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Abstract

In case of irregular dispersive media, a proper analysis of higher modes existing in a dispersion plot

becomes essential for predicting the shear wave velocity profile of ground on the basis of surface

wave tests. In such cases, an establishment of the predominant mode becomes quite important. In the

current investigation for Rayleigh wave propagation, the predominant modes have been evaluated by

maximizing the normalized vertical displacements along the free surface. Eigenvectors computed

from the dynamic stiffness matrix (DSM) approach are analyzed to find the predominant mode. The

results obtained are then compared with those reported in the literature. By varying the displacement

amplitude ratios of the predominant mode to the other modes, dispersion plots have also been

generated from the multichannel analysis of surface waves (MASW) method. The establishment of

the predominant mode becomes especially significant, where usually only two to six sensors are

employed and the governing (predominant) modal dispersion curve is usually observed rather than

several multiple modes, which can be otherwise identified by using around 24 to 48 sensors.

Keywords: dispersion, inverse analysis, nondestructive testing, predominant mode, Rayleigh

wave propagation

(Some figures may appear in colour only in the online journal)

1. Introduction

Two surface wave testing techniques, namely, (i) spectral

analysis of surface waves (SASW) and (ii) multichannel

analysis of surface waves (MASW), are often employed for

predicting the shear wave velocity profile of different layers

of ground and pavements (Nazarian 1984, Gucunski and

Woods 1992, Nazarian and Desai 1993, Ganji et al 1998,

Park et al 1999, Kumar and Naskar 2015). In the SASW

method, tests are normally conducted by employing two to six

sensors, and dispersion plots are generated for several com-

binations of source distance and receiver spacing. To obtain

the dispersion plots from the SASW tests, the fast Fourier

transform of the signals recorded in a time domain is

conducted, and the required phase velocity for different

frequencies is then evaluated by finding the phase difference

between any two chosen signals (Nazarian 1984, Gucunski

and Woods 1992, Nazarian and Desai 1993, Kumar and

Naskar 2015). The principal phase difference angle between

any two adjacent sensors varies between −π and +π.

Accordingly, it is often required to add 2πN for determining

the absolute phase difference between the two signals. Kumar

and Naskar (2017) proposed a sliding transform so that the

problem associated with the phase unwrapping can be

resolved. In the MASW method, a large number of closely

spaced sensors, typically 24 to 48, are employed (Park et al

1999, Xia et al 1999). The dispersion plots are subsequently

obtained by using different approaches, namely, (i) a two-

dimensional Fourier transform of the signals in time and

space domains (Nolet and Panza 1976, Gabriels et al 1987),

(ii) harmonic wavelet transforms of the obtained signals

(McMechan and Yedlin 1981, Park et al 1998), and (iii) the

convolution of the recorded signals by using a stretch func-

tion for transforming the observed data to a swept frequency
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record (Park et al 1999). In the SASW method, if not too

many combinations of receiver spacing and source distances

are adopted, the predominant mode is often observed in the

dispersion plot (Nazarian 1984, Gucunski and Woods 1992,

Nazarian and Desai 1993). If a soil profile is regular dis-

persive, that is, when the shear wave velocity increases con-

tinuously with depth, the fundamental mode becomes

generally the predominant mode (Thomson 1950, Haskell

1953, Dunkin 1965). The inversion task for such a case

usually remains straightforward. On the other hand, for an

irregular dispersive soil profile, that is, when a stiff layer lies

above relatively soft stratum, then for predicting the correct

soil profile, it becomes usually essential to analyze different

multiple modes present in the dispersion plots (Jones 1962,

Dunkin 1965, Tokimatsu et al 1992, Nazarian and

Desai 1993, Ganji et al 1998, Park et al 1999, Xia et al 1999,

Zomorodian and Hunaidi 2006, Kumar 2011, Kumar and

Naskar 2017). When on account of either a lesser number of

sensors or limited combinations of receivers’ spacing and

source distance, it becomes difficult to establish the multiple

modal dispersion curves; one alternative is to establish the

predominant modal dispersion curve by conducting the for-

ward analysis. The dispersion plot from the analysis is then

compared with that determined experimentally in order to

predict the shear wave velocity of different layers. In the

existing literature, the information is available to compute

superposed modes where the vertical displacements of the

first m modes are combined to establish the corresponding

dispersion curve associated with the mth superposed mode

(Tokimatsu et al 1992). Furthermore, by using the maximum

flexibility coefficient, Zomorodian and Hunaidi (2006) have

provided a method to directly compute the predominant mode

rather than obtaining the multiple modes on the basis of the

root search method. This method, however, considers a ver-

tical load on the free surface rather than the null force vector,

which is needed in a root search method. Following the

approach of Hossain and Drnevich (1989), Kumar (2011)

determined the predominant modes for Rayleigh wave pro-

pagation by using the finite difference formulation of the

governing partial differential equation. The predominant

modes were computed by maximizing the normalized vertical

displacement along the free surface. In the present article, by

using the dynamic stiffness matrix (DSM), and on the basis of

the quadratic eigenvalue formulation of the problem, we first

compute multiple modes and then establish the predominant

modes. The results obtained from the analysis are then

compared with those available from the literature. In addition,

by varying the ratio of the energies of the predominant mode

to the other modes, dispersion plots are also analyzed using

the MASW method. The present study will be especially

beneficial where it is difficult to find different multiple modes

on account of either a less number of sensors or limited

combinations of source distance and receiver spacing; fur-

thermore, the predominant mode usually dictates the disper-

sion curve.

2. DSM approach

For a particular frequency and wavenumber, consider a planar

Rayleigh surface wave (P-SV) propagating in the direction of

the positive x-axis. There will be (i) two components of

unknown displacements, namely, horizontal displacement (u)

in the direction of the propagating wave and vertical dis-

placement (v), and (ii) two components of unknown stresses,

namely, shear stress (τzx) and vertical normal stress (σz).

These displacements and stress components at the layer

interfaces become solely a function of z. On the other hand,

the variations of these functions with respect to x and t are
considered harmonic, that is, = w k-( )u ue t xj , = w k-( )v ve t xj ,

t t= =zx zx

t w k-( )ezx
t xj , and s s= w k-( )ezx zx

t xj , where = -j 1 . Note

that the wave is propagating in the positive x direction, and ω

and k refer to the circular frequency and wavenumber,

respectively. The terms u , v , tzx, and szx become functions of

z (depth). In the DSM approach, for a given layer, the rela-

tionship between the applied force vector (F) and layer dis-

placement vector (U) is expressed as follows (Kausel and

Roёsset 1981):

= ( )F K U , 14x1 4x4 4x1

where = [ ]P P P PF i ix z x z4x1
u u l l T and = [ ]u v u vU i i4x1

u u l l T.
The superscripts u and l are associated with the upper and

lower interfaces of the layer, and the subscripts x and z

indicate the directions in which the external forces act. Fol-

lowing Kausel and Roёsset (1981), for a given layer, the local

stiffness matrix (K
l
) is defined by the equations below.
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In the above terms, Cr
= cosh (κrh), Sr = sinh (κrh), Cs

= cosh (κsh), and Ss = sinh (κsh).

For the elastic half space,

= --
-
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The horizontal wavenumber (κ) is expressed in terms of the

phase velocity (V ), that is,

k w k= =w
( )V, , 5

V

= - = -( ) ( )
( )

r sin which case, 1 , 1 ,

6

V

V

V

V

2 2

p s

where Vp and Vs refer to the dilatational and shear wave

velocities of the half space. A significant simplification of the

DSM was achieved using the thin layer method (TLM)

(Kausel and Roёsset 1981). In the TLM, the physical layers

of the medium are discretized into thin layers such that the

thickness of any thin layer is kept much smaller as compared

to the characteristic wavelength of the propagating wave. The

primary advantage of the TLM is that the impedance matrix

transforms from transcendental to algebraic. The impedance

matrix turns out to be solely a function of the horizontal phase

velocity and the wavenumber. If the subsurface comprises of

n horizontal layers excluding the lowermost elastic half space,

the applied external loads and global displacement vectors are

finally correlated using the global stiffness matrix

=+ + + + ( )( ) ( ) ( ) ( )F K U . 7n n n n2 2 x1 2 2 x 2 2 2 2 x1

The global stiffness matrix can be established by doing the

assembly operation of the local layer stiffness matrices.

It has been shown by Kausel and Roёsset (1981) that the

stiffness matrix K for a given layer can be presented in the

following form:

k k w= + + - ( )K A B C M. 82 2

Here, A, B, C, and M are the block-tridiagonal, symmetric

matrices that become solely a function of material properties

of the layers and their thicknesses; these stiffness matrices are

given by Kausel and Roёsset (1981).

To obtain the full wave spectra for different modes of

wave propagation, the problem needs to be framed as a free

vibration problem, that is, P = 0, which implies KU = 0 or

K = 0 since U ≠ 0. It is solved as an eigenvalue problem for

evaluating the parameter ω in term of k or vice versa. Either

way, the solution of the quadratic eigenvalue problem

=∣ ∣K 0 can be readily established. The MATLAB library

routine polyeig was used for solving this quadratic eigenvalue

problem. The solution generally yields real and complex

eigenvalues. All layers were assumed to have no damping

since the magnitude of damping hardly affects the results

(Kumar 2011). Numerically negative real and complex

eigenvalues are simply rejected (Kumar and Naskar 2017).

One important consideration is to allocate the appropriate

values for the parameter V, namely, the common phase

velocity of the modes. The value of V < Vs < Vp will be

feasible otherwise the parameters r and s in equation (6) will

Figure 1. Five different profiles for analysis.
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yield complex eigenvalues, and the analysis would no longer

provide real eigenvalues. At the opposite extreme, the phase

velocity cannot be arbitrarily small, but is likely to equal or

exceed the smallest Rayleigh wave velocity in any layer. This

then provides a bandwidth over which V must be varied while

searching the complete wave dispersion spectrum. After the

eigenvalue problem is solved numerically, one will find a set

of frequencies w p= = ( )/f f V2 that are compatible with the

phase velocity.

To establish the predominant mode, an eigenvector must

be examined for each admissible eigenvalue. The eigenvector

provides a set of the interlayer displacement vector U. Each

eigenvector is normalized with respect to the absolute max-

imum value from a set of all interlayer displacements. For

each eigenvalue (mode), there will be a corresponding

normalized eigenvector. The eigenvalue that predicts the

maximum value of the normalized vertical displacement at the

free surface is said to yield the predominant mode. This cri-

terion is used as the basis to determine the predominant mode

from a set of all admissible modes, which were obtained

earlier as a solution of the corresponding quadratic eigenvalue

problem.

3. Results and comparisons

In order to demonstrate the effectiveness of proposed tech-

nique, five different ground profiles, as shown in figure 1,

were chosen. These profiles were named from A to E. The

following details have been provided for different layers of

Figure 2. For profile A. (a) A comparison of the present approach with those given by Zomorodian and Hunaidi (2006), and Kumar (2011).
(b) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 2. (c) Predominant mode
from the present approach and multiple modes from the MASW using an amplitude ratio of 5.
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these profiles: (i) thickness (h), (ii) mass density (ρ), (iii) shear

wave velocity (Vs), and (iv) primary wave velocity

(Vp)/Poisson ratio (ν). For the purpose of performing the

analysis, the values of the damping ratio were specified to be

zero in all cases. Profiles A and B were taken from the paper

of Zomorodian and Hunaidi (2006). Both of these profiles

comprise of two layers, each having a thickness of 20 m.

These two layers are underlaid by an elastic half space. The

value of Vs varies between 300 m s−1 and 700 m s−1. Profile

A is regular dispersive, whereas profile B is irregular dis-

persive since it comprises of a soft layer sandwiched between

two stiff layers. Profile C has been chosen from the work of

Strobbia (2003). This profile exhibits four layers lying above

the half space. This profile is also irregular dispersive: the

second and fourth layers have smaller values of Vs than the

overlying stiff layer. Furthermore, each layer has a thickness

of 1 km. The value of Vs ranges between 3.5 km s−1 and

4.7 km s−1. Profile D has been chosen from the paper by Xia

et al (1999). It is regular dispersive with Vs increasing con-

tinuously with depth. It has five layers overlying the elastic

half space. Layer thickness varies between 2.0 m and 3.2 m.

The value of Vs changes between 194 m s−1 and 740 m s−1.

Profile E has been taken from the work of Tokimatsu et al

(1992). It has three layers overlying the elastic half space.

This soil profile is also irregular dispersive: the second layer

has a smaller value of Vs than the overlying stiff layer. The

value of Vs varies between 120 m s−1 and 360 m s−1.

For all five different profiles, first the multiple modal

dispersion curves were generated, and then the dispersion

curves associated with predominant modes were established

Figure 3. For profile B. (a) A comparison of the present approach with those given by Zomorodian and Hunaidi (2006), and Kumar (2011).
(b) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 2. (c) Predominant mode
from the present approach and multiple modes from the MASW using an amplitude ratio of 5.
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based on the proposed approach. The obtained results in all

the cases were also compared with those using (i) the max-

imum flexibility approach of Zomorodian and Hunaidi

(2006), and (ii) the finite difference approach of Kumar

(2011). In addition, a comparison was also made with dis-

persion plots (i) computed by the superposed mode as pre-

dicted by Tokimatsu et al (1992) for profile E, and (ii)

measured in the site by Xia et al (1999) for profile D. The

results for all five profiles are presented in 1 part (a) of

figures 2–6.

Note that the predominant mode predicted by the

present approach compares closely with those presented by

Zomorodian and Hunaidi (2006), and Kumar (2011). At very

low frequencies, the phase velocity predicted by Kumar

(2011) was found to be a little greater compared to the present

analysis. This is on account of a very large number of layers

needed for the discretization in the analysis by Kumar (2011)

associated with greater wavelengths. For an irregular dis-

persive profile, the analysis by Zomorodian and Hunaidi

(2006) gave slightly different results in a region where mode

shifts occur. However, in general, the present analysis and the

approach of Zomorodian and Hunaidi (2006) were found to

compare quite well with each other. For the ground profile D,

the measured dispersion curve as reported by Xia et al (1999)

was found to compare well with the present analysis. A little

difference was again noted between the two analyses in a

region where the mode shifts occurs between the first two

modes. For profile E, the superposed mode predicted by

Tokimatsu et al (1992) was found to compare well with the

present analysis. For a frequency smaller than about 5 Hz, the

Figure 4. For profile C. (a) A comparison of the present approach with those given by Zomorodian and Hunaidi (2006), and Kumar (2011).
(b) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 2. (c) Predominant mode
from the present approach and multiple modes from the MASW using an amplitude ratio of 5.
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superposed mode predicted by Tokimatsu et al (1992) lies

along the second modal curve, whereas the present analysis

provides the predominant mode along the first modal plot.

By using the method proposed by Park and Miller

(2008), for given dispersion plots associated with multiple

modes as shown in part (a) of figures 2–6, synthetic signals

associated with 96 channels were generated. Corresponding

to a given combination of receiver spacing and source loca-

tion, the method of generation of the synthetic seismogram is

summarized in the appendix. These synthetic data were then

used to establish the multimodal dispersion plots on the basis

of the MASW technique (Xia et al 1999).

Multiple dispersion plots established on the basis of the

MASW technique for five different chosen soil profiles are

shown in parts (b) and (c) of figures 2–6. Parts (b) and (c) are

associated by keeping the ratio of the amplitude of the pre-

dominant mode to all other modes equal to 2 and 5,

respectively.

It can also be seen from parts (b) and (c) of figures 2–6

that when the amplitude ratios of the predominant mode to the

other modes are changed from 2 to 5, the visibility of the

other modal dispersion plots, as compared to the predominant

mode, become quite poor. In other words, this observation

implies that if the energy of the modes other than the pre-

dominant ones is not really very strong, it is going to be quite

unlikely that multiple modes will be observed at the site by

using a lesser number of sensors even if the soil is not regular

dispersive.

Figure 5. For profile D. (a) A comparison of the present approach with those given by Xia et al (1999), Zomorodian and Hunaidi (2006), and
Kumar (2011). (b) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 2. (c)
Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 5.
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4. Energy associated with different modes

The energy carried by any propagating wave for a given

frequency becomes directly proportional to the square of the

corresponding displacement amplitude (Richart et al 1970). In

the multimodal dispersion plots, the ratio of the energies

(Ei/Ep) associated with a given modal dispersion plot to that

with the predominant mode can be determined by simply

taking the squares of the corresponding displacement ampli-

tudes’ ratios. For illustration, multimodal dispersion plots

associated with profile B were chosen. Five different fre-

quencies, namely, 10 Hz, 20 Hz, 30 Hz, 40 Hz, and 50 Hz,

were selected. The values of Ei/Ep were marked for the dis-

persion plots associated with different modes at these five

selected frequencies. Corresponding results are illustrated in

figure 7; this is a reproduction of figure 3(a) with the energies’

ratios marked. It can be seen that the value of Ei/Ep remains

in unity for all predominant modes cases, and this ratio

decreases continuously with an increase in the absolute dif-

ference between the numbers associated with a given mode

and the predominant mode.

5. Remarks

The approach presented in this paper can be directly used in

an inversion procedure. One needs to compare the dispersion

plot obtained from a given site with that numerically gener-

ated on the basis of the proposed forward analysis for the

selected input parameters of the different layers. The values of

Figure 6. For profile E. (a) A comparison of the present approach with those given by Tokimatsu et al (1992), Zomorodian and Hunaidi
(2006), and Kumar (2011). (b) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio
of 2. (c) Predominant mode from the present approach and multiple modes from the MASW using an amplitude ratio of 5.
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the input parameters must be updated until the difference

between the two dispersion plots becomes almost negligible.

This will eventually predict the required input parameters of

the ground profile.

6. Conclusions

Based on the DSM approach, predominant modal dispersion

plots are determined while dealing with the problem of

Rayleigh wave propagation. The accuracy of the proposed

technique has been checked by comparing the results from the

literature. The present method compares favorably with

existing approaches. The present analysis is based on the

popular DSM approach, and the solution can be easily

obtained by examining the eigenvectors (displacements). It is

also noted that when the energy of the predominant mode is

much greater compared to the other modes, it is quite unlikely

that all the different multiple modes other than the pre-

dominant one will be observed in a site with the usage of a

lesser number of receivers; in such cases, the determination of

a predominant modal dispersion plot will be quite useful in

predicting the shear wave velocity profile of the media.
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Appendix

Synthetic seismogram generation

A surface wave of circular frequency w, mode number m,

amplitude ak
m, phase delay dk, and associated with an arbitrary

source location = { }L x y,k k k , is represented in a frequency
domain as follows:

w = w d- +( ) ( )( )S a e . A1k
m

k
m j k

The signature w( )Ri
m k, of this source signal on the ith receiver

located at = { }L x y,i i i is written as follows:

w w=( ) ( ) ( )R A P S , A2i
m k

ik
m

ik
m

k
m,

where =
a( )

Aik
m

l

e lik

ik

and =
w
wP eik

m
l

C

j ik
m ; the terms Aik

m and Pik
m

imply amplitude and phase modulation factors. In the above

expressions, a is an attenuation factor, and is equal to
w

wC Qm
, Q

is the quality factor, wC
m is the phase velocity for the mth mode

for the frequency w, and = - + -( ) ( )l x x y yik i k i k
2 2 . In

the case of a multimodal surface wave, the resultant wave at

the ith receiver is calculated by summing over all modes (M):

åw w=
=

( ) ( ) ( )R R . A3i
k

m

M

i
m k

1

,

Accordingly, the synthetic seismogram for the ith receiver in

a time domain due to the kth source can be written simply by

taking an inverse Fourier transform of w( )Ri :

w= -( ) [ ( )] ( )r t FFT R . A4i i
1

Note that while generating the synthetic seismogram, the

effects of geometric damping and the attenuation factor are

taken into account.

Figure 7. For profile B, a comparison of the energies at the predominant mode to other modes for a set of selected frequencies.
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