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Abstract: Photoplethysmography (PPG) is a simple and cost-efficient technique that effectively
measures cardiovascular response by detecting blood volume changes in a noninvasive manner. A
practical challenge in the use of PPGs in real-world applications is noise reduction. PPG signals
are likely to be compromised by various types of noise, such as scattering or motion artifacts, and
removing such compounding noises using a monotonous method is not easy. To this end, this
paper proposes a neural PPG denoiser that can robustly remove multiple types of noise from a
PPG signal. By casting the noise reduction problem into a signal restoration approach, we aim to
achieve a solid performance in the reduction of different noise types using a single neural denoiser
built upon transformer-based deep generative models. Using this proposed method, we conducted
the experiments on the noise reduction of a PPG signal synthetically contaminated with five types
of noise. Following this, we performed a comparative study using six different noise reduction
algorithms, each of which is known to be the best model for each noise. Evaluation results of the peak
signal-to-noise ratio (PSNR) show that the neural PPG denoiser is superior in three out of five noise
types to the performance of conventional noise reduction algorithms. The salt-and-pepper noise type
showed the best performance, with the PSNR of the neural PPG denoiser being 36.6080, and the
PSNRs of the other methods were 19.8160 and 32.8234. The Poisson noise type performed the worst,
showing a PSNR of 33.0090; the PSNRs of other methods were 35.1822 and 33.4795, respectively.
Thereafter, an experiment to recover a signal synthesized with two or more of the five noise types was
conducted. When the number of mixed noises was two, three, four, and five, the PSNRs were 29.2759,
27.8759, 26.5608, and 25.9402, respectively. Finally, an experiment to recover motion artifacts was
also conducted. The synthesized motion artifact signal was created by synthesizing only a certain
ratio of the total signal length. As a result of the motion artifact signal restoration, the PSNRs were
25.2872, 22.8240, 21.2901, and 19.9577 at 30%, 50%, 70%, and 90% motion artifact ratios, respectively.
In the three experiments conducted, the neural PPG denoiser showed that various types of noise
were effectively removed. This proposal contributes to the universal denoising of continuous PPG
signals and can be further expanded to denoise continuous signals in the general domain.

Keywords: photoplethysmography; denoising; universal denoiser

1. Introduction

Photoplethysmography (PPG) is a simple and low-cost method to measure blood
volume changes by detecting the amount of light reflected by irradiating the skin surface in
a noninvasive manner [1]. This technique has received much attention in recent decades as
a result of its cost-efficiency and ease of implementation. The technique is thus applied in
many ways, notably for convenient monitoring of various basic vital signs, such as pulse,
respiration, heart rate variability (HRV), and blood oxygen saturation [1–4]. However, PPG
is vulnerable to noise, and in practical settings, PPG signals measured in the real world are
likely to be compromised by various types of noise, including scattering, motion artifacts,
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and lower blood perfusion [5]. Noise removal plays an important role in the PPG process
because noise can distort the shape of a signal.

To this end, there is a growing demand for noise removal techniques to restore PPG
signals to their original shape. One line of research has focused on the use of additional
sensors to artificially calibrate the observed PPG signal. Thamarai et al. and Biswas et al.
proposed a wavelet-based approach to effectively restore the PPG signal from a mixture of
signals and multiple noises, especially for the removal of compounded motion noise [6–8].
Tanweer et al. introduced an approach that uses an additional sensor to eliminate motion
noise in PPG signals. Despite these studies showing relatively competitive performance, it
seems onerous because it adopts multiple sensors to necessitate the demanding procedure
of consecutive comparisons between the two different signals [9].

Hanyu et al. proposed a lighter denoiser framework without considering additional
sensors. Using statistical parameters, they attempted to detect an abnormal pattern of
a signal contaminated by motion noise and cut out the detected part afterwards [10].
However, this approach causes irreversible loss of the original PPG signal, which might
significantly diminish the quality of the processing outcomes. Hara et al. introduced a
hybrid approach using two PPG sensors that captured the optimal parameter of each signal
and used them to remove the effect of motion noise afterwards [11]. Despite their relatively
high performance, these methods have shortcomings as they are dedicated to a specific
type of noise that cannot be applied to other types of noise in general.

The fundamental challenge in denoising PPG signals is that noise is usually generated
not only by motion artifacts but also by various types of sporadic noise, owing to signal
amplification, electrical interference, and baseline drift. Subsequently, monotonous and
fragmented resolutions to the specific types of noise in PPG signals might not be sufficient.
For example, wavelet-based or adaptive filter-based methods can successfully remove
motion artifacts, but they cannot resolve the denoising problem on high-frequency compo-
nents owing to sporadic noise generation. They are only effective in restoring the signal
shape for a specific section.

Within this context, this paper proposes a neural PPG denoiser (NPD) that can robustly
remove multiple types of noise from a PPG signal. By casting the noise reduction problem
into a signal restoration approach, we aimed to achieve solid performance in the reduction
of different types of noise using a single neural denoiser. Accordingly, a deep neural
denoiser built upon transformer-based deep generative models was built, inspired by the
super-resolution problem [12], in which a single neural network-based denoiser can learn to
cope with diverse types of noise. Experiments showed that the proposed method showed
the highest peak signal-to-noise ratio (PSNR) in the removal of five different types of noise
(Gaussian, Poisson, salt and pepper, speckle, and uniform noise), compared to (i) that of
a wavelet-based denoiser and (ii) that of the best denoiser algorithm for each noise. The
contributions of this study are as follows:

• This proposal, NPD, ensures high-quality signal restoration over many different types
of noise in comparison to state-of-the-art denoising algorithms.

• The authors suggest a novel computational framework in which transformer-based
deep generative models can learn to remove various types of noise in continuous PPG
signals by casting the denoising problem into a signal restoration problem.

• This proposal can be expanded to the general signal processing domain as a universal
denoiser for continuous signals.

The remainder of this paper is organized as follows. After the introduction in Section 1,
the proposal, NPD, and details of the proposal for ways in which deep generative models
learn to universally remove various noise types, is outlined in Section 2. This is followed
by the experimental settings described in Section 3. The results are presented in Section 4,
and the study is concluded with a discussion and suggestions for future work in Section 5.
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2. Proposed Method

The main goal of this work is to provide a universal denoiser for PPG signals. We note
that signals affected by motion artifacts or other noise were considered, and other factors
such as blood perfusion were not considered. For this, we adopted the transformer-based
deep generative model approach which casts the noise removal of continuous signals to
the signal restoration technique. Super-resolution (SR) research in the image-processing
domain is a good example [13]. In SR, the central aim is to restore high-resolution images
from low-resolution images for many reasons (e.g., distortion, transmission errors, and
loss due to compression). The assumption in this study is that PPG signals of low quality
(owing to noise) can be equated to low-resolution images in SR settings. If so, the study
further assumes that the quality of the PPG signals can be enhanced (i.e., noise removed
from the PPG signal) by following the resolution method suggested by the SR to have
high-resolution images.

This study uses a texture transformer network for image SR (TTSR) as a backbone
framework for a PPG denoiser. It is a convolutional neural network (CNN)-based image-
restoration technique that incorporates a transformer-based deep generative model [12].
The variant of TTSR is used to develop NPD with more emphasis on the denoising problem.
Figure 1 (below) shows the overall architecture of the NPD. It was built on top of the TTSR
framework to adjust specifically to the denoising problem of continuous PPG signals.
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Figure 1. Overall architecture of neural PPG denoiser (NPD). Q is the texture features extracted
from the upsampled LR image, K is the texture features extracted from the upsampled Ref image,
after downsampling, V is the texture features extracted from the original Ref image, H is the hard
attention map calculated from the relevance embedding, S is the soft attention map calculated from
the relevance embedding, F is the LR features extracted from the DNN backbone, and T is the texture
features transmitted to generate the SR output.

NPD takes four inputs: (i) a noisy PPG signal, which is a (potential) mixture of
noise and genuine PPG signals, (ii) a reference PPG signal, (iii) an upsampled signal of a
downsampled reference PPG signal, and (iv) an upsampled signal of a noisy PPG signal.
After extracting the learnable texture information from the reference PPG signal and a
set of synthesized PPG signals (e.g., upsampled after downsampling a reference PPG
signal, upsampled PPG signal), a transformer-based neural network learns the dominant
feature information from the relation between them through the self-attention mechanism.
Subsequently, the restored PPG signal is generated by considering both the noisy PPG signal
and the attention vector learned from the reference PPG signal and a set of synthesized
PPG signals.
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3. Experimental Setup

Experiments were conducted to evaluate the performance of the NPD in various
types of noise. The Mendeley data [14] and BIDMC [15] open datasets were used for this.
Mendeley data were collected from healthy people with no control conditions, whereas
the BIDMC was acquired from critically ill patients during hospital care at Beth Israel
Deaconess Medical Center (Boston, MA, USA). The Mendeley dataset contains 2074 PPG
signals obtained from 35 people. Each signal had a length of 6 s, and a sampling rate of
50 Hz. In the BIDMC dataset, 53 PPG signals were obtained from the 53 participants. Each
signal had a length of 8 min, and a sampling rate of 125 Hz.

We resampled all PPG signals in both the datasets at 50 Hz, and thereafter segmented
all the resampled signals to a length of 6 s. This was followed by normalization, each of
which ranged between−1 and 1. Consequently, 6208 PPG signals were acquired. The entire
resampled 6208 dataset was split into 2849 input data, 2849 reference data, and 510 test data
for model training. Here, the input data referred to a noisy PPG signal, in which noise was
added to the ground truth PPG signal.

For proper evaluation, a set of noisy PPG signals was synthetically generated from the
obtained dataset. Next, the artificially contaminated PPG signals were denoised, and their
denoising capacity examined, in comparison to the original PPG signals. Five different
noises were added to the original dataset to compile the contaminated signals, as shown
in Figure 2 (below): Gaussian noise, Poisson noise, salt-and-pepper noise, speckle noise,
and uniform noise. The Gaussian noise and speckle noise follow a normal distribution,
with a mean of 0 and a standard deviation of 0.01. Salt-and-pepper noise synthesizes only
5% of the ground truth, and uniform noise was sampled uniformly from 0 to 0.1. After
synthesizing the normalized ground truth with noise, the signal was cropped to the range
of 0–1. The synthesized signal was normalized to the range of −1 and 1.
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4. Results

The mean squared error (MSE) and PSNR [16] were used for the evaluation of NPD.
PSNR is the maximum signal-to-noise ratio computed by dividing the square of the max-
imum value of the signal by the MSE. Because all signals were normalized during the
preprocessing stage, the maximum values of all signals were the same. Therefore, the PSNR
was calculated directly from the MSE. The PSNR is defined as Equation (1):

PSNR = −10 log(MSE). (1)

4.1. Case 1: Denoising a Single Noise

The NPD performance in denoising PPG signals was evaluated and compared with
representative noise removal algorithms; here, a wavelet-based method [17] was chosen
for the universal denoiser control condition. Additionally, the best algorithm for each type
of noise was deployed. We expected that a performance comparison between NPD and
the best model would clarify the competency of NPD. In other words, the study examined
how a universal denoising approach performed compared to that of a specifically designed
denoising algorithm.

For one specific noisy PPG signal, noise removal was conducted using three denoisers:
NPD, wavelet-based method [17], and the best algorithms. The following filters were used
when conducting a wavelet-based method:

(i). A discrete Meyer filter with decomposition level 3 for Gaussian noise.
(ii). A Daubechies 19 filter with decomposition level 3 for Poisson noise.
(iii). A Daubechies 18 filter with decomposition level 6 for salt-and-pepper noise.
(iv). A Daubechies 20 filter with decomposition level 3 for speckle noise.
(v). A Symlet 15 filter with a decomposition level of 9 for uniform noise.

For the best respective models for each noise type, the following [18,19] were used:

(i). A wiener filter with a window size of 5 for Gaussian noise.
(ii). A median filter with a window size of 3 for Poisson noise.
(iii). A median filter with a window size of 5 for salt-and-pepper noise.
(iv). A Weiner filter with a window size of 3 for speckle noise.
(v). A Gaussian filter with a sigma of 1 for uniform noise.

Following these settings, each denoiser’s PSNR was computed using the reference
PPG signal and the denoised PPG signal.

Table 1, and Figures 3 and 4 show the evaluation results for a single noise. In Gaussian,
salt and pepper, and uniform noise, NPD outperformed other denoising algorithms. In
Poisson noise, NPD exhibited a lower performance than the other denoising algorithms. In
speckle noise, NPD showed better performance than wavelet-based methods, but worse
than the best respective algorithms. Although NPD takes a universal approach, it surpassed
the performance of algorithms specifically designed for the distinctive characteristics of each
noise, and performed at a similar level, even if it did not perform as well as these algorithms.

Table 1. Experimental results for single noise.

Noise Type
Noisy Signals

Denoised Signals

NPD Wavelet-Based Best Respective Algorithm

PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Gaussian 21.7293 0.0067 27.5084 0.0019 27.1040 0.0019 26.9657 0.0020
Poisson 31.9316 0.0006 33.0090 0.0007 35.1822 0.0003 33.4795 0.0004

Salt and Pepper 19.4427 0.0121 36.6080 0.0002 19.8160 0.0110 32.8234 0.0006
Speckle 27.7579 0.0017 31.4139 0.0008 30.4084 0.0009 31.6180 0.0007
Uniform 27.9224 0.0016 32.0615 0.0007 29.0833 0.0012 29.2538 0.0012
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4.2. Case 2: Denoising a Mixed Noise

Next, we examined NPD’s capacity for denoising signals compromised by the mixture
of multiple noises. In this case, the signal synthesized with two or more noises and that
synthesized with motion artifacts were used as inputs. Mixed noise was generated by
blending the noise shown in Figure 2. The type or order of the mixing noise is randomly
determined. Motion artifacts were synthesized into the ground truth in the same manner
as in Figure 5. In the motion artifact signal, the noise level is determined by the percentage
of the total length of the ground truth synthesized by the motion artifact. The signal used
for motion artifact synthesis was the wrist PPG dataset [20], which contains wrist PPGs
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recorded during walking, running, and bicycle riding. In the wrist PPG dataset, 19 PPG
signals were obtained from eight participants. Each signal is a length of 10 min, and the
sampling rate was 256 Hz. The motion artifact signal used for synthesis was used after
resampling and normalization in the same manner as the ground truth signal.
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Figure 5. (a) Ground truth; (b) Motion artifact signal; (c) Synthesized signal with motion artifact
added to 30% of the signal. The red box is the part that is synthesized with the motion artifact.

Table 2 and Figure 6 (below) show the evaluation results for the mixed noise. As seen
in Figure 6, the more noise was mixed, the smaller the deviation of PSNR because the
deviation due to the type of noise became smaller. Further, as more noise was mixed, the
PSNR of the synthesized signal and the PSNR of the recovered signal decreased together. It
was also observed that the NPD was effective for mixed noise.

Table 2. Experimental results for mix noise.

Noise Type
Noisy Signals NPD

PSNR MSE PSNR MSE

Mix 2 Noise 21.5033 0.0089 29.2759 0.0014
Mix 3 Noise 19.1682 0.0134 27.8759 0.0018
Mix 4 Noise 17.8539 0.0172 26.5608 0.0023
Mix 5 Noise 16.8180 0.0211 25.9402 0.0026

4.3. Case 3: Denoising a Mixed Noise with Motion Artifacts

We further conducted the experiment on the mixed noise case with motion artifacts.
Table 3 and Figures 7 and 8 (below) show the evaluation results for this. Figure 7 shows the
mean and standard deviation of the PSNR. When the motion noise ratio was less than 30%,
the signal change was not large; thus, the result was not obtained. The recovery result of a
signal synthesized with motion artifacts showed the worst performance compared to other
noises. However, it also showed that the signal can be recovered by removing the motion
artifact at all motion artifact synthesis ratios, even at 100%.
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Table 3. Experimental results for motion artifact.

Noise Type
Noisy Signals NPD

PSNR MSE PSNR MSE

Motion Artifact (30%) 22.0146 0.0066 25.2872 0.0034
Motion Artifact (50%) 19.6071 0.0114 22.8240 0.0060
Motion Artifact (70%) 18.2607 0.0157 21.2901 0.0085
Motion Artifact (90%) 17.1186 0.0205 19.9577 0.0115
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4.4. Validation of the NPD model
4.4.1. NPD’s Denoising Capacity across the Sampling Rate of Inputs Signals

The NPD used for the whole experiments illustrated above was trained with input
signals resampled according to Mendeley data [14]. However, similar to BIDMC data [15]
and wrist PPG data [20], there are data of various sampling rates, such as 125 Hz and
256 Hz, and the PPG signal obtained by a more precise machine has a 1 kHz sampling rate.
To observe the results according to these various sampling rates, the PSNR results were
obtained by changing only the sampling rate of the input signal while maintaining the
NPD model. Experimental results are shown in Table 4 below; even though NPD learned
by fixing the sampling rate of the input signal to 50 Hz, it removed single noise and mixed
noise of 1 kHz and 125 Hz input signals well, and some noises showed better results than
50 Hz. However, the motion artifact was not well removed, and 1 kHz was hardly removed.
This appears to be caused by the difference between the sampling rate of the signal used for
learning and the sampling rate of the input signal. If the sampling rate of the input signal
of the NPD is set according to the data and learned, it is expected to show performance
even in an environment using 1 kHz data.

Table 4. Experimental results according to sampling rate of the input signal.

Noise Type
Noisy Signals NPD

PSNR PSNR

Sampling Rate (Hz) 1k 125 50 1k 125 50

Gaussian 21.7103 21.7176 21.7293 26.0019 27.2057 27.5084
Poisson 44.0201 35.1580 31.9316 37.3230 33.5451 33.0090

Salt and Pepper 19.2218 19.3412 19.4427 38.4069 38.8832 36.6080
Speckle 27.7810 27.8330 27.7579 29.9358 31.1394 31.4139
Uniform 26.6985 27.3312 27.9224 29.0393 31.1699 32.0615

Mix 2 21.5791 21.5683 21.5033 28.6071 29.2880 29.2759
Mix 3 19.2486 19.2116 19.1682 27.1239 27.7867 27.8759
Mix 4 17.7821 17.8783 17.8539 26.1827 26.7947 26.5608
Mix 5 16.8197 16.7760 16.8180 25.3941 26.0695 25.9402

Motion Artifact (30%) 22.2445 22.0266 22.0146 22.1312 22.5699 25.2872
Motion Artifact (50%) 19.8380 19.8349 19.6071 19.7609 20.2669 22.8240
Motion Artifact (70%) 18.3859 18.2725 18.2607 18.3166 18.6561 21.2901
Motion Artifact (90%) 17.3457 17.3020 17.1186 17.2753 17.6354 19.9577
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4.4.2. NPD’s Denoising Capacity to the Real World PPG Data

We additionally examined the NPD’s robust denoising capacity using real raw PPG
signals and nonsynthesized signals, which we never used for the NPD training. The dataset
used was the PPG-DaLia dataset [21], the sampling rate of the PPG signal was 64 Hz, and
the signals were obtained from 15 people. The PPG-DaLia dataset consists of a clean PPG
signal obtained from a sitting state and a PPG signal obtained from seven activities, such as
cycling, walking, and going up and down the stairs. Figure 9 shows the real raw PPG signal
and the signal recovered by the NPD. A clean PPG signal obtained from the PPG-DaLia
dataset was used as the reference signal, and a signal with motion artifacts was used as the
input. Although a performance evaluation is required, the PSNR value cannot be obtained
because the real raw PPG signal does not have the original signal from which noise has
been removed. Therefore, the PSNR value obtained by comparison with the reference
signal was used. We performed a t-test to see whether the average of the difference between
the PSNR of the real raw PPG signal and the PSNR of the signal recovered by NPD was 0.
The signal used in the t-test was a reference signal and a real raw PPG signal obtained by
repeating sampling 100 times from the PPG signal of the same person. As a result of the
t-test, the p-value is less than 0.0001; therefore, it can be seen that the real raw PPG signal
and the signal recovered with NPD are statistically different signals. However, we note
that it is not known whether the signal recovered by NPD is correctly recovered.
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4.4.3. NPD’s Sensitivity in Denoising

Next, we designed another experiment to validate the NPD’s sensitivity—the NPD
would not be able to distort the signal if there is no noise imposed in the input signal (e.g., a
ground truth signal). To find out the signal distortion by the NPD, an experiment was
conducted with the ground truth as input. As a result, the average PSNR was 39.2526,
which is fairly large compared to other noises; however, it was confirmed that distortion
occurred. Figure 10 (below) shows the part of the ground truth that is incorrectly recognized
as noise. The part incorrectly recognized as noise becomes smoother than the input signal,
and the pattern changes. These parts generally contain high-frequency information or have
a shape similar to that of a motion artifact. As shown in (e) in Figure 10, if there is no
high-frequency information and there is no similarity to motion noise, almost the same
signal as the input is output, even if it passes the NPD.
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Figure 10. (a) Sample 0′s ground truth; (b) restored a by NPD; (c) sample 1′s ground truth; (d) restored
c by NPD; (e) sample 2′s ground truth; (f) restored e by NPD. The red box where the ground truth
was recognized as noise. Restoring the original signal with NPD shows that the signal is distorted.

4.4.4. NPD’s Denoising Results

Figures 11–25 show a snapshot of the ground truth PPG signal (i.e., the PPG signal
before noise is added to it), the reference PPG signal used for training of NPD, and examples
of PPG signals: one is the input PPG signal in which noise is added to the ground truth
PPG signal (left column) and the other is the PPG signal restored by NPD (right column).
Five fixed PPG signals were used for each noise, mixed noise, and motion artifact type. In
the case of the motion artifact type, the motion artifact was synthesized from the beginning
of the signal for comparison of results, but in reality, it is possible to recover from wherever
it is synthesized. Given the PSNR results in Tables 1–3, all types of noise were removed,
and, thus, all PPG signals were restored.
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Figure 11. Single noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with 
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper 
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right: re-
stored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal 
by NPD. 

Figure 11. Single noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right:
restored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal
by NPD.
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Figure 12. Single noise—Example 2: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with 
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper 
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stored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal 
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Figure 12. Single noise—Example 2: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right: restored
left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal by NPD.
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Figure 13. Single noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with 
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Figure 13. Single noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-Pepper
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right:
Restored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left
signal by NPD.
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Figure 14. Single noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with 
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper 
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right: re-
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Figure 14. Single noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right:
restored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal
by NPD.
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Figure 15. Single noise—Example 5: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with 
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper 
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right: re-
stored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal 
by NPD. 

Figure 15. Single noise—Example 5: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized signal with
Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized signal with salt-and-pepper
noise, Right: restored left signal by NPD; (e) Left: synthesized signal with speckle noise, Right:
restored left signal by NPD; (f) Left: synthesized signal with uniform noise, Right: restored left signal
by NPD.
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Figure 16. Mix noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized 
signal with speckle noise and uniform noise, Right: restored left signal by NPD; (c) Left: synthesized 
signal with b and Gaussian noise, Right: restored left signal by NPD; (d) Left: synthesized signal 
with c and Poisson noise, Right: restored left signal by NPD; (e) Left: synthesized signal with d and 
salt-and-pepper noise, Right: restored left signal by NPD. 

 

Figure 16. Mix noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized
signal with speckle noise and uniform noise, Right: restored left signal by NPD; (c) Left: synthesized
signal with b and Gaussian noise, Right: restored left signal by NPD; (d) Left: synthesized signal
with c and Poisson noise, Right: restored left signal by NPD; (e) Left: synthesized signal with d and
salt-and-pepper noise, Right: restored left signal by NPD.
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Figure 17. Mix noise—Example 2: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized
signal with Poisson noise and Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized
signal with b and uniform noise, Right: restored left signal by NPD; (d) Left: synthesized signal
with c and speckle noise, Right: restored left signal by NPD; (e) Left: synthesized signal with d and
salt-and-pepper noise, Right: restored left signal by NPD.
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Figure 18. Mix noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized 
signal with speckle noise and salt-and-pepper noise, Right: restored left signal by NPD; (c) Left: 
synthesized signal with b and uniform noise, Right: restored left signal by NPD; (d) Left: synthe-
sized signal with c and Poisson noise, Right: restored left signal by NPD; (e) Left: synthesized signal 
with d and Gaussian noise, Right: restored left signal by NPD. 

Figure 18. Mix noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized
signal with speckle noise and salt-and-pepper noise, Right: restored left signal by NPD; (c) Left:
synthesized signal with b and uniform noise, Right: restored left signal by NPD; (d) Left: synthesized
signal with c and Poisson noise, Right: restored left signal by NPD; (e) Left: synthesized signal with
d and Gaussian noise, Right: restored left signal by NPD.
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Figure 19. Mix noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized 
signal with salt-and-pepper noise and speckle noise, Right: restored left signal by NPD; (c) Left: 
synthesized signal with b and Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized 
signal with c and uniform noise, Right: restored left signal by NPD; (e) Left: synthesized signal with 
d and Gaussian noise, Right: restored left signal by NP. 

 

Figure 19. Mix noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized
signal with salt-and-pepper noise and speckle noise, Right: restored left signal by NPD; (c) Left:
synthesized signal with b and Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized
signal with c and uniform noise, Right: restored left signal by NPD; (e) Left: synthesized signal with
d and Gaussian noise, Right: restored left signal by NP.
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Figure 19. Mix noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized 
signal with salt-and-pepper noise and speckle noise, Right: restored left signal by NPD; (c) Left: 
synthesized signal with b and Poisson noise, Right: restored left signal by NPD; (d) Left: synthesized 
signal with c and uniform noise, Right: restored left signal by NPD; (e) Left: synthesized signal with 
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Figure 20. Mix noise—Example 5: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized
signal with Poisson noise and Gaussian noise, Right: restored left signal by NPD; (c) Left: synthesized
signal with b and salt-and-pepper noise, Right: restored left signal by NPD; (d) Left: synthesized
signal with c and uniform noise, Right: restored left signal by NPD; (e) Left: synthesized signal with d
and speckle noise, Right: restored left signal by NPD.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 28 
 

 

Figure 20. Mix noise—Example 5: (a) Left: ground truth, Right: reference signal; (b) Left: synthesized 
signal with Poisson noise and Gaussian noise, Right: restored left signal by NPD; (c) Left: synthe-
sized signal with b and salt-and-pepper noise, Right: restored left signal by NPD; (d) Left: synthe-
sized signal with c and uniform noise, Right: restored left signal by NPD; (e) Left: synthesized signal 
with d and speckle noise, Right: restored left signal by NPD. 

 
Figure 21. Motion noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) 
Left: synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal 
by NPD; (d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored 
left signal by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: 
restored left signal by NPD. The starting point of motion artifact synthesis is the starting point of 
the signal. 

Figure 21. Motion noise—Example 1: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) Left:
synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal by NPD;
(d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored left signal
by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: restored
left signal by NPD. The starting point of motion artifact synthesis is the starting point of the signal.
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Figure 22. Motion noise—Example 2: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) 
Left: synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal 
by NPD; (d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored 
left signal by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: 
restored left signal by NPD. The starting point of motion artifact synthesis is the starting point of 
the signal. 

Figure 22. Motion noise—Example 2: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) Left:
synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal by NPD;
(d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored left signal
by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: restored
left signal by NPD. The starting point of motion artifact synthesis is the starting point of the signal.
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Figure 23. Motion noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) 
Left: synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal 
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restored left signal by NPD. The starting point of motion artifact synthesis is the starting point of 
the signal. 

Figure 23. Motion noise—Example 3: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) Left:
synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal by NPD;
(d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored left signal
by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: restored
left signal by NPD. The starting point of motion artifact synthesis is the starting point of the signal.
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Figure 24. Motion noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) 
Left: synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal 
by NPD; (d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored 
left signal by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: 
restored left signal by NPD. The starting point of motion artifact synthesis is the starting point of 
the signal. 

Figure 24. Motion noise—Example 4: (a) Left: ground truth, Right: reference signal; (b) Left:
synthesized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD;
(c) Left: synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal
by NPD; (d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored
left signal by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right:
restored left signal by NPD. The starting point of motion artifact synthesis is the starting point of
the signal.
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Figure 25. Motion noise—Example 5: (a) Left: ground truth, Right: reference signal; (b) Left: synthe-
sized signal with motion artifact added to 30% of the signal, Right: restored left signal by NPD; (c) Left:
synthesized signal with motion artifact added to 50% of the signal, Right: restored left signal by NPD;
(d) Left: synthesized signal with motion artifact added to 70% of the signal, Right: restored left signal
by NPD; (e) Left: synthesized signal with motion artifact added to 90% of the signal, Right: restored
left signal by NPD. The starting point of motion artifact synthesis is the starting point of the signal.

5. Conclusions

This study proposes a universal computational framework for denoising PPG signals,
which the authors have named NPD. By casting the denoising problem into an image-
restoration problem using a SR approach, the authors were able to build transformer-based
deep generative models that could facilitate the universal noise removal of continuous PPG
signals using a variant of an image-based TTSR framework [12]. Open datasets Mendeley
data [14] and BIDMC [15] were used for NPD learning and performance evaluation. The
PPG signals obtained from the dataset were resampled to 50 Hz and normalized to a
range of −1 to 1. For the performance evaluation, a signal synthesized with a single noise,
mixed noise, and motion artifact was used. Gaussian noise, Poisson noise, salt-and-pepper
noise, speckle noise, and uniform noise were included in this study. Mix noise is noise
that is randomly selected from among single noises and mixed in a random order. For
the motion artifact, the signal obtained from the wrist PPG dataset [20] was used. As a
result of single noise restoration, Gaussian noise, salt-and-pepper noise, and uniform noise
showed better results than the wavelet-based method or the best respective algorithm, and
their respective PSNRs were 27.5084, 36.6080, and 32.0615. For Poisson noise and speckle
noise, the PSNR was 33.0090 and 31.4139, respectively; therefore, the performance was
poor compared to other methods, but noise was removed to a similar level. For the mixed
noise, the experiment was carried out by increasing the number of mixed noises from two
to five. The PSNR values were 29.2759, 27.8759, 26.5608, and 25.9402, which removed the
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mixed noise well in all the cases. The synthesized motion artifact signal was created by
synthesizing only a certain ratio of the total signal length. As a result of the motion artifact
signal restoration, the PSNRs were 25.2872, 22.8240, 21.2901, and 19.9577 at 30%, 50%, 70%,
and 90% motion artifact ratios, respectively. Although the results of the recovery of motion
artifact signals were not as good as those of other noises, it can be confirmed that NPD can
also remove motion artifacts.

The findings on this study open optimistic possibilities for designing a universal
denoiser for continuous PPG signals. The authors believe that NPD can provide a universal
and robust means to eliminate the known and/or unknown noise in PPG signals in any
type of noise. In other words, this solution is potentially “one-for-all” in the PPG processing
domain. This could significantly contribute to reducing the time and effort required to
design denoising algorithms for a specific type of noise.

Future work will focus on experiments that use real-world PPG signals, given that this
study only dealt with synthesized and manipulated PPG signals using open datasets. New
experiments may also be investigated in the future, focused on continuous PPG signals
in which multiple noises are simultaneously added to the PPG signals so that a single
denoising algorithm or cascade connection of denoising algorithms cannot be resolved.
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