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Abstract

Algorithmic machine teaching studies the interaction between a teacher and a
learner where the teacher selects labeled examples aiming at teaching a target
hypothesis. In a quest to lower teaching complexity and to achieve more natural
teacher-learner interactions, several teaching models and complexity measures have
been proposed for both the batch settings (e.g., worst-case, recursive, preference-
based, and non-clashing models) as well as the sequential settings (e.g., local
preference-based model). To better understand the connections between these dif-
ferent batch and sequential models, we develop a novel framework which captures
the teaching process via preference functions Σ. In our framework, each function
σ P Σ induces a teacher-learner pair with teaching complexity as TDpσq. We show
that the above-mentioned teaching models are equivalent to specific types/families
of preference functions in our framework. This equivalence, in turn, allows us to
study the differences between two important teaching models, namely σ functions
inducing the strongest batch (i.e., non-clashing) model and σ functions induc-
ing a weak sequential (i.e., local preference-based) model. Finally, we identify
preference functions inducing a novel family of sequential models with teaching
complexity linear in the VC dimension of the hypothesis class: this is in contrast to
the best known complexity result for the batch models which is quadratic in the
VC dimension.

1 Introduction

Algorithmic machine teaching studies the interaction between a teacher and a learner where the
teacher’s goal is to find an optimal training sequence to steer the learner towards a target hypothesis
[GK95, ZLHZ11, Zhu13, SBB`14, Zhu15, ZSZR18]. An important quantity of interest is the
teaching dimension (TD) of the hypothesis class, representing the worst-case number of examples
needed to teach any hypothesis in a given class. Given that the teaching complexity depends on
what assumptions are made about teacher-learner interactions, different teaching models lead to
different notions of teaching dimension. In the past two decades, several such teaching models have
been proposed, primarily driven by the motivation to lower teaching complexity and to find models
for which the teaching complexity has better connections with learning complexity measured by
Vapnik–Chervonenkis dimension (VCD) [VC71] of the class.

Most of the well-studied teaching models are for the batch setting (e.g., worst-case [GK95, Kuh99],
recursive [ZLHZ08, ZLHZ11, DFSZ14], preference-based [GRSZ17], and non-clashing [KSZ19]
models). In these batch models, the teacher first provides a set of examples to the learner and then
the learner outputs a hypothesis. In a quest to achieve more natural teacher-learner interactions and
enable richer applications, various different models have been proposed for the sequential setting
(e.g., local preference-based model for version space learners [CSMA`18], models for gradient
learners [LDH`17, LDL`18, KDCS19], models inspired by control theory [Zhu18, LZZ19], models
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for sequential tasks [CL12, HTS18, TGH`19], and models for human-centered applications that
require adaptivity [SBB`13, HCMA`19]).

In this paper, we seek to gain a deeper understanding of how different teaching models relate to each
other. To this end, we develop a novel teaching framework which captures the teaching process via
preference functions Σ. Here, a preference function σ P Σ models how a learner navigates in the
version space as it receives teaching examples (see §2 for formal definition); in turn, each function σ
induces a teacher-learner pair with teaching dimension TDpσq (see §3). We highlight some of the key
results below:

• We show that the well-studied teaching models in batch setting corresponds to specific
families of σ functions in our framework (see §4 and Table 1).

• We study the differences in the family of σ functions inducing the strongest batch
model [KSZ19] and functions inducing a weak sequential model [CSMA`18] (§5.2) (also,
see the relationship between Σgvs and Σlocal in Figure 1).

• We identify preference functions inducing a novel family of sequential models with teaching
complexity linear in the VCD of the hypothesis class. We provide a constructive procedure
to find such σ functions with low teaching complexity (§5.3).

Σconst

Σglobal

ΣgvsΣlocal

Σlvs

Figure 1: Venn diagram for different fami-
lies of preference functions.

Our key findings are highlighted in Figure 1 and Ta-
ble 1. Here, Figure 1 illustrates the relationship between
different families of preference functions that we in-
troduce, and Table 1 summarizes the key complexity
results we obtain for different families. Our unified
view of the existing teaching models in turn opens up
several intriguing new directions such as (i) using our
constructive procedures to design preference functions
for addressing open questions of whether RTD/ NCTD
is linear in VCD, and (ii) understanding the notion of
collusion-free teaching in sequential models. We discuss
these directions further in §6.

Families Σconst Σglobal Σgvs Σlocal Σlvs

Reduction TD RTD / PBTD NCTD Local-PBTD –

Complexity Results – OpVCD
2q OpVCD

2q OpVCD
2q OpVCDq

[GK95] [ZLHZ11, GRSZ17, HWLW17] [KSZ19] [CSMA`18]

Table 1: Overview of our main results – reduction to existing models and teaching complexity.

2 The Teaching Model

The teaching domain. Let X , Y be a ground set of unlabeled instances and the set of labels. Let H
be a finite class of hypotheses; each element h P H is a function h : X Ñ Y . Here, we only consider
boolean functions and hence Y “ t0, 1u. In our model, X , H, and Y are known to both the teacher
and the learner. There is a target hypothesis h‹ P H that is known to the teacher, but not the learner.
Let Z Ď X ˆ Y be the ground set of labeled examples. Each element z “ pxz, yzq P Z represents
a labeled example where the label is given by the target hypothesis h‹, i.e., yz “ h‹pxzq. For any
Z Ď Z , the version space induced by Z is the subset of hypotheses HpZq Ď H that are consistent
with the labels of all the examples, i.e., HpZq :“ th P H | @z “ pxz, yzq P Z, hpxzq “ yzu.

Learner’s preference function. We consider a generic model of the learner that captures our
assumptions about how the learner adapts her hypothesis based on the labeled examples received from
the teacher. A key ingredient of this model is the learner’s preference function over the hypotheses.
The learner, based on the information encoded in the inputs of preference function—which include the
current hypothesis and the current version space—will choose one hypothesis in H. Our model of the
learner strictly generalizes the local preference-based model considered in [CSMA`18], where the
learner’s preference was only encoded by her current hypothesis. Formally, we consider preference
functions of the form σ : H ˆ 2H ˆ H Ñ R. For any two hypotheses h1, h2, we say that the learner
prefers h1 to h2 based on the current hypothesis h and version space H Ď H, iff σph1;H,hq ă
σph2;H,hq. If σph1;H,hq “ σph2;H,hq, then the learner could pick either one of these two.
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Interaction protocol and teaching objective. The teacher’s goal is to steer the learner towards
the target hypothesis h‹ by providing a sequence of labeled examples. The learner starts with an
initial hypothesis h0 P H before receiving any labeled examples from the teacher. At time step t,
the teacher selects a labeled example zt P Z , and the learner makes a transition from the current
hypothesis to the next hypothesis. Let us denote the labeled examples received by the learner up to
(and including) time step t via Zt. Further, we denote the learner’s version space at time step t as
Ht “ HpZtq, and the learner’s hypothesis before receiving zt as ht´1. The learner picks the next
hypothesis based on the current hypothesis ht´1, version space Ht, and preference function σ:

ht P argmin
h1PHt

σph1;Ht, ht´1q. (2.1)

Upon updating the hypothesis ht, the learner sends ht as feedback to the teacher. Teaching finishes
here if the learner’s updated hypothesis ht equals h‹. We summarize the interaction in Protocol 1.1

Protocol 1 Interaction protocol between the teacher and the learner

1: learner’s initial version space is H0 “ H and learner starts from an initial hypothesis h0 P H

2: for t “ 1, 2, 3, . . . do
3: learner receives zt “ pxt, ytq; updates Ht “ Ht´1 X Hptztuq; picks ht per Eq. (2.1);
4: teacher receives ht as feedback from the learner;
5: if ht “ h‹ then teaching process terminates

3 The Complexity of Teaching

3.1 Teaching Dimension for a Fixed Preference Function

Our objective is to design teaching algorithms that can steer the learner towards the target hypothesis
in a minimal number of time steps. We study the worst-case number of steps needed, as is common
when measuring information complexity of teaching [GK95, ZLHZ11, GRSZ17, Zhu18]. Fix the
ground set of instances X and the learner’s preference σ. For any version space H Ď H, the
worst-case optimal cost for steering the learner from h to h‹ is characterized by

DσpH,h, h‹q “

"

1, Dz, s.t. CσpH,h, zq “ th˚u

1 ` minz maxh2PCσpH,h,zq DσpH X Hptzuq, h2, h‹q, otherwise

where CσpH,h, zq “ argminh1PHXHptzuq σph1;H X Hptzuq, hq denotes the set of candidate hy-

potheses most preferred by the learner. Note that our definition of teaching dimension is similar in
spirit to the local preference-based teaching complexity defined by [CSMA`18]. We shall see in the
next section, this complexity measure in fact reduces to existing notions of teaching complexity for
specific families of preference functions.

Given a preference function σ and the learner’s initial hypothesis h0, the teaching dimension w.r.t. σ
is defined as the worst-case optimal cost for teaching any target h‹:

TDX ,H,h0
pσq “ max

h‹

DσpH, h0, h
‹q. (3.1)

3.2 Teaching Dimension for a Family of Preference Functions

In this paper, we will investigate several families of preference functions (as illustrated in Figure 1).
For a family of preference functions Σ, we define the teaching dimension w.r.t the family Σ as the
teaching dimension w.r.t. the best σ in that family:

Σ-TDX ,H,h0
“ min

σPΣ
TDX ,H,h0

pσq. (3.2)

1It is important to note that in our teaching model, the teacher and the learner use the same preference
function. This assumption of shared knowledge of the preference function is also considered in existing teaching
models for both the batch settings (e.g., as in [ZLHZ11, GRSZ17]) and the sequential settings [CSMA`18]).
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3.3 Collusion-free Preference Functions

An important consideration when designing teaching models is to ensure that the teacher and the
learner are “collusion-free”, i.e., they are not allowed to collude or use some “coding-trick” to
achieve arbitrarily low teaching complexity. A well-accepted notion of collusion-freeness in the
batch setting is one proposed by [GM96] (also see [AK97, OS99, KSZ19]). Intuitively, it captures
the idea that a learner conjecturing hypothesis h will not change its mind when given additional
information consistent with h. In comparison to batch models, the notion of collusion-free teaching
in the sequential models is not well understood. We introduce a novel notion of collusion-freeness
for the sequential setting, which captures the following idea: if h is the only hypothesis in the most
preferred set defined by σ, then the learner will always stay at h as long as additional information
received by the learner is consistent with h. We formalize this notion in the definition below. Note
that for σ functions corresponding to batch models (see §4), Definition 1 reduces to the collusion-free
definition of [GM96].

Definition 1 (Collusion-free preference) Consider a time t where the learner’s current hypothesis
is ht´1 and version space is Ht (see Protocol 1). Further assume that the learner’s preferred

hypothesis for time t is uniquely given by argminh1PHt
σph1;Ht, ht´1q “ tĥu. Let S be additional

examples provided by an adversary from time t onwards. We call a preference function collusion-free,

if for any S consistent with ĥ, it holds that argminh1PHtXHpSq σph1;Ht X HpSq, ĥq “ tĥu.

In this paper, we study preference functions that are collusion-free. In particular, we use ΣCF to
denote the set of preference functions that induce collusion-free teaching:

ΣCF “ tσ | σ is collusion-freeu.

4 Preference-based Batch Models

4.1 Families of Preference Functions

Σconst

Σglobal

Σgvs

Figure 2: Batch models.

We consider three families of preference functions which do not depend
on the learner’s current hypothesis. The first one is the family of uniform
preference functions, denoted by Σconst, which corresponds to constant
preference functions:

Σconst “ tσ P ΣCF | Dc P R, s.t. @h1, H, h, σph1;H,hq “ cu

The second family, denoted by Σglobal, corresponds to the preference
functions that do not depend on the learner’s current hypothesis and
version space. In other words, the preference functions capture some
global preference ordering of the hypotheses:

Σglobal “ tσ P ΣCF | D g : H Ñ R, s.t. @h1, H, h, σph1;H,hq “ gph1qu

The third family, denoted by Σgvs, corresponds to the preference functions that depend on the learner’s
version space, but do not depend on the learner’s current hypothesis:

Σgvs “ tσ P ΣCF | D g : H ˆ 2H Ñ R, s.t. @h1, H, h, σph1;H,hq “ gph1, Hqu

Figure 2 illustrates the relationship between these preference families.

4.2 Complexity Results

We first provide several definitions, including the formal definition of VC dimension as well as several
existing notions of teaching dimension.

Definition 2 (Vapnik–Chervonenkis dimension [VC71]) The VC dimension for H Ď H w.r.t. a
fixed set of unlabeled instances X Ď X , denoted by VCDpH,Xq, is the cardinality of the largest set
of points X 1 Ď X that are “shattered”.2 Formally, let H|X “ tphpx1q, ..., hpxnqq | @h P Hu denote

all possible patterns of H on X . Then VCDpH,Xq “ max |X 1|, s.t. X 1 Ď X and |H|X1 | “ 2|X1|.

2In the classical definition of VCD, only the first argument H is present; the second argument X is omitted
and is by default the ground set of unlabeled instances X .
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Definition 3 (Teaching dimension [GK95]) For any hypothesis h P H, we call a set of instances
Tphq Ď X a teaching set for h, if it can uniquely identify h P H. The teaching dimension for H,
denoted by TDpHq, is the maximum size of the minimum teaching set for any h P H: TDpHq “
maxhPH min |Tphq|.

As noted by [ZLHZ08], the teaching dimension of [GK95] does not always capture the intuitive idea
of cooperation between teacher and learner. The authors then introduced a model of cooperative
teaching that resulted in the complexity notion of recursive teaching dimension, as defined below.

Definition 4 (Recursive teaching dimension [ZLHZ08, ZLHZ11]) The recursive teaching dimen-
sion (RTD) of H, denoted by RTDpHq, is the smallest number k, such that one can find an ordered
sequence of hypotheses in H, denoted by ph1, . . . , hi, . . . , h|H|q, where every hypothesis hi has a
teaching set of size no more than k to be distinguished from the hypotheses in the remaining sequence.

In this paper we consider finite hypothesis classes. Under this setting, RTD is equivalent to preference-
based teaching dimension (PBTD) [GRSZ17].

In a recent work of [KSZ19], a new notion of teaching complexity, called non-clashing teaching
dimension or NCTD, was introduced (see definition below). Importantly, NCTD is the optimal
teaching complexity among teaching models in the batch setting that satisfy the collusion-free
property of [GM96].

Definition 5 (Non-clashing teaching dimension [KSZ19]) Let H be a hypothesis class and T :
H Ñ 2X be a “teacher mapping” on H, i.e., mapping a given hypothesis to a teaching set.3 We say
that T is non-clashing on H iff there are no two distinct h, h1 P H such that Tphq is consistent with h1

and Tph1q is consistent with h. The non-clashing Teaching Dimension of H, denoted by NCTDpHq,
is defined as NCTDpHq “ minT is non-clashingtmaxhPH |Tphq|u.

We show in the following, that the teaching dimension Σ-TD in Eq. (3.2) unifies the above definitions
of TD’s for batch models.

Theorem 1 (Reduction to existing notions of TD’s) Fix X ,H, h0. The teaching complexity for the
three families reduces to the existing notions of teaching dimensions:

1. Σconst-TDX ,H,h0
“ TDpHq

2. Σglobal-TDX ,H,h0
“ RTDpHq “ OpVCDpH,X q2q

3. Σgvs-TDX ,H,h0
“ NCTDpHq “ OpVCDpH,X q2q

Our teaching model strictly generalizes the local-preference based model of [CSMA`18], which
reduces to the “worst-case” model when σ P Σconst (corresponding to TD) [GK95] and the global
“preference-based” model when σ P Σglobal. Hence we get Σconst-TDX ,H,h0

“ TDpHq and
Σglobal-TDX ,H,h0

“ RTDpHq. To establish the equivalence between Σgvs-TDX ,H,h0
and NCTDpHq,

it suffices to show that for any X ,H, h0, the following holds: (i) Σgvs-TDX ,H,h0
ě NCTDpHq, and

(ii) Σgvs-TDX ,H,h0
ď NCTDpHq. The full proof is provided in Appendix A.2 of the supplementary.

In Table 2, we consider the well known Warmuth hypothesis class [DFSZ14] where Σconst-TD “ 3,
Σglobal-TD “ 3, and Σgvs-TD “ 2. Table 2b and Table 2d show preference functions σ P Σconst,
σ P Σglobal, and σ P Σgvs that achieve the minima in Eq. (3.2). Table 2a shows the teaching sequences
achieving these teaching dimensions for these preference functions. In Appendix A.1, we provide
another hypothesis class where Σconst-TD “ 3, Σglobal-TD “ 2, and Σgvs-TD “ 1.

5 Preference-based Sequential Models

5.1 Families of Preference Functions

In this section, we investigate two families of preference functions that depend on the learner’s
current hypothesis ht´1. The first one is the family of local preference-based functions [CSMA`18],
denoted by Σlocal, which corresponds to preference functions that depend on the learner’s current
(local) hypothesis, but do not depend on the learner’s version space:

Σlocal “ tσ P ΣCF | D g : H ˆ H Ñ R, s.t. @h1, H, h, σph1;H,hq “ gph1, hqu

3We refer the reader to the original paper [KSZ19] for a more formal description of “teacher mapping".
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❍
❍
❍

❍❍
h

x
x1 x2 x3 x4 x5 Sconst “ Sglobal Sgvs Slocal Slvs

h1 1 1 0 0 0 px1, x2, x4q px1, x2q px1q px1q
h2 0 1 1 0 0 px2, x3, x5q px2, x3q px3q px2q
h3 0 0 1 1 0 px1, x3, x4q px3, x4q px3, x4q px3q
h4 0 0 0 1 1 px2, x4, x5q px4, x5q px5, x4q px4q
h5 1 0 0 0 1 px1, x3, x5q px1, x5q px5q px5q
h6 1 1 0 1 0 px1, x2, x4q px2, x4q px4q px3q
h7 0 1 1 0 1 px2, x3, x5q px3, x5q px3, x5q px4q
h8 1 0 1 1 0 px1, x3, x4q px1, x4q px4, x3q px5q
h9 0 1 0 1 1 px2, x4, x5q px2, x5q px4, x5q px1q
h10 1 0 1 0 1 px1, x3, x5q px1, x3q px5, x3q px2q

(a) The Warmuth hypothesis class and the corresponding teaching sequences (denoted by S).

h1 @h1 P H
σconstph

1; ¨, ¨q
0

σglobalph
1; ¨, ¨q

(b) σconst and σglobal

hzh1 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

σlocalph
1; ¨, h “ h1q 0 2 4 4 2 1 3 3 3 3
. . .

(c) σlocal representing the Hamming distance between h1 and h.

h1 h1 h2 . . .

H
th1, h6u th2, h7u . . .

th1u th2u . . .
σgvs 0 0 . . .

(d) σgvsph1;H, ¨q

h1 h1 h2 . . .

H
th1uY th2uY . . .

th5, h6, h8, h10u˚ th1, h7, h6, h9u˚ . . .
h h1 h1 h2 . . .
σlvs 0 0 0 . . .

(e) σlvsph1;H,hq. Here, t¨u˚ denotes all subsets.

Table 2: Teaching sequences with different preference functions for the Warmuth hypothesis class
[DFSZ14].4 Full preference functions are given in Appendix B of the supplementary.

The second family, denoted by Σlvs, corresponds to the preference functions that depend on all three
arguments of σph1;H,hq. The dependence of σ on the learner’s current (local) hypothesis and the
version space renders a powerful family of preference functions:

Σlvs “ tσ P ΣCF | D g : H ˆ 2H ˆ H Ñ R, s.t. @h1, H, h, σph1;H,hq “ gph1, H, hqu

Figure 1 illustrates the relationship between these preference families. As an example, in Table 2c
and Table 2e, we provide the preference functions σlocal and σlvs for the Warmuth hypothesis class
that achieve the minima in Eq. (3.2).

5.2 Comparing Σgvs-TD and Σlocal-TD

In the following, we show that substantial differences arise as we transition from σ functions
inducing the strongest batch (i.e., non-clashing) model to σ functions inducing a weak sequential
(i.e., local preference-based) model. We provide the full proof of Theorem 2 in Appendix C of the
supplementary.

Theorem 2 Neither of the families Σgvs and Σlocal dominates the other. Specifically,

1. Σgvs X Σlocal “ Σglobal

2. There exist H, X , where @h0 P H,Σlocal-TDX ,H,h0
ą Σgvs-TDX ,H,h0

3. There exist H, X , where @h0 P H,Σlocal-TDX ,H,h0
ă Σgvs-TDX ,H,h0

5.3 Complexity Results

We now connect the teaching complexity of the sequential models with the VC dimension.

Theorem 3 Σlocal-TDX ,H,h0
“ OpVCDpH,X q2q, and Σlvs-TDX ,H,h0

“ OpVCDpH,X qq.

To establish the proof, we first introduce an important definition (Definition 6) and a key lemma
(Lemma 4).

4The Warmuth hypothesis class is the smallest concept class for which RTD exceeds VCD.
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Definition 6 (Compact-Distinguishable Set) Fix H Ď H and X Ď X , where X “ tx1, ..., xnu.
Let H|X “ tphpx1q, ..., hpxnqq | @h P Hu denote all possible patterns of H on X . Then, we say that

X is compact-distinguishable on H , if |H|X | “ |H| and @X 1 Ă X, |H|X1 | ă |H|. We will use ΨH

to denote a compact-distinguishable set on H .

In words, one can uniquely identify any hypothesis in H with a (sub)set of examples from ΨH (also
see the definition of distinguishing sets in [DFSZ14]). Our definition of compact-distinguishable
set further implies that there are no “redundant” examples in ΨH . It can be shown that a compact-
distinguishable set satisfies the following two properties: (i) it does not contain any pair of distinct
instances x, x1 such that p@h P H : hpxq “ hpx1qq or p@h P H : hpxq ‰ hpx1qq; and (ii) it does not
contain any instance x such that p@h P H : hpxq “ 1q or p@h P H : hpxq “ 0q.

Lemma 4 Consider a subset H Ď H and any compact-distinguishable set ΨH “ tx1, ..., x|ΨH |u.

Fix any hypothesis hH P H . Let d “ VCDpH,ΨHq denote the VC dimension of H on ΨH . If d ě 1,
we can divide H into m “ |ΨH | ` 1 separate hypothesis classes tH1, ..., Hmu, such that

(i) @j P rms, there exists a compact-distinguishable set ΨHj s.t. VCDpHj ,ΨHj q ď d ´ 1.

(ii) @j P rm ´ 1s, Hj is not empty and H
j

|txju “ tp1 ´ hHpxjqqu.

(iii) Hm “ thHu.

Lemma 4 suggests that for any H,X , one can partition the hypothesis class H into m ď |X | ` 1
subsets with lower VC dimension with respect to some compact-distinguishable set.5 The main idea
of the lemma is similar to the reduction of a concept class w.r.t. some instance x to lower VCD as done
in Theorem 9 of [FW95]. The key distinction of Lemma 4 is that we consider compact-distinguishable
sets for this partitioning, which in turn ensures the uniqueness of the version spaces associated with
these partitions (see proof of Theorem 3). Another key novelty in our proof of Theorem 3 is to
recursively apply the reduction step from the lemma.

To prove the lemma, we provide a constructive procedure to partition the hypothesis class, and show
that the resulting partitions have reduced VC dimensions on some compact-distinguishable set. We
highlight the procedure for constructing the partitions in Algorithm 2 (Line 7– Line 10). In Figure 3,
we provide an illustrative example for creating such partitions for the Warmuth hypothesis class from
Table 2a. We sketch the proof of Lemma 4 below, and defer the detailed proof to Appendix D.1.

Proof [Proof Sketch of Lemma 4] Let us define Hx “ th P H : h△x|ΨH
P H|ΨH

u. Here, h△x

denotes the hypothesis that only differs with h on the label of x, and h|ΨH
denotes the patterns of

h on ΨH . Fix a reference hypothesis hH . For all j P rm ´ 1s, let yj “ 1 ´ hHpxjq be the opposite
label of xj P ΨH as provided by hH . As shown in Line 9 of Algorithm 2, we consider the set

H1 :“ Hy1

x1
“ th P Hx1

: hpx1q “ y1u as the first partition. In the appendix, we show that |H1| ą 0.

Next, we show that VCDpH1,ΨH ztx1uq ď d ´ 1. When d ą 1, we prove the statement as follows:

VCDpH1,ΨHztx1uq ď VCDpHy1

x1
,ΨHq “ VCDpHx1

,ΨHq ´ 1 ď VCDpH,ΨHq ´ 1 ď d ´ 1

In the appendix, we prove the statement for d “ 1, and further show that there exists a compact-
distinguishable set ΨH1 Ď ΨHztx1u for the first partition H1. Then, we conclude that the first
partition H1 has VCDpH1,ΨH1q ď d ´ 1.

Next, we remove the first partition H1 from H , and continue to create the above mentioned partitions
on Hrest “ HzH1 and Xrest “ ΨHztx1u. As discussed in the appendix, we show that Xrest is a
compact-distinguishable set on Hrest. Therefore, we can repeat the above procedure (Line 7– Line 10,
Algorithm 2) to create the subsequent partitions. This process continues until the size of Xrest reduces
to 1, i.e. Xrest “ txm´1u. Until then, we obtain partitions tH1, ..., Hm´2u. By construction, Hj

satisfy properties (i) and (ii) for all j P rm ´ 2s.

It remains to show that Hm´1 and Hm also satisfy the properties in Lemma 4. Since Xrest “
txm´1u before we start iteration m ´ 1, and Xrest is a compact-distinguishable set for Hrest, there
must exist exactly two hypotheses in Hrest, and therefore |Hm´1|, |Hm| “ 1. This implies that
VCDpHm´1,ΨHm´1q “ VCDpHm,ΨHmq “ 0. Furthermore, @j P rm ´ 1s and h P Hj , we have
hHpxjq ‰ hpxjq. This indicates hH P Hm, and hence Hm “ thHu which completes the proof.

5When VCDpH,ΨH q “ 0, this implies |H| “ 1.
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Algorithm 2 Recursive procedure for constructing σlvs

achieving TDX ,H,h0
pσlvsq ď VCDpH,X q

Input: X , H, h0

1: Let I : H Ñ t1, . . . , |H|u be any bijective mapping
2: For all h1 P H, H Ď H, h P H, initialize

σlvsph1;H,hq Ð

"

0 if h1 “ h

|H| ` 1 o.w.

3: SETPREFERENCEpH,H,X , h0q
4: function SETPREFERENCE(V,H,X, h)
5: Create compact-distinguishable set ΨH Ď X
6: Hrest :“ H,Xrest :“ ΨH

7: for x P ΨH do
8: y “ 1 ´ hpxq
9: Hy

x Ð th1 P Hrest : h
1△x|Xrest

P Hrest|Xrest
, h1pxq “ yu

10: Hrest Ð HrestzH
y
x , Xrest Ð Xrestztxu

11: Vnext Ð V X Hptpx, yquq
12: for h1 P Hy

x do σlvsph1;Vnext, hq Ð Iph1q
13: hnext Ð argminh1PHy

x
Iph1q

14: SETPREFERENCEpVnext, H
y
x ,ΨHztxu, hnextq

1 1 0 0 0

0 0 1 1 0

px1, 0q

0 0 0 1 1

1 0 1 0 1

px2, 0q

0 1 1 0 0

1 0 1 1 0

0 1 1 0 1

px3, 1q

1 1 0 1 0

0 1 0 1 1

px4, 1q
1 0 0 0 1

px5, 1q
h1

h3

h4

h10

h2

h8

h7

h6

h9

h5

H6

H0
x1

H0
x2

H1
x3

H1
x4

H1
x5

Figure 3: Illustration of Lemma 4 on the
Warmuth class. The grouped hypotheses
in the leaf clusters correspond to the sets
Hy

x created in Line 9 of Algorithm 2.

1 1 0 0 0

0 0 1 1 0

px1, 0q

0 0 0 1 1

1 0 1 0 1

px3, 1q

px2, 0q

0 1 1 0 0

1 0 1 1 0

px4, 1q

0 1 1 0 1

px5, 1q

px3, 1q

1 1 0 1 0

0 1 0 1 1

px5, 1q

px4, 1q

1 0 0 0 1

px5, 1q

h1

h3 h4

h10

h2

h8 h7

h6

h9

h5

Figure 4: Illustration of Theorem 3 proof – constructing a σlvs P Σlvs for the Warmuth class.

Recursive construction of σlvs. As a part of the Theorem 3 proof, we provide a recursive procedure
for constructing a σlvs P Σlvs achieving TDX ,H,h0

pσlvsq “ O pVCDpH,X qq.

Proof [Proof of Theorem 3] In a nutshell, the proof consists of three steps: (i) initialization of σlvs,
(ii) setting the preferences by recursively invoking the constructive procedure for Lemma 4, and (iii)
showing that there exists a teaching sequence of length up to d for any target hypothesis h‹. We
summarize the recursive procedure in Algorithm 2.

Step (i). To begin with, we initialize σlvs with default values which induce high σ values (i.e.,

low preference), except for σph1;H,hq “ 0 where h1 “ h (c.f. Line 2 of Algorithm 2). The
self-preference guarantees that σlvs is collusion-free as per Definition 1.

Step (ii). The recursion begins at the top level with H “ H, current version space V “ H, and

initial hypothesis h “ h0. Lemma 4 suggests that we can partition H into m “ |ΨH | ` 1 groups
tH1, ..., Hmu, where for all j P rms, there exists a compact-distinguishable set ΨHj that satisfies
the properties in Lemma 4.

Now consider the hypothesis h :“ h0. We show that for j P rm ´ 1s, every pxj , yjq, where xj P ΨH

and yj “ 1 ´ hpxjq, corresponds to a unique version space V j :“ th P V : hpxjq “ yju. To

prove this statement, we consider Rj :“ V j X H “ th P H : hpxjq “ yju. As is discussed in

Appendix D.2 of the supplementary, we know that none of Rj for j P rm ´ 1s are equal. This
indicates that none of V j for j P rm ´ 1s are equal.

We then set the values of the preference function σlvsp¨;V j , hq for all j P rm´1s and yj “ 1´hpxjq
(Line 12). Upon receiving pxj , yjq, the learner will be steered to the next “search space” Hj , with

version space V j . By Lemma 4 we have VCDpHj ,ΨHj q ď VCDpH,ΨHq ´ 1.

We will build the preference function σlvs recursively m ´ 1 times for each pV j , Hj ,ΨHj , hnextq,
where hnext corresponds to the unique hypothesis identified by function I (Line 13–Line 14). At
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each level of recursion, VCD reduces by 1. We stop the recursion when VCDpHj ; ΨHj q “ 0, which
corresponds to the scenario |Hj | “ 1.

Step (iii). Given the preference function constructed in Algorithm 2, we can build up the set of
(labeled) teaching examples recursively. Consider the beginning of the teaching process, where the
learner’s current hypothesis is h0 and version space is H, and the goal of the teacher is to teach h‹.
Consider the first level of the recursion in Algorithm 2, where we divide H into m “ |ΨH|`1 groups

tH1, ..., Hmu. Let us consider the case where h‹ P Hj‹

with j‹ P rm ´ 1s. The teacher provides
an example given by px “ xj‹ , y “ h‹pxj‹ qq. After receiving the teaching example, the resulting

partition Hj‹

will stay in the version space; meanwhile, h0 will be removed from the version space.

The new version space will be V j‹

. The learner’s new hypothesis induced by the preference function

is given by hnext P Hj‹

. By repeating this teaching process for a maximum of d steps, the learner
reaches a partition of size 1 (see Step (ii) for details). At this step h‹ must be the only hypothesis left
in the search space. Therefore, hnext “ h‹, and the learner has reached h‹.

Figure 4 illustrates the recursive construction of a σlvs P Σlvs for the Warmuth class, with
TDX ,H,h0

pσlvsq “ 2.

6 Discussion and Conclusion

We now discuss a few thoughts related to different families of preference functions. First of all, the
size of the families grows exponentially as we change our model from Σconst, Σglobal to Σgvs/Σlocal

and finally to Σlvs, thus resulting in more powerful models with lower teaching complexity. While
run time has not been the focus of this paper, it would be interesting to characterize the presumably
increased run time complexity of sequential learners and teachers with complex preference functions.
Furthermore, as the size of the families grow, the problem of finding the best preference function σ in
a given family Σ that achieve the minima in Eq. (3.2) becomes more computationally challenging.

The recursive procedure in Algorithm 2 creates a preference function σlvs P Σlvs that has teaching
complexity at most VCD. It is interesting to note that the resulting preference function σlvs has the
characteristic of “win-stay, loose shift" [BDGG14, CSMA`18]: Given that for any hypothesis we
have σph; ¨, hq “ 0, the learner prefers her current hypothesis as long as it remains consistent. Prefer-
ence functions with this characteristic naturally exhibit the collusion-free property in Definition 1.
For some problems, one can achieve lower teaching complexity for a σ P Σlvs. In fact, the preference
function σlvs we provided for the Warmuth class in Table 2e has teaching complexity 1, while the
preference function constructed in Figure 4 has teaching complexity 2.

One fundamental aspect of modeling teacher-learner interactions is the notion of collusion-free
teaching. Collusion-freeness for the batched setting is well established in the research community
and NCTD characterizes the complexity of the strongest collusion-free batch model. In this paper,
we are introducing a new notion of collusion-freeness for the sequential setting (Definition 1). As
discussed above, a stricter condition is the “win-stay lose-shift” model, which is easier to validate
without running the teaching algorithm. In contrast, the condition of Definition 1 is more involved
in terms of validation and is a joint property of the teacher-learner pair. One intriguing question for
future work is defining notions of collusion-free teaching in sequential models and understanding
their implications on teaching complexity.

Another interesting direction of future work is to better understand the properties of the teaching
parameter Σ-TD. One question of particular interest is showing that the teaching parameter is not
upper bounded by any constant independent of the hypothesis class, which would suggest a strong
collusion in our model. We can show that for certain hypothesis classes, Σ-TD is lower bounded by a
function of VCD. In particular, for the power set class of size d (which has VCD “ d), Σ-TD is lower

bounded by Ω
´

d
log d

¯

. Another direction of future work is to understand whether this parameter is

additive or subadditive over disjoint domains. Also, we consider a generalization of our results to the
infinite VC classes as a very interesting direction for future work.

Our framework provides novel tools for reasoning about teaching complexity by constructing prefer-
ence functions. This opens up an interesting direction of research to tackle important open problems,
such as proving whether NCTD or RTD is linear in VCD [SZ15, CCT16, HWLW17, KSZ19]. In this
paper, we showed that neither of the families Σgvs and Σlocal dominates the other (Theorem 2). As a
direction for future work, it would be important to further quantify the complexity of Σlocal family.
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