will often

occur in the system.

III. Predictor-Based MRAC

In this section, a PMRAC-based solution to servomechanism problem is presented, for the class of uncertain
systems in the form of (2.9). Towards that end and based on (2.11), define the so-called predictor dynamics:

x=Apra (i—x)+Aref x+B.r	 (3.1)

where Apra is a Hurwitz matrix.

Using relation (2.15), let
e=x — xrf

(3.2)
e=z — x

represent the tracking and prediction error s, respectively . Subtracting (2.14) from (2.13) and (2.13) from (3. 1),
results in the tracking and prediction error dynamics.
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e = APer e + B A (AKX X – AOa (Dd (xn
(3.3)

BA(AKe=Aprde–xx–AOd^d(xp))

Our design approach is Lyapunov based, and because of that in order to derive stable adaptive laws, consider the
following Lyapunov function candidate:

V (e, e, AKx , AOd ) = eT Pr f e + eT PP, e + trace (OKx rx' AKx A )+trace (AOd r®d AO d A)	 (3.4)

where	 and red = r®d > 0 denote constant rates of adaptation, while 	 and P rd = T d > 0

are the two unique solutions of the two algebraic Lyapunov equations, correspondingly.

	

4 Pref + P, .f 4.f = –Qref	
(3.5)T

`4prd Pprd + Pprd A prd — —Q prd

with QPef = Q f > 0 and Qprd = Qprd > 0 . Time derivative of the Lyapunov function V (e, e, AKx ,	 , evaluated

along trajectories of the error dynamics (3.3), yields
T	

T	
lV =—eQref e — e Qprde+2(eT P	

T
ref 

– e Pprd)BA(AKXx–AOd(d(xp))

(,&KxT	
\\	 (3.6)

+2 trace	 rx' Kx A 2 trace 
(

E)
dA r®d ad A J

Define the training error signal:

	

J =BT (Pef e–Prd e)	 (3.7)

Applying the well-known trace identity (valid for any two co-dimensional vectors a and b ),

	

a b = trace (b aT )	 (3.8)
the time derivative in (3.6) becomes:

(3.9)
V = —eT Qref e — eT Qprd e

+2 trace (AKX x eT A )+ 2 trace (A< rX' Kx A ^ 2 trace (AOd (Dd (xp YT A )+ 2 trace (AOT

Collecting similar terms, yields
v = —eT Qref e — eT Qprd e

//	 l	
( E)T	 _	 (3.10)

+2 trace (AKxJx- x' K + x eT 1 2 trace A f ®d Od – od (xp )eT

Consequently, choosing the following PMRAC laws,

Kx =
 
—rxxeT

(3.11)
_	 T

ad	 r®d ^d (xp ) e
implies that

V (e, e, AKx , AOd ) –eT Qref e – eT Qprd e s 0	 (3.12)

which in turn, proves Uniform Ultimate Boundedness (UUB) [3] of (e, e, AKx , AOd . Moreover, both the tracking

and prediction errors are square integrable: e, e . Furthermore, since r E L. then xr f E Lm , then consequently,

xEL„ . This implies zEL„ . Since ideal parameters (Kx, ad ) are constant and their estimation errors

(AKx , AOd ) are bounded, then their estimated values are bounded as well, that is: Kx , Od EL„ . Since components

of the regressor vector ^>d (xp ) are piece-wise continuous functions of xp and the latter is bounded, the

components themselves are bounded. Hence, u E L. and x, z E . Thus e, e E L. which implies that V E .

Therefore, V is a uniformly continuous function of time. Since	 is lower bounded,	 , and V is uniformly

continuous then V tends to a limit, while its derivative V tends to zero. This fact is known as Barbalat’s Lemma,
[1], [2], [3]. Consequently, the tracking and prediction errors, a and , tend to zero asymptotically, as t — oo .
Moreover, since Lyapunov function (3.4) is radially unbounded, the asymptotic convergence of the errors is global.
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In other words, the closed-loop tracking and prediction error dynamics are globally asymptotically stable. The
tracking problem is solved. The end result is summarized below.

Theorem 3.1
Consider the uncertain system dynamics in (2.9), operating under PMRAC controller (3.11), with the state

predictor (3.1). Suppose that the matching relations (2.10) hold. Let the reference model (2.14) be driven by some
bounded and possibly time-varying reference command 	 . Then:

a) All signals in the closed-loop system,

z =Ax+BA(Kx x—Oa0d(xp)+OaDd(xp))+B.r(t)

i,ef = 4,f xPef + B. r (t
z=A,,(z—x)+A ref x+Be r(t)	 (3.13)

Kx = — rx x ((x — xPef T Pry — (z — x )T Pprd

Od = red Od (xp )((x — Xmf ^ Pef 	 xY P rd )

are uniformly bounded in time, where symmetric positive definite matrices Pef and rd are the two unique

solutions of the two algebraic Lyapunov equations in (3.5), respectively.

b) Tracking error e = x — xref is UUB, square integrable, and globally asymptotically stable, 	 .

c) Prediction error	 is UUB, square integrable, and globally asymptotically stable, lim 
I le O l

 = 0 .

Remark 3.1
The developed PMRAC design methodology can be applied to the original system (2.1), and without adding

integrated output tracking errors. In this case, the control input is:

u=Kxx+kr—OI^d (x„)	 (3.14)

where Kr ER'"' is the estimated feedforward gain. The system closed-loop dynamics become:
^T

(AkX x^, x
r

z=Arefx+BA (k.—Kxlx+(Kr—Krlr—(Od—OdIOd(xp) +BAK; r
------- I—	 I	 ------- r^^	 (3.15)

Alex 	 AK,	 Aed

where Kr ER'"' is the unknown / ideal feedforward gain. The relation Be = BAK; is the required matching

condition which guarantees existence of the ideal feedforward gain. The corresponding PMRAC laws are:

Kx = - rx x((x— X"1 Pref— (x—xf Pprd

Kr = — rr r ((x — X , Pr' — (x — x )T 	 (3.16)

Od = rea (Dd (xp )((x — xref I Pr' — (z — x )T Pprd J
where rr = rp > 0 is the adaptation rate matrix for the feedforward adaptive gain	 .

Remark 3.2
Comparing MRAC laws (2.17) with PMRAC laws (3.11), it is evident that the presence of the state predictor (3.1)

adds the low-pass filtering effects of the prediction dynamics to the direct MRAC laws.
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Remark 3.3
PMRAC design extension to MIMO systems with non -parametric uncertainties is straightforward and can be

accomplished by using well-known in adaptive control robustification methods [1], [2], [4], [5], such as: a) Dead-
zone, b) or - modification, c) e – modification, and d) Projection Operator.

IV. Simulation Example

In this section, we will demonstrate PMRAC benefits using a simplified model which is representative of aircraft
dynamics. Through simulation evaluations, we compare closed-loop tracking performance of the proposed PMRAC
and the “classical” MRAC controllers . Our focus is on the transient performance of these two controllers. We show
that in transient, PMRAC yields less oscillations than MRAC. We also show that PMRAC adaptation rates can be
increased substantially and without inducing unwanted oscillations that would otherwise be present if using MRAC.
We immediately note that these claims about transient behavior represent numerical observations only. Efforts to
obtain formal quantification of transient dynamics provided by these two adaptive controllers constitute an ongoing
research and will be reported at a later time.

Our simulation model is chosen to represent longitudinal dynamics of an aerial vehicle, such as an F-16 aircraft.
Neglecting the effects of gravity and thrust, aircraft longitudinal (short period) dynamics can be written in matrix
form [6],

Za	 Zg	 Za

a). V 1+ V \al+ V be	 (4.1)
^q M

a MQ
XP 	 x ^^

APM 	 BP

where	 is the aircraft angle of attack (AOA), is the pitch rate, be is the elevator deflection (control input), V is

the trimmed (constant) airspeed, (Za,Z,,Z,. ) and (Ma , Mq , Mae ) are partial derivatives of the aerodynamic

vertical force Z and the pitching moment 	 , with respect to	 respectively. Numerical values for the

vehicle aerodynamic derivatives were taken from [6, Example 5.5-3, Table 3.4-3]. These data represent an F-16
aircraft trimmed at:

VT = 502 f i sec, Alt= 0 f, t ¢ 300 Ib f t C.—, ca = 2.11 deg

The resulting open-loop system matrices are:
( -1.0189 0.9051 ( -0.0022

A,. = 0.8223 —1.0774 ' 
BP	

—0.1756	
(4.2)

where a is in radians, q is in radians / second, and be is in degrees.

Three types of matched uncertainties are added to the system: a) linear-in-state uncertainty Kx pen XP , b) control
P

effectiveness constant uncertainty A > , and c) nonlinear-in-state uncertainty in the form of (2.2). Numerical
values for the uncertainties were arbitrarily chosen as: 	

^x

K p Pe,r = (-4.6839 —6.1373 ), A = 0.5, d (x J = d (a) = 0.5 e 2a'	 (4.3)

Jr
where the center of the Gaussian was set to ac 

= 2 180 , 
and its width was or =	 . This particular selection of

numerical values for	 and A is equivalent to 50% increase in the static stability Ma , 50% decrease in the

pitch damping Mq , and 50% decrease in the elevator effectiveness Mse . These changes imply that the vehicle

became 50% more statically unstable, lost 50% of its pitch damping ability, and the aircraft controllability decreased
by 50%. Such drastic and perhaps unrealistic changes were motivated by our intent to demonstrate the effectiveness
of the proposed PMRAC design methodology.
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(4.5)

The system total matched uncertainty versus AOA was calculated at q = , and is shown in the figure below.

Figure 4.1: Total Matched Uncertainty versus AOA, at q = 0

With all the uncertainties included, the aircraft dynamics take the form of (2. 1),

z„ = (A„ R, +B„AK, _,)x„+B„ A(u+d (x„))	 (4.4)

where xp = (a of is the system state vector, A > 0 is the uncertainty in the elevator effectiveness, and the state-

dependent function d (xP ) represents unknown nonlinear increments in the vehicle aerodynamic Z-force and the

pitching moment M. The vehicle pitch rate q is selected to represent the system controlled output.

Thus, the control goal is to track any bounded time-varying pitch rate command,

r = gcmd (t)	 (4.6)

in the presence of the system uncertainties.

Adding integrated pitch rate tracking error dynamics,
e, = q — qcmd	 (4.7)

results in the extended open-loop dynamics, which is in the form of (2.9).

0 0	 1	 0	 0

a = 0 
ZQ 

1 + ZQ + Za` A (0 KT ) a + L6'6,+d(a) + 	 q^.d
V	 V	 V	

Zp pC,	
V	 ti^

0 Ma M9	 Mae	 Ma,	 '1
	

(4.8 )
^r

A.	 s

A

q=(0 0 1)x
11
Y	 C

Conventional MRAC architecture was designed using adaptive laws (2.17). The regressor vector (Dd (a )
consisted of 11 a - dependent and evenly spaced Gaussians (RBF-s). RBF centers were placed at [-10:2:10]

degrees of AOA, and all RBF widths were set to . Reference matrix Aef was defined using LQR

method with
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(4.12)

Q = diag (200 0 0b, R =1	 (4.9)

The corresponding baseline LQR feedback gains were calculated as:
K,, = (14.1421 3.3331 9.1263)	 (4.10)

Using the baseline LQR control feedback,

6,L = <,L x	 (4.11)

the reference model was formed with:

It is straightforward to verify that such a selection of A,ef satisfies the matching conditions (2.10). The eigenvalues

of the reference dynamics, along with their corresponding natural frequencies and damping ratios, are shown in the
table below.

Eigenvalue
n/d

Damping
n/d

Natural Frequency
rad/sec

-1.12e+000 + 6.99e-001i 8.47e-001 1.32e+000
-1.12e+000 - 6.99e-001i 8.47e-001 1.32e+000

-1.47e+000 1.00e+000 1.47e+000
Table 4.1: Reference Dynamics Eigenvalues

In essence, the reference model dynamics were chosen to represent the baseline closed-loop system operating
under the baseline LQR controller. Figure 4.2 shows the baseline system response to a series of commanded pitch
rate doublets, along with the elevator deflection and rate that were required by the LQR controller, while tracking
the pitch rate doublets, without system uncertainties. As seen from the figure, the elevator deflection and rate are
well within acceptable limits.

Figure 4.2: Baseline Closed-Loop Response to Pitch Rate Doublets without Uncertainties

With only the baseline controller operating and with uncertainties turned on, closed-loop system tracking
performance degradation can be clearly observed from the data that are shown in Figure 4.3. However, both the
control input and its rate remain small.
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Time, sec

Figure 4.3: Baseline Closed-Loop Response in the Presence of Matched Uncertainties

Next, conventional MRAC laws were constructed by solving algebraic Lyapunov equation (2.18) with

QPef = diag ^0.1 1 800D	 (4.13)

Rates of adaptation were chosen as

r.. = diag (1 400 400b, t®, = 20	 (4.14)

and the total control (elevator deflection) was formed as a sum of the baseline LQR controller and its conventional
MRAC adaptive augmentation,

8e = SesL + 8eAD	 (4.15)

where the adaptive component beAD was defined according to (2.12). We immediately note that since initial

conditions in the adaptive laws (2.17) can be chosen arbitrarily, the selected adaptive augmentation architecture is

equivalent to a pure adaptive (no baseline included) controller, whose initial conditions Kx (0) are set equal to the

LQR baseline feedback gains. In summary, the total elevator deflection is given by:

6e = (KxBL + Kx x — Oa Oa (a^	 (4.16)

With LQR and MRAC controllers operating simultaneously, the reference / baseline closed-loop system tracking
performance is recovered, with acceptable elevator deflection and rates. The data are shown in Figure 4.4.

Pitch Rate Tracking Performance
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Figure 4.4: (LQR + MRAC) Closed-Loop Response in the Presence of Uncertainties

To demonstrate benefits of PMRAC on the system transient response and control input, PMRAC laws (3.11) were
constructed using adaptive rates (4.14) and employi ng identical RBF-s to the conventional MRAC laws. Rather than
selecting matrix	 in (3.5), we use the insight into the physical system present in the selection of 1 of and note

that the predictor dynamics should be faster than the reference dynamics. While still satisfying the positive definite
requirement of (3.5), we select:

Ap,d = 3 A, f , P ,d = 3 P.f	 (4.17)

With the LQR and PMRAC controllers turned on, the reference / baseline closed -loop system tracking performance
is recovered once again, but with significantly smoother control input than the conventional MRAC design required.
The response data are shown in Figure 4.5.

Figure 4.5: (LQR + PMRAC) Closed-Loop Response in the Presence of Uncertainties

The (LQR + MRAC) and (LQR + PMRAC) controllers resulted in comparable tracking performance (Figure 4.4
vs. Figure 4.5), yet the required elevator deflection and its rate were of higher levels and contained unwanted high
frequency oscillations in the case of the (LQR + MRAC) design. To better illustrate the advantage of the PMRAC
controller, we overlaid the (LQR + MRAC) and the (LQR + PMRAC) tracking responses, both in the presence of
the system uncertainties. Figure 4.6 shows the data .

Pitch Rate Tracking Performance

Figure 4.6: Comparison of (LQR + MRAC) vs. (LQR + PMRAC) Closed-Loop Responses
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An alternative way of quantifying control input activity is to use the frequency domain, and to plot their
corresponding FFT coefficients. Figure 4.7 shows significantly reduced control input activity in the PMRAC
augmentation design.

Figure 4.7: Comparison of (LQR + MRAC) vs. (LQR + PMRAC) Control Input FFT Coefficients

The data confirm the fact that that the proposed PMRAC controller provides improved transient response (when
compared to MRAC) of the closed-loop system, in the presence of uncertainties. A formal proof of this phenomenon
remains an open problem.

As discussed earlier, the better transient performance characteristics provided by PMRAC can be attributed to the
inclusion of the prediction error into the adaptive laws. The main difference between a conventional MRAC
augmentation and the proposed predictor-based MRAC augmentation lies in the fact that while the parameters in the
conventional MRAC are updated based on the tracking error between the plant and the reference model, in the
PMRAC case the adaptive laws are also designed to minimize the prediction error in the input-output measurements.
In addition to the tracking error in conventional MRAC laws, the prediction error in PMRAC provides an extra
information about the system uncertain parameters. This allows the predictor -based adaptive augmentation to retain
stability and tracking performance, while potentially improving the robustness and transient performance of a
conventional direct MRAC augmentation.

V. Conclusion
In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input

dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period
dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be
reported elsewhere.
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