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Gram-negative bacteria use various secretion systems to deliver their secreted effectors.

Among them, type IV secretion system exists widely in a variety of bacterial species,

and secretes type IV secreted effectors (T4SEs), which play vital roles in host-

pathogen interactions. However, experimental approaches to identify T4SEs are time-

and resource-consuming. In the present study, we aim to develop an in silico stacked

ensemble method to predict whether a protein is an effector of type IV secretion

system or not based on its sequence information. The protein sequences were encoded

by the feature of position specific scoring matrix (PSSM)-composition by summing

rows that correspond to the same amino acid residues in PSSM profiles. Based on

the PSSM-composition features, we develop a stacked ensemble model PredT4SE-

Stack to predict T4SEs, which utilized an ensemble of base-classifiers implemented by

various machine learning algorithms, such as support vector machine, gradient boosting

machine, and extremely randomized trees, to generate outputs for the meta-classifier

in the classification system. Our results demonstrated that the framework of PredT4SE-

Stack was a feasible and effective way to accurately identify T4SEs based on protein

sequence information. The datasets and source code of PredT4SE-Stack are freely

available at http://xbioinfo.sjtu.edu.cn/PredT4SE_Stack/index.php.

Keywords: type IV secreted effector, sequence information, position specific scoring matrix, machine learning,

stacked ensemble method

INTRODUCTION

Gram-negative bacteria use various secretion systems to deliver their secreted substrates (also called
as effectors) from the bacterial cytosol into host cells, which can promote virulence and cause
diseases. Until now, eight different secretion systems (type I to type VIII) have been found in Gram-
negative bacteria, which differ from each other in their outer membrane secretion mechanisms.
There are a number of well-organized databases or web resource on collecting experimentally
validated effectors of Type III, IV, and VI secretion systems (Bi et al., 2013; Li et al., 2015; Eichinger
et al., 2016; An et al., 2017). Among them, type IV secretion system (T4SS) exists widely in a
variety of bacterial species, such as Bordetella pertussis, Helicobacter pylori, Coxiella burnetii, and
Legionella pneumophila (Chandran et al., 2009; Fronzes et al., 2009; Lifshitz et al., 2013). T4SS
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specifically secretes type IV secreted effectors (T4SEs), which vary
widely across bacterial species. T4SEs mimic the function of host
proteins, exert vital functions in cytoplasm of infected eukaryotic
cells and play crucial roles in host-pathogen interactions.
Accurate and reliable identification of T4SEs is a crucial step
toward the understanding of the pathogenic mechanism of
T4SS. Due to the biological significance of T4SEs, a number
of experimental approaches have been developed to identify
novel T4SEs such as fusion protein report assays and secretion
apparatus. However, these experimental approaches are time-
and resource-consuming. It is highly desirable to develop in silico
classification models to accurately predict type IV secreted
effectors of T4SS based on protein sequence information.

In the last decade, several computational approaches using
machine learning (ML) algorithms were developed to predict
T4SEs based on protein sequence information. A pioneering
method proposed by Burstein et al. (2009) formulated the task
of identifying T4SEs on Legionella pneumophila genome as a
classification problem using various ML algorithms, including
naïve Bayes, Bayesian networks, support vector machine (SVM),
Neural networks, and a voting algorithm that is based on these
four algorithms. The input features of these algorithms include
taxonomical dispersion, regulatory data, genomic organization,
and similarity to eukaryotic proteomes (Burstein et al., 2009).
Later, the same group developed a hidden semi-Markov model
(HSMM) to characterize the amino acid composition of the
secretion signal for identification of T4SEs across species (Lifshitz
et al., 2013). Chen et al. (2010) used the similar ML-based
model as the previous study (Burstein et al., 2009) to predict
putative T4SEs in Coxiella burnetii genome, which helped narrow
the number of potential targets for subsequent experimental
validation. T4EffPred is a SVM-based prediction tool for
identifying T4SEs based on four types of sequence-derived
features, which were calculated from amino acid composition
(AAC) and position specific scoring matrix (PSSM) profiles (Zou
et al., 2013). T4SEpre (Wang et al., 2014) is another SVM-
based tool for predicting T4SEs from C-terminal 100 amino
acids of protein sequences by using AAC, position-specific AAC
profiles, and predicted structural features such as secondary
structure and solvent accessibility. An et al. (2016) constructed an
ensemble model by random forest to integrate the output of the
individual predictors (i.e., T4EffPred and T4SEpre) to improve
predictive performance. Recently,Wang Y. et al. (2017) presented
an effective method to predict T4SEs prediction by integrating
information from both 50 N-terminal and 100 C-terminal
residues of protein sequences. Themodel was built by SVM based
on three types of features, namely AAC, PSSM, and composition,
transition and distribution.

Overall, the currently available computational approaches for
prediction of T4SEs vary from one another in terms of the utilized
features and ML algorithms. Since the numbers of effectors and
non-effectors in genomes are heavily unbalanced (the effectors
comprise only a small fraction of a genome), it is highly desirable
to develop a prediction method with high precision and high
specificity. Otherwise, the number of true positives would easily
be overwhelmed by the number of false positives, so that such
a predictor is impractical to generate reliable candidates for

experimental validation. In the present study, we aim to propose
a stacked ensemble model, PredT4SE-Stack, to further improve
the prediction performance (i.e., higher precision and specificity)
for identifying T4SEs from protein sequence information. The
stacked generalization approach (Wolpert, 1992) consists of an
ensemble of base classifiers whose outputs are further learned
by a meta-classifier to model the relationship between the
ensemble outputs and the actual classes/labels. To construct
the model, the protein sequences are firstly encoded by the
feature of PSSM-composition by summing rows that correspond
to the same amino acid residues in PSSM profiles. Based on
the PSSM-composition features, a total of eight types of ML-
based algorithms (including advanced ML techniques) are used
to build base-classifiers in the first stage. Then, the optimal
combination of base-classifiers is searched, and the output of
these selected base-classifiers are utilized as input for a meta-
classifier at the second stage. Our experimental results on both
cross validation and independent tests demonstrated that the
framework of PredT4SE-Stack is a feasible and effective way to
accurately identify T4SEs based on protein sequence information.
It also has achieved better performance than previously published
methods.

MATERIALS AND METHODS

Dataset
In this study, the same benchmark dataset curated by Wang
Y. et al. (2017) was used to evaluate the performance of our
proposedmethod. The dataset consists of 1,765 protein sequences
across multiple bacterial species, categorized into two classes (380
T4SEs as the positive class and 1,385 non-T4SEs as the negative
class). These proteins in this dataset have mutual sequence
identity no more than 30%. The 1,765 protein sequences were
divided into two subsets for cross validation in the training and
the independent testing, respectively. The training dataset (Train-
915) are composed of 915 sequences, among which 305 T4SE
sequences were randomly selected from positive class, and 610
non-T4SE sequences were randomly selected from negative class.
The dataset of Train-915 was further randomly divided into five
subsets (or folds) with an equal number of protein sequences
for cross validation to attain the optimized model. In each of
the five validations, 4 of the 5-folds were used for training and
the remaining one for testing, which was repeated for five times.
The testing dataset (Test-850) included the remaining 75 T4SE
sequences as positive samples and 775 non-T4SE sequences as
negative samples for independent testing.

Feature Representation of Protein
Sequence Samples
One of the key problems in designing a predictor based on
machine learning is how to encode a protein sequence as an
informative feature vector enriched with highly discriminative
information. In the present section, we describe how to formulate
an effective mathematical expression that describes protein
sequences in the training and testing data sets.
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The protein sequence profile (i.e., PSSM) is a powerful
representation of residue or sequence information of proteins. It
has achieved good performance on a number of bioinformatics
applications such as functional residues prediction and protein
function prediction (Xiong et al., 2011a,b, 2012; Zhu et al., 2013;
Wei et al., 2017a). In this study, PSSMs were generated by
three iterations of PSI-BLAST searches against Uniref50 with the
BLOSUM62 substitution matrix. The parameter of e-value was
set to 0.001. Because ML-based models can only handle vectors
with equal lengths for all protein sequence samples, the PSSM
of a protein sequence (amino acid length is L) has a dimension
of L∗20, which could not be directly used as the input feature
vector for machine learning algorithms. Instead, the original
PSSM profile was further used to calculate the feature of PSSM-
composition by summing rows that correspond to the same
amino acid residues in a PSSM profile, in much the same way
as the previous studies (Zou et al., 2013; Wang J. et al’s., 2017).
The sum value was divided by the length of the protein sequence
for each type of amino acid (there is a total of 20 types). Thus, a
vector of size at 400 (=20 × 20) is finally used for representing
a protein sequence sample. Figure 1 presents the details about
how to generate a feature vector of PSSM-composition for a given
protein sequence.

Classification System
The ensemble learning techniques can be categorized into
three main types, which include bagging, boosting, and stacked
ensemble. It is demonstrated that the ensemble learning
techniques can help improve the prediction performance in
various bioinformatics applications (Zhang et al., 2012; Lin et al.,
2013, 2014; Zou et al., 2015; Li et al., 2016; Yuan et al., 2016; Wan
et al., 2017; Iqbal and Hoque, 2018; Mishra et al., 2018; You et al.,
2018). In this section, we introduce the components of the two-
stage stacked ensemble scheme, including various classification
algorithms used as base-classifiers in the first stage, and the input
of the meta-classifier in the second stage.

Base-Classifier
In order to find the optimal combination of base-classifiers
in the first stage and the meta-classifier in the second stage,
the following eight different machine learning algorithms were
exploited: (i) SVM (Cortes and Vapnik, 1995), (ii) Naïve Bayes
(NB), (iii) K Nearest Neighbor (KNN), (iv) Logistic Regression
(LR), (v) Random Forest (RF) (Breiman, 2001), (vi) Extremely
Randomized Trees (ERT) (Geurts et al., 2006), (vii) Gradient
Boosting Machine (GBM) (Friedman, 2001), and (viii) eXtreme
Gradient Boosting (XGB). The algorithms such as NB, LR, and
GBMwere implemented by using h2o package in R software. The
algorithms of SVM, KNN, RF, ERT, and XGB are implemented
by using e1071, caret, randomForest, extraTrees and xgboost
packages in R, respectively. The optimal parameters in these
algorithms are determined by a grid search strategy.

Meta-Classifier
The meta-classifier in the second level generalization (or stacked
generalization) is used to combine the outputs of base-classifiers
in an ensemble. In our classification system, we applied a

stacked generalization approach proposed by Wolpert (1992), in
which an ensemble of base-classifiers are first constructed, whose
outputs are used as inputs to a second level of meta-classifier
to learn the relationship between the ensemble outputs and the
actual classes/labels. The stacked generalization scheme can be
viewed as an extension version of cross validation. In the first
stage, the base-classifiers were trained with the feature of PSSM-
composition of sequences. In the second stage, the prediction
class probabilities of the base-classifiers were taken as inputs to
the meta-classifier (shown in Figure 2).

Model Validation Method
To evaluate performances of classification models, the validation
methods are mainly consisting of k-fold cross validation, leave-
one-out cross validation (or called as jackknife test), and
independent tests. In k-fold cross validation, the sample set is
randomly divided into k subsets with equal sizes. Of the k subsets,
only one subset is selected as the validation data for testing the
model, and the remaining k-1 subsets are used as training data.
The cross validation process is then repeated k times (the folds),
with each of the k subsets used exactly once as the validation
data. The results from k folds are finally averaged. The k-fold
cross validation method has been widely used as the model
validation approach in various bioinformatics applications (Zhu
and Mitchell, 2011; Xu et al., 2017; Zeng et al., 2017; Chen X.
et al., 2018; He et al., 2018a,d). In the present study, the 5-fold
cross validation was used for validation in the training set, and the
independent test was used for testing the generalization ability of
the proposed method, and comparison with other methods.

Model Evaluation Metric
In order to assess prediction performances of single-label
classification systems, a set of six threshold-dependent metrics
are widely used in the bioinformatics studies (Xia et al., 2010;
Li et al., 2011; Zhang et al., 2017, 2018a,b,c; He et al., 2018c;
Jia et al., 2018; Zhao et al., 2018). They are accuracy (ACC),
sensitivity (SE, also called recall), specificity (SP), precision (PR),
Matthew’s correlation coefficient (MCC) and F-measure (F1). The
definitions of these metrics are shown as below.

ACC =
TP + TN

TP + TN + FP + FN
(1)

SE =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

PR =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN

√
(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)

(5)

F1 =
2 × SE × PR

SE + PR
(6)

where TP (true positives) is the number of correctly predicted
T4SEs, TN (true negatives) is the number of correctly predicted
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FIGURE 1 | The illustration of PSSM-composition profile calculation for a query sequence.
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FIGURE 2 | The framework of the stacked ensemble scheme proposed in PredT4SE-Stack.

TABLE 1 | Performance comparison of eight types of base-classifiers in the first stage on Train-915 dataset using 5-fold cross validation.

Method Parameter ACC(%) SE (%) SP (%) PR(%) MCC F1

NB laplace = 0 73.2 81.0 69.3 57.0 0.476 0.669

KNN k = 10 85.5 82.0 87.2 76.3 0.680 0.790

LR family = “binomial” 87.9 74.8 94.4 87.1 0.722 0.803

RF ntree = 500 88.5 72.5 96.6 91.4 0.738 0.807

ERT numRandomCuts = 9 89.4 74.8 96.7 92.1 0.759 0.824

SVM cost = 1, gamma = 2−8, kernel = “radial” 90.2 78.0 96.2 91.6 0.777 0.839

XGB eta = 0.3, max_depth = 6, nrounds = 500, objective = “binary:logistic” 90.1 78.7 95.7 90.4 0.774 0.840

GBM learn_rate = 0.7, max_depth = 9, ntrees = 50 90.5 80.0 95.7 90.7 0.784 0.847

non-T4SEs, FP (false positives) is the number of non-T4SEs
wrongly predicted as T4SEs, and FN (false negatives) is the
number of T4SEs wrongly predicted as non-T4SEs.

The receiver operating characteristic (ROC) curve is a plot of
the sensitivity versus (1-specificity) for abinary classifier at varying
thresholds from 0 to 1 (the threshold is assigned as the probability
of the target sequence to be a T4SE in our study). The area under
the curve (AUC) can be used as a powerful metric for evaluation
performances of classifiers. It is worth mentioning that AUC of
ROC (and ACC, MCC) can present overly optimistic assessment
of performance of an algorithm on a heavily unbalanced dataset.
Therefore, we only used AUC of ROC for evaluation in 5-fold
cross validation, but not used it for evaluation in the independent
dataset (only 75 proteins are true positives among 850 samples).
Instead, the metric of F1, which is a harmonic mean of recall
(or sensitivity) and precision, is a main metric for evaluating
performances of classifiers in the present study.

RESULTS AND DISCUSSION

Predictive Power of Various
Base-Classifiers on Train-915 Dataset
The aim of this section is to test the predictive power of base-
classifiers based on PSSM-composition profiles for eight different
machine learning algorithms on Train-915 dataset using 5-
fold cross validation. Experimental results shown in Table 1

indicate that the algorithm of naïve Bayes performed worst on
this task. The algorithms of KNN, logistic regression, random
forest, and extremely randomized trees performed moderately.

The algorithms of support vector machine, extreme gradient
boosting, and gradient boosting machine performed best. The
results of ROC shown in Figure 3 are mainly in agreement
with the findings in Table 1. However, the fact that the AUC-
ROC of SVM is higher than that of XGB and GBM indicates
that SVM can achieve more stable performance than XGB and
GBM using PSSM-composition feature as input in the present
task, in regardless of the change of the thresholds. It should be
noted that we tried a large number of other types of PSSM-
derived features generated by POSSUM tookit (Wang J. et al’s.,
2017), and a variety of structural and physiochemical descriptors
extracted from protein sequences generated by iFeature tookit
(Chen Z. et al., 2018) when we designed the input features
of the base-classifiers. Our experimental results demonstrated
that the PSSM-composition feature utilized in this study yielded
satisfactory performance, which performed better than other
types of sequence-based features. Moreover, we attempted to
directly combine the PSSM-composition feature with other types
of features as the input of the base-classifiers. It was found that
the combined features could not significantly produce higher
performance than the single type of PSSM-composition feature
(data not shown).

Predictive Power of Meta-Classifiers on
Train-915 Dataset
Since combining all of the above mentioned base-classifiers in a
meta-classifier could not yield optimal prediction performance,
it is desirable to search for the optimal combination of base-
classifiers. Since RF and ERT are tree-based classifiers, we chose
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FIGURE 3 | ROC curves of base-classifiers in the first stage on Train-915 dataset using 5-fold cross validation.

FIGURE 4 | ROC curves of meta-classifiers in the second stage on Train-915 dataset using 5-fold cross validation.
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TABLE 2 | Performance comparison of eight types of meta-classifiers in the second stage on Train-915 dataset using 5-fold cross validation.

Method Parameter ACC(%) SE (%) SP (%) PR(%) MCC F1

ERT numRandomCuts = 9 88.9 80.3 93.1 86.5 0.752 0.828

RF ntree = 500 90.4 81.0 95.1 89.7 0.783 0.847

SVM cost = 10, gamma = 2−10, kernel = “radial” 90.6 80.3 95.7 90.7 0.787 0.849

GBM learn_rate = 0.1, max_depth = 3, ntrees = 50 90.6 82.0 94.9 89.3 0.788 0.851

XGB eta = 0.1, max_depth = 2, nrounds = 100, objective = “binary:logistic” 90.7 81.3 95.4 90.4 0.791 0.852

NB laplace = 0 90.9 82.3 95.2 89.9 0.795 0.857

KNN k = 19 91.0 82.0 95.6 90.5 0.797 0.857

LR family = “binomial” 91.1 81.0 96.2 91.9 0.800 0.858

one of them at a time. Because GBM and XGB are boosting-based
methods, and XGB is an efficient and scalable implementation
of GBM, we chose one of them too. It was found that the
combination of SVM, GBM, and ERT achieved the optimal
performance, which is in agreement with the finding of study
by Pan et al. (2018) on the prediction task of hot spots in
protein-RNA interfaces.

Furthermore, we tested the same set of eight ML methods as
the classification algorithms of meta-classifiers to compare their
prediction performances. The results in Table 2 showed that
all meta-classifiers except the one based on ERT achieved very
similar performances, for example, the values of F1 are falling in
a narrow range from 0.847 to 0.858, whereas the base-classifiers
using the same set of ML algorithms are ranging from 0.669 to
0.847 in the first stage. These results can be explained by the fact
that the pattern learned from the first stage is effective enough,
leading to the similar level of performances at the second stage
on the same dataset of Train-915, irrespective of ML algorithms,
except ERT (also demonstrated in Figure 4) .

Predictive Power of Meta-Classifiers on
Test-850 Dataset
In the section, the prediction performances of meta-classifiers
are evaluated on the independent dataset, which is mimicking a
true prediction task, since the model trained on one dataset is
really tested on an unseen dataset for examining its generalization
ability on a new dataset. Table 3 indicated that LR and SVM
have top performances on Test-850 dataset. Therefore, both of
them can be utilized as the classification algorithms of the meta-
classifier in PredT4SE-Stack. Considering the fact that LR is more
interpretable than SVM, we could use LR to construct the meta-
classifier in our model PredT4SE-Stack. In real application, we
will re-train PredT4SE-Stack on a whole dataset consisting of
Train-915 and Test-850.

Comparison With Previous Studies
The main purpose of this section is to compare our proposed
approach PredT4SE-Stack to previously published methods.
Performance comparisons among different T4SE prediction
approaches are scientifically meaningful only if they train and test
their methods on the same dataset. Accordingly, our approach
PredT4SE-Stack was only compared with the recently published
method proposed by Wang Y. et al. (2017). The first reason
is that both two studies used the same benchmark dataset

TABLE 3 | Performance comparison of eight types of meta-classifiers in the

second stage on the independent dataset Test-850.

Method ACC(%) SE (%) SP (%) PR(%) MCC F1

XGB 92.4 85.3 93.0 54.2 0.643 0.663

GBM 93.1 88.0 93.5 56.9 0.674 0.691

KNN 93.5 88.0 94.1 58.9 0.688 0.706

RF 93.8 86.7 94.5 60.2 0.691 0.710

NB 93.8 88.0 94.3 60.0 0.696 0.714

ERT 94.0 88.0 94.6 61.1 0.703 0.721

LR 94.4 88.0 95.0 62.9 0.715 0.733

SVM 94.5 86.7 95.2 63.7 0.715 0.734

TABLE 4 | Performance comparison between our method with the other method

on the independent dataset Test-850.

Method ACC(%) SE (%) SP (%) PR(%) MCC F1

Wang Y. et al.’s

(2017) method

85.3 90.7 84.8 36.6 0.518 0.521

PredT4SE-Stack

(SVM, 0.23)

87.5 90.7 87.2 40.7 0.556 0.562

PredT4SE-Stack

(SVM, 0.50)

94.5 86.7 95.2 63.7 0.715 0.734

PredT4SE-Stack

(LR, 0.11)

88.7 90.7 88.5 43.3 0.579 0.586

PredT4SE-Stack

(LR, 0.50)

94.4 88.0 95.0 62.9 0.715 0.733

for training and testing. The second reason is that Wang Y.
et al.’s (2017) method had been proved to be improved over
other published methods such as T4EffPred (Zou et al., 2013),
T4SEpre (Wang et al., 2014), and An et al.’s (2016) method.
Table 4 shows the comparison results between our method with
Wang Y. et al.’s (2017) method. Since the measures of F1 and
precision are not available in Table 4 in their published study,
we firstly calculated the TP, TN, FP, and FN using the sensitivity
and specificity of their method, and then calculated F1 and
precision of Wang Y. et al.’s (2017) method. The meta-classifier
of our PredT4SE-Stack classification system was implemented
by SVM or LR. For SVM or LR, the performance (F1 = 0.734
or 0.733) of our method is much higher than that (F1 = 0.521)
of Wang Y. et al.’s (2017) method. If our SVM-based meta-
classifier is tuned on the same recall or sensitivity of 90.7%,
our method achieved better performance at specificity, precision,
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and F1, which are 2.4, 4.1, and 4.1% respectively, higher than
that of Wang Y. et al.’s (2017) method. If our LR-based meta-
classifier is tuned on the same recall or sensitivity of 90.7%, our
method achieved better performance at specificity, precision, and
F1, which are 3.7, 6.7, and 6.5% respectively, higher than that of
Wang Y. et al.’s (2017) method.

CONCLUSION

The main goal of the current study is to develop a stacked
ensemble model PredT4SE-Stack to predict T4SEs from protein
sequence information. The proposed model utilized an ensemble
of base-classifiers implemented by SVM, GBM, and ERT to
generate outputs for the meta-classifier in the classification
system. It was demonstrated that the framework of PredT4SE-
Stack was a feasible and effective way to accurately identify
T4SEs based on protein sequence information. However, the
performance of PredT4SE-Stack can be further improved in
several respects. Firstly, the diversity of base-classifiers was
implemented by various classification algorithms in the present
work. It can be further improved by different features in different
base-classifiers. Secondly, inspired by the successful application
of feature selection strategies in various bioinformatics tasks (Zou
et al., 2016; Wei et al., 2017b, 2018; He et al., 2018b; Manavalan
et al., 2018; Qiao et al., 2018; Su et al., 2018; Tang et al.,
2018), the predictive power of base-classifiers can be boosted by

incorporating an effective feature selection technology on a large
pool of sequence-derived features. Moreover, an effective model
selection on a large number of candidate base-classifiers will be
explored to improve the prediction performance of the meta-
classifier. These improvements will be explored in the further
study.
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