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ABSTRACT In themodern era of themobile apps (the era of surveillance capitalism - as termed by Shoshana

Zuboff) huge quantities of surveillance data about consumers and their activities offer a wave of opportunities

for economic and societal value creation. ln-app advertising - a multi-billion dollar industry, is an essential

part of the current digital ecosystem driven by free mobile applications, where the ecosystem entities

usually comprise consumer apps, their clients (consumers), ad-networks, and advertisers. Sensitive consumer

information is often being sold downstream in this ecosystem without the knowledge of consumers, and

in many cases to their annoyance. While this practice, in cases, may result in long-term benefits for the

consumers, it can result in serious information privacy breaches of very significant impact (e.g., breach of

genetic data) in the short term. The question we raise through this paper is: Is it economically feasible to trade

consumer personal information with their formal consent (permission) and in return provide them incentives

(monetary or otherwise)?. In view of (a) the behavioral assumption that humans are ‘compromising’

beings and have privacy preferences, (b) privacy as a good not having strict boundaries, and (c) the

practical inevitability of inappropriate data leakage by data holders downstream in the data-release supply-

chain, we propose a design of regulated efficient/bounded inefficient economic mechanisms for oligopoly

data trading markets using a novel preference function bidding approach on a simplified sellers-broker

market. Our methodology preserves the heterogeneous privacy preservation constraints (at a grouped

consumer, i.e., app, level) upto certain compromise levels, and at the same time satisfies information demand

(via the broker) of agencies (e.g., advertising organizations) that collect client data for the purpose of targeted

behavioral advertising.

INDEX TERMS Information privacy, preference, supply function economics, trading, market equilibrium.

I. INTRODUCTION

Mobile applications (apps) are driving a major portion of the

modern digital society, including business small and large as

well as the state-of-the-art IoT/CPS systems. ln-app advertis-

ing is an essential part of this digital ecosystem of mostly free

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

mobile applications, where the ecosystem entities comprise

the consumers, consumer apps, ad-networks, advertisers, and

retailers. As a popular example, Evite.com may sell lists

of their consumers attending a party in a given location to

advertisers via ad-networks run by Google and Facebook.

Similarly, the gene testing company 23andMemight sell their

clientele information directly to pharmaceutical companies

in order for the latter to develop medical drugs. As a social
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objective, a ‘win-win’ deal between (a) the commercial inter-

ests of entities (e.g., enterprises, apps, databoxes) that aggre-

gate and sell consumer data and those (e.g., ad-networks,

retailers) that buy this data from the latter, (b) interests of

consumer behavior targeting advertising firms, and (c) pre-

serving consumer side information privacy (IP). The basic

requirement for this ‘win-win’ ecosystem to exist in the

first place, is the flow of personalized information from the

consumer to the advertisers and retailers via the ad-networks

(or directly from consumer to the advertisers/retailers) for

effective/profitable ad placements, that subsequently moti-

vate the latter to collect personal data about consumers via

apps. The vision and benefits for such an ecosystem were

laid down by a certain school of information economists

way back from the 70’s (see more details in [1]), in favor

of having increased aggregate societal welfare. More specif-

ically, according to the survey, in return for personal data,

advertisers and marketers will benefit the consumer side

through monetary compensation (e.g., discounts, Facebook

Libre coins) and intangible benefits (e.g., personalization and

customization of information content), and price discrimina-

tion. Furthermore, the same school of information economists

state that the lack of use of personal data might lead to oppor-

tunity costs andmarket inefficiencies. To furthermore empha-

size the benefits of privacy trading, now from a consumer

viewpoint, a survey conducted by the authors in [2] advocate

consumers willing to trade data for incentives. In this paper,

we take the side of these economists to investigate privacy

outcomes in society as a result of such markets. However,

before we lay down research contributions with respect to

suchmarkets, we provide an explanation of why suchmarkets

are a need of the day despite privacy concerns raised due to

IP commercialization.

A. NEED FOR FAIR PRIVACY COMMERCIALIZATION

Most would agree that doing business with consumer data

without their consent is outright creepy. Consequently, as a

landmark regulatory corrective step to prevent commer-

cialization of personal data, the General Data Protection

Regulation (GDPR) was initiated in May 2018 that impose

constraints, rights, obligations, and voluntary consumer

choice regarding personal data and its use. However, it is

questionable as to whether the psychological approach of

many apps—in offering a binary voluntary opt in/out, often

after presenting pages of legalese—results in user empower-

ment with respect to making the proper choice between gain-

ing utility from an app versus not using it. Indeed, we see that

individuals are increasingly using ad-blocking technology1

as a means to ‘push-back’, alongside deciding to gain utility

from apps. However, ad blocking firms like Eyeo, maker

of the popular AdBlock Plus product, has achieved such a

position of leverage that it gets Google et.al., to pay it to

have their ads whitelisted by default - under its self-styled

1https://pagefair.com/blog/2017/adblockreport/

‘acceptable ads’ program [3] - clearly going against the of

the core functionality principle of ad-blockers.

Thereby, with a significant likelihood, there might be an

inevitable breach of personal consumer information in gen-

eral to satisfy the economics behind the working of the current

ad ecosystem. According to a recent study [3] conducted

post GDPR enactment, influential popular app-firms like

New York Times (NYT) can likely make more revenues

from traditional advertising channels such as TV/newspapers,

compared to online/mobile advertising. However, this argu-

ment might not hold for moderate sized firms who con-

sequently would rely heavily on behavioral advertising for

generating revenues. The bottomline here is data interme-

diary entities will commercially gain from the consumer

data release downstream, whereas psychologically tricked

consumers, some of them being under the effect of the pri-

vacy paradox [4], voluntarily give up their personal data and

lose out on both privacy and monetary gains - an unfair

proposition. Moreover, one could argue here that paying for

apps2 would mitigate this issue, however, statistics prove that

consumers around the world are more keen on using free

apps compared to paid apps,3 and are also quite neutral to

the collection of cookies by third parties, during browsing

activities.4

On an orthogonal (to regulatory issues) note, Shoshana

Zuboff in her recent book [5] states with numerous real-life

surveillance examples of how since the early 2000’s (primar-

ily after 9/11), our daily life activities and ‘deepest secrets’

are all recorded, rendered as behavioral data, processed, anal-

ysed, bought, bundled, and resold like sub-prime mortgages

in a behavioral futures market, thanks to companies such

as Google and Facebook whose initial motivations for data

collection were rooted in boosting ROI for their investors.

And in seeking to survive commercially beyond their ini-

tial goals, these companies realised they were sitting on a

new kind of asset: our ‘behavioural surplus’, the totality of

information about our every thought, word and deed, which

could be traded for profit (via rejecting established norms

of societal responsibility and accountability) in new markets

based on predicting, shaping, and controlling our every need -

or producing it. The extraction of such information assets

by tech giants is so grotesque, so creepy, that it is almost

impossible to see how anyone who really thinks about it lives

with it - and yet we do. There is something about its opacity,

its insidiousness, that makes it hard to think about. Likewise

the benefits of faster search results and turn-by-turn directions

mask the deeper, destructive predations of what Shoshana

Zuboff terms ‘surveillance capitalism’, a force that is as

2There are quite a few services that already offer some level of
choice/configuration between full subscription (no ads, thus no third party
privacy exposure) and fully advertisement/analytics paid for (i.e. ‘‘free’’).
Consequently there’s the possibility of doing an empirical study to populate a
model of peoples’(not yet evident that they are privacy-rational) ‘‘willingness
to pay’’ in terms of utility function/curves for privacy/money.

3https://www.appsflyer.com/resources/state-app-spending-global-
benchmarks-data-study/

4Statistic.com
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profoundly undemocratic as it is exploitative, yet remains

poorly understood - a central strategy of this regime. Despite

more and more people expressing their unease about the

surveillance economy, and seeking alternatives, it might be

long before we extricate ourselves from the toxic products

of both industrial and surveillance capitalism. Till then, one

workable solution might be to trade consumer data with their

consent in a fashion that benefits all fairly in the data release

ecosystem, and not just the data greedy firms. To this end,

the reader is referred to our recently published work, [6],

for additional details on the rationale behind privacy trading

being a solution jointly aligned with the supply and demand

sides of a privacy market.

B. TOWARDS ‘Preference-Based’ TRADING

A deeper look into existing research in the generic area of

designing privacy preserving economic mechanisms (cour-

tesy the survey paper in [7], though the paper is not in

line with the idea of privacy trading as applicable to this

work) reveals that the fundamental inability for any economic

mechanism dealing with consumer data to achieve a social

optimal state with respect to privacy (be it for data trad-

ing ecosystems or otherwise) lie in (i) the hardness to sat-

isfy strict heterogeneous consumer privacy preferences, and

(ii) the inability to internalize the negative externalities due to

privacy leakage, e.g., recent Facebook-Cambridge Analytica

data scandal [8]. Thus, as our main idea, a direction towards

optimizing social welfare, i.e., economic efficiency, is to

relax the strictness of privacy preserving preferences, thereby

allowing heterogeneous consumers to compromise their ideal

privacy requirements with their permission/consent in return

for benefits (e.g., monetary and non-monetary incentives).

These benefits contribute to resolving the issue in (ii).

The weight behind this novel idea of ours lies in the fact

that from a psychological perspective, most human beings

are acceptable to making varied levels of compromises in

real-life, especially for goods like privacy that have non-clear

boundaries [2] (See Section VIII for few examples where

privacy compromises are acceptable). Note that privacy com-

promises by consumers would result in apps selling more rel-

evant personalized information to ad-networks (and thereby

generatingmore revenue), the latter able to sell more ad-space

to advertisers at an increased revenue, and the advertisers

being able to target a broader personalized set of consumers.

Thus, we have a win-win situation among all ecosystem

entities. The big question then is: what is an optimal way to

compromise aggregate consumer privacy?

ResearchGoal - As a major goal, we aim to investigate via

a theory methodology, our radical idea of optimally compro-

mising aggregate consumer privacy, in a simplified market

ecosystem, through the combined use of micro-economic

theory and a composition property characteristic of the fam-

ily of information-theoretic privacy preserving technologies.

Here, the term ‘optimal’ is in the sense of achieving max-

imum utilitarian social welfare as an economic efficient

state. Through our efforts, we wish to provide introductory

foundational insights on designing information trading mar-

kets that improve social welfare, and pave the way for a more

general analysis of complex trading markets.

C. RESEARCH CONTRIBUTIONS

We make the following research contributions in this paper.

• We model a privacy trading ecosystem setting as a

supply-demand market consisting of (i) market com-

peting (both, in perfect and oligopolistic fashion) data

holders (DHs) representing app firms with locked-in

consumer base and (ii) a single ad-network acting as a

data broker between the app firms and the advertisers.

A salient feature of this trading ecosystem is the use

of data holder supply functions [9] - privacy preference

functions that map the amount of privacy compromise

(the ‘supply’) at an aggregate consumer level each data

holder is willing to make, i.e., the supply, for a given

‘‘benefit’’ it receives from the ad-network per unit of

data. The data holders submit their supply functions as

bids to an ad-network that then executes a uniform mar-

ket clearing ‘‘benefit’’ mechanism for all competing data

holders, to achieve optimal utilitarian privacy welfare at

market equilibria (see Section III).5

• We analyze perfectly competitive (in DHs) and

oligopolistic privacy trading markets based on our pro-

posed supply function model, for existence, uniqueness,

and economic efficiency of market equilibria. For per-

fectly competitive markets we show that they achieve

a maximum utilitarian social welfare state, i.e., an eco-

nomic efficient state, at a unique equilibrium. However,

for oligoplistic trading markets, we show that they reach

a unique market equilibrium that does not maximize

utilitarian privacy welfare in society (see Section IV).

• We mathematically characterize the efficiency loss for

oligopolistic trading markets by quantifying the differ-

ence between the unique market equilibrium obtained in

the competitive scenario with that in the oligopoly sce-

nario, via a Price of Anarchy (PoA) measure. As major

results, we find the following: (a) the set of data-holders

at oligopolistic Nash equilibrium (ONE) who compro-

mise on their privacy requirements at the aggregate

consumer level, is a superset of that at the perfectly

competitive equilibrium (PCE); (b) the market clearing

‘‘benefit’’ (per unit of compromise) at the ONE is higher

than that at the PCE, but the ratio of the two ‘‘benefits’’

is bounded; (c) the sum total of data holder disutility

(e.g., due to privacy compromise of their clients) at ONE

is larger than that at PCE, but the ratio is bounded by

certain mild assumptions; (d) if data holders have rela-

tively homogeneous cost functions (e.g., for trading data

types with similar privacy sensitivities), the differences

between the PCE and ONE tend to be very small - if the

5The readers are referred to the Section VIII (due to space constraints) for
a qualitative introduction on supply function economics and its relevance to
this work
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cost functions are extremely heterogeneous (for trading

data types with different privacy sensitivities), the quan-

tification of the differences can serve as rules of thumb

for the ad-network to limit the privacy compromising

power of DH firms to promote utilitarian social welfare.

For each of (a)-(d), we provide practical implications

pertaining to privacy and policy. (see Section V).

• We show in Section V that for the problem at hand, our

proposed supply functionmechanism for privacy trading

is optimal over a feasible family of mechanisms.

II. RELATED LITERATURE

In this section, we briefly review related literature most rel-

evant to privacy trading markets. We identified two strands

of research in this context: one rooted in the economics

literature, and the other rooted in the technical litera-

ture on privacy-aware mechanism design. With respect to

privacy-preserving metrics of operation, applicable only to

the technical literature, we note that the metric proposed

in this work is assumed to fall in the same general fam-

ily of metrics used in existing works, i.e., the family of

information-theoretic privacy (IP) metrics (see [10]) where

resulting data is encapsulated with generated statistical noise

to preserve IP, and IP guarantees are additive (e.g., as in

differential privacy (DP)).

The vision and benefits for information (privacy) trading

(not necessarily consensual) had their roots in arguments

made in the 1970s by University of Chicago economists,

Posner [11], [12] and Stigler [13], in favor of having

increased social welfare. In later years, their arguments were

upvoted by information economists such as Laudon [14] and

Acquisiti et al. [1] Varian [15], Odlyzko [16], Schwarz [17],

and Samuelson [18]. The primary thesis of these schol-

ars being that the lack of use of personal client data will

lead to opportunity costs and market inefficiencies (sub-

optimal states of economic social welfare) since it conceals

potentially relevant information from other economic agents

(e.g., the downstream data intermediary entities in Figure 1)

that eventually hamper the profitability of these agents. As a

modern day example, client data (obtained via apps) on

fitness, health habits, cyber-hygiene can benefit (cyber) insur-

ance service agencies to target and allocate well-matched

policies to their clients - conversely the lack of quality

data can lead to bad matches and erode profit margins.

In contrast to the Chicago-school views, a number of

economists including Hirshleifer [19], [20], Burke et al. [21],

Wagman [22], Daughety and Reinganum [23], and

Spence [24] are of the opinion that the costs to the demand

side of the market to acquire quality client information in

a non-consensual setting may outweigh its social benefit,

thereby decreasing social welfare. It is here that consensual

information trading with benefits to the supply side could

reduce the costs to acquire supply side information and

improve social welfare. In this work, we adopt the Chicago

school of thought and assume that sellers will be consensual

with the buyer demands in return for monetary remuneration.

FIGURE 1. Market Architecture with a Single Data Broker (Ad-Network).

We assume consensual information trading to be regulated

in the interest of social welfare, and an appropriate step for

determining the effectiveness of trading in data intermedi-

ary settings such as in Figure 1. According to Varian [15],

Odlyzko [16], andAcquisiti et al. [1], consumer data obtained

(with or without consent) can have negative effects on society

simply because post transaction the consumers have little

knowledge or control over how and by whom their personal

data will later be used. The firm (e.g., ad-networks) may sell

the consumer’s data to third parties (e.g., advertisers), which

may lead to spam and adverse price discrimination, among

other concerns, and subsequently lead to consensual con-

sumers opting out of trade in future. Regulation here can curb

the adverse effects of these negative externalities arising from

trading and significantly contribute to welfare efficient and

complete markets (where supply equals demand) [25], [26].

Examples of practical ways to implement regulations sug-

gested in existing literature include legislative property rights

on consumer personal data shared between the supply and

demand side [14], technical metrics (e.g., DP) being adopted

by demand side data intermediaries (e.g., ad-networks) to

check on the degree of IP breach [6], and frameworks such as

those developed in [27]–[30] to improve security and privacy

for BigData systems (e.g., HDFS).

Specifically, in relation to the data intermediary settings

such as in Figure 1, De Corni‘ere and Nijs [31] rule out,

for regulated consensual trading settings, direct price dis-

crimination by the demand side on the supply side based

on consumers’ personal information by focusing instead on

advertising firms’ bidding strategies in auctions for more

precise targeting of their advertisements. That is, given that

consumers’ private information provides a finer and finer

segmentation of the population, firms can compete to adver-

tise their non-discriminatory pricing over each of those con-

sumer segments. Hence, by disclosing information about

consumers, the ecosystem ensures that consumers will see

the most relevant advertisements, whereas when no informa-

tion is disclosed under a complete privacy regime, ads are

VOLUME 8, 2020 146009
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displayed randomly. This is in contrast to our model that

vouches for price-discrimination - the reason being in our set-

ting, unlike the above-mentioned works, there is a statistical

perturbation of the consumer private data sold downstream

with noise for privacy considerations. Hence a finer clear

segmentation is not possible. De Corni et.al. also state that

targeted advertising in the presence of private non-perturbed

consumer information can lead to higher prices, and, in line

with Levin and Milgrom [32], Bergemann and Bonatti [33],

and Cowan [34] that improving match quality by disclos-

ing consumer information to firms might be too costly to

an intermediary - because of the informational rent that is

passed on to selling firms. This is again in contrast to our

findings - simply because in our model the selling data might

be perturbed downstream by statistical noise.

Most existing works on privacy-aware mechanism

design [35], [36] [37], [38] [39], [40], [41] assume that there

is a trusted data holder of unperturbed consumer data. The

private data is either already kept by the data holder, noise per-

turbed by it, or is evoked using mechanisms that are designed

with the aim of truthfulness. What the data holder purchases

is the ‘‘right’’ of using individuals’ data in an announced way.

A major direction in which our work differs from existing

work is in considering that data holders are not trusted by

consumers to keep their data private, may not noise perturb

it to appropriate levels while releasing it to agencies like ad-

networks, in return for benefits. To this end, in the seminal

work by [35], individuals’ data is already known to the data

collector (the data collector here analogous to an ad-network

in our work), and individuals (analogous to the data holder

in our work) bid their costs of privacy loss caused by data

usage, where each individual’s privacy cost is modeled as a

linear function of ǫ if his data is used in an ǫ-differentially

private manner. The goal of the mechanism design here is to

evoke truthful bids of individual cost functions. In contrast,

our setting is more realistic and assume that (a) DH cost

functions are private information - not for release to an ad-

network, and (b) cost functions need not be linear but convex.

Subsequent works [36], [37] [38], [40] explore various

models for individuals’ (analogous to DHs in our work)

valuation of privacy, especially the correlation between the

cost functions and the private bits. This line of work has been

extended to the scenario that the data is not available yet and

needs to be reported by the individuals to the data collector,

but the data collector is still trusted [39], [42] [41], [43] -

whereas we assume that the data collector (the ad-network

in our case) is purposely selling consumer data (obtained

via DHs) to advertisers for monetary gains. For more details

on the interplay between differential privacy and mechanism

design, [7] gives a comprehensive survey. In [44], the authors

envisage a market model for private data analytics such that

private data is treated as a commodity and traded in the

market. In particular, the data collector (the ad-network in

our case) uses a game-theoretic incentive mechanism to pay

(or reward) individuals (DHs in our work) for reporting infor-

mative data, and individuals control their own data privacy

by reporting noisy data with the appropriate level of privacy

protection (or level of noise added) being strategically chosen

to maximize their payoffs. However, unlike us, they assume

that utility parameters of individuals are not private informa-

tion, which may not be true in practice. In addition none of

the above-mentioned works deal with the case of managing

heterogeneous privacy guarantees across individuals (DHs

in this work), as we do. Very recently, the authors in [45]

address the heterogeneous privacy guarantee case. However,

to address information asymmetry on the seller side, their

solution is restricted to the design of a two-seller, single

buyer contract based on a binary distribution of seller privacy

attitudes. In contrast, our solution is general and addresses the

multi-seller, single buyer setting, where seller preferences are

captured using supply functions.

In a very recent research effort, similar to our

motivation, the authors in [46] design a privacy trading

mechanism for commercializing location privacy in mobile

crowdsensing applications. More specifically, they propose

an auction-theoretic framework between workers and the

platform to trade location privacy data, given a differential

privacy induced leakage budget. However, though they are

similar in nature to our work in proportionalizing benefits

with privacy leakage (and showing budget-balanced, truthful,

and incentive compatibility properties of auction mecha-

nisms), there are some significant differences between the

contributions made in [46] and this work: (i) we formally

model market competition between established app firms

serving a base of consumers; in contrast, the players (work-

ers) in [46] are mobile end users distributed in a geographical

locality thereby only interacting with the platform through

an auction, and not traditionally competing in an oligopoly

market - hence such a market analysis is missing from their

work, (ii) unlike us, the work in [46] neither characterize

market efficiency gaps in theory, nor do they prove the

optimality of their mechanism over feasible families of eco-

nomic variables (e.g., cost functions, mechanism classes,

etc.), and (iii) as an obvious distinction, our application

space, i.e., a supply-chain framework of mobile apps leaking

data upstream to ad-networks and advertisers, is different in

geographical scope from that of mobile crowdsensing.

III. SYSTEM MODEL

In this section, we propose the salient features of our param-

eterized static market model representing a privacy trading

ecosystem that is built atop the seminal economic theory of

supply function bidding proposed by Klemperer in [9]. Due

to space constraints, we refer the reader to a qualitative back-

ground (see [6]) of supply function theory by Klemperer and

Meyer as being an appropriate regulated economic method

that forms the primary basis in the design of markets to trade

group privacy6 - the privacy of a group of app clients, rather

6Shoshana Zuboff in her recent book, The Age of Surveillance
Capitalism [5], states that it is group privacy that is most important to
surveillance capitalists as the individual user is just a pawn and not the
product - the product is group data.
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than individual clients themselves. Table 1 can be referred to

for a set of important notations used in the paper.

TABLE 1. Table of Important Notations.

A. MARKET ELEMENTS

Our market elements (see Figure 1) comprise of consumers

locked in with their respective data holders (DHs) and an

ad-network acting as a data broker between the data holders

and a body of advertisers (ADV). We assume the presence of

regulatory bodies (e.g., governments) whose goal is to ensure

a certain level of social welfare state (e.g., maximum amount)

keeping in mind the privacy interests of people in society.

We assume that consumers are locked-in with their respec-

tive data holders in a given time period. Examples of data

holders include ad-publishing mobile apps, social media

apps, IoT databox apps,7 etc. Data holders compete with

each other - as an example, competing mobile apps with

similar functionalities (e.g., UberEats, GrubHub) are mar-

ket competitors. Similarly, IoT databoxes manufactured by

competing firms, each having their consumer base, compete

with each other in the market. A consumer can simulta-

neously be client to multiple DHs. Based on pre-ordained

policies, the data holders collect consumer data relevant to

their functionality, and upon the consent of the consumers

(e.g., Android and iOS phones have their own but differ-

ent policies on how consumers can control data release to

apps running on the phones). However, despite providing

control to consumers, unwanted but voluntary data release

by the latter is possible via methods designed through the

proper use of psychology, behavioral economics, and neu-

roscience. Ad-networks (e.g., Google Ad Network, Bing Ads

by Microsoft) act as mediators between DHs and advertis-

ers, where the latter’s goal is to post advertisements with

DHs in order to enable targeting, tracking, and reporting

of consumer impressions. Finally, to cite an example of the

structure of data that could be traded by the DHs having

access to aggregate consumer data from their client base -

parts of it that is assumed to be private, a database is one

7a given customer base can be associated with multiple competing app
or social media DHs; however, in this work we assume a one-one mapping
between consumers and DHs for relative tractable simplicity, as this setting
itself is challenging enough. We leave the analysis of the one-many setting
for future work.

of the possibilities. As popular practical examples, the firm

BookYourData (BYD) offers upstream buyers ready-made

lists of contacts of business individuals across different indus-

tries, job titles, job functions, and job levels. A record in a

list consists of contact information such as name, email, job

function, department, country etc.

B. MARKET STRUCTURE

We consider two traditional market structures: perfect com-

petition, and oligopoly, to be operative amongst the DHs.

In each structure, the competing DHs trade privacy compro-

mise amounts with a single ad-network8 using a supply func-

tion bidding9 approach (see Section III.C). The ad-network in

return provides some ‘‘benefits’’ (to be explained later in this

section) to the DHs based on the amount of compromisemade

by the DHs. The ADV generates a demand10 for consumer

information to the ad-network, and in pay the ad-network to

match them with appropriate DHs so as to enable targeting,

tracking, and reporting of consumer impressions.

C. MODEL FOR SUPPLY FUNCTION BIDDING

In this section we formally introduce the mechanism between

competing DHs and the ad-network. A diagrammatic illustra-

tion of the process as shown in Figure 2.

FIGURE 2. Illustrating Privacy Preference Function Trading with One
Broker.

Setup - Consider a set N of |N | DHs that are locked-in

with their respective consumer base. In the ideal state, each

DH needs to obey certain privacy requirements derived from

the privacy preferences of their consumer base. To preserve

generality, we assume that the privacy requirements of each

DH map to a privacy metric that is an element of the set of

information gain metrics [10] that measure the amount of

information an adversary can gain. Note that the differential

8Since different ad-networks run their own supply function mechanisms
for privacy trading independently of the others, the analysis of one extends
to the others. Thus, each app will trade on different parameters with different
ad-networks at market equilibrium (see Figure 3). Hence, in a somewhat sim-
plistic sense, it is enough to analyse a single ad-network scenario. Moreover,
when it comes to the number of major ad-networks, recent studies [3] report
that they are primarily owned by Google and Facebook.

9Supply side privacy preferences, as functions of incentives, derived via
survey Q&A, deviates us from the use of the standard Bertrand and Cournot
trading mechanisms that have one-dimensional (price or quantity) strategy
spaces.

10This is usually done through a bidding process like Vickrey-Clarke-
Groves (VCG) auction (not the explicit focus of this work) between
the ADVs and the ad-network, based on consumer data that interests
relevant ADVs.
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privacy metric is just one element of this set. Higher the

value of the privacy metric, the less information an adversary

can gain. However, given the presence of the ad-network

and ADVs, there are two main reasons why there may not

be the simultaneous satisfaction of privacy requirements of

each DH : (i) keeping in mind the ‘‘benefit’’ making mindset

of DHs (the ‘‘benefit’’ whose source are the ADVs), achiev-

ing the optimal cost-benefit tradeoff with the ad-network

might not guarantee strict privacy-preservation for DHs,

(ii) it is known, via results from [7], that designing mech-

anisms that ensure heterogeneous privacy preservation at a

utilitarian social welfare optimal state is an open problem.

The Process - Each DH i ∈ N is willing to consensually

compromise qi(bi, pi) amounts of aggregate client privacy

(measured through the privacy metric - as shown in Figure 2,

usually either DP, KL-divergence, Mutual Information, etc.)

with the ad-network, in return for a per-unit of compromise

benefit value, pi, i.e., qi is a parameterized function of pi and

a non-negative bidding parameter bi. As an example, let qi to

be a linear function of the form:
qi(bi, pi) = bipi, i ∈ N , (1)

The compromise function, qi, for each DH i is their param-

eterized supply function. The benefit to each DH, pi from

the ad-network is primarily monetary in nature. Examples of

benefits to the consumer base (derived from pi
11) include

the amount of price reduction over the market price paid by

individual consumers locked-in with a given DH12 (for the

case of paid apps), or in the case DHs are free to consumers

- an amount of reduction in the number of advertisements

displayed on the DH at a time instant (e.g., in case of an app)

for each consumer to improve their usability experience.

We emphasize here that each DH i only submits the

function qi to the ad-network, as a signal of its preference

on privacy compromise, without revealing its private util-

ity/payoff function (see Section IV) of which qi is just a part.

Subsequently, the ad-network just has the values of qi’s at its

disposal to arrive at a market uniform market clearing value

of per-unit benefit that maximizes social welfare amongst

the DHs13

We assume that the total privacy compromise demand for

the ad-network coming upstream from the advertisers end

needs to meet a specific amount d > 0 (for a general

information-theoretic privacy measure) 14 when it clears the

market, i.e.,
∑

i

qi(bi, p) =
∑

i

bip = d, (2)

11DHs make up for the discounts through benefits from the ad-network.
12The consumer market prices charged by competing DHs might vary for

each DH.
13One could argue that the popular Kelly’s mechanism would also suffice

to obtain social welfare optimality, but the latter mechanism is suitable only
for one-dimensional bids, and not necessarily functions.

14In the special case when the privacy metric under consideration is
differential privacy, the total compromise demand d is analogous to the
quantity ǫd from Section III, where ǫd = 0 denotes a situation of zero
compromise.

or

p(b) = d
∑

i bi
. (3)

Note here that Equation (2) holds due to the composabil-

ity property of certain privacy metrics such as differential

privacy [47], [48]. b = (b1, . . . ., bN ) is the supply function

profile of the DHs. In the event when
∑

i bi = 0, the ad-

network will reject the bid.

IV. MARKETS ANALYSES

In this section, we analyze perfectly competitive and

oligopolistic market structures of DH competition in the

backdrop of a single ad-network. The strategy space for the

DHs is the set of feasible parameter values for their supply

functions. We assume no restrictions on DH compromise

amounts and select the linear supply function as the preferred

choice for the DHs. To this end, we first provide a strong

rationale on our choice of supply function. We then proceed

with the markets analyses.

Why Use a Linear Supply Function? - We answer this

question by first stating that, unlike us, the seminal work

in [9] does use a general function as the bidding strategy

for the purpose of analysis. However, if our bidding action

were to change from the linear form (represented by the

single variable, bi in our work) to a general form like in [9],

the analysis of the strategic behavior of the DHs become

muchmore complicated. To drive home this point, solving the

general supply function equilibrium (SFE) (introduced in [9])

requires solving a set of differential equations. To the best of

our knowledge, there are only existence results about the SFE

while assuming the agents (DHs in our work) are symmetric

(i.e., with the same cost function) or assuming there are only

two asymmetric agents - these assumptions are not practical

in reality. For practical applications, the asymmetric case is

more interesting. On the positive side, the greatest advantage

of using linear supply function over the general forms is the

ability to handle asymmetric DHs when there are more than

two DHs. Moreover, as we will show later in this section,

(a) the linear supply function allows us to get a closed form

characterization for the structure and efficiency of the market

equilibria, which could be impossible to get if using the gen-

eral supply function, and (b) in the case of oligopoly markets,

linear supply function induced markets minimize worst case

efficiency loss for non-restricted compromise markets. Thus,

we lose no generality in working with linear supply functions

as they would be incentive compatible for rational DHs to use

(see Section V).

A. PERFECTLY COMPETITIVE MARKETS

In perfectly competitive markets, DHs are ‘benefit taking’.

Such markets arise when there are a plethora of DHs sell-

ing similar basic consumer information (e.g., users’ prefer-

ences towards the items or products, language preference,

time zone) that are mostly not very personal - so a stan-

dard common benefit value ensues. Given a benefit p, each
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DH i maximizes its net revenue given as:

max
bi≥0

pqi(bi, p) − Ci(qi(bi, p)) (4)

where the first term is the revenue of DH i when it compro-

mises qi(bi, p) amount of privacy at a benefit p per unit of

compromise with a bidding parameter of bi, and the second

term is the total cost incurred to make the compromise. This

cost can be interpreted as the sum of (a) the cost of mak-

ing technical adjustments required to compromise privacy

(e.g., technological/software costs of hosting ads by advertis-

ers), (b) costs of handling consumer complaints/unpopularity,

(c) brand/app switching with respect to degradation of quality

of experience (QoE) arising from clients experiencing delay

and high cellular bandwidth costs in loading apps.

Definition 1: A perfectly competitive equilibrium (PCE)

for the privacy compromise system is defined as a tuple

{(b̄i)i∈N , p̄} such that p̄i is optimal in (4) for each DH i given

the benefit p̄ and
∑

i qi(b̄i, p̄) = d.

The following result shows the existence and uniqueness

of PCE, and it also shows the efficiency of the latter in maxi-

mizing utilitarian social welfare. The proof of the theorem is

in the Section VIII.

Theorem 1: The PCE, {(b̄i)i∈N , p̄}, for the privacy com-
promise system exists and is efficient, i.e., (q̄i)i∈N =
(qi(b̄i, p̄i))i∈N maximizes the utilitarian social welfare

amongst the DHs expressed mathematically as follows:

maxqi≥0

∑

i −Ci(qi), subject to
∑

i qi = d. If the cost function

Ci(qi) is strictly convex, the PCE is unique.

Theorem Implications - The theorem implies that there

exists a pure (and unique, if DH cost functions are strictly

convex) strategy PCE vector of DH privacy compromise

amounts for all DHs at a particular homogeneous PCE benefit

p̄ set by the ad-network that meets the aggregate ad-network

demand of d units of total privacy compromise, and maxi-

mizes utilitarian social welfare amongst the DHs. In a nut-

shell, the theorem states that at market equilibrium efficient

privacy trading is possible amongst heterogeneous DHs and

an ad-network.

Based on the above theorem, we can further study how the

compromise cost function affects a DH’s privacy compromise

amount at PCE. For each DH i, we define the base privacy

compromise marginal cost as C0
i = C ′

i (0
+). Without loss of

generality, we assume that C0
1 ≤ C0

2 ≤ . . . . . . . ≤ C0
|N |. For

modeling convenience, we also introduce parameter C0
|N |+1

and set its value to C ′
n(d). Thus, we have C0

1 ≤ C0
2 ≤

. . . . . . . ≤ C0
|N | ≤ C0

|N |+1. We have the following result on

the privacy compromise characteristics of individual DHs,

the proof of which is in the Section VIII.

Theorem 2: Let {(b̄i)i∈N , p̄} be a PCE and q̄i = qi(b̄i, p̄)

be the corresponding privacy compromise amount by DH i.

The set of DHs that embrace positive compromise amounts,

i.e., {i : q̄i > 0}, at the PCE is given by the set

N̄ = {1, 2, . . . . . . , n̄}, with an n̄ that satisfies
n̄
∑

i

(C ′
i )

−1(C0
n̄ ) ≤ d ≤

n̄
∑

i

(C ′
i )

−1(C0
n̄+1). (5)

Moreover, benefit p̄ at the PCE satisfies

Cn̄0 ≤ p̄ ≤ C0
n̄+1, (6)

for any i ∈ N̄ , p̄ = C ′
i (q̄i).

Theorem Implications - The theorem states that the PCE

has a waterfilling structure - the base privacy compromise

cost C ′
i (0) determines whether DH i compromises privacy or

not. The higher the marginal cost at zero, the less likely the

DHs will join the privacy compromise program, i.e., embrace

a positive amount of compromise. Moreover, the DHs who

join the privacy program at PCE bear the same marginal cost.

The theorem also implies individual rationality is guaranteed

at PCE, i.e., each DH in the privacy compromise program

makes non-negative net revenue - we state this as the follow-

ing corollary, the proof of which is in the Section VIII.

Corollary 1: AnyDHwho participated in the privacy com-

promise program receives non-negative net revenue at PCE,

i.e., p̄q̄i − C ′
i (q̄i) ≥ 0 for all i ∈ N̄ .

Market ‘Win-Win’ for Ecosystem Stakeholders - An

efficient privacy trading market implies that (a) DHs are led

to optimal tradeoffs on how much to compromise aggregate

client privacy versus the per-unit compromise (monetary)

benefit they get from the ad-network, (b) the ad-network

satisfies the downstream demand from the advertisers on

their informational requirement, (c) advertisers, through the

ad-network can get get their ads placed to the right audience,

and (d) consumers, via themonetary benefits received byDHs

from the ad-network, either get to pay less for their services,

or view fewer ads to improve the QoE. They also see useful

targeted ads.

B. OLIGOPOLISTIC MARKETS

In oligopolistic competition markets, DHs are ‘benefit antic-

ipating’, i.e., the DHs know that the benefit p is set according

to (3) and behave strategically. Such markets arise when there

are a few DHs in the market strategically competing with

one another on specific types of consumer information that

might be sensitive to the latter (e.g., location, device ID,

genetic information). We denote the supply function for all

DHs but i as b−i = (b1, b2, . . . ., bi−1, bi+1, . . . .., b|N |)
and write (bi, b−i) for the supply function profile b.

Each DH i chooses bi to maximize its own benefit ui(bi, b−i)
given others’ bidding strategy b−i

ui(bi, b−i) = p(b)qi(p(b), bi) − Ci(qi(p(b), bi)), (7)

that simplifies to

ui(bi, b−i) = d2bi

(
∑

j bj)
2

− Ci

(

dbi

(
∑

j bj)

)

.

Here, the second equality is obtained by substituting the

market clearing benefit p(b) = d
∑

i bi
and the linear supply
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bidding function qi(p(b), bi) = bip(b) into the first equality.

As a result functions {ui(bi, b−i)i∈N define a privacy compro-

mise game.

Definition 2: A supply function profile b∗ is an oligopolis-
tic Nash equilibrium (ONE) if for all DHs i ∈ N, we have

ui(b
∗
i , b

∗
−i) ≥ ui(bi, b

∗
−i), ∀bi ≥ 0.

In order to derive results regarding the existence and

uniqueness characteristics of Nash equilibria in oligopoly

markets, we first propose the following three lemmas (for

investigating the existence and uniqueness of ONE), which

are proved in the Section VIII.

Lemma 1: If b∗ is an ONE of the privacy compromise

game, then
∑

j 6=i b
∗
j > 0 for any i ∈ N.

Lemma 1 also directly implies the following lemma, which

we state without proof.

Lemma 2: If b∗ is an ONE of the privacy compromise

game, then at least two DHs have b∗
i > 0.

Lemma 3: If b∗ is a Nash equilibrium of the privacy com-

promise game, then b∗
i < B∗

−i =
∑

j 6=i b
∗
j for any i ∈ N, and

each DH will compromise an amount less than d
2
at the ONE,

and no ONE exists when |N | = 2.

The proof of Lemma 3 is in Section VIII. We now turn to

state the first of the two main results in this section.

Theorem 3: Assume that |N | ≥ 3. The privacy compromise

game has a unique ONE. The ONE solves the following

convex optimization problem:

min0≤qi< d
2

∑

i Di(qi) subject to
∑

i qi = d ,

where

Di(qi) =
(

1 + qi

d − 2qi

)

Ci(qi) −
∫ qi

0

d

(d − 2xi)2
Ci(xi)dxi.

Theorem Implications - The theorem implies that there

exists a pure and unique ONE strategy vector of DH privacy

compromise amounts for all DHs at a particular homoge-

neous ONE benefit p∗ set by the ad-network that meets the

aggregate ad-network demand of d units of total privacy

compromise, but does not provide a guarantee on maximizing

utilitarian social welfare amongst the DHs (see Section V

in the paper for a mathematical explanation). In a nutshell,

the theorem states that at an oligopolistic privacy trading

market between heterogeneous DHs and an ad-network leads

to an equilibrium state that is not economically efficient.

From the proof of the theorem in the Section VIII, it can

be seen as reverse-engineering from ONE to a global opti-

mization problem. Define 1Ci(qi) = qi
d

− 2qiCi(qi) −
∫ qi
0

d
(d−2xi)2

Ci(xi)dxi. Then Di(qi) = Ci(qi) + 1Ci(qi). Thus,

1Ci(qi) can be interpreted as ‘‘false information’’ reported

by the DHs to gain more benefit from privacy compro-

mise by the ad-network, through strategic bidding. Note that

1iCi(qi) > 0 for all qi ∈ [0, d
2
). 1iCi(qi) being greater than

zero implies that all DHs fake a higher cost function in order

to increase the benefit.

Not the Best ‘Win-Win’ for Ecosystem Stakeholders - A

‘no-guarantee’ on the efficiency of privacy trading oligopoly

implies that DHs might not be able to strategize in a manner

so as to converge upon optimal compromise-benefit tradeoffs,

but the existence of a unique market equilibrium suggests

stable strategizing by the former, i.e., a win-win state that

is not the best one. This means that the DHs will fake high

costs of compromise to get more benefits that will transfer

more incentives to the consumer side at ONE,when compared

to PCE. However on the flip side, the privacy compromise

amounts at ONE will be higher (not something the DHs

would prefer) based on the true compromise costs of the

DHs. From a privacy perspective, this result is fairly intu-

itive as various price strategic mobile apps sell data that are

correlated among the apps, and this correlation negatively

affects privacy preservation guarantees at the ad-exchange.

The ad-network and the advertisers are able to satisfy their

objectives, as in the PCE.

Based on Theorem 3, similar to the case of perfectly com-

petitive markets, we can further study how a cost function

affects a DH’s privacy compromise amount at ONE. For each

DH i, we define the base privacy compromise marginal cost

as C0
i = C ′

i (0
+). Without loss of generality, we assume that

C0
1 ≤ C0

2 ≤ . . . . . . . ≤ C0
|N |. Also notice that C ′

i (0
+) =

D′
i(0

+). For modeling convenience, we also introduce param-

eter C0
|N |+1 and set its value to maxi D

′
|N |(

d
3
). Thus, we have

C0
1 ≤ C0

2 ≤ . . . . . . . ≤ C0
|N | ≤ C0

|N |+1. We now have the

second important result (see Section VIII for a proof) for this

section, on privacy compromise characteristics of DHs.

Theorem 4: Let |N | > 3, {(b∗
i )i∈N } be an ONE, p∗ = d

∑

i b
∗
i

be the ONE benefit, and q∗
i = b∗

i p
∗ be the corresponding

privacy compromise amount by DH i. The set of DHs i that

embrace positive compromise amounts, i.e., {i : q∗
i > 0},

at the ONE is given by the set N ∗ = {1, 2, . . . . . . , n∗}, with
an n∗ that satisfies

n∗
∑

i

(D′
i)

−1(C0
n∗) ≤ d ≤

n∗
∑

i

(D′
i)

−1(C0
n∗+1) (8)

Moreover, benefit p∗ at the ONE satisfies

C0
n∗ ≤ p∗ ≤ C0

n∗+1, (9)

for any i ∈ N ∗, p∗ = D′
i(q

∗
i ).

Theorem Implications - The theorem states that the ONE

has a waterfilling structure, and henceforth the implications

are exactly the same as for Theorem 2. The theorem also

implies individual rationality is guaranteed at ONE, i.e., each

DH in the privacy compromise program makes non-negative

net revenue - we state this as the following corollary, the proof

of which is in the Section VIII.

Corollary 2: AnyDHwho participated in the privacy com-

promise program receives non-negative net revenue at ONE,

i.e., p∗q∗
i − C ′

i (q
∗
i ) ≥ 0 for all i ∈ N ∗.

V. EFFICIENCY AND OPTIMALITY ASPECTS

In this section, we characterize efficiency loss of oligopoly

privacy trading markets and derive the optimality of our

mechanism choice.
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A. CHARACTERIZING EFFICIENCY LOSS AT ONE

We have shown that utilitarian social welfare is maximized at

PCE, thereby making perfectly competitive markets efficient.

In contrast, due to DHs’ benefit-anticipating and strategic

behavior, the ONE is expected to be less efficient. In this

section, we investigate the efficiency loss at ONE for differ-

ent degrees of heterogeneity among DH cost functions, and

provide closed form characterization of the efficiency loss

(if any). Here, we define the the efficiency loss as the ratio

of the total disutility at PCE to the minimum total disutility,

i.e., the ratio C∗
C
. Thus, efficiency loss is equivalently the price

of anarchy (PoA) [49]. To this end, we have the following

main result post investigation.

Theorem 5: Let {(b̄i)i∈N , p̄} be a perfectly competitive

equilibrium (PCE), and p∗ be the corresponding benefit at the
oligopolistic Nash equilibrium (ONE).We have the following:
1) N̄ ⊆ N ∗ where N̄ is the set of DHs who participate in

the privacy compromise program at PCE, and N ∗ is the
set of DHs who participate in the privacy compromise

program at ONE.

2) p̄ ≤ p∗ ≤ n − 1
n

− 2M
mp̄
, where M = maxi∈N C ′

i (
d
n
);

m = mini∈N C ′
i (
d
n
).

3) C̄ ≤ C∗, and if we assume that q̄max = maxi q̄i < d
2
,

then we have

C∗ ≤ (1 + q̄max

d
− 2q̄max)C̄,

where C̄ =
∑

i Ci(q̄i) be the total social cost at PCE,

and C∗ =
∑

i Ci(q
∗
i ) is the total social cost at ONE.

Theorem Implications - The conditions in the theorem

together imply the following:
• The set of DHs that contribute to the privacy compro-

mise program at ONE is a superset (due to more DHs

seeing an opportunity tomake benefits by bidding strate-

gically) of that at PCE (due to the non-strategic nature

of the DHs at PCE).

• The benefit at the ONE is higher than that at PCE (due

to strategic DH behavior at ONE), but the ratio between

the two benefits are bounded. This last point makes sure

that there are limits of DHs to exploiting the advantage

of strategic behavior over non-strategic behavior.

• The total (aggregate) compromise cost at the ONE

is higher than that at the PCE (due to strategic

higher bidding, consequently more benefits, conse-

quently unwanted additional privacy compromise), but

the ratio between the two costs are bounded (incentiviz-

ing strategic higher bidding over non strategic bidding),

provided no one compromises more than half of the total

demand at the PCE (can be enforced via regulation).

• In addition, as long as no DH compromises more than
d
3
at PCE, the efficiency loss C∗

C
is bounded by 3

2
. This

condition can be guaranteed if there are at least three

DHs having comparably low compromise cost (e.g., big

firms with a huge base of locked-in clients and/or firms

trading non-sensitive data), compared to the others.

The presence of closed form expressions for the effi-

ciency loss may serve as a guideline to regulators for

limiting the market power of someDHs (in the oligopoly

setting) to maximize social welfare (e.g., by allowing the

entry of new moderate/big DH app firms in the market

to stiffen competition, and/or control types of data to be

traded).

Moreover, from Theorems 2 and 4, we can derive the fol-

lowing special case result if the DHs have homogeneous

costs, and the difference between the two market equilibria,

i.e., PCE and ONE, are small. The proof of the result is in

the Section VIII.

Corollary 3: On the condition that DHs have the same cost

function, we have the following: 1. p∗ = n− 1
n

− 2p̄. As n →
∞, p∗ → p̄. 2. C∗ = C̄. As n → ∞, C∗ → C̄.

The condition guarantees that when app firms fac-

ing similar cost structure (due to trading similar data

type) are in competition, applying the supply function

bidding scheme will lead to system efficiency irrespec-

tive of whether the market is perfectly competitive or

oligopolistic.

Can the Efficiency Loss be Unbounded? - We show with

an example that the efficiency loss in the worst case can be

unbounded. Consider the case where there are three DHs with

cost functions C1(q) = 1
2rcq2

, and C2(q) = C3(q) = 1
2cq2

,

where c and r are constant parameters. Using Theorem 2,

we can calculate the PCE to be: q̄1 = r
r+2d

, q̄2 = q̄3 = 1
r+2d

,

and p̄ = r
r+2cd

. Similarly, using Theorem 3, we get the ONE

as: q∗
1 = −r+

√
(16+9r)r

4(2+r)d , q∗
2 = q∗

3 = 8+5r−
√
(16+9r)r

8(2+r)d , and

p∗ = D− q∗
1
D

−2q∗
1q

∗
1. Now let r → ∞ - for the PCE we then

have q̄1 → d , q̄2, q̄3 → 0, p̄ → cd , and total cost C̄ → 0.

For the ONE, we have q∗
1 → d

2
, q∗

2, q
∗
3 → d

4
, p∗ → ∞, and

the total cost C∗ → cd2

4
. Thus,

p∗

p
→ ∞, and C∗

C
→ ∞.

Message for Regulators - We see that in a market with

DHs having extremely heterogeneous cost functions, the effi-

ciency loss at the ONE might be unbounded. Combining

this fact with the implications of Corollary 3, regulators are

advised to enable privacy trading by apps in segregated pools,

with similar data types to be traded.

B. OPTIMALITY OF OUR MECHANISM CHOICE

We prove the optimality of our mechanism choice, i.e., a lin-

ear supply function mechanism, over a class of mechanisms

that are suited to designing markets for our problem.

To embark on this task, we first consider a mechanism

desirable if it minimizes worst case efficiency loss when DHs

are ‘benefit anticipating’, independent of the utility functions

of the DHs and their number. That is, the mechanisms we

seek are those that perform well under broad assumptions

of the nature of the preferences of the market participants.

We will show that under a specific set of assumptions, our

mechanism choice minimizes the worst case efficiency loss

when compared to all other feasible mechanisms fitting the

assumptions. To this end, we first define the class, M,

of mechanisms that we want to consider.
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Definition 3: The class M of mechanisms consists of all

supply functions, M (b, p), such that the following conditions

are satisfied:
1) M defines a smooth market-clearing mechanism. Here,

a differentiable M : (0, ∞)×R+ → R+ is said to be a

smooth market clearing mechanism if for all d > 0, for

all n = |N | > 1, and for all non-zero b = (b1, . . . , bN ),

∃ a unique solution p > 0 to

n
∑

i

M (bi, p) = d . (10)

2) For all Ci ∈ C, for all u ∈ U , and for all d > 0,

a DH’s payoff is concave if it is benefit anticipating.

C is the set consisting of all continuous, convex, and

strictly increasing cost functions.

3) For all Ci ∈ C, for all u ∈ U , and for all d > 0, there

exists a b ≥ 0 such that M (bi, p) = qi(bi, p), ∀i.
The second condition allows us to characterize Nash equilib-

ria in terms of only the first-order conditions. To justify this

condition, we note that some assumption of quasiconcavity

is generally used to guarantee the existence of pure-strategy

Nash equilibria [50]. The third condition ensures that given

a benefit p and given qi(bi, p) ∈ [0, d], each DH i can

make a choice bi to guarantee qi(bi, p) - ensuring all possible

demands can be chosen any market-clearing benefit. In view

of these conditions, it is evident that the class of mechanisms

inM fit the privacy trading scenario we address in this work.

In this regard, we showcase the optimality of our proposed

parametric mechanism, an element of the set M, via the

following theorem, the proof of which is in the Section VIII.

Theorem 6: Given M ∈ M, the following results hold:
1) There exists a competitive equilibrium b for any privacy

trading market characterized by the triplet (d,N ,U ),

where d is the total privacy compromise demand on the

ad-network side, N is the number of competing DHs,

and U is the vector of utility functions for every DH.

Moreover, for any such b, the resulting privacy com-

promises, qi(bi, p), for each DH i maximizes welfare.

2) There exists B : (0, ∞) → (0, ∞), a concave, strictly

increasing, differentiable, and invertible function, such

that for all p > 0, and bi ≥ 0, ∀i ∈ N, we have

M (bi, p) = biB(p).

3) The worst case market efficiency loss under oligopoly

is minimized if M (bi, p) = 1bip, for some 1 > 0.

Theorem Implication - For privacy trading oligopolymar-

kets, the linear supply functionmechanismminimizes the loss

in worst case market efficiency.

VI. COMPUTATIONAL EVALUATION

In this section, we focus on developing supply function bid-

ding algorithms that converge in practice to market equi-

libria for perfectly competitive and oligopolistic markets

in a distributed fashion. Our primary performance metric

is market equilibrium convergence speed in terms of the

number of iterations. Our motivation for coming up with

distributed algorithms is the fact that DH cost functions

are private information not released to an ad-network, and

as a result the latter cannot centrally solve the optimiza-

tion problems to maximize utilitarian social welfare and

arrive at ONE, respectively. In addition, we need algo-

rithms that are light on computation and communication

overhead.

A. MINI REAL-WORLD EVALUATION SETUP

As part of a mini-experiment to evaluate supply function

bidding algorithms, we collect sanitized consumer data for

1000 clients on their two sleep patterns (i.e., time to go to

sleep, hours of sleep) from three fitness app startup firms

A, B, and C based in northern California, USA. We ensure

that the set of 1000 clients for each company do not overlap.

For the aggregate data collected from both the companies,

we set up an independent (of A, B, and C) sleep expert

representative from a medical department at an university in

northern California to act as an ad-network. The expert has

thirty years of experience in research and consulting, and

more importantly possesses deep knowledge of what type

of sleep data would be of interest to different commercial

organizations in the fitness and pharmaceutical industries.

Having collected real-world data, as a mock experiment,

we synthetically implement a triopoly competition between

A, B, and C by choosing a senior representative from both

the firms to trade on the sanitized data of their clients with

the ad-network, i.e., the medical representative, in return for

(a) fictitious (but scaled on medical value of the data) mon-

etary benefits and (b) some health insights on the available

consumer data to be passed on by the representatives of A, B,

and C to their clients. We emphasize here that the ad-network

does not have knowledge of individual consumers whose data

is under trade. Trading is done using the supply function

mechanism and each of A, B, and C choose parameters of 1,

1, and 2 respectively, with a common demand upper limit

of 100 differential privacy (DP) units, and a zero lower limit.

Each DP unit is assumed to be 0.02. Each DH reports a nearly

linear cost function to be of the form Ci(qi) = aiqi + hiq
2
i

with ai ≥ 0 and hi ≪ ai ≥ 0. More specifically, ai values

chosen by firms A, B, and C are 0.1, 0.2, and 0.1 respectively.

Correspondingly, the hi values chosen are 0.002, 0.005, and

0.005 respectively.

B. DISTRIBUTED BIDDING ALGORITHMS

As potential distributed algorithm candidate types, one

could either use the standard dual gradient algorithm pro-

posed in [51], or the alternative direction multiplier method

in [52]. Both types are iterative in nature, and equivalently

maps the supply bidding process. In this work15 we resort to

the dual gradient algorithm in [51], without loss of generality.

15We do not focus on the design of optimal distributed algorithms in
terms of speed and scalability. Our goal is to just show fast convergence
and scalability promise of implemented markets induced by supply function
theory, and our proposed algorithms achieve them using as basis, the seminal

algorithm type in [51].16
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FIGURE 3. (Benefit, Supply Function) at Market Equilibrium.

The basic idea behind the two algorithms (see Algorithms 1

and 2 for perfectly competitive and oligopolistic markets,

respectively) is the iterative interplay (until convergence)

between the ad-network announcing a benefit p to the DHs,

and the DHs subsequently updating their non-private bidding

functions bi to the ad-network. (see Figure 4 for a flowchart

representation) In principle, the crux lies behind convergence

lies in the Lagrangian of Equation (7) being strictly concave

and thereby using the Projection Theorem [55] we arrive at

the optimal benefit and supply functions at market equilib-

rium. Consequently, our proposed distributed bidding algo-

rithms possess all the convergence properties of dual gradient

algorithms. We refer the readers to [51] for details regarding

the theory of optimal step sizes, the stopping criterion, and

convergence speed. As an example of the high convergence

speed, we show via experiments in the following section that

for very low γ values in Algorithms 1 and 2, convergence

FIGURE 4. Flowchart of Distributed Market Bidding Algorithms.

is very fast, thereby showing great potential to ensure the

property of scalability for large number of DHs. To be more

specific, it is shown in [51] that in theory very small γ values

result in an exponential convergence rate.

C. SYNTHETIC EVALUATION SETUP

Due to a lack of real-world data, We experiment on syn-

thetic data, to further investigate the scalability, efficiency,

and convergence properties of our proposed algorithmic mar-

ket mechanisms. We consider two DH population settings

for our evaluations: (i) a privacy compromise setting with

30 DHs, and (ii) a significantly larger population setting with

300 DHs. For each DH i, we consider its cost function to

be of the form Ci(qi) = aiqi + hiq
2
i with ai ≥ 0 and

hi ≥ 0. The reason for choosing cost functions of such types

is their widespread use and popularity in economics (and also

somewhat evident from our experiment with the app firms)

due to (a) marginal costs can become either constant (when

hi = 0) or linear (when hi > 0) with the amount of

commodity in question, i.e., in our case the amount of privacy

compromise, and this is reflective of practical microeconomic

commodity settings (b) provides a very good approximation

to higher order cost functions, if they were to exist. As a

representative example (without loss of generality), for the

30 DH and 300 DH case respectively, the value of d is chosen

to be 15 units (indicative of a low aggregate compromise)

and 150 units (indicative of a high aggregate compromise)

of a normalized information-theoretic privacy leakage met-

ric17 [10] we define to be MI (Xi;Yi)
H (Xi)

, where Xi is the source

distribution18 at the DH i and Yi is the distribution at the

ad-network of Xi, and H (Xi) is the Shannon (information-

theoretic) entropy ofXi, andMI (Xi;Yi) is themutual informa-

tion between Xi and Yi. Note that 0 ≤ MI (Xi;Yi)
H (Xi)

≤ 1. ai and hi
are randomly drawnwithout loss of generality from [1, 2] and

[0, 4.5] respectively. We emphasize here that the constants

chosen for our work is with the mindset that we can have DH

cost functions taking low values and otherwise. Scaling up

or down the constant range would not affect results as long as

we have cost functions taking required value ranges. To study

the impact of the DH cost functions on the efficiency loss in

the ONE, we consider three cases: (i) DHs are homogeneous

(ai and hi equals 1 and 2 respectively for all DH i), (ii) one

DH has an extremely low cost function, and the other DHs

have the same cost function, and (iii) twoDHs have extremely

low cost functions, and the other DHs have the same cost

functions. For the low cost cases, we assume coefficients ai
and hi to be 0.1 and 0.2 respectively for low cost DHs, while

17Our methodology is general and independent of the
information-theoretic privacy metric. Differential Privacy is an example
of an information-theoretic metric. In addition, one of the reasons for
experimenting with a privacy metric different from that of differential
privacy as in the real world case, is to test for consistence of results with
different information-theoretic metrics.

18Consumer information collected by DHs can be represented as discrete
or continuous random variables.
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FIGURE 5. Comparison of Market Properties with Linear Marginal DH Cost (Based on Synthetic Data).

others have their ai and hi coefficients set high and randomly

selected in the interval [1, 2].

D. EVALUATION RESULTS

For our real-world experimental setting, we show

in Figure 3 the results for benefit and supply function values

at market equilibrium with respect to the number of iterations

to market convergence. We observe that benefit and supply

functions converge fast (within 25 iterations on a latest

MacBook Pro with 16GB RAM) to the market equilibrium

(ONE). This indicates the possibility of the existence of

workingmarkets satisfying all concerned stakeholders (as per

our model) if personal data were to be traded.As part of future

plans, we would like to run larger scale field experiments,

conditioned on the availability of real data, to validate our

speed and scalability claims on working privacy trading mar-

kets. However, in the absence of real-world data, we experi-

ment with synthetic data as curated in Section VI.C. Without

loss of generality (and in the interest of space), we represent

one of the 50 random instances in our plots. We not later on

the rationale of not showing confidence interval bars in the

plots.

For purely synthetic settings, we observe from Figure 5b

(where γ = 0.1, and DH marginal costs are linear) that

benefit and supply functions in the 30 DH case converge

fast (within 60 iterations on a latest MacBook Pro with

16GB RAM) to the market equilibrium (ONE). In addition,

the benefit at ONE is higher than that in PCE - consistent with

Theorem 5. Compared to the bi value at PCE, DHs with low

bids at the PCE tend to bid higher at the ONE, whereas DHs

who have high bids at the PCE tend to bid a low value at ONE.

The rationale here is that if a DH bids a low value at PCE,

it has an incentive to bid higher at ONE because the benefit at

ONE is higher and the DH might gain more. On the contrary,

if a DH bids high at PCE, it may have an incentive to decrease

bid at PCE because it might gain more by reducing privacy

compromise amount but collecting the same benefit due to

higher benefit at ONE. Through Figures 5c and 5d (where

γ = 0.05), we show the scalability of Algorithms 1 and 2.

The results and rationale are similar to those in Figure 5b,

and convergence to market equilibrium is equally fast.

Figure 5e plots the comparison of benefit and total cost

respectively at PCE and ONE. Figure 5f plots the amount

of privacy compromise by low and high compromise cost

users (denoting trade of low and high privacy sensitive data)

respectively, at PCE and ONE. We observe form Figure 5e

that if all DHs are homogeneous (i.e., trade data of similar

privacy sensitivity), the differences between the market equi-

librium benefits are small and the utilitarian social welfare

of the two market equilibria are the same - consistent with

Corollary 3. In all the three cases related to studying DH

cost impact on efficiency loss mentioned in Section VI.C,
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Algorithm 1 Distributed Bidding Algorithm - Perfectly

Competitive Setting

1: On receiving benefit p(k) announced by the ad-network,

each DHi updates its supply function, bi(k) according to

bi(k) =
[

(C ′
i )

−1(p(k))

p(k)

]+

(11)

and submits it to the ad-network. Here ‘‘+’’ denotes the

projection ontoR+, the set of non-negative real numbers.

2: On gathering bids bi(k) from DHs, the ad-network

updates the benefit according to

p(k + 1) =
[

p(k) − r

(

∑

i

bi(k)p(k) − d

)]+

(12)

and announces the benefit p(k + 1) to the DHs, where

r > 0 is a constant stepsize.

3: Set k → k + 1

4: Check stopping criterion as mentioned in [51], and repeat

we observe from Figure 5f that the differences in efficiency

loss betweenmarket equilibria decrease quickly with increase

in the number of DHs. This is due to the fact that with

increase in market size (multiple traders selling similar data),

the market power of each DH decreases and oligopoly tends

towards behaving like a perfectly competitive market. When

the market size is small, the differences in loss between

the two market equilibria (PCE and ONE) are large when

only one DH has a low cost function - this is because the

latter has market power (to attract customers who care for

privacy). However, when two DHs have low cost functions

the difference between the two market equilibria decreases

rapidly, implying the fact that the ad-network or a regulator

needs to introduce trading tiers of similar cost competingDHs

in the market to improve social welfare.When the market size

is large, the differences between the two market equilibria

are small for all the three efficiency loss study cases cited

in Section VI.C. However, as an interesting observation, for

the case when two DHs have low cost functions, the benefit

and cost ratio between two market equilibria is larger than

in the case when only one DH has a low cost function. This

is because all high cost DHs together contribute to a large

fraction of the total privacy compromise amount, which limits

themarket power of the low cost DH. Thus, given a fixed large

market size, low cost DHs in the two low-cost DH case will

have a larger market power than the low cost DH in a single

low-cost DH case, leading to a larger benefit and cost ratio.

DHs facing low trading cost compromise less on privacy at

ONE than in PCE, whereas DHs with high cost compromise

more at ONE than in PCE. This is because at ONE, DHs

havemarket power to increase the benefit. Low cost DHs gain

more net revenue by decreasing their compromise amount,

whereas high cost DHs have an incentive to compromise

more privacy due to increased benefit.

The results for the case when DH marginal costs are con-

stant is very similar and is shown through Figure 6b-6f. For

such plots the ai values are kept the same as in the case of lin-

ear marginal DH costs, and the hi values are equal to zero. The

reasoning behind the figures is the same as for Figure 5b-5f.

It is important to note that due to similarity of results for

the instances, and the convergence (as visible through the

plots), we do not need to show confidence intervals for the

plots.

Algorithm 2 Distributed Bidding Algorithm - Oligopolistic

Setting

1: On receiving benefit p(k) announced by the ad-network,

each DHi updates its supply function, bi(k) according to

bi(k) =
[

(D′
i)

−1(p(k))

p(k)

]+

(13)

and submits it to the ad-network. Here ‘‘+’’ denotes the

projection ontoR+, the set of non-negative real numbers.

2: On gathering bids bi(k) from DHs, the ad-network

updates the benefit according to

p(k + 1) =
[

p(k) − r

(

∑

i

bi(k)p(k) − d

)]+

(14)

and announces the benefit p(k + 1) to the DHs, where

r > 0 is a constant stepsize.

3: Set k → k + 1

4: Check stopping criterion as mentioned in [51], and repeat

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a introductory but rigorous

preference-based privacy trading market model for mobile

in-app ecosystems of the current data surveillance age that

aims to achieve a maximum privacy welfare state amongst

competing data holders (e.g., apps) by preserving their

heterogeneous privacy preservation constraints upto certain

compromise levels (in return for benefits to data holders),

induced by their clients, and at the same time satisfying

requirements of agencies (e.g., advertisers) that collect client

data for the purpose of targeted advertising. More impor-

tantly, our proposed trading methodology is consensual in

the sense that pre-trading, DHs can decide on their trading

preferences as a function of the benefit to be offered, with-

out needing to sell non-voluntarily with no explicitly offered

benefit. To this end, using concepts from supply-function

economics, we proposed the first mathematically rigorous

privacy market design paradigm with private DH cost func-

tions that characterized states of market efficiency as well as

inefficiency by respecting heterogeneous privacy constraints

of competing data holders to extents possible, in a provably

optimal fashion. More specifically, we analyzed perfectly

competitive and oligopolistic markets to achieve market equi-

libria that is efficient in the former, but not in the latter

VOLUME 8, 2020 146019



R. Pal et al.: Preference-Based Privacy Markets

due to negative externalities of trading not being internal-

ized. Consequently, we characterized the efficiency gap in

closed form. As a major finding, we showed that increasing

competition between app firms of similar market power for

privacy trading activities contribute to increased economic

social welfare due to trading externalities being internalized

better between similar firm types, thereby suggesting regula-

tors to enable privacy trading in segregated pools of similar

app firms.

As part of future work, we plan to (a) gauge the

preference supply functions of individual DHs using

large-scale social experiments, and (b) investigate the

existence of efficient/boundedly inefficient multi-supplier

(apps), multi-demand side (ad-exchanges) market compe-

tition models in a privacy trade setting, and explicitly

account for information correlations between supplier side

data.

VIII. PROOFS OF THEOREMS

Proof of Theorem 1: Definition 1 tells that {(b̄i)i∈N , p̄} is a

competitive equilibrium if and only if

(C ′
i (qi(b̄i, p̄i)) − p̄)(bi − b̄i) ≥ 0, ∀bi ≥ 0 (15a)

∑

i

qi(b̄i, p̄) = d (15b)

Here, (15a) results from the optimality condition of

the convex optimization problem of DH net revenue,

and (15b) follows directly from Definition 1. Since p̄ ≥ 0,

multiplying p̄ to (15a), we get

(C ′
i (q̄i) − p̄) (qi − q̄i) ≥ 0, ∀qi ≥ 0 (16a)

∑

i

q̄i = d (16b)

This is just the KKT optimality condition of the optimiza-

tion problem in the theorem. Hence, (qi)i∈N maximizes social

welfare. And if {(q̄i)i∈N , p̄} is an optimal solution of the latter

optimization problem, {
(

b̄i = q̄i
p̄

)

i∈N
, p̄} satisfies (15a); this

tells that {(b̄i)i∈N , p̄} is a competitive equilibrium. If Ci(qi)

is convex for each DH i, then the social welfare maximiza-

tion problem is a strictly convex problem. Thus there exists

a unique optimal solution (q̄i)i∈N . Moreover, from (16a),

p̄ = C ′
i (q̄i) for any q̄i ≥ 0 ⇒ p̄ is unique ⇒ unique

equilibrium. �

Proof of Theorem 2: From the proof of Theorem 1,

we know that {p̄, (q̄i)i∈N } satisfies (16a) and (16b).

From (16a), we know that, for any i ∈ N , 1) if q̄i > 0, then

p̄ = C ′
i (q̄i) ≥ C ′

i (0), 2) if q̄i = 0, then p̄ ≤ C ′
i (q̄i) = C ′

i (0).

Thus, we know all the DHs who compromise on privacy have

a smaller C∗
i = C ′

i (0) than those who do not. Since C∗
i is

increasing in i, N̄ takes the form of 1, 2, . . . , n̄. If n̄ < |N |,
then 1 and 2 imply that C0

n̄ ≤ p̄ ≤ C0
n̄+1. If n̄ = |N |,

p̄ = C ′
|N |(q̄|N |) ≤ C ′

|N |(d) = C0
n+1, thus C

0
n̄ ≤ p̄ ≤

C0
n+1. Note that, C ′

i (q
′
i) is an increasing function. Hence

∑n̄
i (C

′
i )

−1(C0
n̄ ) ≤

∑n̄
i (C

′
i )

−1(p̄) ≤
∑n̄

i (C
′
i )

−1(C0
n̄+1) which

is
∑n̄

i (C
′
i )

−1(C0
n̄ ) ≤

∑n̄
i q̄i = d ≤

∑n̄
i (C

′
i )

−1(C0
n̄+1). �

Proof of Corollary 1: From Theorem 2, we know that

∀i ∈ N̄ , p̄ = C ′
i (q̄i). Notice that Ci(·) is a convex function.

Thus Ci(q̄i) − Ci(0) ≤ C ′
i (q̄i)q̄i. As Ci(0) = 0, we have

Ci(q̄i) ≤ p̄q̄i. �

Proof of Lemma 1: We prove the result by contradiction.

Suppose that it does not hold, and without loss of generality,

assume that
∑

j 6=1 b
∗
j = 0 for DHi. Then the payoff for

the DHi is Ui(b
∗
i , b

∗
−i) = 0 if b∗

i = 0, and Ui(b
∗
i , b

∗
−i) =

d2

b∗
i

− Ci(d) if b
∗
i > 0. We see that when b∗

i = 0, DHi has

an incentive to increase it, and when b∗
i ≥ 0, DHi has an

incentive to decrease it. So, there is no Nash equilibrium with
∑

j 6=i b
∗
j = 0. �

Proof of Lemma 3:We have

Ui(bi, b−i) = p(b)qi(p(b), bi) − Ci(qi(p(b), bi))

= d2bi
(

∑

j bj

)2
− Ci

(

dbi
∑

j bj

)

(17)

From (17), we have

∂Ui(bi, b−i)

∂bi

= d2 (B−i − bi)

(B−i + bi)
3

− dB−i
(B−i + bi)

2
C ′
i

(

dbi

B−i + bi

)

= d2

(B−i + bi)2

[

B−i − bi

B−i + bi
− B−i

d
C ′
i

(

dbi

B−i + bi

)]

(18)

The first form in the square bracket in (18) is no greater

than 1 and strictly decreasing in bi, the second term is increas-

ing in bi. So, if
B−i
dC ′

i (0)
≥ 1 and

∂Ui(bi,b−i)
∂bi

≤ 0 ∀bi, and
bi = 0 maximizes DHi

′s payoff Ui(bi, b−i) for the given

b−i. If
B−i
dC ′

i (0)
≤ 1,

∂Ui(bi,b−i)
∂bi

= 0 only at one point bi > 0.

Furthermore, note that
∂Ui(0,b−i)

∂bi
> 0 and

∂Ui(B−i,b−i)
∂bi

≤ 0.

So, the point bi maximizes DHi
′s payoff Ui(bi, b−i) for a

given b−i. Thus, at Nash equilibrium, b∗,

b∗satisfies


















b∗
i = 0, ∀i, if

B∗
−i

dC ′
i (0)

≥ 1

B∗
−i − b∗

i

B∗
−i + b∗

i

−
B∗

−i
d
C ′
i

(

db∗
i

B∗
−i + b∗

i

)

= 0, otherwise

(19)

Given a Nash equilibrium, b∗: 1) if b∗
i = 0, then b∗

i < B∗
−i

from lemma 1 and, 2) otherwise, b∗
i satisfies (19). Note that

the second term on the left hand side of (19) is positive.

So the first term must be positive as well, which requires

B∗
−i > b∗

i . Because for each DHi, q
∗
i = b∗

i d

b∗
i

+ B∗
−i,

each DH will compromise a privacy of less than d
2
at the

equilibrium. �

Proof of Theorem 3: Here, we prove the existence and

uniqueness of the optimal solution of optimization problem

in Theorem 3. We first pick d̂ < d
2
such that |N | · d̂ > d

and solve this problem: min
0≤qi<d̂

∑

i Di(qi) subject to
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FIGURE 6. Comparison of Market Properties with Constant Marginal DH Cost (Based on Synthetic Data).

∑

i qi = d . Denote optimal value of this problem as D∗
d̂
. For

each i, find εi such that Di(qi) ≥ D∗
d̂
for all qi ∈

[

d
2

− εi,
d
2

)

.

Such εi always exists because Di(qi) is a strictly increasing

function and limqi→ d
2
Di(qi) = ∞. Therefore, we confer

that the optimization problem in Theorem 3 is equivalent to

this problem: min0≤qi≤ d
2 −εi

∑

i Di(qi) subject to
∑

i qi = d ,

which has a unique solution. Therefore, the optimal solution

always exists and the uniqueness follows from strict convex-

ity of Di(qi).

Now we first note that

D′
i(qi) =

(

1 + qi

d − 2qi

)

C ′
i (qi) (20)

which is positive, strictly increasing function in qi ∈
[

0, d
2

)

. So, Di(qi) is strictly increasing and strictly

convex function in
[

0, d
2

)

because Di(qi) =
∫ qi
0 D′

i(xi)dxi ≥
C ′
i (0)

∫ qi
0

(

1 + xi
d

− 2xi
)

dxi = C ′
i (0)

∫ qi
0 ( 1

2
+ d

2d
− 2xi)dxi =

C ′
i (0)

∫ qi
0

(

1
2qi

− d
4log(d−2xi)

)

dxi. Thus, limqi→ d
2
Di(qi) =

∞. Therefore, the optimization problem in the theorem is

strictly convex problem and has unique optimal solution, and

after a bit of mathematical manipulation, we get the unique

solution q∗ determined by

(

p∗ −
(

1 +
q∗
i

d − 2q∗
i

)

C ′
i (q

∗
i )

)

(

qi − q∗
i

)

≤ 0, ∀qi (21a)

∑

i

q∗
i = d (21b)

p∗ > 0 (21c)
(

d

B∗
−i + b∗

i

−
B∗

−i
B∗

−i − b∗
i

C ′
i

(

db∗
i

B∗
−i + b∗

i

))

(

bi − b∗
i

)

≤ 0, ∀bi

(21d)

Recall that the the Nash equilibrium value of

p∗ = d
∑

i b
∗
i

and the corresponding Nash equilib-

rium allocation q∗
i = b∗

i p
∗. We can write (21d) as

(

p∗ −
(

q∗
i

d−2q∗
i

)

C∗
i (q

∗
i )
)

(

bip
∗ − q∗

i

)

≤ 0. Note that at the

Nash equilibrium, p∗ > 0 since
∑

i b
∗
i > 0 by lemma 1.

Thus the Nash equilibrium of the game satisfies (21a) - (21c),

and solves the optimization problem in the theorem. The

existence and uniqueness of the Nash equilibrium is a result

of the existence and uniqueness of the optimal solution of the

optimization problem. �
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Proof of Theorem 4:Note thatD′
i(qi) is a strictly increasing

function of qi and D
′
i(0) = C ′

i (0). The proof follows the same

argument as in Theorem 2. �

Proof of Corollary 3: From Theorem 4, we know that ∀i ∈
N̄ , p∗ = D′

i(q
∗
i ). Notice thatDi(·) is a strictly convex function.

Thus, Di(q
∗
i ) − Di(0) < D′

i(q
∗
i )q

∗
i . Because Di(0) = 0,

Di(q) > Ci(q), we have Ci(q
∗
i ) < p∗q∗

i . �

Proof of Theorem 5: Notice that D′
i(qi) and C ′

i (qi) are

both strictly increasing function and D′
i(qi) ≥ C ′

i (qi) for

any qi ∈
[

0, d
2

)

. For any i ∈ N , (D′
i)

−1(p̄) ≤ C−1
i (p̄).

Suppose p∗ < p̄. Because C0
n∗ ≤ p∗ ≤ C0

n∗+1, C
0
n̄ ≤

p̄ ≤ C0
n̄+1, and C0

1 ≤ C0
2 ≤ . . . . . . . ≤ C0

n , we have

n∗ ≤ n̄. Therefore,
∑n∗

i (D′
i)

−1(p∗) <
∑n∗

i (D′
i)

−1(p̄) ≤
∑n∗

i (C ′
i )

−1(p̄) ≤
∑n̄

i (C
′
i )

−1(p̄) = d , which contradicts that
∑n∗

i (D′
i)

−1(p∗) = d . Thus, p∗ ≤ p̄. Therefore, n̄ ≤ n∗,
implying N̄ ⊂ N ∗. If n∗ < n, then p∗ ≤ D′

n∗+1(0) ≤
D′
n∗+1

(

d
n

)

= n−1
n−2

C ′
n∗+1

(

d
n

)

≤ n−1
n

− 2M . If n∗ = n, there

exists one DHj such that 0 < q∗
j ≤ d

n
. Thus, p∗ = D′

j(q
∗
i ) ≤

Dj
(

d
n

)

≤ n−1
n

− 2M . In summary,

p∗ ≤ n− 1

n− 2
M (22)

On the other side, there exists at least one DHj such that

C ′
j (q̄i) = p̄ and q̄i ≥ d

n
. Thus,

p̄ ≥ C ′
j

(

d

n

)

≥ m (23)

Combing (22) and (23) gives p∗ ≤ n−1
n−2

M
m
p̄. Lastly, C̄ ≤

C∗ comes from the fact that (q̄i)i∈N is an optimal solution

of optimization problem in Theorem 1. If q̄max < d
2
, then

∑

i Di(q
∗
i ) ≤

∑

iDi(q̄i) since (q
∗)i∈N is an optimal solution

of optimization problem in Theorem 3. It is straightforward

to check that

Di(q̄i) ≤
(

1 + q̄i

d
− 2q̄i

)

Ci(q
∗
i ).

Thus,
∑

iDi(q
∗
i ) ≤

(

1 + q̄max
d−2q̄max

)

C̄ . On the other hand for

any

qi <
d

2
, Di(qi) =

(

1 + qi

d − 2qi

)

Ci(qi)

−
∫ qi

0

d

(d − 2xi)2
Ci(xi)dxi

≥
(

1 + qi

d − 2qi

)

Ci(qi) − Ci(qi)

∫ qi

0

d

(d − 2xi)2
dxi

≥
(

1 + qi

d − 2qi

)

Ci(qi) − Ci(qi)
qi

d − 2qi
≥ Ci(qi).

Thus,

C∗ =
∑

i

Ci(q
∗
i ) ≤

∑

i

Di(q
∗
i ) ≤

(

1 + q̄max

d − 2q̄max

)

C̄ .

�

Proof of Theorem 6: The proof of this theorem is dealt in

various steps, the first step recognizing that proof directly

follows from Theorem 1 in [56] due to the similarity in

structure.

Steps 2 of Proof of Theorem 6: A user’s payoff is con-

cave if he is price taking. The condition that a uniform

market-clearing price must exist implies that for any fixed

θ > 0, the range of D(µ, θ) must contain (0,∞) as µ varies

in (0,∞). Now suppose that for fixed θ > 0, there exist

µ1, µ2 > 0 with µ1 6= µ2 such that D(µ1, θ) = D(µ2, θ) =
d , where d > 0. Let C = 2d and let R = 2. Then for

θθθ = (θ, θ), there cannot exist a unique market-clearing price

pD(θθθ ); so we conclude that D(·, θ) is monotonic, and strictly

monotonic in the region where it is nonzero.

Let I ⊂ (0, ∞) be the set of θ > 0 such that D(µ, 0)

is monotonically nondecreasing in µ. From the preceding

paragraph, we conclude that if θ ∈ (0, ∞)\I , then D(µ, θ)

is necessarily monotonically nonincreasing in µ. Further,

if θ ∈ I , then D(µ, θ) → ∞ as µ → ∞, and D(µ, θ) → 0

as µ → 0; on the other hand, if θ ∈ (0, ∞)\I , then
D(µ, θ) → 0 as µ → ∞, and D(µ, θ) → ∞ as µ → 0.

Suppose I 6= (0, ∞) and I 6= ∅; then choose θ ∈ ∂I ,

the boundary of I . Choose a sequence θn ∈ I such that θn →
θ ; and choose another sequence θ̂n ∈ (0, ∞)\I such that

θ̂n → θ . Fix µ1, µ2 with 0 < µ1 < µ2, such thatD(µ1, θ) >

0 and D(µ2, θ) > 0. Then we have D(µ1, θn) ≤ D(µ2, θn),

and D(µ1, θ̂n) ≥ D(µ2, θ̂n). Taking limits as n → ∞, we get

D(µ1, θ) ≤ D(µ2, θ), and D(µ1, θ) ≥ D(µ2, θ), so that

D(µ1, θ) = D(µ2, θ). But this is not possible, since D(·, θ)
must be strictly monotonic in the region where it is nonzero.

Thus I = (0, ∞) or I = ∅.
We will use Step 1 to show D(µ, θ) is concave in θ ≥ 0

for fixed µ > 0. Since D(µ, θ) is continuous, it suffices to

show that D(µ, θ) is concave for θ > 0. Suppose not; fix

θ > 0, θ > 0, and δ ∈ (0, 1) such that:

D(µ, δθ + (1 − δ)θ) < δD(µ, θ) + (1 − δ)D(µ, θ )

(EC.1)

Note this implies in particular that either D(µ, θ) > 0

or D(µ, θ ) > 0. We assume without loss of generality

that D(µ, θ) > 0. Let CR = RD(µ, θ), and let θθθR =
(θ, · · · , θ) ∈ (R+)R. To emphasize the dependence of the

market-clearing price on the capacity, we will let pD(θθθ;C)
denote the market-clearing price when the composite strategy

vector is θθθ and the capacity is C. We will show that for

any θ ′ > 0, if µR = pD(θθθ
R−1, θ ′;CR), then µR → µ as

R → ∞. First note that by definition, we have D(µR, θ ′) +
(R− 1)D(µR, θ) = RD(µ, θ); or, rewriting, we have:

1

R
D(µR, θ ′) +

(

1 − 1

R

)

D(µR, θ) = D(µ, θ) (EC.2)

Now note that as R → ∞, the right hand side remains

constant. Suppose that µR → ∞. Since I = (0, ∞) or I = ∅,
either D(µR, θ ′),D(µR, θ) → 0, or D(µR, θ ′),D(µR, θ) →
∞; in either case, the equality (EC.2) is violated for large R.

A similar conclusion holds if µR → 0 as R → ∞. Thus

we do not have µR → 0 or µR → ∞as R → ∞.
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Choose a convergent subsequence, such that µR
k → µ̂, where

µ̂ ∈ (0, ∞). From (EC.2), we mush haveD(µ̂, θ) = D(µ, θ).

But as established above, sinceD(·, θ) is strictly monotonic in

the region where it is nonzero, this is only possible if µ̂ = µ.

We conclude that the following three limits hold:
lim
R→∞

pD(θθθ
R;CR) = µ;

lim
R→∞

pD(θθθ
R−1, θ;CR) = µ;

lim
R→∞

pD(θθθ
R−1, δθ + (1 − δ)θ );CR) = µ; .

The remainder of the proof is straightforward. From

(EC.1), for R sufficiently large, we must have:
D(pD(θθθ

R−1, δθ + (1 − δ)θ );CR), δθ + (1 − δ)θ )

< δD(pD(θθθ
R;CR), θ) + (1 − δ)D(pD(θθθ

R−1, θ;CR), θ).

This violates the conclusion of Step 1, so we conclude

D(µ, θ) is concave in θ ≥ 0 give µ > 0. A similar argu-

ment shows that µD(µ, θ) is convex in θ , by using the fact

that pD(θθθ )D(pD(θθθ ), θr ) must be convex in θr for nonzero θθθ .

Combining these results yields the desired conclusion.

Step 5, Proof of Theorem 6: B is an invertible, differen-

tiable, strictly increasing, and concave function on (0, ∞).

Note from (10) that:

B(pD(θθθ )) =
∑R

r=1 θr

C
. (EC.3)

We immediately see that B must be invertible on (0,∞); it

is clearly onto, as the right hand side of (EC.3) can take any

value in (0, ∞). Furthermore, if B(p1) = B(p2) = γ for some

prices p1, p2 > 0, then choosing θθθ such that
∑R

r=1 θr/C = γ ,

we find that pD(θθθ ) is not uniquely defined. Thus B is one-to-

one as well, and hence invertible. Finally, note that since D

is differentiable, B must be differentiable as well. We let 8

denote the differentiable inverse of B. We will show that 8 is

strictly increasing and convex.We first note that for nonzeroθθθ

we have:

pD(θθθ ) = 8

(

∑R
r=1 θr

C

)

.

Let

wr (θθθ ) = pD(θθθ )D(pD(θθθ ), θr )

= 8

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs
C

)

(EC.4)

By Step 1, wr (θθθ ) is convex in θr > 0. By considering strategy

vectors θθθ for which θθθ−r = 0, it follows that 8 is convex.

It remains to be shown that8 is strictly increasing. Since8

is invertible, it must bemonotonic; and thus8 is either strictly

increasing or strictly decreasing. To simplify the argument,

we assume that 8 is twice differentiable. We twice differ-

encetiate wr (θθθ ), given in (EC.4). Letting µ =
∑R

s=1 θs/C ,

we have for nonzero θθθ :

∂2wr

∂θ2r
(θθθ)=8′′(µ)

θr

C2µ
+
2
∑

s 6=r θs

C2µ3
(µ8′(µ)−8(µ)).

(EC.5)

Consider some nonzero θθθ−r , and take the limit as θr → 0.

The limit of the left-hand side in (EC.5) is nonnegative, by the

convexity of wr (θθθ ) in θr > 0. The limit of the first term

in the right-hand side of (EC.5) is zero. Since 8(µ) > 0,

it follows that 8′(µ) > 0, so that 8 is strictly increasing.

This establishes the desired facts regarding B.

Steps 6, Proof of Theorem 6: Let (C,R,U) be a utility system.

A vector θθθ ≥ 0 is a Nash equilibrium if and only if at least

two components of θθθ are nonzero, and there exists a nonzero

vector ddd ≥ 0 and a scalar µ > 0 such that θr = µdr for all

r,
∑R

r=1 dr = C, and the following conditions hold:

U ′
r (dr )

(

1 − dr

C

)

= 8(µ)

(

1 − dr

C

)

+µ8′(µ)

(

dr

C

)

, if dr > 0;

U ′
r (0) ≤ 8(µ), if dr = 0.

In this case dr = D(pD(θθθ ), θr )), µ =
∑R

r=1 θr/C, and

8(µ) = pD(θθθ ). Suppose that θθθ is a Nash equilibrium. Since

Qr (θr ;θθθ−r ) = −∞ if θθθ = 0, (from (7)), wemust have θθθ 6= 0.

Suppose then that only one component of θθθ is nonzero; say

θr > 0, and θθθ−r = 0. Then the payoff to user r is:

Ur (C) − 8

(

θr

C

)

C

But now observe that by infinitesimally reducing θr , user r

can strictly improve his payoff (since8 is strictly increasing).

Thus θθθ could not have been a Nash equilibrium; we conclude

that at least two components of θθθ are nonzero. In this case,

from (7), and the expressions in (11) and (EC.4), the payoff

Qr (θ r ;θθθ−r ) to user r is differentiable.When two components

of θθθ are nonzero, we may write the payoff Qr to user r as

follows, using (11) and (EC.4):

Qr (θr ;θθθ−r ) = Ur

(

θr
∑R

s=1 θs
C

)

−8

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs
C

)

.

Differentiating the previous expression with respect to θr ,

we conclude that if θθθ is a Nash equilibrium then the following

optimality conditions hold for each r :

Fr (θθθ ) = 0if θr > 0; (EC.6)

Fr (θθθ ) ≤ 0if θr = 0, (24)

where

Fr (θθθ ) = U ′
r

(

θr
∑R

s=1 θs
C

)(

C
∑R

s=1 θs
− θrC

(
∑R

s=1 θs)2

)

−8′
(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs

)

−8

(

∑R
s=1 θs

C

)(

C
∑R

s=1 θs
− θrC

(
∑R

s=1 θs)2

)

VOLUME 8, 2020 146023



R. Pal et al.: Preference-Based Privacy Markets

These conditions are equivalent to (14)-(15), if we make

the substitutions µ =
∑R

s=1 θs/C , and dr = D(pD(θθθ ), θr ).

Furthermore, in this case we have ddd ≥ 0, µ > 0, θr =
µdr ,

∑R
r=1 dr = C , and pD(θθθ ) = 8(µ).

On the other hand, suppose that we have found θ, dθ, dθ, d and µ

such that the conditions of Step 6 are satisfied. In this case

we simply reverse the argument above; since Qr (θ r ;θθθ−r ) is
concave in θr (Condition 2 in Definition 4), if at least two

components of θθθ are nonzero then the conditions (EC.6)-(24)

are necessary and sufficient for θθθ to be a Nash equilibrium.

Furthermore, if ddd ≥ 0, µ > 0, θr = µdr , and
∑R

r=1 dr = C ,

then it follows that µ =
∑R

s=1 θs/C , 8(µ) = pD(θθθ ), and

dr = D(pD(θθθ ), θr ). Thus the conditions (EC.6)-(24) become

equivalent to (14)-(15), as required.

Steps 7, Proof of Theorem 6: Let (C,R,U) be a utility system.

Then there exists a unique Nash equilibrium. Our approach

will be to demonstrate existence of a Nash equilibrium by

finding a solution µ > 0 and ddd ≥ 0 to (14)-(15), such that
∑R

r=1 dr = C . If we find such a solution, then at least two

components of ddd must be nonzero; otherwise, (14) cannot

hole for the user r with dr = C . If we define θθθ = µd ,

then µ =
∑R

s=1 θs/C , so pD(θθθ ) = 8(µ); and from (11),

we have dr = D(pD(θθθ ), θr ). Thus if µ > 0 and ddd ≥ 0 satisfy

(14)-(15), then θθθ = µd is a Nash equilibrium by Steps 6.

Consequently, it suffices to find a solution µ > 0 and ddd ≥ 0

to (14)-(15).

We first show that for a fixed value of µ > 0, the equality

in (14) has at most one solution dr . To see this, rewrite (14)

as:

U ′
r (dr )

(

1 − dr

C

)

− (µ8′(µ) − 8(µ))

(

dr

C

)

= 8(µ).

(25)

Since 8 is convex and strictly increasing with 8(µ) → 0 as

µ → 0, we have µ8′(µ)−8(µ) ≥ 0. Thus the left hand side

is strictly decreasing in dr (since Ur is strictly increasing and

concave), from U ′
r (0) at dr = 0 to µ8′(µ)−8(µ) ≤ 0 when

dr = C . This implies a unique solution dr ∈ [0,C] exists

for the equality in (14) as long as U ′
r (0) ≥ 8(µ); we denote

this solution dr (µ). If 8(µ) > U ′
r (0), then we let dr (µ) = 0.

Observe that as µ → 0, we must have dr (µ) → C , since

otherwise we can show that (14) fails to hold for sufficiently

small µ.

Next we show that dr (µ) is continuous. Since we defined

dr (µ) = 0 if 8(µ) > U ′
r (0), and dr (µ) = 0 if 8(µ) = U ′

r (0)

from (14), it suffices to show that dr (µ) is continuous for µ

such that 8(µ) ≤ U ′
r (0). But in this case continuity of dr

can be shown using (14), together with the fact that U ′
r , 8

and 8′ are all continuous (the latter because 8 is concave

and differentiable, and hence continuously differentiable).

Indeed, suppose that µn → µ where 8(µ) ≤ U ′
r (0), and

assume without loss of generality that dr (µn) → dr (since

dr (µn) takes values in the compact set [0,C]). Then since µn

and dr (µn) satisfy the equality in (14) for sufficiently large n,

by taking limits we see that µ and dr satisfy the equality

in (14) as well. Thus we must have dr = dr (µ), so we

conclude dr (µ) is continuous.

We now show that dr (µ) is nonincreasing in µ. To see

this, choose µ1, µ2 > 0 such that µ1 < µ2. Suppose that

dr (µ1) < dr (µ2). Then, in particular, dr (µ2) > 0, so (14)

holds with equality for dr (µ2) and µ2. Now note that as

we move from dr (µ2) to dr (µ1), the left hand side of (14)

strictly increases (since Ur is concave). On the other hand,

since 8 is convex and strictly increases with 8(µ) → 0

as µ → 0, we have the inequalities µ28
′(µ2) − 8(µ2) ≥

µ18
′(µ1) − 8(µ1) ≥ 0. From this it follows that the right

hand side of (14) strictly decreases as we move from dr (µ2)

to dr (µ1) and from µ2 to µ1. Thus neither (14) nor (15) can

hold at dr (µ1) and µ1; so we conclude that for all r , we must

have dr (µ1) ≥ dr (µ2).

Thus for each r , dr (µ) is a nonincreasing continuous func-

tion such that dr (µ) → C as µ → 0, and dr (µ) → 0

as µ → ∞. We conclude there exists at least one µ > 0

such that
∑R

r=1 dr (µ) = C ; and in this case ddd(µ)

satisfies (14)-(15), so by the discussion at the beginning of

this step, we know that θθθ = µddd(µ) is a Nash equilibrium.

Finally, we show that the Nash equilibrium is unique.

Suppose that there exist two solutions ddd1 ≥ 0, µ1 > 0, and

ddd2 ≥ 0, µ2 > 0 to (14)-(15), such that
∑R

r=1 d
i
r = C for

i = 1, 2. Of course, we must have ddd i = ddd(µi), i = 1, 2. We

assume without loss of generality that µ1 ≤ µ2; our goal is

to show that µ1 = µ2. Since dr (·) is nonincreasing, we know
dr (µ1) ≥ dr (µ2) for all r . Since

∑R
r=1 d

i
r = C for i = 1, 2,

we conclude that dr (µ1) = dr (µ2) for every r . Let r be such

that dr (µ1) = dr (µ2) > 0. Observe that 8(µ) and µ8′(µ)
are both strictly increasing in µ > 0, since 8 is strictly

increasing and convex. Thus for fixed dr > 0, the equality

in (14) has a unique solution µ, so dr (µ1) = dr (µ2) > 0

implies µ1 = µ2. Thus (14)-(15) have a unique solution

ddd ≥ 0, µ > 0, such that
∑R

r=1 dr = C . From Step 6, this

ensures the Nash equilibrium θθθ = µddd is unique as well. Thus,

combining steps 1 to 7, we prove Theorem 6. �
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