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ABSTRACT: Demands in research investigating small mole-
cules by applying untargeted approaches have been a key
motivator for the development of repositories for mass
spectrometry spectra and automated tools to aid compound
identification. Comparatively little attention has been afforded
to using retention times (RTs) to distinguish compounds and
for liquid chromatography there are currently no coordinated
efforts to share and exploit RT information. We therefore
present PredRet; the first tool that makes community sharing
of RT information possible across laboratories and chromato-
graphic systems (CSs). At http://predret.org, a database of
RTs from different CSs is available and users can upload their
own experimental RTs and download predicted RTs for
compounds which they have not experimentally determined in
their own experiments. For each possible pair of CSs in the database, the RTs are used to construct a projection model between
the RTs in the two CSs. The number of compounds for which RTs can be predicted and the accuracy of the predictions are
dependent upon the compound coverage overlap between the CSs used for construction of projection models. At the moment, it
is possible to predict up to 400 RTs with a median error between 0.01 and 0.28 min depending on the CS and the median width
of the prediction interval ranging from 0.08 to 1.86 min. By comparing experimental and predicted RTs, the user can thus
prioritize which isomers to target for further characterization and potentially exclude some structures completely. As the database
grows, the number and accuracy of predictions will increase.

I n the untargeted analysis of complex mixtures, one of the
major bottlenecks is the identification of compounds. In

untargeted analyses, and in analytical chemistry in general,
liquid chromatography (LC) plays a central role due to its high
separation power and versatility. LC is often coupled to mass
spectrometry (MS), as MS offers superior sensitivity and
selectivity, such that even compounds present at very low
concentrations can be measured.
Especially in metabolomics there has been a drive to create

resources to aid rapid compound identification. One such
resource is data repositories for MS spectra that have been
developed with great success to the benefit of the scientific
community.1,2 In addition, recently efforts have been made to
create automated tools, often assisted by these databases of
experimental data, to aid compound identification.3−5 However,
these tools and databases only focus on one aspect of the
experimental data: the fragmentation of the compounds formed
in the mass spectrometers. However, utilizing only the
fragmentation is ignoring half of the available information.
The retention time (RT) is often neglected.
Because the mass spectra is often the only information

considered, it is common for researchers working with LC−

MS-based metabolomics to encounter many compounds where
mass and fragmentation are ambiguous and could match
multiple molecular structures. Confirming the structure thus
becomes a process of elimination where authentic standards
have to be purchased or synthesized to compare to the
experimental MS spectra and RT. Prior knowledge of the RT of
the plausible structures would allow further reduction of the
number of compound structures that need to be investigated.
Several different strategies for RT prediction have therefore

been developed. For peptides, strategies based on summing the
effect of each amino acid are common.6,7 This is, however, not
feasible as a general approach in metabolomics where molecules
have more diverse structures. Therefore, approaches have been
developed that rely on complex models based on phys-
icochemical descriptors of compounds8−13 or in the most
simple form model log P or log D to RT.14 These quantitative
structure−retention relationship (QSRR) models share the
characteristic that they require a large number of training
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compounds and the more complex models risk severe
overfitting, making them less generally applicable. While these
models can be applied to any molecular structure, they
currently have limited accuracy, in part due to the limited
accuracy of the underlying physicochemical descriptors.14

In gas chromatography, retention indexes are routinely used
to make different systems comparable, but for LC there are
currently no coordinated efforts to share and exploit
information regarding the RT of compounds. The reason RT
information has been neglected in LC systems is that the RT is
specific to a specific chromatographic system (CS) and there is
no general agreement on RT references.
We have therefore sought to rectify this by building a

database of compound RTs. With this database, we are able to
map the RT of compounds between CS if they reasonably
similar. Experimentally determined RTs of a number of
compounds in two different systems, is used to build a model
between the RTs in the two systems. If the RT of a compound
is then known in only one of the CSs, this model can be used to
predict the RT of the compound in the other CS. Building
these models between all CSs in the database thus allows
predicting the RT of a high number of compounds in CSs
where they have not been experimentally determined.
For the first time, the developed tool makes community

sharing of RT information possible across laboratories and CSs.
The free, open source and Web-based tool is available at www.
predret.org while an R package for querying the database is
available at https://github.com/stanstrup/PredRet.

■ EXPERIMENTAL SECTION

Retention Time Mapping. The basis of the prediction
system is a database consisting of compound retention times
(RTs) recorded on different chromatographic systems (CSs).
The mapping, i.e., “conversion”, of RTs from one CS to
another is done pairwise for each possible pair of CSs. Since
retention order is not conserved nor predictable between very
different types of chromatographic columns (e.g., hydrophilic
interaction liquid chromatography (HILIC) and reversed-phase
liquid chromatography), only pairs of CS with the same type of
chromatography are used.
For each pair of CSs in the database, the RTs of compounds

measured in both systems are used to construct a monotoni-
cally constrained generalized additive model (GAM) between
the RTs using the R package mgcv.15 To make the models
more robust against outliers, the residuals of an initial GAM are
used to weigh each data point in the penalized constrained
least-squares fitting (PCLS) step that follows the application of
monotonic constraints. Instead of using the residuals directly, a
sigmoidal function is applied to the residuals normalized to the
total CS runtime such that
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where wi is the weight applied to the ith data point, resi is the
residual of the ith data point, and α and β are model tuning
parameters. The tuning parameters were set to α = −30 and β

= 0.1. The longest RT in the CS to be predicted, max(RTy),
was used as a surrogate for the total runtime in the CS.
Bootstrapping with 1 000-fold resampling was used to

construct 99% prediction intervals (PIs) for the models. For
each combination of CSs, the experimental RT needs to have

been determined for at least 10 compounds in both systems,
otherwise the CS combination is skipped.
The RT prediction process is triggered once the models have

been constructed between all pairs of CSs with new data.
Retention Time Prediction. The database is periodically

checked for updated models and new predictions are made
where models have been updated. The prediction process is
then run for each CS with corresponding updated models. All
compounds known in systems with models to the CS under
consideration are collected. Then for each of these compounds,
the GAMs are used to predict the RT in the CS under
consideration. In cases where predictions for one compound
can be made based on several GAMs, the prediction with the
smallest PI is used. Predictions with PI width larger than 2 min
or more than 20% of the predicted RT are discarded as
unreliable. Predictions are also discarded where the density of
observations is low.
Finally, the predictions are also used to discover user

reported (experimental) RTs that seem to be implausible. A RT
is considered potentially incorrect if the difference between the
recorded and the predicted RT is more than twice the distance
from the predicted RT to the outer limits of the PI. If a
reported RT falls outside these limits, the value is marked as
“suspicious” and ignored in subsequent modeling and
prediction iterations. The “suspicious” entries are also listed
in the Web application for the user to inspect.

Web Interface. A Web interface was constructed such that
the user can easily upload RT data and download the new RT
predictions. On the Web site, the user is first prompted to
define a new CS. Each system will have (1) a name, (2) a
column type (example, “Reversed-phase”, “HILIC”), (3) a
column description (example, “Waters ACQUITY UPLC BEH
C18”), (4) an eluent system (example, “(95:5 Water/ACN)/
(ACN)”), (5) the eluent pH (example, “acidic”, “alkaline”), (6)
eluent additives (example, “0.1% Formic acid”).
In the next step the user will upload a CSV file containing

RTs for compounds measured in his or her own system. The
CSV file needs to contain the name of each compound, the
measured RT, either PubChem CID or InChI, and the name of
the CS, which the user defined in the system. The system then
automatically converts PubChem CIDs to InChIs and for each
structure stereochemistry, charges, and salts are removed to
allow for unambiguous comparison of molecular structures.
The upload of new data to the database triggers recalculation

of models between the new CS and existing CSs that have
sufficient overlap. The Web interface was built using R v3.1.016

and the R package Shiny v0.10.2.9003 running on Shiny-server
v1.2.1.362 (www.rstudio.com/shiny). The shiny application
was integrated with the login system of the content
management system WordPress v4.1 (https://wordpress.org)
running on Apache HTTP Server v2.4.7 (http://httpd.apache.
org). The database of RTs is stored in a Mongodb v2.4.10
(https://www.mongodb.org) database and queried using
Rmongodb v1.7.3 (https://github.com/mongosoup/
rmongodb).

Retention Time Database. The current database used for
this project was constructed from many sources: (1) Two
systems (LIFE_old,17 LIFE_new17) recorded at the Depart-
ment of Nutrition, Exercise and Sports, Faculty of Science,
University of Copenhagen (NEXS), Denmark. (2) Five systems
(FEM_long,18 FEM_short,19 FEM_orbitrap_plasma, FEM_o-
rbitrap_urine, FEM_lipids20) recorded at the Department of
Food Quality and Nutrition, Research and Innovation Centre,
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Fondazione Edmund Mach (FEM), Italy. (3) One system
(IPB_Halle14,21) recorded at the Department of Stress and
Developmental Biology, IPB Halle, Germany. (4) One system
(RIKEN22) recorded at and made available by the RIKEN Plant
Science Center, Yokohama, Kanagawa, Japan. (5) Three
systems available in the published literature (Cao_HILIC,12

Eawag_XBridgeC18,23,24 MPI_Symmetry25). (6) Nine systems
(MTBLS4,26 MTBLS17,27 MTBLS19,28 MTBLS20,29

MTBLS36,30 MTBLS36,30 MTBLS38,31 MTBLS39,32

MTBLS87,33 MTBLS52) publicly available at MetaboLights.34

(7) Two systems extracted from MassBank1,24 (UFZ_Pheno-
menex, UniToyama_Atlantis).
From these 23 systems, two are HILIC based systems

(MTBLS87, Cao_HILIC) while the rest are acidic C18-based
reversed-phase (RP) systems. A range of C18 columns were
used, with the Waters ACQUITY UPLC HSS T3 C18 column
being the most popular and used in 40% of the systems.
Different gradients using different combinations of water
together with acetonitrile, methanol, acetone, and isopropanol
were used. A description of each system is available in the
Supporting Information.

■ RESULTS AND DISCUSSION

We present PredRet, a Web-based service that allows easy
sharing of retention time (RT) data and unsupervised mapping
of RTs between different chromatographic systems (CSs). The
user can upload RT data from their own CS. Then the user will
be able to view or download the predicted RTs.
Modeling Retention Times. In the PredRet system the

RTs of compounds measured in two different CSs are used to
build a generalized additive model (GAM) that describe the
relationship between RTs in the two systems. It is thus a
projection system that projects, or maps, RTs in one system to
RTs in another system. Examples of models that map the RT
from one system to another can be seen in Figure 1.
The hypothesis behind this mapping is that the elution order

is largely conserved and the models can therefore be
monotonically constrained which increases robustness consid-
erably, especially when there are few data points (i.e.,
compounds where the RT is known in both systems). This
assumption is only valid for similar CSs. For example it is not
possible to project RTs from a RP system to a HILIC systems.
Therefore, models are only constructed between all similar CSs
(currently only RP/HILIC are separated). Since all the RP CSs
in the database are currently acidic RP C18-based systems, we
have not tested the limits of how similar CSs need to be for it

to be possible to create sensible models. We presume that
systems should also be separated based on acidic/alkaline
eluent characteristics and very different column stationary
phases (for example, C8-based) while we found that differences
in the organic eluents, gradient, and specific C18 columns do
not invalidate the assumption of largely conserved elution order
judging by the CSs currently in the database. PredRet,
therefore, support adding RT data from any CS.

Current Database. Currently the database contains 3 300
RTs entries across 23 CSs. Overall, the database covers 1 700
unique compounds. In Figure 2 it can be observed how the

difference CSs are connected in terms of coverage overlap. The
compounds are small (<1000 Da) molecules ranging from
compounds found in humans, including some lipids, environ-
mental contaminants, plants, and foods as well as wine.
The number of entries for each CS in the database are

reported as green bars in Figure 3A. These systems cover a
range of typical chromatographic conditions from different
laboratories and each CS comprises tens to hundreds of entries.

Figure 1. Examples of robust monotonically constrained generalized additive models between the retention times of compounds in two different
chromatographic systems. Examples are given of a “good” model (A), a model with many outliers (B), a model where there are only enough data
points to get predictions in a small RT interval (C), and a model where there are not enough data points to establish a model with reasonable
prediction accuracy (D). All examples are of the initial model that will be refined further as erroneous entries are discarded.

Figure 2. Network showing compound coverage overlap between
chromatographic systems (CS). Only CSs that have at least one
connection are shown. The lines connecting the CSs show the extent
of overlap and go from thin orange to thick blue.
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Overlap in the compound coverage is required to construct
models between CSs.

In the upper part of Figure 3A, the corresponding number of
predictions for each system are reported in blue. The number

Figure 3. In part A, the number of entries for each system in the database are reported (green) as well as the number of predicted retention times
that can be made for each system (blue). In part B, a regression curve between predicted and experimental retention time is shown for all predictions
where the experimental RT is known. The prediction intervals are in gray. In parts C−F, the distribution of the absolute and relative prediction
errors (C,D) and width of the prediction intervals (E,F) are shown. The width of the bars represent the density of the data. The quartiles have been
marked. Data points have been marked explicitly if they exceed 1.5 times the interquartile range.
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of compounds for which RTs can be predicted depends mainly
on the number of compounds where the RT is known also in
other CSs. In general, this means that the more known RTs the
user supplies, the more RTs can be predicted. However,
relatively few known RTs can be sufficient to achieve a large
number of predicted RTs given suitable compound coverage
overlap between CSs. This is the case for, e.g., MTBLS38 that
has overlap with four of the CSs that have the most data (see
Figure 2) and therefore 69 known RTs were enough to predict
187 new RTs. In the current database there are 7 CSs that do
not have sufficient overlap with other CSs to make predictions.
Expansion of the database will lead to better coverage of
different chromatographic conditions such that different
column types and pH environments can be supported.
Prediction Intervals. When RT predictions are used to

annotate untargeted data sets, it is useful to know not just the
predicted RT but also a prediction interval (PI). PIs are
unfortunately not easily established for all but the simplest
models, and for this reason we found that of the previously
developed RT prediction methods only the models based on a
linear relationship between log P and RT provide PIs and not
for individual predictions as such.35 Likewise, we are currently
not aware of methods for building PIs for GAM models with
constraints. We therefore used bootstrapping to establish
empirical PIs.
When the PIs for each prediction are joined we get

prediction bands. Correctly defined prediction bands would
ensure that the fraction of predictions where the true RTs fall
outside the prediction band is no more than the chosen
confidence level. In our case, however, because of multiplicity
issues this cannot be ensured. PIs should therefore be regarded
as anticonservative and not be used as strict filters to exclude a
possible compound annotation but rather as an indication of
the likelihood of a match.
The accuracy of the predictions and width of the PIs depend

on the accuracy of the projection model associated with each
prediction. The accuracy and precision of this model depends
mainly on the number of compounds that have known RTs in
both CSs; or more precisely, it depends on the number of
known RTs in the RT range of the compound that is to be
translated from one CS to the other. Since the RT of one
compound can potentially be predicted from several CSs, the
model that provides the prediction with the narrowest PI is
used.
Another potential source of inaccuracies, that all prediction

systems suffer from, is the potential for small changes in RTs
over time. This can be caused by column aging but also by
small changes in the eluent composition such as slight pH
differences. These changes are not necessarily systematic and
can therefore increase the width of the PIs if the set of RTs
used for modeling was accumulated over time. In addition the
accuracy of the predictions might be lower than expected based
on the model if the “current” system differs sufficiently from the
system the original RTs were recorded on.
In Figure 1A the model used to predict RTs from the CS

“LIFE_old” to the CS “LIFE_new” can be seen. This model is
very accurate since there are no major outliers and many
compounds with known RT in both CSs. This leads to very
narrow PIs for the predictions. It should be noted, however,
that due to the lack of methods to construct accurate prediction
bands as explained above, the very narrow PIs can be
misleading. In Figure 1A, for the interval around 1.5 min (for
LIFE_old) the PI is narrow in part because the slope is steep,

which makes it easier to establish the fitted curve.
Unfortunately a steep slope also means that relatively small
inaccuracies (instrumental variation) in the independent
variable (LIFE_old RT) leads to relatively large errors in the
prediction of the dependent variable (LIFE_new RT) which
the PI does not reflect.
We will thus reiterate that the PIs are anticonservative and

should be approached as such. Nevertheless, we believe that
providing anticonservative PIs are better than having no PIs at
all.
To avoid reporting RTs based on models of clearly

insufficient quality, predictions are skipped where the density
of observations is low (i.e., in the RT region of the prediction
there are few experimentally determined RTs). Likewise for
predictions with very wide PIs (see Figure 1C,D).

Prediction Accuracy. For compounds where both the
experimental and predicted RT are known, a regression curve
between the two can be constructed. The regression curve for
all predictions is shown in Figure 3B and has R2 = 0.9992.
While this is a common model quality parameter, it relates
poorly to more intuitive measures of accuracy as it does not tell
how closely experimental and predicted RTs can be expected to
match. Therefore, in Figure 3C, the distribution of the absolute
prediction error is reported for each CS. It can be seen that the
median error for a CS can be as low as 0.01 min and is in all
cases below 0.28 min. In these plots, the width of the bars
represent the density distribution of the predicted data.
Some CSs, e.g., RIKEN, have exceptionally low absolute

errors. In the case of the RIKEN system, this is because it is an
extremely short gradient system with a run time of only 3 min.
It can therefore be more instructive to compare different
systems by looking at the errors relative to the true RTs. The
relative error in the prediction is shown in Figure 3D, and it can
be seen that the median error is in all cases below 3.7%. Figure
3C,D shows that a few percent of compounds exhibit much
larger errors. While it cannot be verified in all cases (since we
cannot verify the RT in published data), we suspect that this is
the “natural rate” of erroneous entries across typical data sets.
This further highlights the need for RT to become a parameter
utilized more in compound annotation.
Perhaps even more important than knowing what accuracy

can normally be expected, are the PIs of the predictions. The PI
of each prediction determines how close a RT match needs to
be to be “close enough” or how different is “dif ferent enough” to
exclude a possible compound structure. In Figure 3E it can be
seen that the median width of the PI for the prediction can be
as low as 0.1 min with the current database, while in all cases
lower than 1.86 min. As above, the relative width of the PIs are
given in Figure 3F.

Projection vs Structure-Based Prediction. Most devel-
opments in RT prediction have been made in construction of
quantitative structure−retention relationship (QSRR) models.
It is difficult to compare the accuracy of these models since the
same prediction error statistics are not always reported. In the
published literature, we typically found models with mean
predictions errors about 0.5−2 min equivalent to about 5−15%
relative error.8,10−14,35−40 Better accuracy has been achieved for
specific compound groups such as peptides41,42 and poly-
brominated diphenyl ethers.43 A different approach has been
published that projects RTs from a system using isocratic
conditions to a gradient system.44,45 This approach is extremely
accurate but can only predict the RT of compounds previously
characterized in the isocratic system. Solvents, column, and
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column temperature must also be the same as originally used
which severely limit general applicability. In a similar way,
“porting” of RTs between similar columns has been shown in
ion chromatography systems.46

The QSRR models have the advantage of being able to
predict the RT of any structure while PredRet can only predict
the RT for compounds already in the database. On the other
hand, since in the PredRet system we use direct projection
between CSs, we are able to achieve much higher accuracy than
in QSRR prediction systems.
A method that models classical QSRR parameters in an

artificial neural network simultaneously for multiple CSs has
also been developed for gas chromatography of polybrominated
diphenyl ethers with promising results.43 The PredRet database
could potentially be used for development of such a “hybrid”
method for liquid chromatography (LC).
With the current PredRet database, the mean and median

prediction error across all predictions were 0.13 and 0.06 min,
respectively, equivalent to 2.6 and 1.8%. For the CSs where
predictions can be made most precisely, the mean accuracy
approaches the batch to batch analytical variance. We therefore
believe that PredRet predictions are valuable evidence in the
assignment of putatively annotated compounds. PredRet
predictions can serve as additional evidence for level 2 and 3
identifications as defined by the metabolomics standards
initiative.47

Detection of Erroneous Data. Even if there are sufficient
data points to build good models, the quality of the model can
be compromised by outliers that typically indicate that the RT
was reported incorrectly for one of the two CSs in the given
model. We found that almost all larger collections of RTs
contain such errors and their influence on models can thus
compromise the validity of the predictions (see Figure 1B for
an example). To eliminate the deleterious influence of such
data points, we sought to make the model more robust while
keeping the process completely unsupervised. Even though
procedures for robust GAM have been proposed,48 there is to
our knowledge no method that allows robust GAM to be
combined with a monotonic increasing constraint that is crucial
to building sensible models. We therefore used the residuals of
an initial GAM to weigh each data point in the penalized
constrained least-squares fitting (PCLS) step that succeeds the
application of monotonic constraints.
Because there is inherent variation in the data unrelated to

outliers, it is preferable to penalize very high residuals (probable
outliers) in a nonlinear way such that very aberrant values are
disproportionally penalized and we therefore applied a
sigmoidal function to the residuals before using them as
weights in the subsequent modeling step. The tuning
parameters in practical terms result in residuals below 10%
not being penalized while residuals above 10% are penalized
harshly.
Erroneous data is not only problematic for the modeling step

but also in the prediction step if the erroneous entry is used as
the basis for a prediction. We therefore implemented a process
that tries to detect erroneous entries. In this step we go back to
each model and detect compounds for which the data point lies
more than twice the PI width from the predicted value.
However, this approach cannot determine if it is the entry from
one or the other CS used in the model that is erroneous.
Therefore, in cases where the same compound has been

recorded in more than two systems, all the models are used to
pinpoint which of the entries are wrong. If the compound is

only used in a single model (i.e., exists in only two CSs), both
entries are assumed to be wrong and the compound will be
excluded from predictions. This process insures that no grossly
erroneous data is used for predictions if avoidable. If a RT is
only reported in one CS, an erroneous entry cannot be
detected.
On the PredRet Web site the user will be able to review the

list of entries that have been marked as “suspicious”. Therefore,
the step of detecting “suspicious” entries can also serve as a
quality control check for the user.

Ability to Discriminate Isomers. In a liquid chromatog-
raphy−mass spectrometry (LC−MS) analysis, compounds with
different masses can usually be discriminated. However for
isomers, masses are identical and RT information is where
PredRet, as a tool complementary and orthogonal to mass
spectral analysis, provides an added value from its ability to
distinguish isomers. In Figure 4, two examples of the prediction
output are given for sets of isomers that can be distinguished
based on nonoverlapping PIs.

In the first example, delphinidin-3-glucoside can be clearly
distinguished from the other isomers because the PI of the
predicted RT does not overlap with the PI of any of the other
isomers. However, for an unknown isomer with an
experimental RT in the interval from 19.89 to 20.16 min, it
cannot be determined if this unknown is quercetin-3-galacto-
side or quercetin 3-glucoside since the predicted RT PI in both
cases cover this interval. In the second example, all positional
isomers of coumaric acid can be distinguished while the more
structurally dissimilar phenylpyruvate cannot be distinguished
from p-coumaric acid in the RT range 7.30−7.47 min.
PredRet can of course only give predictions for isomers for

which RT information has been added to the database, and it is
therefore always up to the user to consider other plausible
isomers. Despite the ability to report PIs and the potential
shown above, PredRet should be seen as an exclusion tool, not
a tool for confirmation. It serves to funnel the elucidation
efforts away from implausible isomers. Classical comparison to
authentic standards or in depth structural analysis is still
required for confirmation.
The PredRet user should also be aware that some database

entries contain ambiguous molecular structures. A common

Figure 4. Predicted retention times of two sets of isomers (predicted
to different systems). The black lines indicate the prediction intervals.
The squares indicate the predicted retention time while the circle
indicates the experimental retention time (when available). Gray areas
indicate overlapping prediction internals. The predictions indicate that
some structurally very similar isomers can be distinguished solely
based on the predicted retention times.
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example could be a compound like lysophosphatidylcholine
(18:1). There are three structural aspect that are not defined by
this name and often unknown when analyzing untargeted or
even targeted data: (1) The lipid chain can be in two different
positions on the glycerol, sn1 (i.e., LysoPC(18:1/0:0)) and sn2
(i.e., LysoPC(0:0/18:1)). (2) The position of the double bond
is not specified. (3) The relative stereochemistry around the
double bond is not specified (i.e., cis/trans).
Differences in any of these aspects can lead to different RTs.

This is not a limitation of PredRet as such but a limitation of
current reporting standards.
Since stereochemistry in general cannot be determined in

LC, it is ignored by PredRet. In general this has no influence on
the predicted RT since enantiomers have the same RT on
nonchiral columns. Diastereoisomers, however, do not
necessarily have the same RT. An example is hydroxy-methyl-
butyric acid for which there exist a number of structural isomers
(PubChem CIDs: 95433, 99823, 160471, 69362, 14081034,
131760, 188979). Most of them have at least one chiral center
and therefore exists in enantiomeric forms. 3-Hydroxy-2-
methylbutyric acid on the other hand has two chiral centers
and thus exists in four forms that are enantiomers and
diastereoisomers in pairs of two (PubChem CIDs: 12313369,
11966260 and 11815846, 12313370). The diastereoisomers can
have different RTs while the enantiomers cannot. The PI of a
prediction for 3-hydroxy-2-methylbutyric acid might therefore
not match the experimental RT if the database entry and the
experimental data was obtained from different diastereoisomers.

■ CONCLUSION

The user-friendly Web site http://predret.org allows users to
easily upload retention times (RTs) recorded in their
chromatographic system (CS) and download predicted RTs
for potentially hundreds of compounds in their own system.
The prediction system is a novel approach based on direct
projection of experimental RTs between many CSs simulta-
neously. The number of predicted RTs is typically in the
hundreds and highly accurate. For prediction systems that do
not only model different gradients on the same equipment this
allows the prediction of RTs with unprecedented accuracy; on
average with an error of 0.13 min equivalent to 2.6% relative
error. This is accurate enough to discriminate some structurally
very similar isomers. The user can thus prioritize which
compounds to run in their own CS and potentially exclude
some structures completely with reasonable confidence. In
contrast to previous prediction systems, PredRet also provides
prediction intervals for each prediction which gives a direct way
to decide if an unknown is a likely match or not.
Quantitative structure−retention relationship models do not

need the RT of a compound to have ever been experimentally
determined to predict the RT and can in many cases therefore
predict the RT of any structure once built. On the other hand,
these models are typically very complex and require manual
optimization and the universality comes at the price of
precision. PredRet on the other hand can be used to build
precise models without having the expertise to build projection
or prediction models. PredRet is, however, limited to
compounds for which the RT have previously been determined
in a comparable CS. As the database grows it can not only be
valuable in compound identification but can also serve as the
foundation for further research into the specific effects of
different solvents, modifiers, and columns. In addition, the

database could be used as a large training data set for improved
quantitative structure−retention models.
By using the system, users will add more data from their own

CSs to the database. The coverage of different chromatographic
conditions and the total number of predictions that can be
made will therefore increase significantly as the result of more
users. We hope that with support from the scientific
community in general, and the metabolomics community in
particular, PredRet will be able to grow to cover a large enough
number of compounds to be used in the study of many
different matrixes. We believe that this tool will greatly help the
identification process since compounds that are not compatible
with the observed RT can be disregarded. Confirmatory
experiments can then be reserved for compounds that could
have the observed RT. This will allow researchers to complete
the feature annotation and compound identification process in
a faster and more rational manner and thus save time and
resources, both monetary and environmental.
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L.; Martel, S.; Carrupt, P.-A. Phytochemistry 2014, 108, 196−207.
(12) Cao, M.; Fraser, K.; Huege, J.; Featonby, T.; Rasmussen, S.;
Jones, C. Metabolomics 2015, 11 (3), 696−706.
(13) Goryn ́ski, K.; Bojko, B.; Nowaczyk, A.; Buciński, A.; Pawliszyn,
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