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Abstract: Social recommendation systems leverage the abundant social information of users existing
in the current Internet to mitigate the problem of data sparsity, ultimately enhancing recommendation
performance. However, most existing recommendation systems that introduce social information
ignore the negative messages passed by high-order neighbor nodes and aggregate messages without
filtering, which results in a decline in the performance of the recommendation system. Considering
this problem, we propose a novel social recommendation model based on graph neural networks
(GNNs) called the preference-aware light graph convolutional network (PLGCN), which contains
a subgraph construction module using unsupervised learning to classify users according to their
embeddings and then assign users with similar preferences to a subgraph to filter useless or even
negative messages from users with different preferences to attain even better recommendation
performance. We also designed a feature aggregation module to better combine user embeddings
with social and interaction information. In addition, we employ a lightweight GNN framework
to aggregate messages from neighbors, removing nonlinear activation and feature transformation
operations to alleviate the overfitting problem. Finally, we carried out comprehensive experiments
using two publicly available datasets, and the results indicate that PLGCN outperforms the current
state-of-the-art (SOTA) method, especially in dealing with the problem of cold start. The proposed
model has the potential for practical applications in online recommendation systems, such as e-
commerce, social media, and content recommendation.

Keywords: graph convolution network; recommendation system; social recommendation

1. Introduction

With the emergence and prosperity of online service platforms, the dissemination and
exchange of information have been greatly promoted, and the amount of information in the
network has increased exponentially. However, when confronted with such an enormous
amount of information, users find it hard to obtain the information that is relevant and
helpful to them; this phenomenon is referred to as “information overload”. To address this
issue, a recommendation system was developed that analyzes the historical behavior data
of users and explores their potential interests to provide them with personalized services.
At present, recommendation systems are widely used in industry.

Collaborative filtering (CF) has been a widely used technique in the last few decades.
In simple terms, collaborative filtering recommends information of interest to users accord-
ing to the preferences of a group of people who share similar interests and experiences, thus
filtering out a large amount of irrelevant information. However, CF is severely limited by
the problem of sparse data, and the effectiveness of the model is significantly reduced when
there are insufficient data on user–item interactions. As online social platforms such as
Facebook, WeChat, and Twitter have grown in popularity, an increasing number of people
are posting product reviews on these sites. References [1–3] and personal experience also
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show that people are affected by their friends’ views and actions and gravitate toward
those who share their interests. In summary, the application of social relationships in recom-
mender systems has also attracted increasing attention [4,5]. Based on this understanding,
recommendation systems can introduce social information to reduce data sparsity and
improve recommendation accuracy, and these recommendation systems are called social
recommendation systems [6–8].

Early GNNs mainly solved problems strictly related to graph theory [9–11], such
as molecular structure classification, in which GNNs showed a superb ability to handle
non-Euclidean data. Since data in recommender systems can naturally represent graph
data (e.g., interaction data between users and items represented as bipartite graphs),
much recent work has applied graph neural networks to recommender systems. Within
social recommendation systems, data are typically presented in two forms: the user–item
interaction graph, which contains information pertaining to the interactions between users
and items, and the social graph, which reflects the social relations of users. There are
generally two strategies for recommender systems to use social information [12]. One is to
learn user representations from the two graphs separately [8,13,14] and then combine them
into a vector, which is more flexible and can use different treatments for different graphs;
the other is to merge the two graphs into a unified heterogeneous graph [7,15] and apply
GNNs to propagate the information, which has the advantage that the information in both
graphs is unified in one representation, which can capture some more complex interactions.

Although GNNs have shown good performance in the field of social recommendation,
most of the existing models simply combine social information as auxiliary information
with interactive information without fully utilizing the social graph’s information. In the
information propagation, they only consider the information propagation of high-order
neighbor nodes, but no particular attention is given to the fact that there is a lot of useless
or even negative information in this information. Inspired by IMP-GCN [16], we introduce
an unsupervised subgraph construction module in the social recommendation system,
which divides the interaction graph into multiple subgraphs based on user preferences,
and users who share similar interests are placed into the same subgraph. We then perform
graph convolution operations in the subgraphs using a lightweight GNN to filter out
negative information brought by users with different preferences. We also design a feature
aggregation module to better integrate user representations in the two graphs.

In conclusion, the primary findings of this study are as follows:

• A novel social recommendation model PLGCN is proposed, which splits the user–item
interaction graph into multiple subgraphs based on the user’s preferences and passes
information in the subgraphs, filtering out negative information brought by users with
different preferences.

• A new feature aggregation module was designed that can aggregate the user rep-
resentations in the two graphs more effectively and has regularization to prevent
overfitting.

• We performed comprehensive experiments using two publicly available datasets to
evaluate the recommended performance of PLGCN. Based on the outcomes of these
experiments, it is evident that PLGCN outperforms the baseline models.

The rest of this article is summarized as follows: We begin with a brief overview
of typical relevant work in Section 2. The social recommender system problem and its
definition are introduced in Section 3. The design details of the PLGCN model are described
in Section 4. Section 5 presents a comprehensive experiment conducted to assess the perfor-
mance of PLGCN. Finally, we conclude our work and identify potential research directions.

2. Related Work
2.1. Social Recommendation

As online social platforms (e.g., WeChat, Twitter, Facebook) and the richness of users’
social information grow rapidly, an increasing number of recommendation systems are in-
troducing users’ social information. Leveraging social influence [1] and social homogeneity,
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as outlined in [2], facilitates a better comprehension of user preferences, and data sparsity
is effectively mitigated.

We generally categorize the prior social recommendation systems relevant to our
study into three groups based on how they utilize social information. Social networks are
used as a kind of regularization in the first category of methods [4,17–19]. SocialMF [19]
integrates trust propagation into the matrix factorization technique, making the user’s
preferences as close as possible to his/her social neighbors. CSR [18] designed a generic
regularization term to model the diverse similarities among users and their various friends.
One kind of ensemble method involves splitting all items into different groups and ranking
them manually [20,21]. SBPR [20] suggests that users have a tendency to provide higher
ratings to products that are favored by their friends, and for each user, the collection of
items is sorted into three categories: negative items, social items, and positive items. The
rankings are as follows: negative items < social items < positive items. The third method is
to fuse the embeddings of the user and his/her neighbors [22–24]. TrustSVD [22] introduces
social information based on SVD++ [25] and uses implicit feedback from social neighbors
as auxiliary implicit feedback for users. RSTE [24] posits that the user’s final choice is a
trade-off between his/her own likes and the opinions of his/her trusted friends and the
linear fusion of the user’s embedding with the user’s neighbor nodes in the social graph.
Nevertheless, none of these models can adequately model the intricate social relationships
between users and the interactions between users and items. Therefore, numerous recent
studies have focused on employing deep learning for social recommendation systems, with
GNN-based social recommendation systems attracting attention because both the social
relationship between users and the data that reflect user–item interactions can be modeled
naturally in graph form.

2.2. GNN-Based Social Recommendation

The ability of GNNs to model recursive social diffusion processes makes them increas-
ingly popular in the domain of social recommendation. The primary tenet of GNNs is to
iteratively collect surrounding node information to generate a more accurate representation
of the target node and ultimately obtain a representation of each node.

The first social recommendation system model that uses graph neural networks is
GraphRec [6], which combines the user’s first-order neighbors’ information from both
graphs to learn the user’s representation. DANSER [14] uses two graph attention networks
to obtain user and item implicit representations from each of the two graphs and then
combines them to predict users’ ratings or preferences for items. HOSR [26] uses multi-
step message propagation to encode higher-order social relationships in user embedding
learning, refining user embeddings by capturing higher-order collaboration signals in the
social graph. In contrast, our proposed PLGCN captures both higher-order collaboration
signals in the interaction graph and social graph simultaneously and fuses them into the
final user embedding using a feature aggregation module. DiffNet [8] fully leverages the
high-order social neighborhood information of users and adds the vector of users’ preferred
items as an auxiliary vector to the vector representation of users, but this does not filter
out the useless parts of the high-order information. On the basis of the DiffNet model,
DiffNet++ [7] additionally exploits the high-order information in the interaction graph to
optimize the representation of users and items and distinguishes the significance of the
different neighbors using the attention mechanism, thus alleviating this problem. Unlike
DiffNet++, we are inspired by IMP-GCN [16] to divide the user-interaction graph into
multiple subgraphs based on users’ preferences to avoid interaction between users with
different preferences. Furthermore, we design a new feature aggregation model to obtain a
more accurate user embedding. The research conducted on SocialLGN [27] is closely related
to our own research. These researchers extended the LightGCN [28] framework and ap-
plied convolution operations on both the interaction graph and the social graph to improve
the framework’s effectiveness in handling social recommendation problems. The main
differences between SocialLGN and our proposed PLGCN are as follows: (1) SocialLGN
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aggregates all messages from neighboring nodes without considering their relevance. In
contrast, our PLGCN includes a subgraph construction module, and we perform message
passing in the subgraph to effectively filter out irrelevant information. (2) Our feature
aggregation module uses MLP to fully explore the potential relationship between user inter-
action information and social information, whereas SocialLGN uses a linear transformation
in the graph fusion module.

In summary, several approaches have been proposed to address the challenges of social
recommendation. However, these approaches often have limitations, such as the difficulty
of modeling complex user–item interactions and social relationships. Some approaches use
attention mechanisms to distinguish the importance of neighboring nodes and filter out
irrelevant information, but they often oversimplify the use of social information and do
not fully exploit its value. We propose the PLGCN approach to overcome these challenges,
which uses subgraph building blocks to filter out irrelevant information and fully leverages
the relationship between social and interaction information through neural networks. Our
approach provides a more nuanced modeling of the complex interaction between users
and items and the social relationship, leading to improved recommendation accuracy
and relevance.

3. Problem Definition

Essentially, the recommendation problem is to analyze the user’s behavior data to
predict the preferences of the user and then combine the data of the items in the system to
calculate the items that could potentially appeal to the user and generate a recommendation
list from them. However, users are only able to explicitly interact with a small fraction
of items, which results in very sparse valid data. The social recommendation system
introduces users’ social information, which supplements the sparse and effective data and
reduces data sparsity. It is clearly effective to use the homogeneity and the influence of
social relationships to understand users’ preferences.

In the paragraphs that follow, we define a GNN-based social recommendation system.
The notations  and U are used to represent the sets of items and users, and they have M
and N elements, respectively (i.e., || = M, |U | = N). In general, recommendation systems
make use of two distinct types of data: social graphs and user–item interaction graphs. A
description of these two graphs is given below.

The interaction behavior of users with items (e.g., views, rates, and clicks) is represented
by the user–item interaction graph. The graph can be defined by triples (u, yui, i|u ∈ U , i ∈ )
and is denoted by GI , where yui represents the edge that connects user u to item i, and yui > 0
means that user u interacts with item i. On the other hand, there will not be any interaction
between them if yui = 0. The notation N I

i means the collection of users who have explicit
interaction with item i, and the notation N I

u indicates the collection of items with which user
u has explicit interaction.

Users’ social connections are represented in the social graph, which provides auxiliary
information about the user (e.g., direct follower or undirected friendship). We represent the
social graph as Gs, which has the triple form {(u, suv, v|u, v ∈ U )}, where suv represents
the relationship between users u and v, and suv = 1 means there is an observable social
connection between users u and v, while suv = 0 indicates there is no connection between
them. The symbol N S

u is used to denote the collection of users who have a social connection
with user u.

Based on the aforementioned conditions, the social recommendation task is described
as follows: given the social graph GS and the user–item interaction graph GI , the recom-
mendation system should be able to predict the probability of interaction between user
u and all items, sort them in descending order, and choose the top N items to generate a
recommendation list for user u.
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4. The Proposed Method

We present the general structure and technical details of PLGCN as well as the model’s
training process.

4.1. The Architecture of PLGCN

Figure 1depicts the general design of PLGCN. The model consists of 4 primary com-
ponents: (i) an embedding layer that leverages the unique identifiers of users and items to
initialize their representation vectors; (ii) a subgraph construction module, which constructs
multiple subgraphs and groups users with common preferences into the same subgraph;
(iii) propagation layers, which propagate the representations of users and items in both
graphs; and (iv) a prediction layer that predicts the value of any edge between users and
items using their final embeddings (i.e., the probability that user and item will interact).
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Figure 1. Architecture design of our PLGCN model with 2 subgraphs as illustration. First-order prop-
agation operations are performed on the entire interaction graph and social graph, and higher-order
propagation operations are performed on the subgraphs of the interaction graph and social graph.

The following is a description of the mechanism of operation of each component.

4.2. Embedding Layer

The embedding layer employs user and item identifiers to map them to a latent space
with low dimensionality. As an example, the embedding layer can encode item i (or user
u) as a low-dimensional dense vector of fixed length e(0)i ∈ Rd (or e(0)u ∈ Rd), and the
superscript “(l)” (l ≥ 0) indicates the layer index for the output of the embeddings at
the l-th propagation layer. When l = 0, it indicates the embedding layer’s output. d is a
hyperparameter determined in advance that indicates the dimension of an embedding.

The matrices E(0)
U ∈ RN×d and E(0)

I ∈ RM×d represent the output of all N users and all
M items from the embedding layer, respectively. User u’s embedding is the transpose of
the matrix E(0)

U ’s u-th row, and the same applies to item i.
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4.3. Subgraph Construction Module

The subgraph construction module splits the given user–item interaction graph into
Nc subgraphs, where the number of subgraphs Nc is a hyperparameter. We define the
division of users into subgraphs as a classification task [29], in which each user is assigned
to a subgraph. Specifically, each user’s embedding aggregates graph structure information
and the user’s ID information:

Fu = σ(b1 + W1

(
e(0)u + e(1)u

)
) (1)

where Fu denotes the user embedding obtained by embedding aggregation, e(0)u represents
the output generated by the embedding layer, and e(1)u is the feature vector that aggregates
first-order neighbor information in the graph, which is generated as an output from the first
propagation layer. σ denotes an activation function called LeakyReLU, capable of encoding
both negative and positive signals. The learnable parameters b1 ∈ R1×d and W1 ∈ Rd×d

are the bias vector and the weight matrix, respectively. To split the user–item interaction
graph into multiple subgraphs based on user preferences, we input the user embeddings
into a 2-layer neural network to obtain a prediction vector:

Uh = σ(b2 + W2Fu) (2)

Uo = σ(b3 + W3Uh) (3)

where Uo is the output vector, and the position where the value is at its maximum is
the subgraph to which the user belongs, so it is natural that the number of subgraphs
and the output vector’s dimension are the same. The learnable parameters W2 ∈ Rd×d

and W3 ∈ R1×Nc are the weight matrices, and the learnable parameters b2 ∈ R1×d and
b3 ∈ R1×Ns are the bias vectors. For users with similar embeddings, the neural network will
group them into the same subgraph. This is an unsupervised node classification method
because we do not need the real labels of the users.

In summary, we feed the user ID information and first-order user embedding, which
best reflect user preferences, into the subgraph construction module. Then, we utilize
the powerful modeling ability of neural networks to handle nonlinear relationships and
classify user preferences. It is worth noting that we refrain from using traditional clustering
algorithms such as K-means [30] due to the high dimensionality of user feature vectors in
the current recommendation system field. Traditional clustering algorithms are susceptible
to the curse of dimensionality when dealing with high-dimensional data, which can lead
to information loss if PCA-based [31] dimensionality reduction is used. Additionally,
traditional clustering algorithms cannot effectively model complex nonlinear relationships.

The subgraph construction module groups users with similar preferences and their
directly related items into the same subgraph, with each subgraph being independent. By
passing messages only within each subgraph, our approach effectively filters out irrelevant
or negative information.

4.4. Propagation Layers

The propagation layer aims to capture hidden information in both graphs through
graph convolution operations, thereby learning the representations of users and items.
The propagation layer is divided into two main parts: user embedding propagation
and item embedding propagation. A detailed explanation of them is presented in the
following subsections.

4.4.1. User Embedding Propagation

The goal of user embedding propagation is to learn the representation of users in both
graphs. We use lightweight GNNs to capture the collaboration signals of the interaction
graph and the social graph, propagate information on the two graphs separately, and finally
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generate the final user embeddings through the feature aggregation module. The process
of user u’s l-th (l ≤ L) iteration propagation can be abstracted as follows:

e(l)u = Agg
({

e(l−1)
i , ∀i ∈ N I

u

}
,
{

e(l−1)
v , ∀v ∈ NS

u

})
(4)

where e(l−1)
i and e(l−1)

v are the embeddings of item i and user v, respectively, after the
l-th iteration propagation, and Agg(∗) is the aggregation function that aggregates the
embeddings of item i with which u has interaction and the embeddings of user v with
which u is socially connected. We designed a feature aggregation module to act as the user
aggregation function Agg(∗) to better learn user embeddings.

Because direct interactions between users and items more accurately reflect user
preferences, this is crucial and reliable information. To construct subgraphs based on
user preferences, we perform first-order graph convolution operations on the social graph
and entire interaction graph alone, while second-order or higher-order graph convolution
operations are performed on the social graph and subgraphs of the interaction graph to
filter out useless or even negative information from users with different preferences. To
achieve this, two separate embeddings are created in the interaction graph and the social
graph to represent user u after the l-th iteration propagation, with t(l)u and s(l)u being their
respective representations and e(l)u being the user’s final embedding after the l-th iteration
propagation. Thus, for user u, the first-order propagation can be expressed as follows:

t(1)u = ∑
i∈N I

u

1
cui

e(0)i (5)

s(1)u = ∑
v∈N S

u

1
cuv

e(0)v (6)

where cui is
√
|N I

u ||N I
u |, which is the product of the square root of the degree of user u and

item i in the interaction graph, and its inverse is the normalization term that prevents the
user or item embedding scale from increasing due to graph convolution operations. cuv is√∣∣N S

u
∣∣∣∣N S

v
∣∣, which is the product of the square root of the degree of user u and user v in

the social graph and serves the same purpose as cui.
The process of updating the embedding in second-order or higher-order (i.e., l ≥ 2)

graph convolution is analogous to the first-order graph convolution process, with the
difference that high-order graph convolution is performed in the social graph and the
subgraph of the interaction graph to which the user belongs. The procedure is explained in
full in the steps that follow:

t(l)u = ∑
i∈N Ic

u

1
cuic

e(l−1)
i (7)

s(l)u = ∑
v∈N S

u

1
cuv

e(l−1)
v (8)

where cuic is
√∣∣∣N Ic

u

∣∣∣∣∣∣N Ic
u

∣∣∣, which is the product of the square root of the degree of user u

and item i in the subgraph of the interaction graph to which the user belongs. As Equations
(5)–(8) show, we have adopted a lightweight form of propagation, discarding complex
operations such as linear transformations, and this lightweight form of propagation is
inspired by SGC [32] and LightGCN [28].

The feature aggregation module is then used to aggregate t(l)u and s(l)u to generate
the updated embedding e(l)u for layer l. As shown in Equations (9) and (10), the feature
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aggregation module can be seen as a function Agg(∗) with two embeddings as parameters,
and the specific aggregation steps are as follows:

h(l)
u = MLP

(
σ
(

W4t(l)u

)
‖ σ
(

W5s(l)u

))
(9)

e(l)u =
h(l)

u∣∣∣∣∣∣h(l)
u

∣∣∣∣∣∣2 (10)

where W4 and W5 ∈ Rd×d are trainable weight matrices and ‖ is a vector splicing operation
that splices two vectors of dimension d into a vector of length 2d. σ is the tanh activation
function, and MLP(∗) is a multilayer perceptron that can capture the complex relationship
between two users’ embeddings in each dimension. Equation (9) is a regularization opera-
tion that prevents embedding e(l)u from becoming particularly large as the number of layers
l grows.

4.4.2. Item Embedding Propagation

For item embedding propagation, the propagation process is analogous to that of
users, but this process exists only in the user–item interaction graph. We use lightweight
GNNs to capture the collaboration signals and update the item embedding by recursively
passing the representation of neighboring nodes. The specific process is shown as follows:

e(l)i = ∑
u∈N I

i

1
ciu

e(l−1)
u (11)

where ciu is
√
|N I

u ||N I
u |, which is the product of the square root of the degree of user u and

item i in the interaction graph, and it also serves for normalization.

4.5. Prediction Layer

After K rounds of propagation, the embedding for user u and item i is obtained for
each layer, i.e.,

{
e(0)u , . . . , e(L)

u

}
and

{
e(0)i , . . . , e(L)

i

}
, respectively. We weight and sum the

user and item embeddings for each layer to obtain the final representation:

e∗u =
L

∑
l=0

αle
(l)
u (12)

e∗i =
L

∑
l=0

αle
(l)
i (13)

where αl denotes the l-th layer’s embedding weight factor and e∗u and e∗i are the final
embeddings of user u and item i, respectively.

To obtain the preference of user u for item i, the inner product of their embeddings
is computed:

ŷui = e∗Tu e∗i (14)

where ŷui denotes our predicted preference of user u for item i.

4.6. Model Training

In general, the tasks of the recommender system are divided into two categories: CTR
prediction and top-N recommendation. In this work, our recommendation task is top-N
recommendation, where the aim is to select N items that suit the user’s preferences best
and recommend them to the user in the form of a list. In a real business system, this task is
worth more than predicting ratings [33].
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To achieve this, we minimize the Bayesian personalized ranking loss, which is based
on the idea that it increases the gap between the scores of the negative and positive samples,
with positive samples being user and item interactions that already exist in the dataset
and negative samples being non-existent interactions that are not observed in the dataset.
Therefore, we define a triple {u, i+, i−}, where u has interacted with i+ but not with i−.
The objective function has the following form:

arg min ∑
(u,i+)∈N I

u∪ (u,i−)/∈N I
u

−lnσ(ŷui+ − ŷui−) + λ||Θ||22 (15)

where λ and Θ denote the weight decay rate and the parameters of PLGCN, respectively.

4.7. Matrix-Form Propagation Rule of PLGCN

We propose a matrix-based representation of the PLGCN model for propagating
information on graphs in this section. To achieve this goal, we use R ∈ RN×M to represent
the rating matrix. Each element rui(u = 1 : N, i = 1 : M) inside the matrix is binary
and shows if user u and item i have interacted; 1 implies that an interaction exists, and
0 indicates that there is no interaction. Then, S ∈ RN×N indicates the adjacency matrix of
social graph Gs.

We further define LR = D−
1
2

R RD
1
2
R, where LR is the Laplacian matrix for the interaction

graph. DR ∈ RN×N is a diagonal matrix, where dii is the element that counts how many
elements in R’s i-th row are nonzero. In the same way, we also define the transpose matrix
LT

R of LR and the Laplacian matrix for social graph LS.
As illustrated in 0, the following expression describes the first layer propagation

in PLGCN:
H(1)

U = MLP
(

σ
(

W1LRE(0)
I

)
‖ σ
(

W2LSE(0)
U

))
(16)

E(1)
U =

H(1)
U

H(1)
U 2

(17)

E(1)
I = LT

RE(0)
U (18)

The following formula shows the l-th layer’s propagation in matrix form in PLGCN:

E(l)
Uc

= LcE(l−1)
Uc

(19)

where Lc denotes the Laplacian matrix belonging to a subgraph of the interaction graph.
The information of all subgraphs is then aggregated:

E(l)
U = ∑

Uc∈Gc

E(l)
Uc

(20)

where E(l)
U is the final embedding of the l-th layer, and Gc denotes the set of subgraphs of

the user–item interaction graph. Then, we perform the same operation as the first layer:

H(l)
U = MLP

(
σ
(

W1LRE(l−1)
I

)
‖ σ
(

W2LSE(l−1)
U

))
(21)

E(l)
U =

H(l)
U

H(l)
U 2

(22)

E(l)
I = LT

RE(l−1)
U (23)
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5. Empirical Analysis

To compare our PLGCN’s performance with other recommendation methods, this
section describes the evaluation metrics, the dataset, the parameter settings, and the
experiments we carried out on various datasets. We ran all programs on a Win10 PC with
an RTX 3070 Ti graphics card with 8 G of RAM and an i5 12,600 K processor. We used
PyTorch to build the PLCGN.

5.1. Experimental Settings
5.1.1. Datasets

The proposed model was evaluated by conducting experiments on two datasets from
the real world that vary in size and levels of sparsity. The datasets are described as follows:
The LastFM dataset [34] (https://www.last.fm (accessed on 17 May 2023)), which includes
1892 users’ social connections and interactions with music-related items, is provided by
Last.fm, one of the hottest social music platforms of the moment for sharing and discover-
ing music in the world. The Ciao dataset [35] (http://www.ciao.co.uk (accessed on 17 May
2023)) is an online shopping dataset that includes 7375 customer reviews for a variety of
products as well as information about user friendships. Many social recommendation sys-
tems use these datasets to validate model performance [27,36,37]. We divided each dataset
into three random parts, the training set, the test set, and the validation set, corresponding
to a ratio of 8:1:1. The precise statistical data from the datasets we used are displayed in
Table 1.

Table 1. Statistics for the two datasets. # represents the number of elements in the set.

Dataset Ciao LastFM

# Users 7375 1892
# Items 105,114 17,632

# Interactions 284,086 92,834
Density (Interactions) 0.037% 0.278%
# Social Connections 57,544 25,434

Density (Social Connections) 0.106% 0.711%

5.1.2. Benchmark Cases

We evaluated how well PLGCN performs by contrasting it with six other methods
that are state-of-the-art:

• BPR [38]—A list of recommendations is created by sorting items using the tradi-
tional pairwise collaborative filtering approach according to the maximum posterior
probability determined by a Bayesian analysis of the issue.

• SBPR [20]—An MF-based recommendation model to enhance the accuracy of personal-
ized rankings with collaborative filtering algorithms using users’ social relationships.

• DiffNet [8]—A social recommendation model that utilizes GNNs. It directly takes the
user embeddings’ vector sum in the two graphs to generate the final user embeddings.

• NGCF [39]—A recommendation model based on GCN is designed with a neural
network approach to recursively propagate embeddings in the interaction graph.

• LightGCN [28]—A lightweight recommendation model based on GCN that eliminates
two operations that would have caused recommendation performance degradation
based on NGCF.

• SocialLGN [27]—User social information was introduced on the basis of LightGCN,
and a graph fusion operation was created to combine user embeddings with interaction
information and user embeddings with social information.

https://www.last.fm
http://www.ciao.co.uk
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5.1.3. Metrics

To assess the recommended performance under the top-N task of our PLGCN and five
other SOTA methods, we use three metrics that are commonly applied; two of them are
precision and recall, and they have the following expressions:

Precision =
#TP

#TP + #FP
(24)

Recall =
#TP

#TP + #FN
(25)

where FP is the number of incorrectly predicted negative samples, TP denotes the number
of properly predicted positive samples, and FN denotes the number of incorrectly predicted
positive samples. The other is NDCG, i.e., normalized discounted cumulative gain, which
is used to measure the quality of the ranking, and it is expressed as follows:

NDCG@N =
r(1) + ∑l

i=2
r(i)
logi

2

∑
|REL|
i=1

r(i)

log(i+1)
2

(26)

where |REL| is the sum of the relevance scores r(i) of the top N items recommended.
r(i) = 1 indicates that the user interacts with the recommended item; r(i) = 0 means that
the user does not interact with the recommended item.

In summary, the indicators used in this experiment and their significance are listed
below, and it is worth noting that these metrics are all dimensionless:

• Precision@k: the proportion of relevant items among the top k items recommended to
the user. Precision@10 and Precision@20 indicate the precision at 10 and 20 recommen-
dations, respectively.

• Recall@k: the proportion of relevant items among all the relevant items in the test set
that are recommended to the user. Recall@10 and Recall@20 indicate the recall at 10
and 20 recommendations, respectively.

• NDCG@k: normalized discounted cumulative gain at k. NDCG is a measure of ranking
quality that takes into account both the relevance of the recommended items and their
position in the list. NDCG@10 and NDCG@20 indicate the NDCG score at 10 and
20 recommendations, respectively.

The greater the value for these three evaluation metrics, the better the performance.
Given the sparsity of the interaction data, we repeatedly randomly selected an item that
the user did not interact with as a negative sample; then, we combined items that the user
did interact with the negative sample. To eliminate the instability of random selection, for
each model and dataset, we repeated the experiment five times and averaged the results as
the ultimate ranking results.

5.1.4. Parameter Settings

To ensure that the experiments were fair and equitable, the parameters of each method
were adjusted based on our own experimental data or the corresponding references. We
used the PyTorch framework to construct our PLGCN and Adam to infer model parameters.
The model was optimized with a learning rate η of 1× 10−3. The dimension of embedding
was fixed at 200, and the training batch size was fixed at 2048. After trials in the range
of
{

1× 10−6, 1× 10−5, . . . , 1× 10−2}, we fixed weight decay (λ) at 1× 10−4. The weight
(αl) for each propagation layer was 1

L+1 , where L is the number of layers and Nc is the
subgraph count. For this paper, L was set to 3, and the value of Nc was 2. Early stopping
was adopted to terminate the training process. To enhance readability, we present the
parameter settings in a tabular format, as shown in Table 2.
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Table 2. Parameter settings.

Parameter Value

Learning rate (η) 1× 10−3

Dimension of embedding (d) 200
Training batch size 2048
Weight decay (λ) 1× 10−4

Number of layers (L) 3
Number of subgraphs (Nc) 2

5.2. Model Performance Evaluation

In the recommendation field, the problem of cold start is a matter of great concern, for
which we designed a special scenario to evaluate the cold-start performance of PLGCN and
other baseline models by referring to the approach in the literature [27]. In both datasets,
we compared the experimental results for all models, including the cold-start case. In the
test set, users who interacted with fewer than 20 items were labeled as cold-start users.
We employ this strategy to provide a test set for cold-start users alone, which includes
only cold-start users and their social and interaction information. The results of PLGCN
and the five baseline models on the original test set are shown in Table 3. The outcomes
of the aforementioned models on the cold-start test set are displayed in Table 4, and the
improvements in Tables 3 and 4 indicate the percentage increase in performance of our
model in terms of precision, recall, and NDCG at 10 and 20 recommendations compared to
the best baseline model. It is worth noting that all experimental results were not normalized.

Table 3. Recommendation performance of all models on both datasets. The underlined value is the
second-best performance, and the bolded value is the best. Improvement is the comparison between
the best performance and the second-best performance.

Dataset Model Precision@10 Precision@20 Recall@10 Recall@20 NDCG@10 NDCG@20

LastFM

BPR 0.0922 0.0720 0.0962 0.1499 0.1099 0.1321
SBPR 0.1398 0.1010 0.1442 0.2070 0.1749 0.1978

DiffNet 0.1727 0.1215 0.1779 0.2488 0.2219 0.2474
NGCF 0.1766 0.1269 0.1796 0.2576 0.2287 0.2563

LightGCN 0.1961 0.1358 0.2003 0.2769 0.2536 0.2788
SocialLGN 0.1972 0.1368 0.2026 0.2794 0.2566 0.2883

PLGCN 0.2043 0.1412 0.2091 0.2881 0.2646 0.2903
Improvement 3.60% 3.22% 3.21% 3.11% 3.12% 0.69%

Ciao

BPR 0.0145 0.0111 0.0220 0.0339 0.0229 0.0260
SBPR 0.0179 0.0141 0.0259 0.0412 0.0266 0.0307

DiffNet 0.0238 0.0182 0.0341 0.0527 0.0359 0.0403
NGCF 0.0178 0.0179 0.0343 0.0531 0.0359 0.0407

LightGCN 0.0271 0.0202 0.0410 0.0591 0.0437 0.0478
SocialLGN 0.0276 0.0205 0.043 0.0618 0.0441 0.0486

PLGCN 0.0308 0.0230 0.0446 0.0662 0.0476 0.0526
Improvement 13.59% 12.20% 3.72% 7.12% 7.94% 8.23%

The outcomes demonstrate that models based on MF do not perform as well in all cases
and exhibit a performance much inferior to that of GNN-based models because MF-based
models are more susceptible to data sparsity and cannot capture complex interactions.
LightGCN performs better in the vast majority of cases than BPR, SBPR, DiffNet, and
NGCF. As pointed out in [28], LightGCN removes two fundamental operations in GCN
that can negatively affect recommendation performance, namely linear transformation and
nonlinear activation. SocialLGN performs better than LightGCN because it introduces
social information on top of LightGCN and considers the effect of higher-order graph
structure on user embedding.
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Table 4. Recommendation performance of all models on two cold-start datasets. The underlined value
is the second-best performance, and the bolded value is the best. Improvement is the comparison
between the best performance and the second-best performance.

Dataset Model Precision@10 Precision@20 Recall@10 Recall@20 NDCG@10 NDCG@20

LastFM-cold

BPR 0.0282 0.0209 0.1151 0.1615 0.0828 0.0989
SBPR 0.0292 0.0333 0.1123 0.2467 0.0709 0.1159

DiffNet 0.0417 0.0271 0.1713 0.2407 0.1107 0.1309
NGCF 0.0333 0.0292 0.1169 0.2141 0.1074 0.1411

LightGCN 0.0417 0.0313 0.1727 0.2416 0.1374 0.1560
SocialLGN 0.0458 0.0333 0.1974 0.2663 0.1419 0.1643

PLGCN 0.0667 0.0396 0.2624 0.3000 0.1716 0.1821
Improvement 45.63% 18.92% 32.93% 12.65% 20.93% 10.83%

Ciao-cold

BPR 0.0061 0.0047 0.0208 0.0328 0.0138 0.0179
SBPR 0.0070 0.0060 0.0234 0.0384 0.0165 0.0219

DiffNet 0.0104 0.0081 0.0339 0.0539 0.0248 0.0316
NGCF 0.0104 0.0085 0.0341 0.0557 0.0245 0.0319

LightGCN 0.0131 0.0096 0.0429 0.0616 0.0319 0.0384
SocialLGN 0.0134 0.0097 0.0441 0.0630 0.0328 0.0394

PLGCN 0.0144 0.0106 0.0447 0.0668 0.0336 0.0412
Improvement 7.46% 9.28% 1.36% 6.03% 2.44% 4.57%

The results unequivocally show that PLGCN consistently achieves the best perfor-
mance. For instance, in contrast to SocialLGN, PLGCN improves the Recall@10 on the
original LastFM dataset by 3.22% and the Precision@10 on the original Ciao dataset by
13.59%. Since SocialLGN propagates messages on the social graph and the whole user–
item interaction graph without constructing subgraphs, by comparing the performance of
PLGCN with SocialLGN in the experiments, it can be seen that propagating information in
subgraphs can significantly raise the effectiveness of recommendations. In particular, on
the LastFM dataset containing information about cold-start users only, PLGCN improves
45.63% in the Precision@10 metric and 32.93% and 20.93% in Recall@10 and NDCG@10,
respectively. By looking at the data in 0, we can see the superior ability of PLGCN in
alleviating the cold-start problem. Additionally, we find that in the cold-start scenario,
the denser the interaction and social graphs of the dataset are, the more significant the
performance improvement is, while the opposite is true in the original dataset.

5.3. Ablation Experiments

We ran an ablation experiment to evaluate how the PLGCN feature aggregation module
and the subgraph construction module affected the performance of the recommendations.

5.3.1. Effect of the Feature Aggregation Module

For this section, two variants were designed, and PLGCN was compared to them to
verify the performance improvement of the feature aggregation module:

• PLGCNGCN: This variant uses the feature aggregation operation in GCN [40] to aggre-
gate the user’s embedding in both graphs with the following equation:

fGCN = σ
(

W
(

t(l)u + s(l)u

))
(27)

• PLGCNGraphSage: This variant uses the feature aggregation operation in GraphSage [33]
to aggregate the user’s embedding in both graphs with the following equation:

fGraphSage = σ
(

W
(

t(l)u

∣∣∣∣∣∣s(l)u

))
(28)

In Equations (27) and (28), t(l)u and s(l)u denote the embedding of user u propagated
through the l-th iteration on the interaction graph and social graph, respectively. W is the
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trainable transformation matrix, || means the concatenation operation, and σ is the tanh
activation function.

As shown in Figure 2, when compared to other models, our proposed feature aggrega-
tion module performs the best in all cases. The explanation for the superior performance of
PLGCN is that our proposed feature aggregation module first performs a feature transfor-
mation on t(l+1)

u and s(l+1)
u and then uses an activation function to activate them nonlinearly,

such that a joint space may be created between the user embedding in the two graphs.
The multilayer perceptron can be used to explore higher-order feature interactions. In
addition, the recommendation performance benefits from the normalization operation,
which prevents e(l)u from increasing with l.
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5.3.2. Effect of Subgraph Construction Module

This section compares PLGCN with a variant to evaluate whether our proposed
subgraph construction module is effective:

• PLGCNs: In this variant, we do not use the subgraph construction module, and we
use the same lightweight GNN framework to propagate messages in the social graph
and the entire interaction graph.

Table 5 shows the comparison results, which demonstrate that PLGCN has better
recommendation performance because the subgraph builder divides users with the same
preferences and the items they interact with into a subgraph to filter out the negative
information brought by users with different preferences.
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Table 5. Performance comparison of PLGCN and its variant on two datasets. The underlined value is
the second-best performance, and the bolded value is the best.

Dataset LastFM Ciao

Model Precision@10 Recall@10 NDCG@10 Precision@10 Recall@10 NDCG@10

PLGCNs 0.2017 0.2065 0.2629 0.0307 0.0441 0.0475
PLGCN 0.2043 0.2091 0.2646 0.0308 0.0446 0.0476

PLGCNs

5.4. Impact Analysis for Hyperparameters

Two crucial parameters affect the performance of PLGCN: the propagation layer
number (L) and the subgraph number (Nc). We investigate how they impact the model in
this section.

5.4.1. Impact of the Number of Propagation Layers

To explore how the model’s performance is impacted by the number L of propagation
layers, we kept the other parameters constant and changed L to [1–5]. We display the
experimental results in Figure 3, and there is a noticeable improvement in PLGCN’s
performance when the value of L is increased from 1 to 3 on the original LastFM dataset, and
the model performs best at L = 3. The original Ciao dataset shows a similar trend, where
the model attains the highest performance at k = 3 and the performance decreases when k
is greater than 3. We inferred from our observations that the recommended performance of
the model may be negatively affected by the oversmoothing effect caused by too large a K
value, and therefore, we set the K value to 2–4, which is a reasonable choice.
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5.4.2. Impact of the Number of Subgraphs

The performance of the PLGCN is examined in this section in relation to various
subgraph Nc counts. We set Nc to [2–4], and the other parameters were constant. Figure 4
displays the outcomes, where PLGCN2, PLGCN3, and PLGCN4 represent the PLGCN
model when Nc is 2, 3, and 4, respectively. It can be seen that PLGCN2 performs best in
most cases when there are three propagation layers. It can be assumed that there are fewer
layers of propagation at this point, and a node in the subgraph of PLGCN2 has more nodes
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connected in a short distance and acquires more information than the nodes in PLGCN3
and PLGCN4, so it performs better.
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6. Discussion

In our experiments, we showed that our graph neural network-based social recommen-
dation model outperforms some previous recommendation models ([8,27,28]). Compared
with [28], we find that adding social information to a recommender system does improve the
recommendation performance, while compared with [8,27], we find that the quality of social
information and the method of using social information also have a crucial impact. In some
cases, the performance improvement of our proposed method, PLGCN, is more evident in
the cold-start scenario. We believe that cold-start users have fewer interaction data, and
negative information has a greater impact on recommendation performance. By filtering
out negative information, we substantially improve the recommendation performance.

However, our proposed model also has some limitations, which highlight opportuni-
ties for future research. For example, we only consider user preferences in constructing
subgraphs, while other social features such as friendship networks or trust levels can be
incorporated to enhance the social filtering process. Additionally, our feature aggregation
module only includes user embeddings with social and interaction information. It could be
extended to include more diverse information sources, such as temporal information or
user-generated content.

7. Conclusions

Most of the existing social recommendation models only take higher-order collab-
orative signals into account, without paying attention to the negative signals in these
signals, which negatively affects the models’ recommendation performance. We propose
the PLGCN, a novel social recommendation model based on GCN, as a solution to this
issue, which incorporates unsupervised learning to classify users based on their prefer-
ences, allowing for more effective filtering of irrelevant and negative information from
high-order neighbor nodes. This enables PLGCN to provide more personalized and ac-
curate recommendations. Moreover, we designed a novel feature aggregation module to
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better aggregate user representations in both graphs. We evaluated PLGCN against other
SOTA models on two datasets, and the outcomes demonstrated that PLGCN outperforms
them. Furthermore, PLGCN adopts a lightweight GNN framework that removes nonlinear
activation and feature transformation operations, which mitigates the overfitting issue
and enables faster and more efficient training and inference. Our proposed model can be
applied to diverse social recommendation scenarios, such as e-commerce, social media,
and content recommendation.

However, our model still has limitations. First, it relies on the assumption that social
connections effectively capture users’ preferences. In reality, users may connect for various
reasons, and their social networks may not fully reflect their preferences, which could affect
the accuracy of our approach. Second, our experiments were conducted on specific datasets,
and the performance of our method may vary on other datasets or domains. Further
evaluation is necessary to validate the effectiveness and generalizability of our method.
Third, our model assumes a static social network structure and does not consider dynamic
changes over time. Future work can explore incorporating dynamic social information to
improve the performance of social recommendation methods.

In terms of future work, we plan to investigate several areas for further improvement.
First, we would like to explore the use of more complex graph neural network architectures
to capture even more nuanced social relationships and better incorporate users’ social
behavior. Second, we plan to investigate the use of additional data sources, such as user-
generated content and location data, to enhance our model’s performance and provide
more personalized recommendations. Finally, we will explore the use of different datasets
and evaluation metrics to better capture the effectiveness of our model and ensure that our
recommendations are not only accurate but also diverse and novel.
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