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Abstract

An important message taken from human genome sequencing projects is that the human

population exhibits approximately 99.9% genetic similarity. Variations in the remaining

parts of the genome determine our identity, trace our history and reveal our heritage. The

precise delineation of phenotypically causal variants plays a key role in providing accurate

personalized diagnosis, prognosis, and treatment of inherited diseases. Several computa-

tional methods for achieving such delineation have been reported recently. However, their

ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms

of prediction do not account for the existence of different categories of variants. Conse-

quently, their output is biased towards the variant categories that are most strongly repre-

sented in the variant databases. Moreover, most such methods provide numeric scores but

not binary predictions of the deleteriousness of variants or confidence scores that would be

more easily understood by users. We have constructed three datasets covering different

types of disease-related variants, which were divided across five categories: (i) regulatory,

(ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets

were used to develop category-optimal decision thresholds and to evaluate six tools for vari-

ant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation

revealed some important advantages of the category-based approach. The results obtained

with the five best-performing tools were then combined into a consensus score. Additional

comparative analyses showed that in the case of missense variations, protein-based pre-

dictors perform better than DNA sequence-based predictors. A user-friendly web interface

was developed that provides easy access to the five tools’ predictions, and their consensus

scores, in a user-understandable format tailored to the specific features of different catego-

ries of variations. To enable comprehensive evaluation of variants, the predictions are
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complemented with annotations from eight databases. The web server is freely available to

the community at http://loschmidt.chemi.muni.cz/predictsnp2.

This is a PLOS Computational Biology Software paper.

Introduction

The rapid development and falling costs of sequencing technologies have enabled the study of

human genetic variants on a large scale [1]. Genome sequencing projects have generated a very

large catalog of human genetic variations, but the interpretation of these data remains challeng-

ing. In particular, it is difficult to determine the functional impact of variants on individuals

[2–4] and sub-populations [5,6]. These difficulties have become more pronounced and impor-

tant as the scope of analysis has expanded fromMendelian disorders [7,8] to complex diseases

such as diabetes [9]. Improvements in sequencing technologies have also allowed researchers

to move beyond studying associations in the exome: over the last decade, several large-scale

genome projects have provided evidence that the concept of “junk DNA” is flawed and at least

80% of the human genome is functional [10]. The Encyclopedia of DNA Elements (ENCODE)

[10] and Epigenomics Roadmap [11] projects have released comprehensive maps of regulatory

elements such as transcription factor binding sites, chromatin regulators, and regions of his-

tone modification. These annotations are available for many different cells and tissue types,

and provide an opportunity to detect new pathogenic variants. The disease mechanisms associ-

ated with some of these variants can be linked to perturbations in specific regulatory elements

that alter gene expression [12,13]. Although only a few Mendelian phenotypes have been

mapped exclusively to genetic variants outside the exome [14], it is likely that many remain to

be discovered. At present, about 50% of all 3,152 known Mendelian phenotypes have no

known association with coding regions [8] and thus represent promising candidates for further

investigation. Furthermore, genome-wide association studies (GWAS) have identified over

twenty thousand variants, of which over 90% occurred in non-coding regions [15]. These vari-

ants have been associated with common diseases in which lifestyle and environmental factors

play important roles [16]. This finding supports the hypothesis that most trait-associated vari-

ants with weak effects are non-coding [1].

Computational analysis is very important for prioritizing variants. While there are many

tools dedicated to predicting the effects of missense variations [1,17,18], only a handful have

been developed for analysis of non-coding variants. Because strong descriptors were not widely

available in the past, the first nucleotide-based tools relied exclusively on evolutionary conser-

vation in their analyses [19–21]. Unfortunately, the predictive performance of these tools is

limited by the high evolutionary turnover of regulatory elements [22,23], which makes it

harder to derive a significant signal from their degree of conservation than is the case for cod-

ing regions. The release of data from genome projects subsequently enabled the development

of a new generation of tools [24–32]. While all of the second-generation tools take advantage

of new functional annotations of the genome and offer superior performance to conservation-

based tools, their ability to provide accurate and interpretable estimates of deleteriousness for

all genome variations is often limited by two factors. First, they do not account for the existence

of different types of variations during the learning phase, so their results are biased towards
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missense variants, which are over-represented in the variation databases. Second, most of them

do not provide clear statements about the deleteriousness of analyzed variants or human-read-

able confidence scores. Instead, they report decimal values from numeric ranges without fixed

decision thresholds, making interpretation of their results difficult.

Here we report the construction of three balanced datasets covering different types of dis-

ease-related variants. To study the performance of individual tools in more detail, each dataset

was further divided into five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synony-

mous, and (v) nonsense variants. The datasets representing these categories were evaluated

using six prediction tools and used to develop category-optimal decision thresholds. The use of

these optimized thresholds with the predictive tools often significantly increases their perfor-

mance relative to that achieved with a general single-threshold approach. In addition, we have

developed a web interface providing easy access to binary predictions and uniform confidence

values for the five best-performing prediction tools and their consensus. These predictions are

supplemented with information gathered from eight publically available databases. Herein

introduced tool, PredictSNP2, represents a natural extension of previously published Pre-

dictSNP1 tool [33]. PredictSNP1 offers its users a consensus score based on the output of six

different amino acid-based predictors. Because of the nature of the tools whose results are com-

bined to generate its consensus, PredictSNP1 can only be used to analyze substitutions in an

amino acid sequence. PredictSNP2 complements PredictSNP1 by evaluating the effects of

nucleotide variants located in any region of the genome.

Design and Implementation

Datasets and data preprocessing

A collection of three datasets covering different types of pathogenic variants associated with

Mendelian, complex, and cancer diseases was constructed. This division was chosen to reflect

the different genetic basis of these diseases [9] and the differences in the extent of their pheno-

typic effects [34]. A dataset of variants associated with Mendelian diseases was created using all

variants annotated as pathogenic or likely pathogenic in NCBI ClinVar [35], a manually

curated database of genotype-phenotype relationships. Information on variants associated with

complex human diseases (p-value< 10−8) was obtained from the NHGRI GWAS catalog [15],

a collection of all publicly available genome-wide association studies. To compile the dataset of

somatic cancer variants, we extracted all records with confirmed somatic status present in at

least two different samples from the COSMIC database [36]. Each disease-related dataset was

then split into five subsets by classifying the variants according to their functional conse-

quences and location within the genome as determined by ANNOVAR [37] (Fig 1). The deci-

sion to use fine-grained variant categorization was motivated by the observation that the

classification features used by the evaluated tools exhibit different signals within different cate-

gories [38]. Finally, these categorized pathogenic variants were supplemented with their neutral

counterparts from the VariSNP database [39]. In addition to the standard VariSNP procedure

of removing all overlaps with disease-related records from ClinVar [35], Swiss-Prot [40] and

PhenCode [41], we also filtered out all variants present in the COSMIC [36] and NHGRI

GWAS catalogs [15]. We used the distance-based approach introduced by Ritchie et al. to con-

struct the neutral subsets [25], selecting the closest available neutral variant in the neighbor-

hood of each individual deleterious variant. This approach can be expected to yield balanced

datasets if one assumes that the neutral variants should reliably sample the overall background.

Because the advantage of using category-specific thresholds or consensus scores should not be

evaluated against the same datasets used for such optimizations [42], we split all of the individ-

ual category datasets into training and testing subsets based on the entries’ dates of submission.

PredictSNP2: Region-Specific Prediction of SNP Effects

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004962 May 25, 2016 3 / 18



To ensure that the testing dataset excluded information that may have previously been used to

train individual tools, it contained only variations submitted after December 2014. While the

variants in the non-exonic categories were divided randomly across these subsets, the corre-

sponding protein sequences representing exonic regions were clustered by CD-HIT [43] at the

level of 50% sequence identity to ensure that variants occurring in similar proteins were

assigned to the same set. The final versions of the datasets are available in the supporting infor-

mation (S1–S3 Datasets).

Prediction tools and databases

Six prediction tools were selected for evaluation, optimization and eventual integration into the

PredictSNP2 web portal (see S1 Table). These tools had to satisfy the following criteria: (i) to

be capable of predicting the effects of a nucleotide substitution anywhere within the human

genome, (ii) to be available as a stand-alone application or to provide pre-calculated scores for

all possible substitutions, (iii) to have a higher level of complexity than established first-princi-

ples approaches. The latter criterion prevented the inclusion of tools that base their predictions

solely on evolutionary data. This was done because the rapid evolution and varied evolutionary

patterns observed outside the protein-coding regions of the genome [21] mean that evolution-

ary constraints do not provide sufficient discriminatory power by themselves for non-coding

regions, although they can be useful when combined with other features. All six selected tools

benefit from the availability of functional annotations from the ENCODE project [10]. They

represent diverse predictive approaches leveraging different training datasets, machine learning

models, and combinations of decision features. CADD [24] estimates the deleteriousness of

variants, a property correlated with both molecular functionality and pathogenicity. Its predic-

tions are based on a logistic regression model that takes into account evolutionary conserva-

tion, regulatory and transcript information, and protein-level scores. The CADD classifier was

trained on a newly constructed dataset of mutations including a subset of approximately 15

Fig 1. Categorization of variants based on their location within the genome and their type.

doi:10.1371/journal.pcbi.1004962.g001
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million putatively neutral variants derived from observed differences between the human and

chimpanzee genomes, and a second subset of approximately 15 million simulated variants that

was enriched in deleterious variants because it had not been subject to natural selection. A sim-

ilar approach was used with DANN [26], a deep neural network-based classifier with the ability

to capture non-linear relationships among features. FATHMM-MKL [27] assesses the func-

tional impact of variants using an SVMmodel, which was trained on a set of literature-derived

pathogenic variants drawn from the Human Gene Mutation Database (HGMD) [44] and neu-

tral common variants drawn from the 1000 Genome Project [45]. Data from the same sources

was used to build a training dataset for the GWAVA [25] tool, which is based on a random for-

est classifier and is designed for the analysis of regulatory variants. FunSeq2 [32] uses an empir-

ical scoring system that integrates evolutionary constraints, epigenetic data and knowledge of

transcription-binding motifs to assess the impact of variants. The weights of selected features

were derived from mutation patterns observed in the 1000 Genomes polymorphism data.

Finally, FitCons [28] defines clusters of similar functional genomic signals, which are termed

fingerprints, and then estimates the functional impact of variants with the same fingerprint on

the basis of allele frequency distributions in human populations. To help users navigate the

wide range of available online data sources, the analyzed variants are supplemented with links

to the corresponding entries in eight separate databases (S2 Table): dbSNP [46], which pro-

vides general information about individual variants; ClinVar [35] and Online Mendelian

Inheritance in Man (OMIM) [47], which provide interpretations of the variants’ relationships

with human health; HaploReg [48] and RegulomeDB [49], which provide access to a variety of

ENCODE annotations [10]; NCBI GenBank [50], which provides the sequence corresponding

to the variant; and the UCSC Genome browser [51] or Ensembl Genome browser [52], which

display the sequence together with information from various biological databases.

Performance evaluation

The performance of the six nucleotide-based tools and the consensus predictions generated

with PredictSNP2 was evaluated using standard statistical metrics, as summarized in the sup-

porting information (S1 Text). Because only FATHMM and GWAVA provide binary predic-

tions, we derived optimal decision thresholds for all pairs of tools and categories of variants that

can be used to obtain binary predictions from the output of CADD, DANN, FitCons and Fun-

Seq2. These thresholds were set to provide the highest normalized accuracy with the training

subsets for any given category. We also compared the performance of selected nucleotide-based

prediction tools to that of some protein-level tools, which were selected on the basis of our pre-

vious study [33] that focused on identifying disease-related amino acid mutations. The chosen

protein-level tools were MAPP [53], PhD-SNP [54], PolyPhen-1 [55], PolyPhen-2 [56], SIFT

[57], SNAP [58], and meta-tool PredictSNP1 [33]. To enable this comparison, ANNOVAR was

used to convert original nucleotide variants in non-synonymous exonic categories present in

our datasets into amino acid format, and to retrieve identifiers of the amino acid sequences of

the corresponding gene products. These sequences were retrieved using NCBI eUtils (http://

eutils.ncbi.nlm.nih.gov), and represent a necessary input for protein-based tools. To avoid

potential bias in favor of the protein-based tools, all amino acid mutations at positions overlap-

ping with the training datasets of the protein-based tools were discarded. The final dataset used

in this comparative analysis is provided in the supporting information (S4 and S5 Datasets).

Consensus classifier

The five best-performing tools were integrated into the consensus classifier PredictSNP2 using

the method developed previously [33]. Briefly, the consensus was determined on the basis of a

PredictSNP2: Region-Specific Prediction of SNP Effects
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majority vote, with the individual tools’ votes being weighted by their confidences. In the pres-

ent study, the uniform confidences were derived separately for each tool and category of vari-

ants using a relationship between the tool’s raw score and its accuracy when tested against a

training subset representing the category of interest. All of the evaluated mutations from the

training subset were sorted by their raw score and partitioned into 66 bins of equal size. These

bins were subsequently averaged over eleven neighboring bins. Two separate transformation

functions were developed for deleterious and neutral predictions to account for differences in

the relationships between the confidence score and the observed accuracy for these two predic-

tion classes. The category-specific decision thresholds for the individual integrated tools were

used to distinguish between the neutral and deleterious cases. In this way, the scores of inte-

grated tools were normalized onto a single scale, facilitating comparisons. After the overall

predictions and corresponding transformed confidence scores had been obtained, the Pre-

dictSNP2 consensus score was calculated. Finally, the corresponding binary prediction and

uniform confidence score was obtained also for the PredictSNP2 consensus score in the same

way as described for the individual integrated tools.

Results

Construction of the Mendelian disease dataset

The dataset consisted of Mendelian disease-related variants and their neutral counterparts; in

total, it included 25,480 variants. These variants were divided into separate categories accord-

ing to their location and type, i.e. into regulatory, splicing, missense, synonymous and non-

sense variants (Fig 2). This step is justified by the large differences in the numbers of variants

representing each category, which ranged from the low hundreds to over ten thousand, as well

as by the different characteristics of individual categories [38]. Each category was then subdi-

vided into training and testing subsets. The training subsets were used to compute category-

optimal thresholds for individual tools and to derive the procedure for computing the consen-

sus score, while the test subset was used to independently evaluate their performance. For the

missense and synonymous variant categories, an additional criterion of at most 50% protein

sequence identity was imposed to ensure that all variants representing highly similar protein

sequences were placed in the same subset.

Development of category-optimal thresholds

All variants present in the constructed datasets were evaluated using the six investigated tools

separately. There were important differences between the raw score distributions obtained with

the individual tools for different categories of variants in the Mendelian diseases dataset (Fig

3A). That is to say, the score distribution achieved for a given variant category with a particular

tool differed substantially from the distributions assigned to other categories by the same tool.

More importantly, these category-specific distributions were frequently observed for both dele-

terious and neutral variants, suggesting a need for category-specific thresholds to achieve opti-

mal separation of deleterious and neutral variants. Category-optimal thresholds were derived

from the training subsets of all categories for all six individual tools to adjust the binary predic-

tions with respect to observed differences in the raw scores between the individual categories.

The positive effect of category-specific optimization was detected for at least half of the tool-

category pairs (Fig 3B and S3 Table). The most prominent effects were observed for the catego-

ries that exhibited the most dissimilar score distributions for a given tool (Fig 3A). The greatest

increase in the average accuracy resulting from the use of category-optimal thresholds was

observed in the case of regulatory variants, for which accuracy increased by 9%. Smaller

increases between 1% and 4% were observed for all remaining variant categories (Fig 3B and

PredictSNP2: Region-Specific Prediction of SNP Effects
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S3 Table). The tools whose predictive power was most strongly increased by the use of cate-

gory-specific thresholds were FunSeq2 and DANN, whose average accuracies rose by 9% and

8%, respectively (S3 Table). Conversely, the threshold optimization generally had negligible

effects on the performance of GWAVA. The greatest increases in accuracy were observed for

regulatory variants in the case of DANN (25%), CADD (17%) and FunSeq2 (13%), and for

splicing variants in the case of FunSeq2 (18%; see Fig 3B).

Performance of individual nucleotide-based prediction tools with
category-optimal thresholds

A comprehensive evaluation of the integrated tools revealed that most were well capable of dif-

ferentiating between Mendelian disease-related variants with neutral and deleterious effects

(Table 1 and S1 Fig). However, GWAVA and FitCons exhibited significantly lower accuracies

and areas under the receiver operating characteristic curve (AUC) than the other tools. The

Fig 2. Workflow diagram describing the construction of the dataset of variants related to Mendelian diseases. The dataset was prepared by
combining deleterious variants from the ClinVar database with neutral variants from the VariSNP database. The resulting dataset was then divided into
independent training and testing subsets for each individual category of variants.

doi:10.1371/journal.pcbi.1004962.g002
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Fig 3. The use of category-optimal thresholds improves the predictive performance of individual tools by increasing their
ability to capture differences in the distribution of prediction scores for the different categories of variants. (A) Distribution of
scores for deleterious and neutral variants provided by each evaluated tool for individual categories of variants from the training subsets
of the Mendelian diseases dataset. The locations of the general and category-optimal thresholds used to obtain predictions are shown
for each tool. (B) Normalized accuracies achieved by individual tools when using category-optimal (blue bars) and general (red bars)
thresholds, evaluated using testing subsets of the Mendelian diseases dataset.

doi:10.1371/journal.pcbi.1004962.g003
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overall accuracies of these two tools across all individual categories were 58% and 53%, respec-

tively. The performance of FitCons was considered insufficient to warrant its further use in the

remainder of the study. The very low performance of GWAVA for the missense and synony-

mous mutation categories can be partially explained by its focus on the evaluation of regulatory

variants, the only category for which it achieved a good accuracy (70%). The four remaining

tools exhibited very satisfactory overall accuracies between 69% and 74%. Across the five best-

performing tools, variants from the synonymous and regulatory categories were discriminated

with appreciably higher average accuracies (82% and 75%, respectively) than variants of other

types.

To investigate the diversity of predictions provided by the five best-performing tools, we

compared them in a pairwise fashion. S5 Table shows the correlations of the raw scores within

the individual variant categories. The highest correlations were observed for the CADD &

DANN, CADD & FATHMM, and DANN & FATHMM pairs, reaching Spearman correlation

coefficient over 0.6 across all categories on average. Such high correlation could be considered

undesirable because we wanted to include a diverse set of tools whose predictions err on differ-

ent subsets of variants [59]. However, the high correlations of those three couples were mainly

due to their agreement on correctly predicted cases, which represented around 63% of the total

on average (S6 Table). More importantly, we only rarely observed agreement between any pair

of the five best-performing tools on an incorrect prediction (S6 Table). This observation cou-

pled with the good overall performance of the five individual tools provided a sound basis for

their integration into a consensus classifier.

Development of PredictSNP2 consensus score

In our previous work on protein-based tools, we noted that classification based on a “majority

vote” of individual tools, weighted by their uniform confidence values, offered consistently

Table 1. Performance of individual prediction tools employing category-optimal thresholds and their PredictSNP2 consensus score for individual
variant categories, evaluated using the testing subset of variants associated with Mendelian diseases.

Performance metrics a Category CADD DANN FATHMM FitCons FunSeq2 GWAVA PredictSNP2
consensus b

Accuracy 1. Regulatory 0.82 0.76 0.82 0.52 0.66 0.70 0.86

2. Splicing 0.64 0.69 0.69 0.55 0.69 0.63 0.75

3. Missense 0.68 0.73 0.74 0.50 0.64 0.51 0.77

4. Synonymous 0.83 0.95 0.81 0.50 0.96 0.59 0.96

5. Nonsense 0.62 0.65 0.71 0.62 0.67 0.63 0.72

Overall 0.69 0.73 0.74 0.53 0.70 0.58 0.79

Area under the receiver operating
characteristic curve c

1. Regulatory 0.88 0.83 0.89 0.52 0.70 0.76 0.87

2. Splicing 0.69 0.74 0.74 0.49 0.72 0.70 0.80

3. Missense 0.77 0.76 0.79 0.53 0.66 0.51 0.80

4. Synonymous 0.90 0.96 0.86 0.51 0.96 0.61 0.98

5. Nonsense 0.65 0.69 0.75 0.65 0.72 0.70 0.78

Overall 0.73 0.74 0.76 0.51 0.68 0.61 0.83

a For a detailed evaluation, see S4 Table.
b The performance of the optimal consensus for given category, for details see Table 2 and S7 Table.
c Receiver operating characteristic curves are depicted in S1 Fig.

doi:10.1371/journal.pcbi.1004962.t001
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better performance than any integrated tool when tested against three independent and diverse

datasets [33]. We therefore decided to utilize a similar confidence-weighted majority vote

approach to develop a consensus scoring procedure for the five best-performing nucleotide-

based tools (CADD, DANN, FATHMM, FunSeq2 and GWAVA). Since the predictive perfor-

mance of the individual tools varied significantly over the different categories, we first tested

the value of adding more tools into the consensus for each category (Table 2). Most of the

developed consensus scores, which were constructed by combining two to five tools, performed

better than the best individual tool for the evaluated category (Table 2). For individual catego-

ries, the best consensus was more accurate than the best integrated tool by 1% to 6%, with the

exception of synonymous category where the consensus performed equally well as the best

integrated tool. For splicing category, the best consensus exhibited higher accuracy (by 6%)

and AUC (by 0.06) than the best integrated tool. It was not always beneficial to include all of

the tools in the consensus, however. For regulatory, missense and synonymous categories, we

even observed that including less accurate tools reduced the accuracy of the consensus. This

was especially pronounced in the case of regulatory variants, for which the inclusion of

GWAVA and FunSeq2 tools reduced the accuracy of the consensus by 2%. Such decrease

could be expected due to the much low predictive power of both these tool for this category. In

addition to the improvements in accuracy and AUC values, the benefit of combining predic-

tions from individual tools into robust PredictSNP2 consensus scores is demonstrated by the

fact that the individual tools that perform best for one variant category often perform only

moderately well or even poorly for others, whereas the PredictSNP2 consensus consistently

provides the most accurate predictions (Tables 1 and 2).

Comparison of nucleotide-based and protein-based tools

The performance of five integrated nucleotide-based tools and their PredictSNP2 consensus

scores was compared with that of six protein-based prediction tools and their PredictSNP1

consensus scores using the testing subset of missense variants. The accuracies of the protein-

Table 2. Performance of different consensus scores for specific variant categories, evaluated using the testing subset of variants associated with
Mendelian diseases.

Performance metrics a Category PredictSNP2 consensus b The best
individual tool d

5 tools c 4 tools c 3 tools c 2 tools c

Accuracy 1. Regulatory 0.84 0.85 0.86 0.85 0.82 CADD

2. Splicing 0.75 0.74 0.75 0.70 0.69 FATHMM

3. Missense 0.76 0.76 0.76 0.77 0.74 FATHMM

4. Synonymous 0.95 0.96 0.96 0.95 0.96 FunSeq2

5. Nonsense 0.72 0.71 0.71 0.70 0.71 FATHMM

Area under the receiver operating characteristic curve 1. Regulatory 0.88 0.89 0.87 0.87 0.89 FATHMM

2. Splicing 0.80 0.80 0.80 0.72 0.74 FATHMM

3. Missense 0.80 0.82 0.81 0.80 0.79 FATHMM

4. Synonymous 0.97 0.98 0.98 0.97 0.96 DANN

5. Nonsense 0.78 0.76 0.75 0.72 0.75 FATHMM

a For a detailed evaluation, see S7 Table.
b The best-performing consensus in each category is highlighted in bold.
c Tools included in a particular consensus are listed in S7 Table.
d The performance metric and name of the best-performing tool in a given category.

doi:10.1371/journal.pcbi.1004962.t002
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based tools (66–76%) were greater than those for the nucleotide-based predictors on average

(51–74%; see Fig 4 and S8 Table). On the other hand, the performance of the best nucleotide-

based tools, FATHMM and DANN, was comparable to the second and third best-ranked pro-

tein-based tools SIFT and PolyPhen-1, respectively. Moreover, the performances of the Pre-

dictSNP1 and PredictSNP2 consensus scores were similar for the evaluated missense variants

(Fig 4 and S8 Table). Similar trends were observed in two recent comprehensive evaluations of

various protein- and nucleotide-based predictors [18,60].

Venturing beyond Mendelian variants

In addition to variants associated with Mendelian diseases, we wanted to assess the extent to

which the integrated tools and their consensus scores can be utilized to evaluate variants impli-

cated in complex diseases and somatic cancers because in these ailments the signal from genetic

factors is often suppressed by the effects of external environmental factors [9,34]. To this end,

we constructed two additional datasets containing variants associated with either complex dis-

eases (12,050 variants) or somatic cancers (142,722 variants) by following the same protocol as

for Mendelian diseases (S2 Fig). Although the disease-associated variants present in the three

compiled datasets originated from different sources, there were partial overlaps among them

(S3 Fig). The largest one was observed between the datasets of Mendelian and cancer diseases,

which shared 140 deleterious variants. The presence of such overlaps is unsurprising because

the clinical co-occurrence of certain Mendelian diseases and cancers can be tied to the same

genetic variants [61,62]. In contrast to the situation with the Mendelian disease dataset, some

of subsets representing the individual categories were assigned only a very low number of vari-

ants (S2 Fig), preventing any sensible performance evaluation for these categories

In the case of complex diseases, only the regulatory variants category included enough cases

for analysis (S2 Fig). Interestingly, none of the five tested tools exhibited any discriminatory

power whatsoever for this category (S9 Table), which stands in stark contrast to their very

good performance for Mendelian variants in the same category (Table 1). Slightly better results

were observed for somatic cancers, for which all categories bar that of splicing variants con-

tained enough entries for evaluation (S2 Fig). For regulatory, missense and nonsense variants,

the best tools achieved accuracies exceeding 60% as well as AUCs above 0.6 (S10 Table). How-

ever, such performance could still limit the tools’ applicability even for the purpose of variant

prioritization. We also evaluated the performance of the protein-based tools with the missense

Fig 4. Performance of nucleotide-based and protein-based prediction tools and their consensuses, evaluated using the dataset of variants
associated with Mendelian diseases. (A) Observed normalized accuracy and (B) area under the receiver operating characteristic curve (AUC) values
are shown as blue and red bars for nucleotide- and protein-based tools and their consensuses, respectively. The horizontal dashed lines represent
average performance values for each tool type.

doi:10.1371/journal.pcbi.1004962.g004
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variants from the cancer dataset (S8 Table and S4 Fig). In this case, neither protein-based tools

nor their consensus score PredictSNP1 provided more reliable predictions than their nucleo-

tide-based counterparts. The considerably lower predictive power of the investigated nucleo-

tide-based tools on the complex disease and cancer datasets indicates that these tools and the

PredictSNP2 consensus should only be applied to Mendelian diseases in order to ensure reli-

able predictions. More specialized tools and strategies focused on complex diseases [16] and

cancers [63,64] should be used in other cases.

Description of the web server

Three of the five integrated prediction tools evaluated in this study are currently available as

web servers. However, only CADD and FunSeq2 permit the uploading of files containing lists

of variants to be analyzed and are thus suitable for large-scale queries. In contrast, FATHMM

and GWAVA only permit variant querying via their web forms. DANN results are only avail-

able as pre-calculated files, which reduces the tool’s user-friendliness. To facilitate access to the

predictions of all five integrated tools, we developed a web interface that enables the comfort-

able submission of large batches of variants. The interface also provides easily interpretable

results for all individual tools together with the links to the relevant databases and on-line ser-

vices (Fig 5). The variants to be analyzed can be input into a web form as a plain text or

uploaded as a file. Variant data in multiple formats can be detected automatically, including

the Variant Call Format (VCF) [65], Human Genome Variation Society (HGVS) format [66],

and Genome Variation Format (GVF) [67]. Moreover, the user can switch between the two

Fig 5. Workflow diagram of the PredictSNP2 webserver. Upon submission of input variants, evaluation is performed with the integrated prediction
tools. The raw scores produced by individual tools are transformed into overall decisions about deleteriousness and interpretable confidence scores
according to the category of variants detected by ANNOVAR. In addition, links to relevant databases and on-line tools are provided to allow the user to
better understand the genomic context and potential function of the corresponding genome region. Optionally, evaluation of missense mutations by
PredictSNP1 can be requested.

doi:10.1371/journal.pcbi.1004962.g005
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types of reference genome assemblies [68], GRCh37/hg19 and GRCh38/hg38, of which only

the former is natively supported by the integrated tools. To obtain results in a time-efficient

manner, we merged pre-calculated files for all the prediction tools into a single database file

indexed with Tabix [69] to avoid any need for multiple queries per analyzed variant. An esti-

mated execution time is provided for each user submission based on the number of evaluated

variants and the predicted time demands of jobs already waiting in the queue. Raw scores pro-

duced by integrated tools and their PredictSNP2 consensus values are transformed onto a sin-

gle scale ranging from 0 to 99%, corresponding to observed accuracies measured against the

testing subsets of individual categories of variants [33]. On the output page (Fig 6), the predic-

tions of individual tools and their consensus are complemented with their confidence scores

and are reported together with links to the relevant databases and on-lines services. The user

can download the output in human- and machine-readable formats as PDF and VCF files,

respectively. Since we found that protein-based predictors could provide improved perfor-

mance for missense variants, we also added an interlink to the PredictSNP1 web server that

enables the user to obtain predictions with these tools for any selected missense variant.

Availability and Future Directions

To the best of our knowledge, PredictSNP2 represents the first unified platform for nucleotide-

based predictions of deleterious variants. This tool is freely available to the scientific and medi-

cal community at http://loschmidt.chemi.muni.cz/predictsnp2. The developed datasets (S1–S5

Datasets) and user guide (S2 Text) are also available from the website.

In future, scores for all missense variants will be pre-calculated with the six protein-based

tools used in PredictSNP1 to allow instant access to their results. We also plan to assess new

tools for predicting the effect of nucleotide variants as they emerge, and will consider integrat-

ing such tools into the platform based on the results of these evaluations.

Fig 6. The graphical user interface of the PredictSNP2 webserver. (A) On the input page, variants to be analyzed can be provided in several
established formats using one of two reference genome assemblies. (B) On the output page, the predictions of individual tools and their PredictSNP2
consensus score are reported together with links to the eight relevant databases.

doi:10.1371/journal.pcbi.1004962.g006
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S1 Fig. Receiver operating characteristic curves of prediction tools and their consensuses

evaluated using the dataset of variants associated with Mendelian diseases. (A) Training

and (B) testing subsets of all investigated categories.

(TIF)

S2 Fig. Workflow diagram describing the construction of the datasets composed of variants

related to complex diseases and somatic cancers. The datasets were prepared by combining

deleterious variants from the GWAS catalog or the COSMIC database with neutral variants

from the VariSNP database. The resulting datasets were then divided into independent training

and testing subsets for each individual category of variants. N/A indicates that not enough vari-

ants were assigned to the category to enable the performance evaluation. See S9 and S10 Tables

for particular numbers of variants.

(TIF)

S3 Fig. Numbers of disease-associated variants overlapping among the three constructed

datasets.

(TIF)

S4 Fig. Performance of nucleotide-based and protein-based prediction tools and their con-

sensuses evaluated using the dataset of variants associated with somatic cancers. (A)

Observed normalized accuracy and (B) area under the receiver operating characteristic curve

(AUC) values are shown as blue and red bars for nucleotide- and protein-based tools and their

consensuses, respectively. The horizontal dashed lines represent average performance values

for each tool type.
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