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Abstract We consider a single machine earliness/tardiness

scheduling problem with general weights, ready times and

due dates. Our solution approach is based on a time-indexed

preemptive relaxation of the problem. For the objective

function of this relaxation, we characterize cost coefficients

that are the best among those with a piecewise linear struc-

ture with two segments. From the solution to the relaxation

with these best objective function coefficients, we generate

feasible solutions for the original non-preemptive problem.

We report extensive computational results demonstrating the

speed and effectiveness of this approach.

Keywords Single-machine scheduling · Earliness ·

Tardiness · Preemption · Transportation problem

1 Introduction

In the single machine earliness/tardiness (E/T) scheduling

problem, a set of jobs, each with an associated due date, has

to be scheduled on a single machine. Each job has a penalty

per unit time associated with completing before its due date,
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and a penalty per unit time associated with completing af-

ter its due date. E/T problems have been a popular topic of

research since the early 1980’s because they reflect the just-

in-time (JIT) philosophy, in which early shipments are dis-

couraged and result in inventory holding costs in addition to

the tardiness penalties associated with the loss of customer

goodwill. Although the single machine E/T problem is use-

ful in its own right, our interest in it is further motivated by

its appearance as a subproblem in solution approaches for

more complex scheduling problems (see Ovacik and Uzsoy

1997 and Bülbül et al. 2004). In these more general contexts,

it is necessary to solve many such problems very rapidly. As

solution speed is very important, we focus on the develop-

ment of fast, effective heuristics for this problem.

Consider a non-preemptive single machine scheduling

problem with n jobs. Associated with each job j , j =

1, . . . , n, are several parameters: pj , the processing time for

job j ; rj , the ready time for job j ; dj , the due date for job

j ; ǫj , the earliness cost per unit time if job j completes

processing before dj ; and πj , the tardiness cost per unit time

if job j completes processing after dj . We assume that the

processing times, ready times and due dates are integers. Let

sj be the time at which job j starts processing, Cj = sj +pj

be the completion time of job j , and Ej = max(0, dj − Cj )

and Tj = max(0,Cj − dj ) be the earliness and tardiness of

job j , respectively. The objective is to minimize the sum of

costs for all jobs. Then our problem is stated as:

(P1) min

n
∑

j=1

(ǫj ∗ Ej + πj ∗ Tj ), (1.1)

sj ≥ rj , ∀j, (1.2)

si + pi ≤ sj or sj + pj ≤ si,

∀i, j, i �= j, (1.3)
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sj + pj + Ej − Tj = dj , ∀j, (1.4)

Ej , Tj ≥ 0, ∀j. (1.5)

The objective is to minimize the total weighted earliness and

tardiness. The constraints ensure that jobs start at or after

their respective ready times and that jobs do not overlap.

In classifying scheduling problems, we follow the three

field notation of Graham et al. (1979). Problem P1 is repre-

sented as 1/rj/
∑

(ǫjEj + πjTj ), where, in the first field,

1 indicates a single machine problem, and the entry rj in the

second field denotes that the ready times may be unequal. P1

is strongly NP-hard because the problem 1/rj/
∑

πjTj ,

which is obtained from P1 by setting all earliness costs equal

to zero, is known to be strongly NP-hard (Lenstra et al.

1977).

We observe that P1 would be a linear program (LP) if

we knew the sequence of jobs. This is a property of E/T

scheduling problems that is often used to develop a two-

phase heuristic: in the first phase, a good job processing se-

quence is determined and then, in the second phase, idle time

is inserted either by solving a linear program or by using a

specialized algorithm that exploits the structure of the opti-

mal solution with fixed job processing sequences. The sec-

ond phase is usually referred to as the optimal timing prob-

lem. Researchers have observed that the total cost in E/T

scheduling problems is dominated by the sequencing deci-

sions in the first phase; the timing decisions have a smaller

impact. We develop a two-phase heuristic in this paper and

focus on the construction of a good job processing sequence

based on these observations.

Any feasible schedule for P1 is a sequence of blocks sep-

arated by idle time, and the cost of a block is a piecewise

linear convex function of the start time of the block. (See

Yano and Kim 1991.) Optimal timing algorithms of low or-

der polynomial complexity have been developed for several

special cases of P1 using this property (Garey et al. 1988;

Davis and Kanet 1993; Szwarc and Mukhopadhyay 1995;

Lee and Choi 1995). Also, see Kanet and Sridharan (2000)

for an overview of different timing algorithms. For our prob-

lem, once jobs are sequenced and assuming jobs are renum-

bered in sequence order, the optimal schedule is found by

solving the linear program TT–P1 below.

(TT–P1) min

n
∑

j=1

(πj ∗ Tj + ǫj ∗ Ej ),

(1.2), (1.4–1.5),

sj + pj ≤ sj+1, ∀j �= n.

Although there exists an O(n2) algorithm for solving the

optimal timing problem for P1 (Nandkeolyar et al. 1993),

we use the LP above to determine the final schedule in our

heuristics. LPs for the timing problem are small and take

very little CPU time even if several of them are solved for a

single problem instance.

Many different types of algorithms have been proposed

in the literature for various single machine E/T schedul-

ing problems. A survey of the early research on earli-

ness/tardiness problems appears in Baker and Scudder

(1990). More recent research can be found in Kanet and

Sridharan (2000) and in references therein. In our discussion

here, we restrict our attention to papers that allow idle time

in the schedule. Since the problem P1 is strongly NP-hard,

most approaches for P1 are either branch and bound (B&B)

algorithms or dispatch heuristics based on dominance prop-

erties for the job processing sequence. The B&B algorithms

also make use of these dominance conditions to reduce the

size of the search tree, but none of them is effective for prob-

lems with more than 20 to 30 jobs, due to the lack of strong

lower bounds for E/T scheduling problems. Szwarc (1993)

develops precedence and decomposition rules for the prob-

lem 1//ǫ
∑

Ej +π
∑

Tj . He proposes a branching scheme

that can handle small problems (n = 10) without a lower

bound. Yano and Kim (1991) devise a B&B algorithm for

the special case of the weighted earliness/tardiness prob-

lem, where earliness and tardiness costs are proportional

to the processing times. This property allows them to de-

velop dominance properties that are effective, and they can

solve problems with up to 20 jobs optimally. The authors

report that their lower bounds are loose and further research

is needed for improved lower bounds for their problem. Kim

and Yano (1994) and Fry et al. (1996) develop B&B algo-

rithms for the mean earliness and tardiness problem. Both

papers use various adjacency conditions and propose lower

bounds based on elimination of time conflicts. In these pa-

pers the authors solve problems with up to 20 jobs optimally

with moderate computation times. Fry and Keong Leong

(1987) formulate a mixed integer program for the prob-

lem 1//w
∑

Cj + ǫ
∑

Ej , which can be expressed as an

equivalent E/T problem, and try to solve it using commer-

cial software. For the same problem, Hoogeveen and van

de Velde (1996) develop several dominance conditions and

lower bounds, and attempt to solve instances with up to 20

jobs. They conclude their paper by: “We have considered

an NP-hard machine scheduling problem in which the in-

sertion of idle time may be advantageous, and we have pre-

sented a branch-and-bound algorithm for its solution. The

allowance of machine idle time complicates the design of

the algorithm substantially. Also, the performance of the al-

gorithm is quite bleak: this is because it is very difficult to

compute strong lower bounds,” which summarizes the dif-

ficulties of all B&B approaches for E/T scheduling prob-

lems. In fact, one of our major contributions in this paper

is the development of a strong lower bound for the problem

1/rj/
∑

ǫjEj + πjTj . Also, note that two lower bounds

that are closely related to ours were proposed by Sourd and
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Kedad-Sidhoum (2003) and Sourd (2004) and were success-

fully implemented in B&B algorithms to solve the problem

1//
∑

ǫjEj +πjTj . These authors obtain optimal solutions

for problem instances with 20 jobs within a few seconds,

and 30-job instances can be solved to optimality within at

most a few minutes. We discuss the similarities and differ-

ences between our research and the approaches presented

by Sourd and Kedad-Sidhoum (2003) and Sourd (2004) in

more detail at the end of this section.

The difficulty of designing effective optimal proce-

dures for E/T problems prompted the development of many

heuristics for these problems. Most of these heuristics fol-

low a two-phase approach as mentioned above. Examples of

such approaches can be found in Fry et al. (1987, 1990), Lee

and Choi (1995), Wan and Yen (2002), and Nandkeolyar et

al. (1993). The heuristics of Fry et al. (1987) provide solu-

tions for the problem 1//
∑

ǫjEj + πjTj , whose objective

values are on average less than 2% above the optimal objec-

tive values for problem instances with up to 15 jobs. Simi-

larly, for the problem 1//
∑

Ej +Tj , Fry et al. (1990) report

that their heuristics provide solutions that are on average

within 2.5% of optimality for instances with up to 16 jobs.

Lee and Choi (1995) design a genetic algorithm for the prob-

lem 1//
∑

ǫjEj + πjTj in which the sequence information

is coded into the chromosomes, and the fitness of the chro-

mosomes is evaluated by an optimal timing algorithm. Their

computational results indicate that their approach is superior

to the heuristics proposed by Yano and Kim (1991). The tabu

search procedure suggested by Wan and Yen (2002) consid-

ers a generalization of the problem 1//
∑

ǫjEj + πjTj to

due windows. For relatively small problem instances with

15 or 20 jobs, the tabu search finds the optimal solution in

over 20% of the cases, and for larger problems it compares

favorably to incumbent solutions from a B&B algorithm.

Ventura and Radhakrishnan (2003) develop a Lagrangian-

relaxation-based heuristic for 1//
∑

Ej + Tj . They report

that the gap between their best lower bound and best feasible

solution is less than 3% for problem instances with up to 100

jobs. Nandkeolyar et al. (1993), Sridharan and Zhou (1996)

and Mazzini and Armentano (2001) consider the problem

1/rj/
∑

ǫjEj + πjTj . The latter two papers differ from the

rest of the literature in that they combine sequencing with

insertion of idle time. Sridharan and Zhou (1996) employ a

look-ahead procedure at each decision point in order to de-

termine whether to keep the machine idle or schedule a job

immediately. Their solutions are approximately 6% above

the optimal solution for one problem set with eight-job in-

stances, and very close to optimality in another problem set

with up to 40 jobs. Mazzini and Armentano (2001) first se-

quence the jobs in non-decreasing order of their respective

target start times, i.e., max(rj , dj −pj ), and then insert jobs

into the current partial schedule one by one, considering

possible idle time. For problems with up to 80 jobs, their al-

gorithms provide solutions that are on average within 4.5%

of optimality. (For n ≥ 20, the optimality gaps are computed

with the help of the lower bound developed in this paper.)

Note that these authors present one of the very few heuris-

tics that simultaneously considers different ready times and

weighted earliness and tardiness penalties, and combines se-

quencing with insertion of idle time. Thus, we compare the

performance of our heuristics to that of Mazzini and Armen-

tano (2001) in Sect. 5.3.3 in order to demonstrate the effec-

tiveness of our algorithms. Most of the heuristics mentioned

above can solve problems quickly. However, generally it is

not possible to quantify the quality of their solutions for

large problem instances because neither optimal solutions

nor tight lower bounds are available for such instances. One

exception here is the Lagrangian-relaxation-based heuris-

tic of Ventura and Radhakrishnan (2003), which provides

a lower bound for the problem 1//
∑

Ej + Tj . However,

their subgradient algorithm is very slow, taking on average

18 minutes to solve their 100-job instances.

In this paper our main contribution is a new strategy for

solving P1. Unlike existing dispatch rules or pairwise in-

terchange heuristics for this problem, our algorithms take

into account all economic trade-offs at the same time and

thus are not myopic. We develop a tight lower bound for P1

based on a preemptive solution that is easy to compute, and

achieves an excellent balance between solution speed and

quality. We have two major goals. First, we use the optimal

preemptive solution in developing a good, non-preemptive

solution for P1. Second, we obtain a tight lower bound for

specific instances that can be computed quickly, and is use-

ful for quantifying the quality of heuristic solutions. Obtain-

ing tight lower bounds has been regarded as a major chal-

lenge.

Our algorithms depend on a preemptive relaxation that

is computed by solving a time-indexed problem, in which

we allow a job to be preempted at integer points in time.

(See Sect. 2.) In the time-indexed formulation, we need to

consider a planning horizon whose length depends not only

on the sum of the processing times but also the due dates

because both earliness and tardiness costs are present in

the objective function. Hence, from a theoretical viewpoint

we compute a lower bound for P1 in pseudo-polynomial

time. However, the time-indexed formulation can be solved

quickly once it is constructed from the original problem

data, and we demonstrate the effectiveness of our approach

in the computational experiments in Sect. 5 by solving prob-

lem instances of realistic size (with up to 200 jobs). We also

note that this same lower bound was successfully used in

solving subproblems in a column generation algorithm ap-

plied to an m-machine flow shop E/T scheduling problem

(Bülbül et al. 2004), which is further evidence of the effi-

ciency and effectiveness of our lower bound. In addition, the

optimal solution of the preemptive relaxation has sufficient

structure to serve as a starting point for constructing several



J Sched

feasible solutions which contribute to improving the quality

of the final heuristic solution for P1. Once the lower bound

is obtained, feasible solutions are generated very quickly by

solving TT–P1 several times with different job processing

sequences. Theoretically, we could even use a special op-

timal timing algorithm of complexity O(n2) as mentioned

earlier.

The approaches presented by Sourd and Kedad-Sidhoum

(2003) and Sourd (2004), developed independently from

our approaches (also see Bülbül 2002), deserve special at-

tention here because the lower bounds proposed in these

papers are closely related to ours. In both of these pa-

pers, B&B algorithms are developed to solve the problem

1//
∑

ǫjEj + πjTj , and the focus is on obtaining good

lower bounds. In fact, the two B&B algorithms differ only

in the computation of the lower bounds, which are based on

different preemptive relaxations. Two major factors affect

the quality of the lower bounds obtained from these relax-

ations: the preemption scheme, i.e., when and for how long

a job can be preempted, and the objective function of the

relaxation. (See Sect. 2.) Sourd and Kedad-Sidhoum (2003)

consider a time-indexed preemptive relaxation, in which a

job can be preempted at integer points in time, as in our

approach. However, Sourd (2004) proposes a different ap-

proach, in which each job may be preempted at any point

in time. A lower bound for the problem 1//
∑

ǫjEj + πjTj

can be computed in polynomial time, when based on a con-

tinuous relaxation rather than a time-indexed one. These au-

thors observe that the two B&B algorithms perform simi-

larly despite the theoretical differences in the lower bounds.

Both Sourd and Kedad-Sidhoum (2003) and Sourd (2004)

consider a family of valid objective functions for their re-

spective relaxations and heuristically choose one for their

computational experiments. Here, we follow a different path

and develop an objective function for our preemptive relax-

ation based on an intuitively simple observation in Sect. 2. In

Sect. 3.2 this objective function is shown to be optimal with

respect to certain criteria and, interestingly, it also turns out

to be closely related to the objective function developed for

the continuous relaxation by Sourd (2004). In other words,

our research provides the link between the “discrete” and

“continuous” lower bounds proposed by Sourd and Kedad-

Sidhoum (2003) and Sourd (2004), respectively. We elab-

orate further on this issue in the next section. Finally, one

of our major emphases is the construction of good feasible

solutions for the original problem after the optimal solution

of the preemptive problem is obtained. Sourd and Kedad-

Sidhoum (2003) and Sourd (2004) pay less attention to this

phase of the solution procedure. In Sect. 5 we demonstrate

that our lower bound exhibits some desirable properties that

lead to a more stable behavior in obtaining good feasible

solutions for P1.

In Sect. 2 we review some general properties of preemp-

tive E/T problems that lead us to an appropriate preemption

strategy for P1. Then we develop a penalty scheme for this

preemptive relaxation and we show that a formulation based

on this scheme leads to an excellent lower bound for P1.

In Sect. 3 we derive some properties of our lower bound.

In Sect. 4 we present an heuristic that uses the informa-

tion from the optimal solution of the preemptive relaxation

to create a feasible solution for P1. Finally, in Sect. 5 we

present the results of our computational experiments which

demonstrate the effectiveness of our lower bound and of our

heuristics. We conclude in Sect. 6.

2 A lower bound for P1

The complexity of a preemptive scheduling problem de-

pends strongly on the penalty scheme applied to different

job segments. If only the last portion of a job may incur

a non-zero cost in a preemptive E/T scheduling problem

1/prmp/
∑

(ǫjEj +πjTj ), then earliness costs can be made

negligibly small by scheduling an arbitrarily small portion

of duration δ > 0 to complete at time dj for any early job j

(Mosheiov 1996). Hence, under this cost structure we can

treat 1/prmp/
∑

(ǫjEj + πjTj ) as a preemptive weighted

tardiness problem 1/prmp/
∑

πjTj , for which every pre-

emptive schedule can be transformed into a non-preemptive

schedule with no larger objective value (McNaughton 1959).

Therefore, both problems 1/prmp/
∑

πjTj and 1/prmp/
∑

(ǫjEj +πjTj ) are as hard as the non-preemptive weight-

ed tardiness problem 1//
∑

πjTj , which is known to be

NP-hard (see Lenstra et al. 1977). So, we conclude that a

preemptive E/T scheduling problem, in which only the last

portion of a job may incur a non-zero cost, is unlikely to

provide a tight lower bound for P1. However, we highlight

an important property of the weighted tardiness problem. If

all jobs have unit processing times, then a non-preemptive

weighted tardiness problem can be solved in polynomial

time because it is equivalent to a transportation problem.

This result leads us to a different preemption scheme in or-

der to develop a lower bound for P1.

Our approach for constructing a lower bound builds

upon the ideas of Gelders and Kleindorfer (1974) for the

single machine weighted tardiness problem and the re-

sults of Verma and Dessouky (1998) for the single ma-

chine non-preemptive weighted E/T scheduling problem

with unit processing times. To obtain a lower bound, Gelders

and Kleindorfer divide each job into unit-duration intervals

(jobs) and associate a cost with each unit job. We utilize their

idea of unit-duration jobs and allow a job to be preempted at

integer points in time. Their other results, however, cannot

be used directly because their objective function differs from

ours, and non-delay schedules are optimal in weighted tardi-

ness problems, but may be suboptimal when earliness costs

are considered. We also note that the form of preemption that
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we consider is often implemented in practical applications,

due to the nature of the manufacturing process or the struc-

ture of the work schedule, by simply dividing customer or-

ders into smaller processing batches in an appropriate way.

Thus, although our study was motivated partly by theoretical

considerations, the results may be useful in practice.

We first present some properties of the optimal solution

of P1 that lead us to a transportation problem, whose optimal

objective value is a lower bound on that of P1. We state the

following property without proof. The reader is referred to

Sourd and Kedad-Sidhoum (2003) for a formal proof of a

similar property for the problem 1//
∑

ǫjEj + πjTj .

Property 2.1 If processing times, due dates and ready times

are integers, then there exists an optimal solution for P1 in

which all job completion times are integers.

Without loss of generality, Property 2.1 indicates that the

solution space can be restricted to integer start times. In-

tuitively, an approximation to P1 could be obtained by di-

viding each job j into pj unit-duration jobs, associating a

penalty with each unit job (rather than only with the last

one completed) and planning for a horizon consisting of an

appropriate integral number time periods. Before doing so,

we restate P1 as an equivalent binary non-linear program.

Then we discuss modifications to this problem that lead to

a relaxation, from which we derive a lower bound. In the

time-indexed formulations in this paper, a period k spans

from time k − 1 to k; hence, a job j with ready time rj can

be processed no earlier than in period rj + 1. Let Xjk = 1

if job j is processed in period k, and 0 otherwise; and let

(x)+ = max(x,0). So we have:

(P2) min
∑

j

∑

k∈H

[

ǫj (dj − k)+ + πj (k − dj )
+
]

∗ (Xjk − Xjk+1)
+, (2.1)

∑

k∈H

Xjk = pj , ∀j, (2.2)

∑

j

Xjk ≤ 1, ∀k ∈ H, (2.3)

∑

k∈H

(Xjk − Xjk+1)
+ = 1, ∀j, (2.4)

Xj tmax+1 = 0, ∀j, (2.5)

Xjk ∈ {0,1}, ∀j, k ∈ H ∪ {tmax + 1}. (2.6)

Let tmin = minj rj +1, tmax = maxj max(rj , dj )+P , where

P =
∑

j pj is the sum of processing times. Also let the

planning horizon be H , and define H = {k | k ∈ Z, k ∈

[tmin, tmax]}. Thus, the maximum value of k in H is greater

than or equal to the latest period in which any portion of any

job could conceivably be processed in an optimal solution,

accounting for potential idle time. In the non-preemptive

problem, the expression (Xjk −Xjk+1)
+ takes the value one

only if k is the completion time of job j and is zero, other-

wise. So the term in square brackets in the objective func-

tion is the cost incurred if job j finishes in period k. The

constraints (2.2) and the contiguity constraints (2.4–2.5) to-

gether ensure that each job j is processed in pj consecutive

periods. The machine can process at most one job in any

given period as specified by constraints (2.3).

Now we present a new formulation obtained by omitting

the contiguity constraints and replacing the objective func-

tion with a simpler expression, in which each unit-duration

portion of each job has an associated cost coefficient:

(TR) min
∑

j

∑

k∈H
k≥rj +1

cjkXjk, (2.7)

∑

k∈H
k≥rj +1

Xjk = pj , ∀j, (2.8)

∑

j
k≥rj +1

Xjk ≤ 1, ∀k ∈ H, (2.9)

Xjk ≥ 0, ∀j, k ∈ H, k ≥ rj + 1. (2.10)

This new formulation is equivalent to a transportation prob-

lem. Hence, the binary constraints do not need to be stated

explicitly, and the problem can be solved very efficiently.

The idea underlying our proposed cost structure is intuitive.

If a non-preemptively scheduled job j finishes exactly at dj ,

and if we think of each of the pj unit-duration segments in

job j as different jobs, then the average completion time of

these unit-duration segments is

(dj − pj + 1) + · · · + dj

pj

= dj −
1 + · · · + (pj − 1)

pj

= dj −
(pj − 1)pj

2pj

= dj −

(

pj

2
−

1

2

)

.

We treat dj − (
pj

2
− 1

2
), this average time, as the common

due date for all unit jobs within job j and assign the follow-

ing cost coefficients:

cjk =

⎧

⎨

⎩

ǫj

pj

[(

dj −
pj

2

)

−
(

k − 1
2

)]

, k ≤ dj ,

πj

pj

[(

k − 1
2

)

−
(

dj −
pj

2

)]

, k > dj .
(2.11)

Below we provide our main result in this section: a proof that

the solution of TR with the coefficients given above provides

a lower bound on the optimal objective function value of

P1. Furthermore, in Sect. 3.2 we prove that this set of cost

coefficients is a very good candidate to maximize the value

of the lower bound obtained from TR. Now let SP represent a
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feasible schedule for problem P with a total cost of TC(SP).

An optimal schedule is denoted by an asterisk.

Theorem 2.2 The optimal objective value of TR, TC(S∗
TR),

is a lower bound on the optimal objective value TC(S∗
P1) of

P1.

Proof We show that for any optimal solution S∗
P1 for P1,

there exists a corresponding feasible schedule STR for TR

such that TC(STR) ≤ TC(S∗
P1). In particular, we consider

a solution STR for TR constructed by converting S∗
P1 into

a feasible solution of TR. This is accomplished by divid-

ing each job in S∗
P1 into contiguous unit-duration segments.

We demonstrate that for a schedule STR constructed in this

manner, TC(STR) ≤ TC(S∗
P1). Clearly, an optimal solution

S∗
P1 for P1 exists in which all job completion times belong

to H = {k | k ∈ Z, k ∈ [tmin, tmax]}, which is the same time

horizon considered in problem TR. Our strategy is to con-

sider each job in S∗
P1 separately. If Cj ≤ dj in S∗

P1, then the

cost that job j incurs in STR is given by:

Cj
∑

k=Cj −pj +1

cjk =
ǫj

pj

Cj
∑

k=Cj −pj +1

[(

dj −
pj

2

)

−

(

k −
1

2

)]

= ǫj (dj − Cj ),

as in S∗
P1. If job j is tardy in S∗

P1, then we need to distinguish

between two cases. If Cj ≥ dj + pj , then the cost that job j

incurs in STR is given by:

Cj
∑

k=Cj −pj +1

cjk =
πj

pj

Cj
∑

k=Cj −pj +1

[(

k −
1

2

)

−

(

dj −
pj

2

)]

= πj (Cj − dj ),

as in S∗
P1. However, if dj + 1 ≤ Cj ≤ dj + pj − 1 when

pj ≥ 2, then x = Cj − dj unit jobs of job j incur a tardiness

cost in STR, while the remaining (pj − x) unit jobs incur an

earliness cost. In this case the cost incurred by job j in STR

consists of two parts:

Cj
∑

k=Cj −pj +1

cjk =

dj +x
∑

k=dj +x−pj +1

cjk

=

dj
∑

k=dj +x−pj +1

cjk +

dj +x
∑

k=dj +1

cjk, (2.12)

where 1 ≤ x ≤ pj − 1. We first examine the costs incurred

by the unit jobs completed at or before dj :

dj
∑

k=dj +x−pj +1

cjk =
ǫj

pj

[

−xpj

2
+

x2

2

]

=
ǫj

pj

[

x

2
(x − pj )

]

< 0

(because x < pj ). (2.13)

Next, we examine the costs incurred by the unit jobs com-

pleted after dj :

dj +x
∑

k=dj +1

cjk =
πj

pj

[

x

2
(x + pj )

]

= πjx

[

x + pj

2pj

]

< πjx

(because x < pj ). (2.14)

Therefore, we have
∑Cj

k=Cj −pj +1 cjk < πjx = πj (Cj − dj )

when dj + 1 ≤ Cj ≤ dj +pj − 1. Finally, summing over all

jobs, we obtain TC(S∗
TR) ≤ TC(STR) ≤ TC(S∗

P1), as desired,

because the cost incurred by any job j in STR is no larger

than that in S∗
P1. �

Note that we must account for the possibility that some

unit jobs may be early and some others may be tardy for a

job j of duration pj > 1 in a non-preemptive feasible so-

lution of TR. This property complicates the task of find-

ing an appropriate cost structure, and the proof of Theo-

rem 2.2 provides a critical insight: job j incurs the same

cost in S∗
P1 and STR, unless it finishes in the time interval

[dj + 1, dj + pj − 1]. We use this property in proving some

of our results in Sect. 3, where we derive the cost that job j

incurs in STR when dj ≤ Cj ≤ dj + pj . From (2.12–2.14),

we have

Cj
∑

k=Cj −pj +1

cjk = f (x) =

dj +x
∑

k=dj +x−pj +1

cjk

=
1

2

(

ǫj

pj

+
πj

pj

)

x2 +
1

2
(πj − ǫj )x, (2.15)

where 0 ≤ x = Cj − dj ≤ pj .

Sourd and Kedad-Sidhoum (2003) propose a lower

bound similar to ours for the problem 1//
∑

ǫjEj + πjTj

based on a transportation problem with the following cost

coefficients:

c′
jk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⌊ (dj −k)

pj

⌋

ǫj , k ≤ dj − pj ,

0, dj − pj + 1 ≤ k ≤ dj ,
⌈ (k−dj )

pj

⌉

πj , k ≥ dj + 1.

(2.16)

Note that these coefficients form a (discrete) step func-

tion, and they stay constant for pj consecutive periods. So

they have a different structure than our cost coefficients
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given in (2.11). Also, the cost coefficients in (2.16) satisfy
∑Cj

k=Cj −pj +1 c′
jk = ǫjEj + πjTj for all possible comple-

tion times Cj . Recall that this condition is not satisfied by

our cost coefficients when job j finishes in the time inter-

val [dj + 1, dj + pj − 1]. However, we note that c′
jk < cjk

for some periods k. Therefore, it is not clear a priori which

set of cost coefficients will perform better in practice. In

Sect. 5, we compare these cost coefficients computationally,

and conclude that TR generally yields tighter lower bounds

when our cost coefficients in (2.11) are used.

Sourd (2004) develops a polynomial-time lower bound

for the problem 1//
∑

ǫjEj +πjTj based on the continuous

assignment problem (see Sect. 1). In other words, he allows

a job to be preempted at any point in time, and defines a cost

function fj (t) such that
∫ Cj

Cj −pj
fj (t) dt ≤ ǫjEj + πjTj for

all possible completion times Cj . In particular, he proposes

using

fj (t) =

⎧

⎨

⎩

−
ǫj

2
+

ǫj

pj
(dj − t), t ≤ dj ,

πj

2
+

πj

pj
(t − dj ), t > dj ,

(2.17)

when ǫj > πj , and a slightly different cost function when

ǫj ≤ πj . We observe that our cost coefficients in (2.11) can

be obtained by setting:

cjk =

∫ k

k−1

fj (t) dt. (2.18)

Hence, we have
∫ Cj

Cj −pj
fj (t) dt =

∑Cj

k=Cj −pj +1 cjk . In

other words, our “discrete” lower bound is closer to the

“continuous” lower bound of Sourd (2004) than to the dis-

crete lower bound presented in Sourd and Kedad-Sidhoum

(2003). Sourd (2004) reports that the lower bound based

on the continuous assignment problem and (2.17) gener-

ally performs better than the discrete lower bound based on

(2.16), which also agrees with our computational experience

in Sect. 5. Furthermore, in Sect. 3.2 we prove that the cost

coefficients given in (2.11) are, in some sense, the optimal

cost coefficients for TR when the cost coefficients are re-

stricted to lie on a piecewise linear function with only two

segments (see Theorem 3.2). So there is both theoretical and

practical justification for using our cost coefficients in order

to obtain a good lower bound for P1.

In TR there are n + (tmax − tmin + 1) constraints and at

most n ∗ (tmax − tmin + 1) variables. It is possible, however,

to state an equivalent transportation problem with at most

n+2nP constraints and at most 2nP variables by observing

that there exists an optimal solution to TR such that Xjk

must be zero if k does not belong to the set Hj = {k | k ∈

Z, k ∈ [max(rj + 1, dj − P + 1), dj + P ]}. This property

is similar to Lemma 2.1 in Verma and Dessouky (1998). In

our computational experiments, we observed that although

this property does not usually change the number of nodes

in the transportation problem (the sum of the number of jobs

and the number of time periods in the planning horizon), it

decreases the number of arcs (number of variables) by 30 to

50%, depending on the problem instance.

From a theoretical perspective, obtaining a lower bound

for P1 from TR is accomplished in pseudo-polynomial time,

since the planning horizon depends on the sum of the

processing times (also see Sect. 1). However, in practice

there are several advantages to this approach that allow us

to develop effective algorithms for solving P1 based on the

optimal solution of TR. First, the transportation problem can

be solved quickly even for very large instances. Sourd and

Kedad-Sidhoum (2003) note that all pj unit jobs of a job

j are identical, and they exploit this property to develop

an adaptation of the Hungarian algorithm for solving their

transportation problem. They reduce the complexity of the

Hungarian algorithm from O(|H |3) to O(n2|H |) for this

class of transportation problems, where |H | is the number

of periods in the planning horizon. (We do not use this spe-

cialized algorithm in our computational experiments.) Sec-

ond, the optimal solution of the transportation problem al-

lows us to construct several feasible solutions for P1 with

very little additional computational effort once problem TR

is solved. Clearly, this increases the likelihood of finding a

near-optimal feasible solution for P1 (see Sects. 4 and 5).

Finally, we observe that the size of the transportation prob-

lem is relatively smaller for computationally hard instances

of P1. Intuitively, if the due dates are close to each other and

jobs compete with each other to be scheduled in the same

time periods, then such an instance is harder to solve. How-

ever, when the due dates are close to each other, then we

have a relatively smaller instance of the transportation prob-

lem.

3 Properties of the lower bound

In this section we characterize a portion of the gap between

the objective from our lower bound, TC(S∗
TR), and the op-

timal objective value. We observe that any gap between the

cost of S∗
TR and that of S∗

P1 is partly due to preemption in the

transportation solution and partly due to the different cost

structures. In this section we explore the second effect in

detail.

First, consider a single-job instance of problem P1.

Clearly, if there is only a single job j and rj + pj ≤ dj ,

then for all possible values of ǫj > 0 and πj > 0, job j is

scheduled in the interval [dj −pj , dj ] in an optimal solution

S∗
P1 with a total cost of zero. Similarly, job j is scheduled

non-preemptively in the interval [dj − pj , dj ] in an opti-

mal transportation solution S∗
TR with a total cost of zero

if πj ≥ ǫj . We can show this by using the convexity of f
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and f
′
(0) ≥ 0, where f (x) is the cost incurred by job j

in TR when it is scheduled non-preemptively in the interval

[dj +x −pj , dj +x], as described in (2.15). However, when

πj < ǫj , there is an incentive to complete job j strictly after

its due date in TR. Note that f
′
(0) < 0 if πj < ǫj . In fact,

when pj > 1, we can easily create single-job instances for

which S∗
TR differs from S∗

P1, and we can make TC(S∗
TR) ar-

bitrarily smaller than TC(S∗
P1) by increasing the difference

(ǫj − πj ).

From the discussion above we conclude that, as long as

ǫj ≤ πj ∀j , the optimal objective value of TR cannot be

strictly less than zero, and we cannot create pathological in-

stances for which TR yields arbitrarily poor lower bounds.

We observe that the cost structure ǫj ≤ πj ∀j implies that

the cost of loss of customer goodwill per unit time is at least

as expensive as the finished goods inventory holding cost

per unit time. In general, we would expect this to be rea-

sonable for most just-in-time systems, as just-in-time usu-

ally implies minimizing inventory costs, subject to meeting

customer due dates. However, we emphasize again that our

lower bound and our heuristics for P1 do not make any spe-

cific assumption about the cost structure. In fact, our com-

putational results in Sect. 5.3.3 indicate that our algorithms

are not sensitive to it.

Next, for any given non-preemptive schedule we charac-

terize the largest possible difference between its associated

objective function values in problems TR and P1. Then, in

Sect. 3.2, we prove that the cost coefficients developed for

TR in the previous section are, in some sense, the best pos-

sible cost coefficients.

3.1 Cost function difference for identical schedules

In Sect. 2 we proved that TC(S∗
TR) is a lower bound on

TC(S∗
P1). In this section we give two characterizations of the

portion of the gap attributable to the difference between the

objective functions of P1 and TR. To motivate the discus-

sion, suppose that we develop an algorithm that converts S∗
TR

into a non-preemptive schedule SP1, and we are interested

in computing a bound on the worst case difference between

TC(SP1) and TC(S∗
TR). To accomplish this, one would need

to account for both the increase in the objective of TR while

constructing SP1 from S∗
TR, and the increase in cost from ap-

plying the original objective function to SP1. The following

lemma characterizes the latter increase both in terms of the

absolute and relative difference in cost, when the objective

functions of TR and P1 are applied to the same (not neces-

sarily optimal) non-preemptive schedule. In this lemma, if

job j completes processing at time Cj in a feasible schedule

for the original non-preemptive problem P1, then Xjk = 1

for all k = Cj − pj + 1, . . . ,Cj in the corresponding trans-

portation solution STR. Refer to Bülbül (2002) for a proof.

Lemma 3.1 Let SP1 be a feasible schedule for the original

non-preemptive problem P1 with a cost of TC(SP1), and let

STR be the corresponding transportation solution with a cost

of TC(STR). Then

TC(SP1) − TC(STR) ≤
1

8

n
∑

j=1

(πj + ǫj )pj . (3.1)

If, in addition, ǫj ≤ πj , ∀j , then we also have

0 ≤ TC(STR) ≤ TC(SP1) ≤ pmax ∗ TC(STR). (3.2)

The proof of (3.2) also suggests that our lower bound be-

comes tighter, when the tardiness costs increase relative to

the earliness costs. This implies that our lower bound may

also be useful for solving weighted tardiness problems. In

addition, according to (3.2), the optimal objective function

value of TR is the same as that of P1 if all jobs are of unit

length, i.e., pmax = 1. Note that this is true even if there

exists a job j such that ǫj > πj (see Verma and Dessouky

1998). Finally, we note that the bound provided in (3.2) has

the desirable property of being independent of the earliness

and tardiness costs.

3.2 Optimal linear cost coefficient function

At the beginning of Sect. 3 we discussed that the difference

between the cost function of TR (for a single job) and the

cost function of P1 can be relatively large in the worst case.

A natural question to ask is whether we can find cost coef-

ficients that will decrease the difference between the costs

incurred by the same non-preemptive schedule in P1 and in

TR, and, thereby, improve the bounds given in Lemma 3.1.

We restrict ourselves to linear cost coefficient functions, as

defined below. This choice has a natural appeal for three rea-

sons. First, the original problem P1 also has a linear penalty

structure. Second, the lower bound obtained from TR based

on the piecewise linear cost structure in (2.11), and the non-

preemptive schedules adapted from S∗
TR perform very well,

as we demonstrate in the computational experiments. Fi-

nally, linearity enables us to use linear programming duality

to prove our result. Specifically, we look for cost coefficients

cjk for job j that satisfy the following conditions, where mE

and mT represent the slope of the cost function before and

after the due date dj , respectively

cjk = cjdj
+ (dj − k) ∗ mE, ∀k ≤ dj , (3.3)

cjk = cjdj +1 + (k − dj − 1) ∗ mT , ∀k ≥ dj + 1, (3.4)

mE,mT ≥ 0. (3.5)

Next, we need to choose an appropriate objective function

that reflects how “good” the cost coefficients are. Note that

all we know about the completion time Cj of job j in an
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optimal non-preemptive schedule is that it lies within some

interval H (see Sect. 2). This implies that we need cost co-

efficients that perform well over a range of possible comple-

tion times rather than for a specific completion time. Now

assume that Cj lies in some interval [t
j

min, t
j
max] that in-

cludes dj , and let TCj (SP) denote the cost incurred by job

j in problem P. As alternatives for the objective function,

we consider minimizing the maximum or the total differ-

ence of TCj (SP1) − TCj (STR) across all Cj values in the

interval [t
j

min, t
j
max]. Note that we concern ourselves with the

cost function of a single job here, and we can, therefore, re-

strict our attention to non-preemptive schedules without loss

of generality. We observed computationally that the optimal

cost coefficients are dependent on the choices of t
j

min and

t
j
max for the minimax criterion. However, as we prove in this

section, the optimal cost coefficients for the minisum objec-

tive are not contingent on the specific values of these two pa-

rameters under some mild conditions. Additionally, by solv-

ing several instances, we also observed that the optimal so-

lution for the minimax criterion becomes more similar to

the optimal solution of the minisum criterion as t
j
max − t

j

min

increases. Therefore, we use the minisum criterion and char-

acterize the structure of its optimal solution in the following

discussion.

The problem of finding cost coefficients that satisfy

(3.3) through (3.5) and minimize the objective function
∑

Cj ∈[t
j
min,t

j
max]

(TCj (SP1) − TCj (STR)) when job j is sched-

uled non-preemptively to finish at the same time both in SP1

and STR can be represented as a linear programming prob-

lem. Let aE and aT denote cjd and cjd+1, respectively, and

Dt be TCj (SP1) − TCj (STR) if job j finishes processing at

time t . Also, let t
j

min and t
j
max be the smallest and largest

possible completion times of job j , respectively. In general,

we allow t
j

min ≥ rj + pj and t
j
max ≤ dj + P , and later in

the discussion we identify some mild conditions that need

to be imposed on t
j

min and t
j
max. In the following linear pro-

gramming problem we omit the job index j to simplify the

notation:

(CP) min

tmax
∑

t=tmin

Dt , (3.6)

(γt ) Dt +

t
∑

k=t−p+1

(

aE + (d − k)mE

)

= ǫ(d − t),

t = tmin, . . . , d, (3.7)

(δt ) Dt +

d
∑

k=t−p+1

(

aE + (d − k)mE

)

+

t
∑

k=d+1

(

aT + (k − d − 1)mT

)

= π(t − d),

t = d + 1, . . . , d + p − 1, (3.8)

(μt ) Dt +

t
∑

k=t−p+1

(

aT + (k − d − 1)mT

)

= π(t − d),

t = d + p, . . . , tmax, (3.9)

aE, aT unrestr., (3.10)

mE,mT ≥ 0, (3.11)

Dt ≥ 0, t = tmin, . . . , tmax. (3.12)

Constraints (3.7) through (3.9) define the difference in pe-

riod t , Dt , between the cost functions of TR and P1 for

different completion times of job j . By (3.12), TCj (SP1) −

TCj (STR) is guaranteed to be nonnegative for all possible

completion times of job j . Thus, TC(S∗
TR) yields a lower

bound on TC(S∗
P1) for all objective function coefficients cjk ,

generated from any feasible solution of CP. The Greek let-

ters on the left are the dual variables associated with the con-

straints.

Now we show that the optimal solution to CP corre-

sponds to the cost coefficients (2.11) when tmin ≤ d − p

and tmax ≥ d + 2p. In practice, these conditions are au-

tomatically satisfied for the great majority of problem in-

stances. From the definition of the planning horizon H ,

it follows that all we require is rj + pj ≤ dj − pj and

dj + P ≥ dj + 2pj , i.e., dj − rj ≥ 2pj and P ≥ 2pj .

Theorem 3.2 If tmin ≤ d − p and tmax ≥ d + 2p, then the

optimal solution to CP is given by mE = ǫ
p

, mT = π
p

, aE =

ǫ
p
(
−p
2

+ 1
2
), and aT = π

p
(
p
2

+ 1
2
), which correspond to the

cost coefficients

ck =

{

ǫ
p

[(

d −
p
2

)

−
(

k − 1
2

)]

, k ≤ d ,

π
p

[(

k − 1
2

)

−
(

d −
p
2

)]

, k > d ,

given in (2.11). The optimal objective function value is
1
12

(ǫ + π)(p2 − 1).

Proof Our strategy is to find a feasible dual solution with the

same objective value given above. It follows directly from

Theorem 2.2 that mE = ǫ
p

≥ 0, mT = π
p

≥ 0, aE = ǫ
p
(
−p
2

+

1
2
), aT = π

p
(
p
2

+ 1
2
), and the corresponding Dt values are

feasible for CP. The resulting objective function value is
∑tmax

t=tmin
Dt =

∑p−1
x=1 (πx − f (x)) = 1

12
(ǫ + π)(p2 − 1),

using (2.15) and the identities
∑n

k=1 k =
n(n+1)

2
and

∑n
k=1 k2 =

n(n+1)(2n+1)
6

. The dual of CP is:

(DCP) max

d
∑

t=tmin

ǫ(d − t)γt +

d+p−1
∑

t=d+1

π(t − d)δt

+

tmax
∑

t=d+p

π(t − d)μt , (3.13)
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(Dt ) γt ≤ 1, t = tmin, . . . , d, (3.14)

(Dt ) δt ≤ 1, t = d + 1, . . . , d + p − 1, (3.15)

(Dt ) μt ≤ 1, t = d + p, . . . , tmax, (3.16)

(aE)

d
∑

t=tmin

pγt +

p−1
∑

t=1

(p − t)δd+t = 0, (3.17)

(aT )

p−1
∑

t=1

tδd+t +

tmax
∑

t=d+p

pμt = 0, (3.18)

(mE)

d
∑

t=tmin

t
∑

k=t−p+1

(d − k)γt

+

d+p−1
∑

t=d+1

d
∑

k=t−p+1

(d − k)δt ≤ 0, (3.19)

(mT )

d+p−1
∑

t=d+1

t
∑

k=d+1

(k − d − 1)δt

+

tmax
∑

t=d+p

t
∑

k=t−p+1

(k − d − 1)μt ≤ 0,

(3.20)

γt unrestr., t = tmin, . . . , d, (3.21)

δt unrestr., t = d + 1, . . . , d + p − 1,

(3.22)

μt unrestr., t = d + p, . . . , tmax. (3.23)

The corresponding primal variable for each constraint is in-

dicated in parentheses on the left. A proof of the following

lemma is presented by Bülbül (2002).

Lemma 3.3 If tmin ≤ d − p and tmax ≥ d + 2p, then the

following solution is feasible for DCP.

γtmin
= −γd −

p − 1

2
− K + 1,

where K = d − tmin, (3.24)

γt = 1, tmin + 1 ≤ t ≤ d − 1, (3.25)

γd =
−(p + 1)(p − 1)

12K
−

K + p

2
+ 1, (3.26)

δt = 1, d + 1 ≤ t ≤ d + p − 1, (3.27)

μd+p =

N2

2
+ N(

−p
2

− 1) + (p − 1)(
p+13

12
) + 1

−N + p
,

where N = tmax − d, (3.28)

μt = 1, d + p + 1 ≤ t ≤ tmax − 1, (3.29)

μtmax = −μd+p −
p − 1

2
− N + p + 1. (3.30)

We now compute the objective function value for this dual

feasible solution to complete the proof. First, we compute

the following three expressions:

d
∑

t=tmin

(d − t)γt

= (d − tmin)γtmin
+

d−tmin−1
∑

t=1

t

= K

(

(p + 1)(p − 1)

12K
+

K + p

2
− 1 −

p − 1

2
− K + 1

)

+
K(K − 1)

2

=
(p + 1)(p − 1)

12
,

d+p−1
∑

t=d+1

(t − d)δt =

p−1
∑

t=1

t =
p(p − 1)

2
,

tmax
∑

t=d+p

(t − d)μt

= pμd+p + (p + 1) + (p + 2) + · · · + (N − 1)

+Nμtmax

= pμd+p + (N − p − 1)p

+

N−p−1
∑

t=1

t + N

(

−μd+p −
p − 1

2
− (N − 1 − p)

)

=
(p + 1)(p − 1)

12
−

p(p − 1)

2
.

Therefore, the objective function value for the dual feasible

solution given in (3.24–3.30) is:

d
∑

t=tmin

ǫ(d − t)γt +

d+p−1
∑

t=d+1

π(t − d)δt +

tmax
∑

t=d+p

π(t − d)μt

= ǫ
(p + 1)(p − 1)

12

+π

(

p(p − 1)

2
+

(p + 1)(p − 1)

12
−

p(p − 1)

2

)

=
1

12
(ǫ + π)(p + 1)(p − 1) =

1

12
(ǫ + π)(p2 − 1),

which is equal to the objective function value of the primal

feasible solution mE = ǫ
p

, mT = π
p

, aE = ǫ
p
(
−p
2

+ 1
2
), aT =

π
p
(
p
2

+ 1
2
), and the corresponding Dt values. �
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Note that the conditions tmin ≤ d − p and tmax ≥ d + 2p

are sufficient, but not necessary, for the coefficients in The-

orem 3.2 to be optimal. For instance, assume d = 10, p = 4,

ǫ = 1, π = 1. Choose tmin = 8 > d −p and tmax = 14 < d +

2p. Then the optimal solution to CP is mE = 0.25, mT = 0,

aE = −0.375, and aT = 1. These values satisfy mE = ǫ
p

and aE = ǫ
p
(
−p
2

+ 1
2
), but not mT = π

p
and aT = π

p
(
p
2

+ 1
2
),

i.e., the cost coefficients characterized in Theorem 3.2 are

not optimal. The planning horizon extends for such a short

duration after the due date that the optimal cost coefficients

are constant in the interval [11,14]. However, if tmax is in-

creased to d + 2p = 18, then the cost coefficients in Theo-

rem 3.2 are optimal, even if d − tmin < p.

4 The switch heuristic (SW)

As discussed in Sect. 1, the quality of feasible solutions for

P1 are mainly determined by the job sequencing decisions.

Therefore, in this section we develop an algorithm to con-

struct a feasible solution for P1, where the processing se-

quence is derived from the characteristics of the optimal so-

lution for TR. As in the original non-preemptive problem

P1, any solution for TR can be characterized by “blocks”

of processing with idle time between adjacent blocks. In the

context of TR, we define a block B as a sequence of unit jobs

processed contiguously. Clearly, in an optimal solution S∗
TR

for TR, all unit jobs of job j must belong to the same block

B that starts no later than dj . Similarly, the last unit job in

B cannot finish earlier than dj . Therefore, as in the Switch

Heuristic presented here, one can construct a feasible solu-

tion for P1 by re-arranging the unit jobs within each block

independently of the other blocks and without changing the

start and completion times of the blocks.

For many instances of this problem we observed that,

within a block, those jobs that contribute most to the overall

cost are scheduled very close to the same time in both S∗
P1

and S∗
TR, while less expensive jobs are frequently spread out

in S∗
TR. Typically, in S∗

TR the unit jobs of expensive jobs are

grouped tightly together, while those of less expensive jobs

are distributed around them. In S∗
P1 these less expensive jobs

either precede or succeed such a group of expensive jobs.

This observation motivates the Switch Heuristic (see Algo-

rithm 1, as well as the subroutine Algorithm 2). In particular,

this heuristic chooses a job (called a split job) that is pre-

empted at least once by another job in the current schedule,

and rearranges its unit jobs while attempting to minimize the

increase in the total cost of the block from its original value

in S∗
TR. For each split job, all of its unit jobs are moved ei-

ther next to its first or last unit job completed. This strategy

aims to minimize the impact on the more expensive jobs in

the middle by shifting split jobs alternately early and late.

As a result, less expensive jobs that are more spread out in

S∗
TR are shuffled around, while in the final non-preemptive

schedule, more expensive jobs remain close to their original

locations in S∗
TR.

In our description of the Switch Heuristic, unit job j[i]

is the ith unit job associated with job j , and CTR∗

j[i]
is the

completion time of the ith segment of job j in schedule S∗
TR.

In particular, CTR∗

j[1]
and CTR∗

j[pj ]
represent the completion times

of the earliest and latest segments of job j scheduled in S∗
TR,

respectively. At each iteration of the algorithm, we select

a split job and consider either moving all of the segments

of the job later to immediately precede its last unit job, or

moving all of the segments of the job earlier to immediately

follow its first unit job. In the former case the last unit job,

and in the latter case the first unit job, is kept fixed at its

current location. In both cases, the job is no longer split.

The two subroutines of the Switch Heuristic, SHIFT-

EARLY and SHIFT-LATE, shift a job adjacent to its ear-

liest unit job, or its latest unit job, respectively. We define a
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temporary queue K , for which the sorting discipline in the

queue is first in, first out. Note that Enqueue(K, ji) adds unit

job ji to the queue, and Dequeue(K) removes the first unit

job in the queue. In addition, let B(t) be the unit job ji that

is processed during the time interval [t − 1, t] in the cur-

rent schedule, and let J (t) be the associated job j . Only the

pseudo-code of the subroutine SHIFT-EARLY is given here

because conceptually the only difference between SHIFT-

EARLY and SHIFT-LATE is that in the latter case we need

to check whether the schedules of the other jobs remain fea-

sible while moving the unit jobs of the split job later.

The algorithm terminates in at most |QB | iterations for

each block because each call to the shift subroutines brings

at least one split job together and never splits a job that has

already been scheduled non-preemptively. Finally, when the

Switch Heuristic terminates, we recover the job processing

sequence and insert idle time optimally in order to obtain the

final non-preemptive schedule.

5 Computational experiments

We performed a variety of computational experiments in or-

der to evaluate the performance of both the lower bound and

a set of heuristics for P1. The set of heuristics consists of the

Switch Heuristic, described in Sect. 4, as well as the follow-

ing simple heuristics, each of which constructs a sequence

based on the elements of the optimal solution for TR, which,

in general, is a preemptive schedule. We apply an optimal

timing algorithm to each heuristic sequence in order to de-

termine the final schedule (see Sect. 1).

• LCT: Sequence jobs in non-decreasing order of the com-

pletion times of their last unit jobs, where the completion

time of the last unit job of job j is defined as max{k :

Xjk = 1}.

• ACT: Sequence jobs in non-decreasing order of the aver-

age completion time of their unit jobs.

• MCT: Sequence jobs in non-decreasing order of the me-

dian completion time of their unit jobs.

The LCT and MCT heuristics are related to the α-point con-

cept introduced by Phillips et al. (1998). An α-point of job

j in a preemptive schedule is defined as the earliest point

in time at which α-fraction of job j is completed. Note

that Sourd and Kedad-Sidhoum (2003) obtain an initial up-

per bound at the root node of their B&B tree by schedul-

ing jobs in non-decreasing order of their α-points, where

α = 0.5.

We designed our computational experiments with two

main objectives. First of all, we would like to demon-

strate that our algorithms find good solutions and find them

quickly. Our other major concern is the robustness of our

algorithms. In particular, we use the information from a pre-

emptive relaxation to generate non-preemptive schedules,

and among the factors that affect preemption in the trans-

portation problem are the processing times and the number

of jobs. Thus, we are interested in the behavior of our lower

bound and the heuristics as processing times and the number

of jobs increase.

In Sect. 3 we identified a theoretical drawback of our

approach using a single job example where the earliness

cost is strictly greater than the tardiness cost. However, our

computational results indicate that such cases do not hap-

pen in practice when there are many jobs competing for

the same time periods. To observe the effect of the cost

structure, we use the data sets from Mazzini and Armen-

tano (2001), and we also benchmark our results against

theirs.

Finally, we compare our lower bound to another lower

bound that is obtained from the linear programming relax-

ation of a time-indexed integer linear programming formu-

lation for P1 which we call TIP1. We argue in Sect. 5.1 that

the bound obtained from the LP relaxation of TIP1 domi-

nates our lower bound in terms of objective value, but the

improved bound comes at a significant additional computa-

tional cost.
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5.1 Another lower bound

It is well known that the LP relaxations of time-indexed in-

teger linear programming formulations of single machine

scheduling problems, first introduced by Dyer and Wolsey

(1990), provide very tight bounds. In this section, we ar-

gue that the lower bound obtained from the LP relaxation

of TIP1 dominates the lower bound from TR. However, the

tightness of the LP relaxation comes at a significant addi-

tional computational cost, as we demonstrate in the com-

putational experiments. The lower bound obtained from the

LP relaxation of TIP1 is useful for instances that we could

not solve to optimality. It allows us to compute a tight upper

bound on the optimality gaps of our heuristic solutions in

such instances.

From Sects. 2 and 3, recall that tmin = minj rj + 1,

tmax = maxj max(rj , dj ) + P , and the planning horizon is

defined as H = {k | k ∈ Z, k ∈ [tmin, tmax]}. In this section,

let t
j

min = rj + pj . Also, define zjk as a binary variable that

takes the value 1 if job j finishes processing at time k, and

zero, otherwise. Then the time-indexed formulation of P1 is:

(TIP1) min
∑

j

∑

k∈H

k≥t
j
min

zjk(ǫj (dj − k)+

+ πj (k − dj )
+), (5.1)

∑

j

min(tmax,k+pj −1)
∑

t=max(k,t
j
min)

zj t ≤ 1, ∀k ∈ H, (5.2)

∑

k∈H

k≥t
j
min

zjk = 1, ∀j, (5.3)

zjk ∈ {0,1}, ∀j, k ∈ H,k ≥ t
j

min. (5.4)

The constraints (5.2) and (5.4) together prescribe that at

most one job is processed by the machine at any point

in time and that processing is non-preemptive. Constraints

(5.3) ensure that all jobs are processed.

Now consider the linear programming relaxation

LP(TIP1) of TIP1. A fractional value α for zjk implies that

job j is processed on the machine in each of the pj unit-

length time periods [k − pj , k − pj + 1], . . . , [k − 1, k], but

only for a fraction α in any such period. This implies that

LP(TIP1) is a more constrained version of TR that imposes

contiguity constraints on Xjk’s that belong to the same job.

By using this observation and Theorem 2.2, one can show

that for each feasible solution of LP(TIP1) there exists a

feasible solution for TR with no greater objective function

value. Thus, LP(TIP1) provides a tighter bound than TR.

Refer to Bülbül (2002) for a formal proof of Theorem 5.1.

Theorem 5.1 TC(S∗
TR) ≤ TC(S∗

LP(TIP1)) ≤ TC(S∗
P1).

5.2 Data generation

To generate the processing times and the due dates of jobs

for our computational study, we follow the popular scheme

of Potts and van Wassenhove (1982). This method is mo-

tivated by the observation that the mean and the range of

the due date distribution determines the level of difficulty

of scheduling problems with due dates (also, see Hall and

Posner 2001).

Processing times are generated from a discrete uniform

distribution U [pmin,pmax]. Then, the due dates are gener-

ated from a discrete uniform distribution U [⌈(1 − TF −
RDD

2
) ∗ P ⌉, ⌈(1 − TF + RDD

2
) ∗ P ⌉], where P is the sum

of the processing times. The tardiness factor, TF, is a coarse

measure of the proportion of jobs that might be expected to

be tardy in an arbitrary sequence (Srinivasan 1971), and the

due date range factor, RDD, specifies the width of the in-

terval centered around the average due date from which the

due dates are generated. If 1−TF − RDD
2

< 0, then the lower

bound of the due date range is set to zero.

The ready times are generated from a discrete uniform

distribution U [0,P ]. The earliness and tardiness costs are

generated from uniform distributions U [ǫmin, ǫmax] and

U [πmin,πmax], respectively.

5.3 Summary of results

The solution procedure for TR and the heuristics are imple-

mented in C using CPLEX 9.0 callable libraries. When-

ever possible, TIP1 and/or its linear programming relaxation

are solved by ILOG AMPL 9.0 and the solver CPLEX

9.0. All computations are performed on a Sun Blade 1000

workstation with 512 MB of memory. In the following sec-

tions, we examine the effects of the number of jobs, process-

ing times and the relationship between the earliness and tar-

diness costs on the performance of our algorithms. We also

benchmark our algorithms against results published in the

literature.

5.3.1 Number of jobs

In order to test whether increasing the number of jobs affects

the performance of the lower bound and the heuristics, we

Table 1 Effect of the number

of jobs: problem parameters n pj rj TF RDD ǫj , πj

{20, 40, 60, 80} U [1,10] U [0,P ] {0.2, 0.4, 0.5, 0.6, 0.8} {0.4, 0.7, 1.0, 1.3} U [0,100]
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Table 2 Effect of the number of jobs: CPU times, number of optimal solutions, and average and worst case gaps of heuristics and bounds

n CPU time (sec.) # Opt.† Percentage gap (%)

B&B TL LP BH LP/BH BH LP LP† TR† LCT ACT MCT SW BH

20 0.59 0 0.09 0.03 2.53 6 10 −0.86 −5.08(−5.49) 12.27 8.64 5.22 4.53 2.45(3.18)

2.08 0.21 0.05 5.25 −4.74 −14.75(−12.92) 65.36 37.89 25.77 18.13 12.76(15.35)

40 10.17 0 0.89 0.10 8.42 0 1 −0.69 −2.86(−3.40) 8.87 7.64 4.19 3.47 2.36(3.01)

69.00 2.48 0.15 22.55 −2.15 −7.90(−8.60) 32.11 28.35 18.59 15.25 10.15(10.90)

60 170.62 3 3.54 0.18 19.82 0 0 −0.59 −2.10(−2.56) 7.81 7.23 3.77 2.92 2.27(2.77)

1801.37 10.09 0.24 48.11 −2.40 −6.76(−7.34) 37.63 34.16 20.40 17.30 9.39(7.70)

80 528.60 15 9.27 0.30 30.24 0 0 −0.45 −1.68(−2.06) 7.71 6.85 3.56 2.58 2.15(2.67)

1802.03 23.91 0.39 69.11 −1.65 −6.02(−5.68) 48.16 34.18 16.98 8.28 7.18(8.62)

†For n = 60 (80), 97 (85) instances out of 100 solved to optimality are included

designed experiments with the parameters given in Table 1.

For each combination of parameters, 5 instances are gener-

ated, resulting in a total of 100 problems for each value of n.

Whenever possible, the problems are solved optimally us-

ing the time-indexed formulation TIP1. For the branch and

bound (B&B) algorithm, CPLEX is called with the default

options except that the next node to be explored is the one

with the best estimated integer objective value instead of the

node with the best objective value for the associated LP re-

laxation. Thus, we emphasize finding a good feasible solu-

tion for P1 as soon as possible, so as to provide a benchmark

in case the B&B algorithm does not terminate with an opti-

mal solution within a maximum CPU time of 30 minutes.

Table 2 shows how the performance of our lower bound

and heuristics change, both in terms of solution quality and

time, as the number of jobs increases. In columns 2–6, we re-

port performance measures related to CPU times. The com-

putation time for obtaining the optimal solution of TIP1

and the number of times the B&B algorithm terminated

due to the time limit are reported in columns B&B and TL

(“Time Limit”), respectively. The computing time to solve

the relaxation at the root node for TIP1 and the total time

required to compute the best solution from four different

heuristic sequences are given in columns LP (“LP Relax-

ation”) and BH (“Best Heuristic”), respectively. The ratio

of these two quantities is computed in column LP/BH. The

number of times the best heuristic solution and the LP relax-

ation of TIP1 matched the optimal solution are indicated un-

der # Opt (“Number Optimal”) in columns 7 and 8, respec-

tively. The gaps for the bounds and heuristics are reported

in columns 9–15. The columns LP and TR (“Transportation

Problem”) indicate the tightness of the two lower bounds

obtained from the LP relaxation of TIP1 and the transporta-

tion problem, respectively. The remaining columns report

the optimality gaps of our heuristics, where the percentage

gap for any heuristic H is computed as
TC(H)−TC(opt sol’n)

TC(opt sol’n)
,

when the optimal solution is available. Otherwise, we use

TC(S∗
LP(TIP1)

) instead of the optimal objective value. In

columns TR and BH, the numbers in parentheses refer to

the percentage gaps when the cost coefficients of Sourd and

Kedad-Sidhoum (2003), given in (2.16), are used instead of

our cost coefficients, given in (2.11). For each value of n, the

first row indicates the average and the second row indicates

the worst case performance.

The results indicate that the performance of our lower

bound and heuristics improves as the number of jobs in-

creases. One intuitive explanation is that, as the number of

jobs increases, more jobs conflict, and there are fewer jobs

that finish soon after their due dates, so that the performance

of the lower bound improves. Recall that, when job j is

scheduled non-preemptively and it finishes in the time inter-

val [dj + 1, dj + pj − 1], then its contribution to the objec-

tive function of TR is strictly less than to that of P1. As the

gap between the lower bound and the optimal solution di-

minishes, the sequences extracted from the lower bound im-

prove. Generally, the switch heuristic sequence is the best,

followed by the median completion time, average comple-

tion time and the last completion time sequences. Overall,

in these 400 problems BH has very good average and worst

case performances of 2.31% and 12.76%, respectively. Ob-

serve that the solution time of the LP relaxation of TIP1

grows very rapidly. On the other hand, TR can be solved

much more quickly and its solution time is less sensitive

to increases in the number of jobs. Moreover, it provides

bounds that are nearly as good as those from the LP relax-

ation of TIP1. We also note that, on average, the lower bound

is not as tight and the quality of the feasible solutions for

the original problem declines (see column BH in Table 2),

when the objective coefficients (2.16) of Sourd and Kedad-

Sidhoum (2003) are used in the transportation problem. In

these cases, we observe that in the optimal solution of TR,

unit jobs are scheduled in periods k such that c′
jk < cjk (see

Sect. 2).

In Table 3, we explore the effect of the tardiness (TF)

and due date range (RDD) factors on the percentage gaps of
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Table 3 Effect of the tardiness and due date range factors: average and worst case gaps of heuristics and bounds for n = 80

TF Percentage gap (%) for TR† Percentage gap(%) for BH

RDD RDD

0.4 0.7 1.0 1.3 0.4 0.7 1.0 1.3

0.2 −2.33(−3.78) −2.97(−3.84) −3.75(−3.72) −2.51−(2.50) 2.18(3.94) 4.14(5.16) 4.99(4.72) 2.51(2.78)

−3.30(−4.60) −4.01(−5.07) −6.02(−5.68) −3.27(−3.36) 2.91(5.85) 5.28(8.62) 7.18(7.64) 3.83(3.63)

0.4 −1.53(−2.25) −1.80(−2.33) −2.02(−2.34) −1.68(−1.78) 2.67(2.78) 2.51(3.50) 3.28(3.60) 1.25(2.58)

−1.98(−2.69) −2.02(−2.69) −2.40(−2.69) −2.16(−2.14) 5.27(3.64) 4.14(5.81) 5.19(4.98) 1.63(3.91)

0.5 −1.18(−1.79) −1.27(−1.63) −1.15(−1.47) −1.62(−1.82) 2.28(2.62) 2.42(2.74) 1.66(1.88) 1.79(2.38)

−1.27(−1.08) −1.28(−1.77) −1.38(−1.86) −2.21(−2.39) 4.57(3.88) 3.81(4.51) 2.36(2.34) 2.85(3.75)

0.6 −1.29(−1.74) −0.97(−1.26) −1.36(−1.61) −1.16(−1.45) 1.56(2.40) 1.45(1.52) 2.09(2.25) 1.52(2.26)

−1.85(−2.44) −1.10(−1.41) −1.77(−2.02) −1.84(−1.86) 2.14(2.95) 2.32(2.52) 2.93(2.77) 2.24(3.09)

0.8 −0.92(−1.17) −0.98(−1.18) −0.98(−1.33) −1.21(−1.47) 0.86(1.17) 0.99(1.56) 1.54(2.21) 1.34(1.43)

−1.32(−1.57) −1.10(−1.38) −1.11(−1.55) −1.61(−1.89) 2.06(2.65) 1.88(2.25) 2.19(3.73) 2.00(2.05)

†Only instances solved to optimality are included

Table 4 Effect of processing times: problem parameters

n pj rj TF RDD ǫj ,πj

{20, 40, 60, 80} U [1,10], U [1,30], U [1,50] U [0,P ] {0.2, 0.4, 0.5, 0.6, 0.8} {0.4, 0.7, 1.0, 1.3} U [0,100]

{100, 130, 170, 200} U [1,50], U [1,75], U [1,100] U [0,P ] {0.2, 0.4, 0.5, 0.6, 0.8} {0.4, 0.7, 1.0, 1.3} U [0,100]

TR and BH for problem instances with n = 80 in Table 2.

Results for 5 problem instances are reported for each com-

bination of TF and RDD. The performance measures that

appear in parentheses are based on the cost coefficients of

Sourd and Kedad-Sidhoum (2003).

Table 3 clearly indicates that for a given value of RDD,

the percentage gaps for both TR and BH decrease as TF

increases, which supports our intuition above that our algo-

rithms perform better when the contention among jobs in-

creases. Furthermore, we observe that our algorithms pro-

vide solutions of higher quality when our cost coefficients

in (2.11) are used in the transportation problem, regardless

of the tardiness and due date range factors. The cost coeffi-

cients of Sourd and Kedad-Sidhoum (2003) in (2.16) yield

slightly better solutions on average only if TF = 0.2 and

RDD = 1.0 or 1.3 in Table 3. We also note that based on

the results in Table 3 it is not possible to make a general

statement about the effect of increasing the due date range

factor for a given tardiness factor.

5.3.2 Processing times

We also investigate whether our lower bound and heuristics

are sensitive to increases in processing times, which may

lead to increases in the number of preemptions. The prob-

lem parameters are given in Table 4. For each combination

of parameters, 5 problem instances are generated, resulting

in a total of 300 problems for each n. The problems with

n = 20,40,60,80 and pj ∼ U [1,10] are the same problems

as in the previous section. In this section we compare the

feasible solutions from our algorithms to either the LP re-

laxation of TIP1 or to our lower bound in order to reduce

the total computation time.

The results for n ≤ 80 appear in Table 5. Here we report

the difference between the objective values from our heuris-

tics and the lower bound provided by the optimal objective

of LP(TIP1), which yields an upper bound on the optimal-

ity gap. Nevertheless, the results in Table 5 are excellent.

For these 1200 problems, the average gap of the best heuris-

tic with respect to the LP relaxation of TIP1 is only 3.25%,

and except for n = 20 and pj ∼ U [1,50], the worst case is

within 16% of the LP lower bound. Note that the column TR

indicates the gap between the optimal solutions of TR and

the LP relaxation. In general, there is a very slight degra-

dation in performance as the processing times increase, al-

though this effect is less pronounced than the effect of an

increase in the number of jobs. The combined effect of in-

creasing both the number of jobs and the processing times is

a decrease in the percentage gaps.

In Sects. 1 and 2 we mentioned that obtaining a lower

bound for P1 from TR can be accomplished in pseudo-

polynomial time. From Table 5 we observe that for n = 80

the increase in average CPU times is about an order of mag-

nitude when the processing time distribution changes from
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Table 5 Effect of processing times: CPU times, contiguity indices, average and worst case gaps of heuristics and bounds

n pj CPU time (sec.) CI Percentage gap (%)

LP BH LP/BH TR LCT ACT MCT SW BH

20 U [1,10] 0.09 0.03 2.53 1.03(1.56) −4.27(−4.68) 13.25 9.61 6.14 5.44 3.35(4.08)

0.21 0.05 5.25 3.84(4.26) −13.95(−12.11) 65.85 40.43 25.77 18.59 12.94(15.35)

U [1,30] 1.10 0.09 12.13 1.09(1.64) −4.52(−5.13) 16.48 10.99 5.73 7.02 3.99(4.79)

2.89 0.12 26.00 6.64(4.10) −15.39(−13.73) 153.31 50.04 22.85 37.65 15.87(26.02)

U [1,50] 3.03 0.14 20.65 1.05(1.65) −4.79(−5.36) 16.36 12.22 6.15 8.15 4.24(4.58)

8.88 0.23 43.88 2.93(3.01) −20.90(−19.22) 56.42 73.81 35.52 47.78 35.52(23.38)

40 U [1,10] 0.89 0.10 8.42 1.31(2.62) −2.19(−2.73) 9.65 8.40 4.93 4.20 3.08(3.74)

2.48 0.15 22.55 5.32(4.30) −6.70(−6.89) 33.21 29.43 20.65 15.97 12.06(12.67)

U [1,30] 10.27 0.31 32.22 1.30(2.07) −2.37(−2.94) 11.11 9.87 4.84 4.97 3.47(4.38)

28.05 0.46 87.66 6.02(7.00) −6.55(−6.55) 49.57 61.00 14.72 15.64 14.72(17.25)

U [1,50] 30.15 0.68 43.21 1.39(2.52) −2.40(−2.95) 12.10 9.21 4.96 4.87 3.46(4.27)

86.10 1.04 103.73 11.92(4.32) −6.54(−6.77) 80.88 38.84 26.20 22.84 15.52(14.21)

60 U [1,10] 3.54 0.18 19.82 1.57(2.25) −1.52(−1.98) 8.43 7.85 4.36 3.51 2.85(3.36)

10.09 0.24 48.11 6.48(5.33) −5.15(−5.06) 39.07 35.17 20.40 17.95 10.21(8.91)

U [1,30] 46.45 0.73 63.82 1.51(2.31) −1.71(−2.17) 9.43 8.62 5.00 3.77 3.32(4.16)

124.98 1.11 159.13 7.66(7.34) −5.73(−6.25) 31.22 51.34 17.95 11.23 10.38(15.03)

U [1,50] 181.59 1.44 128.41 1.41(2.33) −1.67(−2.15) 9.68 8.52 4.62 3.79 3.17(4.01)

749.08 2.40 416.16 3.72(4.53) −4.46(−4.97) 33.80 32.97 18.79 19.45 12.47(11.82)

80 U [1,10] 9.27 0.30 30.24 1.58(2.38) −1.20(−1.59) 8.14 7.27 3.96 2.98 2.55(3.07)

23.91 0.39 69.11 4.15(5.27) −4.44(−4.10) 49.36 34.82 17.62 9.05 8.68(9.45)

U [1,30] 165.56 1.19 140.56 1.57(2.59) −1.30(−1.66) 8.79 7.13 4.15 2.98 2.65(3.16)

422.83 3.22 330.34 3.51(4.95) −5.95(−5.48) 31.89 34.47 20.79 11.82 11.82(13.15)

U [1,50] 688.12 3.51 188.78 1.67(2.53) −1.28(−1.69) 8.25 7.59 4.17 3.30 2.86(3.45)

2490.89 8.06 448.00 3.86(4.67) −3.72(−3.80) 33.06 38.91 19.45 16.45 9.74(9.79)

U [1,10] to U [1,50]. (Note that the increase is much more

rapid for the LP relaxation of TIP1.) Therefore, it is impor-

tant to assess the applicability of our heuristics to larger in-

stances. In Table 6 results on problems with up to 200 jobs

and processing times up to 100 units are reported. The per-

centage gaps of our heuristics are computed with respect

to our lower bound because solving the LP relaxation of

TIP1 for these instances is very time consuming. We observe

that problems with n = 100 or 130, and pj ∼ U [1,100]

are solved within 1 and 2 minutes on average, respectively.

Problems with n = 170,200 and pj ∼ U [1,100] take 6

and 11 minutes of CPU time on average, respectively. Note

that doubling the average processing time, i.e., changing the

processing time distribution from U [1,50] to U [1,100], re-

sults approximately in a five-fold increase in CPU times for

all n. Fortunately, this increase in CPU times is accompanied

by a decrease in average and maximum percentage gaps.

For 300 instances with n = 200, BH is on average within

2.03% and in the worst case within 5.35% of our lower

bound, respectively. In other words, the results in Table 6

support our earlier conclusion that increasing both the num-

ber of jobs and the processing times decreases the optimal-

ity gaps. These results demonstrate that our algorithms find

very good solutions in reasonable computation times even

for very large instances. In Sect. 6 we indicate a possible

extension of our approaches that may be implemented to re-

duce computation times by further relaxing the problem.

Intuitively, we would expect the quality of the feasi-

ble solutions for P1 to improve as the optimal solution of

TR becomes closer to a non-preemptive schedule. Now let

qj = 1
pj −1

∑pj −1

k=1 gj [k] be the contiguity index of job j ,

where gj [k] is the number of time periods elapsed between

the processing of unit jobs k and k+1 of job j in the optimal

transportation solution S∗
TR. This is, therefore, a measure of

spread for job j in S∗
TR, and we note that qj = 0 if the unit

jobs of job j are processed in pj adjacent intervals. Then

we define the contiguity index of S∗
TR as q = 1

n

∑n
j=1 qj .

The average (upper row) and worst case (lower row) val-

ues are reported in column CI (“Contiguity Index”) in Ta-

bles 5 and 6. The average contiguity index q increases as n

increases, but, somewhat surprisingly, not necessarily as the

processing times increases. The cost coefficients of Sourd

and Kedad-Sidhoum (2003) in (2.16) yield higher q values

in general (shown in parentheses in Tables 5–6), i.e., in this
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Table 6 Large instances: CPU times, contiguity indices, average and worst case gaps of heuristics

n pj CPU time CI Percentage gap (%)

(sec.) LCT ACT MCT SW BH

100 U [1,50] 10.66 1.70(2.62) 8.89 7.58 4.30 3.66 3.38(4.32)

21.25 5.49(4.24) 30.04 24.41 15.23 8.05 8.05(10.92)

U [1,75] 29.00 1.88(2.81) 9.01 7.25 4.45 3.66 3.33(4.45)

51.19 15.40(5.83) 28.78 24.41 19.44 9.27 9.26(11.36)

U [1,100] 60.87 1.80(2.84) 8.87 7.90 4.70 3.86 3.56(4.53)

117.80 4.57(5.38) 31.60 53.91 21.39 11.78 11.78(13.77)

130 U [1,50] 26.34 1.87(2.99) 7.32 5.79 3.86 2.92 2.69(3.52)

44.93 3.87(7.81) 20.81 14.29 13.90 8.68 8.45(8.07)

U [1,75] 64.59 2.04(3.20) 8.16 6.85 3.90 3.18 2.95(3.81)

103.71 5.89(10.31) 27.68 24.90 12.92 9.82 9.70(10.27)

U [1,100] 126.44 2.34(3.39) 7.98 6.39 3.86 3.02 2.89(3.80)

250.78 20.51(11.89) 27.82 20.27 10.55 8.01 7.16(9.09)

170 U [1,50] 69.32 2.37(3.43) 6.24 5.60 3.24 2.46 2.34(3.17)

125.18 16.68(5.41) 18.60 20.06 9.08 5.67 5.67(8.63)

U [1,75] 176.53 2.21(3.52) 6.31 5.57 3.07 2.43 2.30(2.99)

342.66 7.09(8.31) 20.71 18.45 7.51 7.75 6.73(7.60)

U [1,100] 340.31 2.29(3.47) 6.78 5.78 3.47 2.49 2.41(3.17)

577.63 11.67(9.44) 31.83 25.44 22.91 8.27 8.27(8.82)

200 U [1,50] 123.25 2.48(3.84) 5.83 4.90 2.93 2.10 2.06(2.76)

218.25 5.44(8.39) 19.71 13.85 10.58 5.61 5.32(6.48)

U [1,75] 324.23 2.51(3.78) 5.51 4.96 3.03 2.12 2.05(2.76)

659.01 9.68(6.95) 18.49 17.07 11.25 5.35 5.35(6.33)

U [1,100] 643.77 2.99(4.06) 5.68 4.97 2.93 2.05 1.99(2.69)

1258.54 19.07(16.70) 17.33 17.28 9.30 4.91 4.91(7.71)

case the unit jobs that belong to the same job are grouped

together less tightly in S∗
TR, which may affect the quality of

the resulting feasible solutions for P1 adversely. Our cost

coefficients may produce high q values when there exists a

job j with ǫj > 0 and πj = 0 that has some unit jobs sched-

uled immediately before its due date in periods k such that

cjk < 0 and then is delayed for many time periods because

πj = 0. In such instances the cost coefficients in (2.16) may

yield a lower q value by delaying all unit jobs of job j be-

cause c′
jk = 0 for all time periods k ≥ dj − pj + 1.

In addition, the cost coefficients in (2.16), which are con-

stant for pj consecutive time periods, tend to produce al-

ternate optima for TR that may yield different feasible so-

lutions for P1 under the same sequencing rule. Consider

the example in Fig. 1, where p1 = 5, p2 = 3, d1 = d2 = 2,

ǫ1 = ǫ2 = 1, π1 = 3, and π2 = 1. The cost coefficients (for

each job in each period) are indicated in the figure for refer-

ence. Both of the schedules in Fig. 1 are optimal for TR with

an objective of 13. However, for instance, the MCT (median

completion time) sequences extracted from these alternate

optima on the left and on the right are 2 → 1 and 1 → 2, re-

spectively. (The optimal sequence for P1 is 1 → 2.) We note

that our cost coefficients in (2.11) provide an incentive to

schedule the unit jobs of the same job as tightly together as

possible and would tend to avoid ties such as in Fig. 1. Thus,

for similar lower bound values we expect (2.11) to yield bet-

ter sequence information for constructing feasible solutions

for P1. In this example, the unique optimal solution for TR

with the cost coefficients in (2.11) is to schedule 1 → 2 non-

preemptively starting at time zero with an optimal objective

of 12.6. This schedule is non-optimal with an objective of

15 if the cost coefficients in (2.16) are used for TR.

5.3.3 Cost structure

In this section we explore the sensitivity of our algorithms

to the relative costs of earliness and tardiness. We use the

data sets from Mazzini and Armentano (2001), who present

both optimal and heuristic solutions for these problems. The

values of the parameters are given in Table 7. Five problem

instances for each combination of parameters result in a total

of 180 problems for each n.

For n ≤ 20, we compute the performance measures with

respect to the optimal solution when it is available, or with
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Fig. 1 Alternate optima with cost coefficients given in (2.16)

Table 7 Parameters for the data sets from Mazzini and Armentano (2001)

n pj rj TF RDD ǫj πj

{8, 10, 12, 20, 40, 60, 80} U [1,100] U [0,P ] {0.2, 0.5, 0.8} {0.4, 0.7, 1.0} U [0,50] πj = ǫj ∗ 2

{8, 10, 12, 20, 40, 60, 80} U [1,100] U [0,P ] {0.2, 0.5, 0.8} {0.4, 0.7, 1.0} U [0,100] πj = ǫj , πj =
ǫj

2
, U [0,100]

respect to TC(S∗
LP(TIP1)) when we are not able to find the

optimal solution within the CPU time limit of 30 minutes.

We do not use the solutions of Mazzini and Armentano

(2001), as in several cases we discovered that they report

erroneous optimal solutions. Hence, we also re-evaluate the

performance of the heuristics proposed by Mazzini and Ar-

mentano (2001) based on the new best solutions obtained.

For n > 20, it becomes very time consuming to even solve

the LP relaxation of TIP1. Therefore, for these problems we

report all performance measures with respect to our lower

bound that yields an upper bound on the percentage gaps.

In Tables 8 and 9, for each combination of the number

of jobs and the cost parameters, the first row indicates the

average and the second row indicates the worst case perfor-

mance. From Section 3, recall that one can create single-job

instances with ǫ > π for which the gap between the optimal

solution for P1 and the lower bound is large. However, Ta-

bles 8 and 9 indicate that the performance of our algorithms

is not sensitive to the cost structure. In particular, for cases in

which the earliness costs are twice as large as the tardiness

costs, they perform as well as in the other cases.

In Tables 8 and 9, the last completion time sequence is the

worst in most instances, and for small n the median comple-

tion time sequence is superior to all others. As n increases,

the median completion time and switch heuristic sequences

dominate the other two. Particularly for problems with more

than 20 jobs in Table 9, both the average and maximum per-

centage gaps decrease as the number of jobs increases. The

solution times increase rapidly with the number of jobs.

Overall, our algorithms perform very well. For n = 8, 10,

12, 20, we find the optimal solution for 135, 74, 47, 22 out

of 180 problems in each case, respectively. For these 720

problems, the average and worst case optimality gaps of BH

are 1.51% and 29.50%, respectively. For n = 40, 60, 80, we

give upper bounds on the performance measures for a total

of 540 problems, and the average and worst case gaps of BH

are 1.77% and 10.53%, respectively.

Finally, Table 10 presents a comparison of the results of

Mazzini and Armentano (2001) to our results. For each n,

the first row indicates the average and the second row in-

dicates the worst case performance across 180 problems.

The label MA denotes the heuristic presented in Mazzini

and Armentano (2001). In columns 4 and 5 (“MA” and

“BH”), the heuristics are compared to either the optimal

objective value of the original problem or the optimal ob-

jective value of the LP relaxation of TIP1 for n ≤ 20, and

to our lower bound for n > 20, as discussed at the begin-

ning of this section. In all cases our average gap is less

than half of that of MA, and the worst cases indicate that

our algorithms are more robust. In the last two columns,

we report the percentage gap (TC(MA)−TC(BH))/TC(BH)

when TC(BH) < TC(MA) and TC(MA) < TC(BH), respec-

tively. For n = 40,60,80, we observe that even when MA

yields a smaller objective value than BH, the difference is

small both on average and in the worst case. Mazzini and

Armentano (2001) report that their heuristics take less than

0.5 seconds for all of their problem instances. Our heuristics

are more time consuming; however, the additional effort is

well justified. For n ≥ 40, we provide better results for two-

thirds of the problem instances, and the improvement can be

significant.

6 Concluding remarks

We developed algorithms to solve a difficult single machine

E/T scheduling problem in its most general form. This re-

search was motivated by the appearance of this problem as a

subproblem in more complex scheduling environments. The

algorithms in this paper were successfully implemented for
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Table 8 Effect of the cost structure: CPU times, number of optimal solutions, average and worst case gaps of heuristics and bounds

Costs CPU time # Opt.† Percentage gap (%)

n ǫj πj (sec.) TR† LCT ACT MCT SW BH

8 U [0,50] 2ǫj 0.06 33 −2.44 7.22 1.90 0.95 3.05 0.15

0.16 −7.08 40.22 24.69 7.94 43.48 3.87

U [0,100] ǫj 0.07 37 −3.82 7.21 3.30 0.89 3.62 0.15

0.14 −20.01 35.51 21.87 10.41 27.65 3.04

U [0,100] 0.5ǫj 0.06 34 −5.01 9.52 3.44 1.83 2.62 0.39

0.12 −48.51 136.36 44.17 25.86 24.60 5.23

U [0,100] 100 0.07 31 −4.20 9.53 3.32 2.22 4.58 0.71

0.14 −30.25 50.27 29.59 18.96 31.65 12.52

10 U [0,50] 2ǫj 0.11 17 −7.40 16.40 10.30 5.88 14.65 1.90

0.19 −21.85 77.14 80.87 80.87 115.13 15.09

U [0,100] ǫj 0.11 20 −8.27 18.39 8.81 4.56 9.62 2.00

0.21 −32.01 87.02 31.42 20.40 58.90 13.92

U [0,100] 0.5ǫj 0.10 19 −8.31 13.57 8.26 6.34 8.95 1.99

0.15 −27.96 50.56 75.32 75.32 61.48 9.45

U [0,100] 100 0.11 18 −8.33 20.10 15.43 9.95 8.66 2.97

0.22 −31.28 95.59 187.62 149.17 54.46 29.50

12 U [0,50] 2ǫj 0.13 12 −7.80 19.00 11.63 5.72 7.03 1.86

0.22 −31.16 98.81 80.69 39.95 22.67 13.47

U [0,100] ǫj 0.15 12 −7.79 16.71 11.41 7.25 11.27 2.80

0.26 −33.51 68.29 76.26 62.94 98.53 14.74

U [0,100] 0.5ǫj 0.14 14 −7.36 19.61 8.29 4.04 6.34 2.06

0.23 −35.67 105.39 43.12 25.06 28.52 15.64

U [0,100] 100 0.15 8 −6.83 16.76 9.39 7.20 7.73 3.00

0.20 −20.09 91.09 41.44 88.99 44.57 19.02

20 U [0,50] 2ǫj 0.29 8 −1.68 5.07 3.73 2.07 2.44 0.82

0.46 −5.63 21.36 30.46 9.53 21.36 6.38

U [0,100] ǫj 0.32 5 −1.64 4.56 2.85 2.15 2.02 1.04

0.53 −5.37 16.37 20.37 8.98 6.34 4.47

U [0,100] 0.5ǫj 0.30 7 −2.54 6.10 3.51 1.60 2.34 1.07

0.55 −9.78 24.26 19.87 10.00 12.98 10.00

U [0,100] 100 0.33 2 −2.11 6.16 4.11 2.10 2.93 1.18

0.60 −6.24 31.66 18.48 10.21 12.73 5.50

†For n = 12 (20), 178 (171) instances out of 180 solved to optimality are included

solving the pricing subproblems of a column generation al-

gorithm for an m-machine flow shop E/T scheduling prob-

lem, which demonstrates both their effectiveness and speed

(see Bülbül et al. 2004). We investigated a relatively unex-

plored path by considering a preemptive structure that dif-

fers from the preemption implicit in the LP relaxation of

the integer programming formulation of the original non-

preemptive problem. We constructed a set of coefficients

for the preemptive problem that has two attractive features.

First, it is, in some sense, the best set of coefficients with

a piecewise linear form with two segments. Second, the co-

efficients provide better discrimination among similar alter-

natives than the coefficients proposed by other researchers

for similar preemptive relaxations. Thus, our procedure is

less likely to provide alternate optima, which in turn leads

to better heuristic solutions that are based upon informa-

tion from the preemptive schedule. Our computational ex-

periments demonstrated that this approach yields excellent

results.

We also note that a possible extension of our research

could consider “composite unit jobs” in order to reduce so-

lution times for problems with long processing times. The

idea is to divide each job into segments whose duration

is greater than one time unit, and to treat these segments
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Table 9 Effect of the cost structure: CPU times, average and worst case gaps of heuristics

n Costs CPU time Percentage gap (%)

ǫj πj (sec.) LCT ACT MCT SW BH

40 U [0,50] 2ǫj 1.61 6.35 4.66 2.71 2.85 2.03

2.44 23.89 43.07 9.36 11.40 9.36

U [0,100] ǫj 1.57 4.63 3.46 2.10 2.29 1.71

2.48 15.17 11.81 7.53 7.78 3.76

U [0,100] 0.5ǫj 1.64 6.18 4.81 2.92 3.13 2.49

3.66 27.87 20.58 14.18 10.53 10.53

U [0,100] 100 1.90 6.03 4.67 3.12 3.03 2.42

3.19 19.48 16.35 11.91 13.12 6.55

60 U [0,50] 2ǫj 4.92 3.98 2.89 1.90 1.94 1.58

8.70 16.60 9.60 5.81 5.02 4.20

U [0,100] ǫj 4.68 4.59 2.97 2.08 1.97 1.57

11.44 16.78 11.39 9.13 6.11 4.46

U [0,100] 0.5ǫj 4.90 4.38 3.18 2.01 2.13 1.65

14.01 13.01 17.11 7.31 10.31 6.09

U [0,100] 100 5.56 4.27 3.37 2.21 2.15 1.82

10.55 15.11 9.07 6.65 8.59 6.65

80 U [0,50] 2ǫj 15.72 3.21 2.94 1.57 1.48 1.27

30.00 12.21 13.33 6.97 5.91 4.63

U [0,100] ǫj 15.97 3.30 3.09 1.95 1.68 1.45

30.54 13.79 13.00 6.10 6.44 4.74

U [0,100] 0.5ǫj 15.89 3.87 3.20 1.91 1.85 1.62

38.03 14.90 12.45 8.12 5.65 5.42

U [0,100] 100 21.61 4.38 3.38 2.28 1.77 1.67

57.63 11.03 15.06 8.91 4.27 4.27

Table 10 Comparison with Mazzini and Armentano (2001)

n # Opt. Gap (%)† Number of times Gap (%)

MA BH MA BH BH < MA MA < BH BH = MA BH < MA MA < BH

8 127 135 0.89 0.35 44 28 108 3.06 −1.29

30.03 12.52 25.19 −9.11

10 64 74 5.47 2.22 82 60 38 9.67 −3.48

85.12 29.50 85.12 −18.50

12 40 46 7.08 2.43 104 58 18 9.31 −2.49

59.04 19.02 52.50 −12.27

20 40 22 2.66 1.03 80 90 10 4.48 −0.77

36.85 10.00 30.23 −7.27

40 N/A* N/A* 4.35 2.16 116 64 0 3.52 −0.43

38.52 10.53 26.67 −2.25

60 N/A* N/A* 3.79 1.65 115 65 0 3.41 −0.26

23.64 6.65 21.43 −1.71

80 N/A* N/A* 3.50 1.50 125 55 0 2.91 −0.25

44.30 5.42 39.30 −1.17

†These percentage gaps are computed differently for n ≤ 20 and n > 20. See text for details

*Optimal solution not available
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in the same way as unit jobs are treated in our method-

ology. This type of approximation can be implemented in

many different ways, but by experimenting with differ-

ent values of the basic segment duration, one could trade

off factors such as ease of constructing feasible solutions

from the solution of TR, solution quality and computing

time.

Our model is flexible and can be used to solve a variety

of problems by making appropriate adjustments to the prob-

lem parameters. For instance, the weighted tardiness prob-

lem can be solved by setting all earliness costs equal to zero.

In addition, raw material inventory holding costs can eas-

ily be incorporated for jobs that are ready, but waiting for

processing by setting ǫ′
j = ǫj − hj and π ′

j = πj + hj for

all jobs, where hj is the raw material inventory holding cost

of job j , and ǫ′
j and π ′

j are the new earliness and tardiness

costs, respectively. We have already exploited this property

to solve a flow shop scheduling problem with intermediate

inventory holding costs (Bülbül et al. 2004), and hope to

extend this research to job shop scheduling with inventory

holding costs in the future.
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