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ABSTRACT

Since 1992 PredictProtein (https://predictprotein.

org) is a one-stop online resource for protein se-

quence analysis with its main site hosted at the Lux-

embourg Centre for Systems Biomedicine (LCSB)

and queried monthly by over 3,000 users in 2020.

PredictProtein was the first Internet server for pro-

tein predictions. It pioneered combining evolution-

ary information and machine learning. Given a pro-

tein sequence as input, the server outputs multiple

sequence alignments, predictions of protein struc-

ture in 1D and 2D (secondary structure, solvent

accessibility, transmembrane segments, disordered

regions, protein flexibility, and disulfide bridges)

and predictions of protein function (functional ef-

fects of sequence variation or point mutations, Gene

Ontology (GO) terms, subcellular localization, and
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protein-, RNA-, and DNA binding). PredictProtein’s
infrastructure has moved to the LCSB increasing

throughput; the use of MMseqs2 sequence search

reduced runtime five-fold (apparently without lower-

ing performance of prediction methods); user inter-

face elements improved usability, and new predic-

tion methods were added. PredictProtein recently in-

cluded predictions from deep learning embeddings

(GO and secondary structure) and a method for the

prediction of proteins and residues binding DNA,

RNA, or other proteins. PredictProtein.org aspires

to provide reliable predictions to computational and

experimental biologists alike. All scripts and meth-

ods are freely available for offline execution in high-

throughput settings.

GRAPHICAL ABSTRACT

INTRODUCTION

The sequence is known for far more proteins (1) than ex-
perimental annotations of function or structure (2,3). This
sequence-annotation gap existed when PredictProtein (4,5)
started in 1992, and has kept expanding ever since (6).
Unannotated sequences contribute crucial evolutionary in-
formation to neural networks predicting secondary struc-
ture (7,8) that seeded PredictProtein (PP) at the European
Molecular Biology Laboratory (EMBL) in 1992 (9), the
�rst fully automated, query-driven Internet server provid-
ing evolutionary information and structure prediction for
any protein.Many other methods predicting aspects of pro-
tein function and structure have since joined under the PP
roof (4,5,10) now hosted by the Luxembourg Centre of Sys-
tems Biomedicine (LCSB).
PP offers an array of structure and function predictions

most of which combine machine learning with evolutionary
information; now enhanced by a faster alignment algorithm
(11,12). A few predictionmethods now also use embeddings
(13,14) from protein LanguageModels (LMs) (13–18). Em-
beddings are much faster to obtain than evolutionary infor-
mation, yet for many tasks, perform almost as well, or even
better (19,20). All PP methods join at PredictProtein.org
with interactive visualizations; for some methods, more ad-
vanced visualizations are linked (21–23). The reliability of
PredictProtein, its speed, the continuous integration of well-
validated, top methods, and its intuitive interface have at-
tracted thousands of researchers over 29 years of steady op-
eration.

MATERIALS AND METHODS

PredictProtein (PP) provides

multiple sequence alignments (MSAs) and position-speci�c
scoring matrices (PSSMs) computed by a combination
of pairwise BLAST (24), PSI-BLAST (25), and MM-
seqs2 (11,12) on query vs. PDB (26) and query versus
UniProt (1). For each residue in the query, the following
per-residue predictions are assembled: secondary structure
(RePROF/PROFsec (5,27) and ProtBertSec (14)); solvent
accessibility (RePROF/PROFacc); transmembrane helices
and strands (TMSEG (28) and PROFtmb (29)); protein dis-
order (Meta-Disorder (30)); backbone �exibility (relative
B-values; PROFbval (31)); disul�de bridges (DISULFIND
(32)); sequence conservation (ConSurf/ConSeq (33–36));
protein-protein, protein-DNA, and protein-RNA binding
residues (ProNA2020 (3)); PROSITE motifs (37); effects
of sequence variation (single amino acid variants, SAVs;
SNAP2 (38)). For each query per-protein predictions in-
clude: transmembrane topology (TMSEG (28)); binary
protein-(DNA|RNA|protein) binding (protein binds X or
not; ProNA2020 (3)); Gene Ontology (GO) term predic-
tions (goPredSim (19)); subcellular localization (LocTree3
(39)); Pfam (40) domain scans, and some biophysical fea-
tures. Under the hood, PP computes more results (SOM:
PredictProtein Methods; Supplementary Table S1), either
as input for frontend methods, or for legacy support.

New: goPredSim embedding-based transfer of Gene Ontol-
ogy (GO)

goPredSim (19) predicts GO terms by transferring anno-
tations from the most embedding-similar protein. Embed-
dings are obtained from SeqVec (13); similarity is estab-
lished through the Euclidean distance between the embed-
ding of a query and a proteinwith experimentalGOannota-
tions. Replicating the conditions of CAFA3 (41) in 2017, go-
PredSim achieved Fmax values of 37 ± 2%, 52 ± 2% and 58
± 2% for BPO (biological process), MFO (molecular func-
tion), and CCO (cellular component), respectively (41,42).
Using Gene Ontology Annotation (GOA) (43,44) to test
296 proteins annotated after February 2020, goPredSim ap-
peared to reach even slightly higher values that were con-
�rmed by CAFA4 (45).

New: ProtBertSec secondary structure prediction

ProtBertSec predicts secondary structure in three states (he-
lix, strand, other) using ProtBert (14) embeddings derived
from training on BFD with almost 3 × 109 proteins (6,46).
On a hold-out set from CASP12, ProtBertSec reached a
three-state per-residue accuracy of Q3 = 76 ± 1.5% (47).
Although below the state-of-the-art (NetSurfP-2.0 (48) at
82%), this method performed on-par with other MSA-
based methods, despite itself not using MSAs.

New: ProNA2020 protein–protein, protein–RNA and
protein–DNA

ProNA2020 (3) predicts whether or not a protein interacts
with other proteins, RNAorDNA (binary), and if so, where
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Figure 1. Predictions for SARS-CoV-2 Nucleoprotein (NCAP SARS2). Underneath the interactive slider at the top: RePROF and ProtBertSec secondary
structure (blue: helix; purple: strand; orange: other); Meta-Disorder intrinsically disordered regions (purple); ProNA2020 RNA-binding residues (low
con�dence: blue; medium con�dence: purple). goPredSim transfers of GeneOntology (GO) terms based on embedding similarity (lower left: CCO; lower
right: BPO&MFO). SNAP2 predicts the effect of point-mutations on function for the RNA-binding region from I84 to D98 (bottom-center; black: native
residue). Link: predictprotein.org/visual results?req id=$1$nAmulUQY$FRPFaP8NTqLW9DzdlTG3B/.

it binds (which residues). The binary per-protein predictions
rely on homology and machine learning models employ-
ing pro�le-kernel SVMs (49) and on embeddings from an
in-house implementation of ProtVec (50). Per-residue pre-
dictions (where) use simple neural networks due to data
shortage (51–53). ProNA2020 correctly predicted 77 ± 1%
of the proteins binding DNA, RNA or protein. In proteins
known to bind other proteins, RNA or DNA, ProNA2020
correctly predicted 69 ± 1%, 81 ± 1% and 80 ± 1% of bind-
ing residues, respectively.

New: MMseqs2 speedy evolutionary information

Most time-consuming for PP was the search for related pro-
teins in ever growing databases. MMseqs2 (11) �nds related
sequences blazingly fast and seeds a PSI-BLAST search
(25). The query sequence is sent to a dedicated MMseqs2
server that searches for hits against cluster representatives
within the UniClust30 (54) and PDB (26) reduced to 70%
pairwise percentage sequence identity (PIDE). All hits and
their respective cluster members are turned into aMSA and
�ltered to the 3000 most diverse sequences.

WEB SERVER

Frontend and user interface (UI)

Users query PredictProtein.org by submitting a protein se-
quence. Results are available in seconds for sequences that
had been submitted recently (cf. PPcache next section), or
within up to 30 min if predictions are recomputed. Per-
residue predictions are displayed online via ProtVista (55),

which allows to zoom into any sequential protein region
(Supplementary Figure S1), and are grouped by category
(e.g. secondary structure), which can be expanded to display
more detail (e.g. helix, strand, other). On the results page,
links to visualize MSAs through AlignmentViewer (56) are
available. More predictions can be accessed through amenu
on the left, e.g. Gene Ontology Terms, Effect of Point Muta-
tions and Subcellular Localization. Prediction views include
references and details of outputs, as well as rich visualiza-
tions, e.g. GO trees for GO predictions and cell images with
highlighted predicted locations for subcellular localization
predictions (57).

PPcache, backend and programmatic access

The PP backend lives at LCSB, allowing for up to 48 par-
allel queries. Results are stored on disc in the PPcache (5).
Users submitting sequences for which results were over the
last two years obtain results immediately. Using the bio-
embeddings pipeline (58), the PPcache is enriched by em-
beddings and embedding-based predictions on the �y. For
all methods displayed on the frontend, JSON �les compli-
ant with ProtVista (55) are available via REST APIs (SOM:
Programmatic access), and are in use by external services
such as the protein 3D structure visualization suite Aquaria
(21,23) and byMolArt (22).

PredictProtein is available for local use

All results displayed on and downloadable from PP are
available through Docker (59) and as source code for local
and cloud execution (available at github.com/rostlab).
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Figure 2. Experimental and predicted RNA-binding residues for
NCAP2 SARS2. Predicted (via ProNA2020, in cyan, panelsA andC) and
observed (within 5Å, in magenta, panels B and D) RNA-binding residues
for the SARS-CoV-2 nucleoprotein (gray) complexed with a 10-mer
ssRNA (orange), PDB structure 7ACT (61). Two-third of the predictions
are correct (precision = 0.73, recall = 0.20), which is around the expected
average performance reported by ProNA2020. The important sequence
consecutive central strand and loop are predicted well, while several
short sequence segments that are far away in sequence space but close
in structure space are missed, which is expected as ProNA2020 has no
notion of 3D structure, i.e., cannot identify ‘binding sites’. Panels A and
B show a different orientation than panels C and D.

USE CASE

We demonstrate PredictProtein.org tools through
predictions of the novel coronavirus SARS-CoV-2
(NCBI:txid2697049) nucleoprotein (UniProt identi�er
P0DTC9/NCAP SARS2; Figure 1; SOM: Use Case; Sup-
plementary Figure S2). NCAP SARS2 has 419 residues
and interacts with itself (experimentally veri�ed). Sequence
similarity and automatic assignment via UniRule (60)
suggest NCAP is RNA-binding (binding with the viral
genome), binding with the membrane protein M (UniProt
identi�er P0DTC5/VME1 SARS2), and is fundamental
for virion assembly. goPredSim (19) transferred GO terms
from other proteins for MFO (RNA-binding; GO:0003723;
ECO:0000213) and CCO (compartments in the host
cell and viral nucleocapsid; GO:0019013; GO:0044172;
GO:0044177; GO:0044220; GO:0030430; ECO:0000255)
matching annotations found in UniProt (1). While it missed
the experimentally veri�ed MFO term identical protein
binding (GO:0042802), goPredSim predicted protein folding
(GO:0006457) and protein ubiquitination (GO:0016567)
suggesting the nucleoprotein to be involved in biolog-
ical processes requiring protein binding. ProNA2020
(3) predicts RNA-binding regions, the one with highest
con�dence between I84 (Isoleucine at position 84) and
D98 (Aspartic Acid at 98) (protein sequence in SOM: Use
Case). While high resolution experimental data on binding
is not available, an NMR structure of the SARS-CoV-2 nu-
cleocapsid phosphoprotein N-terminal domain in complex

with 10mer ssRNA (PDB identi�er 7ACT (61)) supports
the predicted RNA-binding site (Figure 2). Additionally,
SNAP2 (38) predicts single amino acid variants (SAVs)
in that region to likely affect function, reinforcing the
hypothesis that this is a functionally relevant site. Although
using different input information (evolutionary vs. embed-
dings), RePROF (5) and ProtBertSec (14) both predict an
unusual content exceeding 70% non-regular (neither helix
nor strand) secondary structure, suggesting that most of
the nucleoprotein might not form regular structure. This is
supported by Meta-Disorder (30) predicting 53% overall
disorder. Secondary structure predictions match well high-
resolution experimental structures of the nucleoprotein
not in complex (e.g., PDB 6VYO (62); 6WJI (63)). Both
secondary structure prediction methods managed to zoom
into the ordered regions of the protein and predicted e.g.,
the �ve beta-strands that are formed within the sequence
range I84 (Isoleucine) to A134 (Alanine), and the two
helices formed within the sequence range spanned from
F346 (Phenylalanine) to T362 (Tyrosine).

CONCLUSION

For almost three decades (preceding Google) PredictPro-
tein (PP) has been offering predictions for proteins. PP is
the oldest prediction Internet server, online for 6-times as
long as most other servers (64–66). It pioneered combining
machine learning with evolutionary information and mak-
ing predictions freely accessible online. While the sequence-
annotation gap continues to grow, the sequence-structure
gap might be bridged in the near future (67). For the time
being, servers such as PP, providing a one-stop solution to
predictions from many sustained, novel tools are needed.
Now, PP is the �rst server to offer fast embedding-based
predictions of structure (ProtBertSec) and function (go-
PredSim). By slashing runtime for PSSMs from 72 to 4 min
through MMseqs2 and better LCSB hardware, PP also de-
livers evolutionary information-based predictions fast! In-
stantaneously if the query is in the precomputed PPcache.
For heavy use, the of�ine Docker containers provide pre-
dictors out-of-the-box. At no cost to users, PredictProtein
offers to quickly shine light on proteins for which little is
known using well validated prediction methods.

DATA AVAILABILITY

Freely accessible webserver PredictProtein.org; Source and
docker images: github.com/rostlab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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