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Abstract 

Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring in the 

absence of amyloid-beta (Aβ) plaques. While PART shares some features with Alzheimer disease (AD), such as progres-

sive accumulation of neurofibrillary tangle pathology in the medial temporal lobe and other brain regions, it does 

not progress extensively to neocortical regions. Given this restricted pathoanatomical pattern and variable symp-

tomatology, there is a need to reexamine and improve upon how PART is neuropathologically assessed and staged. 

We performed a retrospective autopsy study in a collection (n = 174) of post-mortem PART brains and used logistic 

regression to determine the extent to which a set of clinical and neuropathological features predict cognitive impair-

ment. We compared Braak staging, which focuses on hierarchical neuroanatomical progression of AD tau and Aβ 

pathology, with quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on 

digitized whole slide images of sections stained immunohistochemically with antibodies targeting abnormal hyper-

phosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed other factors affecting cogni-

tion, including aging-related tau astrogliopathy (ARTAG) and atrophy. We found no association between Braak stage 

and cognitive impairment when controlling for age (p = 0.76). In contrast, p-tau burden was significantly correlated 

with cognitive impairment even when adjusting for age (p = 0.03). The strongest correlate of cognitive impairment 

was cerebrovascular disease, a well-known risk factor (p < 0.0001), but other features including ARTAG (p = 0.03) and 

hippocampal atrophy (p = 0.04) were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic 

grains, and incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies con-

tribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging are critical for 

advancing our understanding of the extent to which age-related tauopathy changes impact cognitive function.
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Introduction

It is widely recognized that abnormal hyperphosphoryl-

ated tau (p-tau) deposition is a ubiquitous feature of the 

aging human brain, observed in both cognitively normal 

subjects and in those with a range of clinical features, 

including cognitive, motor and psychiatric symptoms 
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[35]. �e causes of tauopathy are diverse, and include 

both genetic and environmental risk factors [46]. Auto-

somal dominant mutations in the tau gene (MAPT) cause 

frontotemporal lobar degeneration and common risk 

alleles, notably the MAPT 17q21.31 H1 haplotype, are 

associated with sporadic tauopathies including progres-

sive supranuclear palsy (PSP), corticobasal degenera-

tion (CBD), and argyrophilic grain disease (AGD) [10]. 

Abnormal p-tau deposition is also seen following expo-

sure to repetitive head trauma in contact sports and other 

contexts in the setting of chronic traumatic encephalopa-

thy (CTE) [41]. Neurofibrillary tangles (NFT) are also a 

component of Alzheimer disease (AD), where they are 

associated amyloid-beta deposits [14].

Although it is generally understood that autopsy stud-

ies are critical for establishing definitive diagnoses, the 

neuropathology of the tauopathies is complex and over-

lapping. Further, non-impaired individuals often display 

significant amounts of p-tau accumulation, complicat-

ing our understanding of the contribution of such brain 

changes to symptomatology. Approaches to assessing 

tauopathy in post-mortem tissues continue to evolve. 

Neuropathologically, tauopathies can be differentiated 

by the neuroanatomical regionality of p-tau aggregates, 

cell type involvement (i.e., neurons versus glia), prefer-

ential isoform accumulation, and filament ultrastructure. 

Based upon these differentiating features, validated neu-

ropathological diagnostic consensus criteria have been 

devised and, in some cases, undergone revision. Examples 

include revision of the AD diagnostic criteria, and con-

sensus criteria for CTE [39, 44]. �e term aging-related 

tau astrogliopathy (ARTAG), which was described in 

recent consensus criteria on various patterns of astro-

cytic p-tau observed in aging, has been especially helpful 

for differentiating age-related changes from CTE, both 

of which have perivascular p-tau deposits, but with dif-

ferences in cell types involved [36, 40]. �e introduction 

of criteria for primary age-related tauopathy (PART) to 

describe individuals who develop AD-type neurofibrillary 

pathology with or without dementia in the absence of sig-

nificant amyloid deposition helped to better define this 

entity and differentiated it from AD [15]. Understanding 

age-related tauopathy is of critical importance in the con-

text of diagnosis and staging of all the tauopathies given 

its extremely high prevalence and importance as a co-

morbidity in essentially all studies evaluating tauopathy.

�ere has been controversy surrounding the PART 

consensus criteria since their introduction [9, 17], and 

there have been a substantial number of recent clin-

icopathological studies focused on understanding this 

pathological presentation [4–6, 27, 31, 34, 50, 51, 60]. 

Given the close clinical and neuropathological similari-

ties between PART and AD such that historically the two 

entities were classified together, accumulating evidence 

has highlighted differences. Clinically, the average age is 

higher for individuals who have PART than those with 

AD and patients with PART are more often female [33]. 

Patients with PART pathology are more often cognitively 

normal, but a subset have mild cognitive impairment or 

amnestic dementia, and this correlates with p-tau sever-

ity [15]. Among symptomatic individuals with a neu-

ropathological diagnosis of PART, nearly half had been 

clinically diagnosed with AD compared with 86% of 

those with autopsy-confirmed AD, indicating that despite 

diagnostic uncertainty, clinicians recognize differences 

between the two [59]. One retrospective study identi-

fied other factors including depression, Braak stage, and 

history of stroke, as independent predictors of cognitive 

impairment [5]. Another found that those with PART 

had a sparing of semantic memory compared to those 

with AD, suggesting that there is a distinct difference in 

clinical presentation [6]. Longitudinal analyses found that 

subjects with PART have a significantly slower clinical 

decline after becoming symptomatic than those with AD 

across multiple neuropsychological domains [60].

One limitation of most published studies on PART 

is that they rely on retrospective analysis of previously 

collected datasets (e.g., the National Alzheimer’s Coor-

dinating Center database, NACC) with predefined neu-

ropathological measures that may not fully capture all 

the clinically relevant features [43]. Further, findings 

might not be generalizable to other populations, and a 

lack of uniform analysis and quantitation might lead to 

bias. Critically, the Braak staging system was specifically 

developed for assessment of tau pathology in the context 

of AD, and has not been rigorously tested in amyloid-

negative subjects, so the extent to which it is valid for 

staging p-tau pathology in PART is unclear. Additionally, 

the Braak stage represents a hierarchical progression of 

the regional spread of neurofibrillary tangles, but does 

not directly measure the severity or burden of p-tau, but 

this has been incorporated into some operationalized 

frameworks [2]. Because the pathology in PART gener-

ally remains predominantly in the medial temporal lobe, 

this hierarchical pathoanatomical system may sub-opti-

mally measure severity of the disease. �ere are numer-

ous approaches to assessing lesion burden of p-tau and 

other pathologies [8, 26, 28, 29, 38, 39, 42], including cell 

counting and stereology [3, 4, 11, 19, 25, 64]. While each 

of these approaches have intrinsic advantages, they are 

limited in that they are labor intensive and for this reason 

and others, these methods have not been widely adopted 

in neuropathology laboratories [18, 62]. One approach 

that may have potential to better assess p-tau in PART is 

using computer-assisted quantitative morphometrics on 
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digital whole slide images, which may be well suited for 

staging PART.

Here, we studied a cohort of autopsy-confirmed sub-

jects with PART, enabling us to reexamine how tau 

pathology manifests in PART. We compared Braak stag-

ing with computer-assisted quantitative measures of 

p-tau burden, and used logistic regression to assess their 

contribution to cognitive impairment. Using this cohort, 

we were able to explore critical co-morbid pathologies 

(e.g., cerebrovascular disease), and further assess neu-

ropathological changes that are not available in exist-

ing publicly available datasets, including atrophy and 

ARTAG.

Methods

Patient samples

Formalin-fixed paraffin embedded (FFPE) tissue from 

the frontal cortex and hippocampus as well as fresh-

frozen tissue from frontal cortex were derived from 

autopsy brains from a subset of individuals from a pre-

viously described collection [61]. Specifically, the cohort 

included cases from the Oregon Health Sciences Univer-

sity (Portland, OR, USA), Banner Sun Health Research 

Institute (Sun City, AZ, USA), Emory (Atlanta, GA, 

USA), Northwestern (Evanston, IL, USA), the Univer-

sity of Pennsylvania (Philadelphia, PA, USA), Univer-

sity of Pittsburgh (Pittsburgh, PA, USA), University of 

Texas Southwestern Medical Center (Dallas, TX, USA), 

and the Medical University of Vienna (Vienna, Austria). 

Clinical inclusion criteria included being cognitively nor-

mal or having a diagnosis of mild cognitive impairment 

(MCI) or dementia with a recorded clinical dementia rat-

ing (CDR), Mini-Mental State Examination (MMSE), or 

postmortem clinical chart review CDR score within two 

years of death [20, 45]. CDR and MMSE scores were used 

to assign subjects into either cognitively normal or cogni-

tively impaired groups. Individuals who had a CDR score 

of 0.5 or above or MMSE score below 26 were considered 

to be cognitively impaired while subjects with a CDR 

score of 0 or MMSE score 26 or above were considered 

cognitively normal [37]. If an individual had both MMSE 

score and CDR score, the most recent score was used, 

and if both scores were given on the same date, the CDR 

score was used.

Comprehensive neuropathological assessments were 

performed at the contributing institutions. Neuropatho-

logical criteria for PART included (1) cases that had a 

Braak stage of 0-IV and (2) Consortium to Establish 

a Registry for Alzheimer’s Disease (CERAD) neuritic 

plaque severity score of 0 [8, 42]. Neuropathological 

exclusion criteria consisted of other neurodegenerative 

diseases including AD, Lewy body disease, progres-

sive supranuclear palsy (PSP), corticobasal degeneration 

(CBD), chronic traumatic encephalopathy (CTE), Pick 

disease, Guam amyotrophic lateral-sclerosis-parkin-

sonism-dementia, subacute sclerosing panencephalitis, 

globular glial tauopathy, and hippocampal sclerosis. Data 

pertaining to Braak stage, CERAD, Lewy body pathol-

ogy (incidental), cerebrovascular disease, infarcts (vascu-

lar brain injury), microinfarcts, and argyrophilic grains, 

were derived from neuropathologic studies performed 

at respective centers. Incidental Lewy body pathology 

was defined as the presence of rare to sparse Lewy bod-

ies (as assessed at the providing center) in the absence 

of movement disorder. �e presence of aging-related 

tau astrogliopathy (ARTAG) was determined on p-tau 

immunohistochemical stains described below [36].

Atrophy score

Given that no widely accepted validated system for 

assessing hippocampal atrophy on human brain sections 

exists, we devised a semiquantitative scoring system and 

applied it to low power images of hematoxylin & eosin-

stained sections counterstained with Luxol fast blue. We 

defined atrophy severity as the magnitude of ventricular 

dilatation (hydrocephalus ex vacuo) relative to the size 

of the hippocampal formation. If there was no apparent 

ventricular dilatation or atrophy, then a score of 0 was 

assigned. If there was appreciable atrophy, but the dors-

oventral height of the ventricle was less than the height 

of the thickest section of CA1, then a score of 1 (mild) 

was assigned. If the magnitude of ventricular dilatation 

exceeded the thickness of CA1, then a score of 2 (moder-

ate) was given. If the total area of the ventricle area was 

greater than the area of the hippocampus proper, a score 

of 3 (severe) was assigned. �is score was derived only in 

the subset of cases where the entire temporal horn of the 

lateral ventricle was available included in the provided 

section (n = 24).

Immunohistochemistry

Immunohistochemistry (IHC) and hematoxylin & eosin 

(H&E) stains were performed on FFPE Sections.  (5 μm) 

that were prepared from blocks of hippocampus and 

frontal cortex for supplemental neuropathological 

analyses (see below). Sections mounted on positively 

charged slides were dried overnight at room tempera-

ture. IHC was performed on a Leica Bond III automated 

stainer, according to the manufacturer’s protocols (Leica 

Microsystems, Buffalo Grove, IL, USA). IHC was per-

formed using antibodies to hyper-phosphorylated tau 

(p-tau, AT8, 1:1000, Fisher Scientific, Waltham, MA) and 

beta-amyloid (Aβ, 6E10, 1:1000, Covance, Princeton, NJ, 

USA). Aβ stains were confirmed to be negative to ensure 

that there were no neuritic or diffuse plaques present 
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(CERAD score of 0) for all cases. For each set of slides 

stained, a known severe AD case was included as a batch 

control.

Computer-assisted morphometric analysis

Whole slide images (WSI) were prepared from glass 

slides that were scanned using an Aperio CS2 (Leica Bio-

systems, Wetzlar Germany) digital slide scanner. Quan-

titative analysis of the tau burden was performed in 

selected regions in the hippocampi using the following 

methodology; WSI were neuroanatomically segmented 

using Aperio ImageScope software into the hippocampus 

proper (i.e., dentate, cornu ammonis, and subiculum) and 

the adjacent cortex that we termed the entorhinal region, 

which variably includes posterior portions of the parahip-

pocampal gyrus with remnants of the (trans-)entorhinal 

region or lingual gyrus. Staining was measured in these 

areas separately and together using a modified version of 

the Aperio positive pixel count (Version 9) based on the 

intensities of the positive control sample in each batch to 

determine the area of immunoreactivity. Data were nor-

malized using the number of positive pixel counts to the 

total area creating a 0–1 p-tau burden scale.

Genetic analysis

High-throughput isolation of DNA was performed using 

the MagMAX DNA Multi-Sample Ultra 2.0 Kit on King-

Fisher Flex robotic DNA isolation system (�ermofisher, 

Waltham, MA). 20–40  mg of fresh frozen brain tissue 

were placed into a deep-well plate and treated with 480 

ul of Proteinase K mix (Proteinase K, Phosphate Buffered 

Saline [pH 7.4], Binding Enhancer) and incubated over-

night at 65  °C at 800  rpm on a shaking plate. Genomic 

DNA was isolated and purified using magnetic particles. 

DNA quality control was performed using a nanodrop 

spectrophotometer (concentration > 50  ng/ul, 260/280 

ratio 1.7–2.2). Genotyping was performed using single 

nucleotide polymorphism (SNP) microarrays (Infinium 

Global Screening Array v2.4. or the Infinium OmniEx-

press-24, Illumina, San Diego CA). Raw genotype files 

were converted to PLINK-compatible files using Genom-

eStudio software (Illumina, San Diego CA). MAPT hap-

lotype was determined using the rs8070723 H2 tagging 

SNP. APOE genotype was provided by the collaborating 

center. For analyses, the APOE status was collapsed into 

a binary variable of the presence or absence of APOE ε4.

Statistical analysis

All statistical tests were performed using the statisti-

cal software Statistical Package for the Social Sciences 

(SPSS) (IBM, Chicago, Il). Data was visualized using the 

ggplot2 package in project R or Excel (Microsoft, Red-

mond, Washington). Binary measurements (yes/no) 

were created for pathological, clinical, demographic, and 

genetic variables. Specifically, variables were extracted 

from the pathological diagnosis and binary measure-

ments (yes/no) were created for the following variables: 

argyrophilic grains, Lewy body pathology (incidental), 

cerebrovascular disease, and infarcts (vascular brain 

injury). Additionally, the same process was done for clini-

cal variables: history of psychiatric illness and education 

(for this study, defined as at least some college).

Descriptive statistics were used to identify differences 

between the cognitively normal and cognitively impaired 

PART groups for clinical, pathological, and genetic vari-

ables. Differences were detected using χ2 tests or exact χ2 

if any cell size included < 5 participants. A t-test was per-

formed to determine if age differed significantly between 

normal and cognitively impaired groups. Next, an unad-

justed binary logistic regression was performed to deter-

mine what genetic, clinical, and pathological variables 

were associated with being cognitively impaired within 

our PART cohort. Lastly, a multivariable model was cre-

ated to determine what extent Braak NFT stage and the 

computer-assisted morphometrics were able to predict 

cognitive impairment in PART when adjusting for age. 

Statistical significance was determined if α < 0.05. Not all 

data was available on the subjects.

Results

One hundred seventy-four neuropathologically con-

firmed amyloid-negative subjects were included in this 

study (Table  1, Fig.  1). �e overall mean age was 83.2 

with a range of 52.9–105.1 years. Of these, 124 subjects 

(mean age 81.0, range = 52.9–102.4) had no cognitive 

impairment and 50 (mean age 88.3, range = 69.8–105.1) 

had some degree of cognitive impairment, with either 

mild cognitive impairment (MCI) or dementia. �e 

majority of subjects who were cognitively impaired were 

80 + years of age (Fig.  2). �e Braak NFT stage ranged 

from 0 to IV with the majority of cognitively impaired 

subjects having a Braak NFT score of II to IV. A higher 

percentage of females had cognitive impairment (62.0%) 

compared to those who were cognitively normal (49.2%).

We observed several differences among subjects with 

cognitive impairment compared to those who were cog-

nitively normal. First, cognitively impaired PART subjects 

were more likely to be older (age of testing 81.0 vs. 88.3, 

p < 0.0001), have cerebrovascular disease (42.0% vs. 4.8%, 

p < 0.0001) and have hippocampal age-related tau astro-

gliopathy (ARTAG; 38.3% vs. 21.6%, p < 0.05) compared 

to cognitively normal subjects (Table  1). However, edu-

cation, history of psychiatric illness, argyrophilic grains, 

incidental Lewy body pathology, infarcts, presence of an 

APOE ε2 allele, presence of APOE ε4 allele, and MAPT 
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haplotype status did not significantly affect cognitive sta-

tus (p > 0.05 for all conditions).

In our main unadjusted analysis, we assessed the 

extent to which a series of clinical, neuropathologi-

cal, and genetic variables predicted cognitive impair-

ment in our PART cohort (Table 2). We found that age 

and cerebrovascular disease were the strongest pre-

dictors of cognitive impairment (p < 0.0001 for both 

cases). ARTAG and hippocampal atrophy were also 

significant predictors, but to a lesser extent (p < 0.05 for 

both cases). �ere were more reported men and sub-

jects with a history of psychiatric illness, argyrophilic 

grains, incidental Lewy body pathology, infarcts, and 

microinfarcts in the cognitively impaired PART group, 

however none of these predictors was significantly dif-

ferent (p > 0.05 for all conditions). APOE ε4 (at least 

1 ε4 allele) was reported more in the cognitively nor-

mal PART group but did not reach significance. Braak 

NFT stage significantly predicted cognitive impairment 

(p < 0.05). Additionally, the computer-assisted morpho-

metrics in the entorhinal region, hippocampus proper, 

and the combined region were significantly associ-

ated with cognitive impairment (p = 0.0001, Fig.  3a–c, 

Table  3). Lastly, when the Braak NFT stage was cor-

related with computer-assisted morphometrics in the 

combined region (p < 0.001), there was a high degree 

of variability between the Braak NFT stage and the 

computer-assisted combined region morphometrics 

(Fig. 3d).

Finally, using a multivariable model, we assessed what 

features predicted cognitive impairment when control-

ling for age. In this adjusted analysis, we found cerebro-

vascular disease remained significantly associated with 

cognitive impairment (p < 0.00001). We also found that 

computer-assisted morphometrics used to capture p-tau 

burden in the hippocampus proper and combined region 

were significantly associated with cognitive impairment 

in PART (p < 0.05 for both cases). However, the com-

puter-assisted morphometrics in the entorhinal region 

were not associated with cognitive impairment yet there 

was a trend toward statistical significance (p = 0.07). 

�e Braak NFT stage was not able to predict cognitive 

impairment when controlling for age (p = 0.98, Table  3, 

Fig. 4). Additionally, we collapsed Braak NFT stage to low 

(0, I, II) and high (III, IV) and still did not observe statis-

tically significant differences (data not shown).

Table 1 Patient data

* Mild cognitive impairment or dementia, ** excluding cerebral amyloid angiopathy, ***Male sex, signi�cant values in bold (Chi squared test)

Cognitive status

Overall Normal Impaired* p

Demographics

Average age at testing (range) 83.2 (52.9–105.1) 81.0 (52.9–102.4) 88.3 (69.8–105.1)  < 0.0001

Total (Male / Female) 174 (82 / 92) 124 (63 / 61) 50 (19 / 31) 0.126***

Age at last visit (%)

 < 60 7 (4.0) 7 (5.6) 0 (0.0)

60–69 15 (8.6) 14 (11.3) 1 (1.7)

70–79 33 (19.0) 30 (24.2) 3 (5.2)

80–89 76 (43.7) 45 (36.3) 31 (53.4)

90 + 51 (29.3) 28 (22.6) 23 (39.7)

Education, at least some college (%) 32 (18.4) 15 (78.9) 17 (77.3) 0.89

History of psychiatric illness (%) 45 (25.9) 29 (31.9) 17 (45.9) 0.13

Neuropathological data

Argyrophilic grains 32 (18.4) 12 (9.7) 10 (20.0) 0.06

Lewy body pathology (incidental) 16 (9.2) 11 (8.9) 5 (10.0) 0.82

Cerebrovascular disease** 27 (15.5) 6 (4.8) 21 (42.0)  < 0.0001

Infarcts (vascular brain injury) 37 (21.3) 24 (19.4) 13 (26.0) 0.33

Hippocampus ARTAG positive (%) 43 (24.7) 25 (21.6) 18 (38.3) 0.03

Genetic data

Presence of ≥ 1 APOE ε4 allele 22 (12.6) 16 (12.9) 6 (11.3) 0.77

Presence of ≥ 1 APOE ε2 allele 46 (26.4) 27 (21.8) 19 (35.8) 0.06

Presence of ≥ 1 MAPT H2 59 (33.9) 42 (36.2) 17 (36.2) 1
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Discussion

Since the neuropathological criteria for PART were pro-

posed, the terminology has been widely adopted, but 

controversy persists, especially around its relationship to 

Alzheimer disease (AD). Delineating the histological/cel-

lular features that are associated with cognitive impair-

ment in PART is critical for advancing our understanding 

of the pathology and determining the extent to which it 

overlaps with AD. �e fact that subjects with PART, as 

with AD neuropathologic change, can range in their cog-

nitive status from normal to demented, raises the ques-

tion as to whether cognitive reserve/resilience plays a 

role or alternatively whether we are not adequately cap-

turing the relevant features, such as common comorbidi-

ties or other factors. �is study, by using a large autopsy 

cohort with multivariate analyses, directly addresses 

Cognitively impaired Normal

Fig. 1 Comparison of amyloid and tau pathology in primary age-related tauopathy (PART) versus Alzheimer disease (AD). a Immunohistochemical 

staining using antisera to hyperphosphorylated tau in an AD brain shows marked hyperphosphorylated tau (p-tau)-containing neurofibrillary 

tangles (NFT) in the hippocampus which extends past the collateral sulcus into the parahippocampal gyrus and other neocortical regions. b, c 

Subjects with mild to severe PART have elevated p-tau levels in the hippocampus predominantly restricted to the medial temporal lobe. d, e, f 

Subjects with AD neuropathologic change have abundant Aβ-containing plaques in neocortical structures, whereas those with PART have sparse 

or none. These neuropathologic changes in AD and PART are seen in association with varying degree of cognitive impairment ranging from 

cognitively normal to demented

Fig. 2 Distribution of age, Braak neurofibrillary tangle (NFT) stage and cognitive status. a The number of normal and cognitively impaired subjects 

across the age spectrum. b The number of cognitively normal and impaired subjects by Braak stage. c The number of subjects across the aging 

spectrum by Braak stage



Page 7 of 12Iida et al. acta neuropathol commun           (2021) 9:134  

these critical questions. �e goal was to leverage our col-

lection of post-mortem PART brains to characterize the 

clinical, pathological, and genetic features that are asso-

ciated with cognitive impairment in PART. Additionally, 

we sought to compare Braak stage with pathology burden 

measures derived from p-tau immunohistochemistry 

that quantifies severity independently of neuroanatomi-

cal vulnerability. To overcome intra-center variability in 

tau pathology measures, we reassessed each case histo-

logically to maximize accuracy. �is study design, which 

included the entire spectrum of Braak 0–IV treated 

PART pathology as a ubiquitous quantitative trait allow-

ing us to examine the continuum of p-tau burden in the 

absence of amyloid deposition.

We found that all of our PART definite cases had p-tau 

restricted mainly to the MTL (Braak NFT stage < IV), 

which is consistent with and supports other previous 

studies investigating PART [4, 15, 32]. Cases ranged in 

cognitive impairment with the majority of subjects being 

cognitively normal, and consistent with prior data, the 

PART subjects tended to be older than individuals with 

AD [15, 59]. �e results of our study confirm those of 

previous autopsy studies showing that cerebrovascu-

lar disease predicts cognitive impairment in PART, even 

when adjusted for age [5, 48]. Interestingly, we did not 

see a strong correlation between cognitive impairment 

and microinfarcts, while others have shown a correlation 

with cognition in the oldest old [12]. We did however, 

find novel, unreported associations of increased age, hip-

pocampal atrophy, and ARTAG with cognitive impair-

ment in our PART definite cohort. Similar to what has 

been reported by those utilizing the NACC database, our 

results verify those with a higher Braak NFT stage are 

associated with more rapid cognitive decline [31].

While these associations have yet to be reported in 

PART, there are numerous studies showing that age, 

atrophy, and ARTAG may be associated with cognitive 

impairment [7, 21, 30, 49, 52]. Surprisingly, we did not 

see increased odds of the Braak NFT stage being asso-

ciated with cognitive impairment when controlling for 

age as has been reported in other studies [5]. However, 

we did find that using computer-assisted morphomet-

rics to assess p-tau burden in the entorhinal region, hip-

pocampus, and combined region was able to significantly 

predict cognitive impairment, similar to other stud-

ies [1, 11]. While Braak NFT staging is the most widely 

employed approach for assessing p-tau, it is limited in 

that it primarily focuses on regionality and not disease 

burden [23]. Other studies have employed both manual 

and computer assisted quantitative approaches that may 

capture aspects of pathological features with more power 

[22, 24, 55]. However, a majority of these approaches 

focuses on AD which may not be relevant in the context 

of PART, where p-tau pathology does not progress in the 

same hierarchical manner proposed by Braak in AD [8, 

14]. Hence this study highlights several new methodolo-

gies to assess p-tau burden, which our results suggest to 

be a more accurate predicator of clinical symptomology 

in those with PART. However, until digital neuropathol-

ogy becomes more widespread, semi-quantitative assess-

ment might be a better approach to staging PART in 

clinical neuropathology practice, but further validation is 

required.

In addition to assessing p-tau burden, we also exam-

ined the effect of APOE status in PART as a predictor for 

cognitive impairment. APOE ε4 has been strongly sug-

gested as an important predictor of cognitive decline in 

AD while APOE ε2 has been shown to be protective [13, 

16, 53, 57]. However, many of these studies have been 

performed in AD cohorts, and in aging cohorts there has 

been evidence suggesting the ε4 allele is not a risk factor 

for cognitive impairment [56]. Our data agree with that 

reported by Small et al. as we did not see an association 

with APOE ε4 and cognitive impairment, which might 

be explained by the fact that we studied a pathologi-

cally confirmed amyloid-negative cohort. Recent work 

has suggested that APOE may exacerbate tau pathol-

ogy independently of amyloid deposition [54]. Here, we 

failed to detect an association of cognitive impairment in 

PART with the MAPT H1 haplotype; future larger studies 

Table 2 Unadjusted odds of being cognitively impaired

* Excluding cerebral amyloid angiopathy, signi�cant values in bold (logistic 

regression)

OR 95% CI p value

Characteristic

Age, at testing 1.08 1.04–1.13  < 0.0001

Education, y 0.87 0.67–1.12 0.28

Sex 1.69 0.86–3.30 0.13

APOE (at least 1 ε4 allele) 0.988 0.36–2.70 0.98

History of psychiatric diagnosis 1.82 0.83–3.98 0.14

Aging-related tau astrogliopathy 
(ARTAG)

2.26 1.08–4.72 0.03

Argyrophilic grains 2.33 0.94–5.82 0.07

Lewy body pathology (incidental) 1.14 0.38–3.47 0.82

Cerebrovascular disease* 14.24 5.27–38.48  < 0.0001

Infarcts (vascular brain injury) 1.46 0.68–3.17 0.33

Microinfarcts 1.05 0.43–2.59 0.91

Hippocampal atrophy 5.32 1.04–27.09 0.04

Braak NFT stage 1.37 1.03–1.83 0.03

Computer-assisted p-tau (AT8) burden (positive pixel counts)

Entorhinal region 1.90 1.31–2.75 0.001

Hippocampus proper 2.17 1.48–3.20  < 0.0001

Entorhinal region & Hippocampus 
proper

2.12 1.44–3.11  < 0.0001
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Fig. 3 Computer-assisted morphometrics to assess pathological tau burden. a, b Quantitative assessment of hyperphosphorylated tau (p-tau) 

burden was performed on whole slide images of the hippocampus stained for p-tau (AT8) using immunohistochemistry. Positive pixel counts were 

determined in two regions (hippocampus proper and entorhinal region). Results were normalized to the total area assessed. A third summary score 

of the total p-tau burden of the medial temporal lobe was calculated by summing positive pixels in both. c High power image shows high intensity 

in red, medium intensity in yellow and negative staining in blue. d Parallel plot showing the relationship between Braak stage and the computer 

morphometric quantification of p-tau using the normalized medial temporal lobe (hippocampus and entorhinal region). Scale bar = 150 μm

Table 3 Odds of being cognitively impaired at death, adjusted

Signi�cant values in bold (logistic regression)

OR 95% CI p value

Cerebrovascular disease 11 1.47–3.41  < 0.0001

Braak NFT stage 1.01 0.72–1.41 0.98

P-tau burden (computer-assisted AT8 IHC positive pixels)

 Entorhinal region 1.46 0.97–2.20 0.07

 Hippocampus 1.66 1.07–2.57 0.02

 Entorhinal region & hippocampus 1.62 1.06–2.49 0.03
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with more statistical power are required to delineate the 

genetic architecture of PART.

�is study had notable limitations. �ere was a rel-

atively small number of subjects in the cognitively 

impaired PART group (n = 50), which may weaken our 

power to predict cognitive impairment. Additionally, 

because a majority of our subjects were not from longi-

tudinally studied prospective cohorts, we were unable to 

obtain certain lifestyle variables, such as actual years of 

education and concussion history, which could poten-

tially significantly affect our model. However, given that 

diagnosing PART pre-mortem is currently challenging, it 

would be impractical to create such a prospective cohort. 

One important consideration not directly addressed is 

limbic-predominant age-related TDP43 encephalopathy 

neuropathologic changes (LATE-NC) [47]. LATE-NC is a 

potential driver of cognitive changes in our cohort given 

its high frequency in the elderly population, with up to 
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Fig. 4 Pathological tau burden in normal and cognitively impaired subjects across the aging spectrum. a–c Generalized linear models of age versus 

tau burden show significant differences between cognitively normal and cognitively impaired subjects in the hippocampus proper (p = 0.047), and 

combined entorhinal region and hippocampus regions (p < 0.048), but not in the entorhinal region alone (p = 0.07). d Generalized linear model of 

age vs Braak NFT staging did not show significant differences between cognitively normal and cognitively impaired subjects (p = 0.73)
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25% of subjects in community-based autopsy cohorts 

having sufficient LATE-NC burden to be cause cognitive 

impairment [47]. Given that PART commonly presents 

with co-morbidities including LATE-NC, the relation-

ship between TDP-43 proteinopathy and PART should 

be examined more closely [34, 58, 63]. Additionally, the 

association we observed with ARTAG and cognitive 

status might be only due to collinearity between p-tau 

severity and ARTAG, with p-tau probably the driving 

pathology and the ARTAG association being significant 

because of its potential dependence on p-tau. Lastly, our 

study was limited to pathology of the medial temporal 

lobe and frontal cortex. A more exhaustive study would 

have incorporated a greater number of brain regions to 

more extensively address other potential tau-related 

pathologies.

In summary, our findings are consistent with the 

hypothesis that PART is an amyloid-independent tauopa-

thy, primarily affecting the medial temporal lobe, which 

can present with cognitive impairment. Several demo-

graphic and neuropathological variables including age, 

ARTAG, cerebrovascular disease, hippocampal atrophy, 

Braak NFT stage, and p-tau computer assessments were 

significantly associated with cognitive impairment in our 

PART cohort. �e Braak NFT stage was not a significant 

predictor of cognitive impairment when controlling for 

age, while the computer-assistant morphometrics were. 

�ese data strongly suggest that neuroanatomical stag-

ing used in AD may not be as relevant to PART given the 

pathology minimally spreads beyond the medial tempo-

ral lobe. Novel techniques to measure p-tau burden can 

further our understanding of PART pathology and asso-

ciated clinical and genetic features.
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