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An autocatalytic set (ACS) is a graph. On the other hand, the Potential Method (PM) is an established graph based concept for
optimization purpose. Firstly, a restricted form of ACS, namely, weak autocatalytic set (WACS), a derivation of transitive
tournament, is introduced in this study. *en, a new mathematical concept, namely, fuzzy weak autocatalytic set (FWACS), is
defined and its relations to transitive PM are established. Some theorems are proven to highlight their relations. Finally, this paper
concludes that any preference graph is a fuzzy graph Type 5.

1. Introduction

Graph theory is rapidly moving into diverse fields such as
chemistry, engineering, computer science, and operations
research [1–3]. Graph has been used to model intercon-
nections between natural and man-made systems. Dey and
Pal [4] and Dey et al. [5] used graph-coloring technique to
classify traffic accidental zones. Dey et al. [6, 7] solved fuzzy
shortest path problems with interval Type 2 fuzzy arc lengths
of a graph. Wuest et al. [8] utilized a graph to determine
quality of a manufacturing program.

Two structures of interest in this study are ACS and PM
where both are graphs. Each one of them contains a set of
vertices and a set of edges. However, the ACS is a graph such
that each vertex has at least an incoming link, whereas the
PM, on the contrary, must always have a vertex with a
missing incoming link. *e relation between these two
mathematical structures has not been explored yet. *ere-
fore, the anticipated relation is studied and presented in this
paper.

Firstly, a weak form of ACS, namely, weak autocatalytic
set (WACS), is introduced to serve as a “bridge” between
ACS and PM. *e study is later expanded to the case of PM
with uncertainty connections between its vertices, i.e., fuzzy

edges. *e idea has led to a new ACS, namely, fuzzy weak
autocatalytic set (FWACS).

*e paper is organized as follows. Section 2 provides
some basic concepts and definitions associated with this
study. *e WACS is introduced in Section 3 and some
features of WACS are presented in this section. Section 4
elaborates ACS and PM and their relation. *e fuzzification
of WACS is described in Section 5. Finally, the conclusion of
this paper is presented in Section 6.

2. Preliminaries

Generally, a graph represents a relationship between objects
visually. *ese objects are represented by vertices and their
relations by edges (see Figure 1).

*e formal definition of a graph is given in Definition 1.
An example of a graph with four vertices V � v1, v2, v3, v4{ }
is illustrated in Figure 2.

Definition 1 (see [10]). A graph is a pair of sets (V, E) where
V is the set of vertices and E is the set of edges.

Furthermore, another way to represent a graph is by its
adjacency matrix.*e definition of an adjacency matrix for a
given graph is as follows.
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Definition 2 (see [10]). An adjacency matrix of a graph G �
(V, E) with n vertices is an n × n matrix denoted by A �
(aij),where aij � 1 if E contains a directed edge (j, i). It is an
arrow pointing from vertex j to vertex i, and aij � 0
otherwise.

An adjacency matrix for the graph in Figure 2 is

A �

0 0 0 1

1 0 0 0

1 0 0 0

0 1 0 0


. (1)

In 1965, Lotfi Zadeh introduced a revolutionized
mathematical concept, namely. fuzzy set. A fuzzy set is a
refined version of a crisp set (classical set). *e membership

value of an element of a crisp set is 0 or 1. However, a fuzzy
set employs membership value between 0 and 1 [11]. For-
mally, a fuzzy set A of universe X is defined by its mem-
bership function μA(X) as follows:

μA(x): X[0, 1], (2)

such that μA(x) � 1 if x is totally inA; μA(x) � 0 if x is not in
A; and 0< μA(x)< 1 if x is partly in A.

Figure 3 shows a membership function of a fuzzy set.
*ese two concepts (graph and fuzzy set) have given

“birth” to a new mathematical structure, namely, fuzzy
graph. Definition 3 indicates that vertices and edges are both
fuzzy. In other words, the vertices and edges have values
between 0 and 1. Figure 4 illustrates a fuzzy graph.

Definition 3 (see [12]). A fuzzy graph G � (σ, μ) is a pair of
functions σ: S⟶ [0, 1] and μ: S × S⟶ [0, 1]∍∀x, y ∈ S,
μ(x, y)≤ σ(x)∧ σ(y).

An adjacency matrix of a fuzzy graph is defined as
follows:

Definition 4 (see [12]). An adjacency matrix, A of a fuzzy
graph G � (V, σ, μ), is an n × n matrix defined as A � (aij)
such that aij � μ(vj, vi).

*e adjacency matrix for the fuzzy graph in Figure 4 is

A �

0 0 1 0.2

0.4 0 0 0

0 0.7 0 0

0 0 0.5 0


. (3)

v1

v2

v3

v4

Figure 2: A graph with four vertices.

(a)

Kneiphof
A

B

D

C

Pregel

(b)

B

A

C

D

(c)

Figure 1: Königsberg bridge problem [9]. (a) *e town of Königsberg. (b) Schematic representation of the area with the bridges. (c) Euler’s
representation of the problem.
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Blue et al. [13] further introduced five types of fuzzy
graphs, i.e., taxonomy of fuzzy graphs. *ey argued that
fuzziness can occur in several ways, namely:

Type 1: fuzzy set of graphs

Type 2: crisp vertices and fuzzy edges

Type 3: crisp vertices and edges but with fuzzy
connectivity

Type 4: fuzzy vertices and crisp edges

Type 5: crisp graph with fuzzy weight

Later, Tahir et al. [14] formalized these five types of fuzzy
graphs as follows:

Type 1: G1F � G1F, G2F, . . . , GnF{ } where fuzziness is on
GiF for i � 1, 2, . . . , n

Type 2: G2F � V, EF{ } where the edges are fuzzy
Type 3: G3F � V, E(tF, hF){ } where both the vertices and
edges are crisp but the edges have fuzzy heads and tails

Type 4: G4F � VF, E{ } where the vertices are fuzzy
Type 5: G5F � V, E(wF){ } where both the vertices and
edges are crisp but the edges have fuzzy weights

In the following subsection, a brief review on a new
mathematical concept called fuzzy autocatalytic set is
presented.

2.1. Fuzzy Autocatalytic Set (FACS). *e concept of auto-
catalysis was originated in chemistry, in particular, for the
description of catalytically interaction between molecules

[15–17]. Further, Jain and Krishna [18] formalized the
concept of an autocatalytic set (ACS) as a directed graph in
which its vertices represent species and its edges represent
catalytic interactions among them. *e formal definition of
an ACS is given as follows.

Definition 5 (see [18]). An autocatalytic set is a subgraph,
each of whose vertices has at least one incoming link from
vertices belonging to the same subgraph.

Some examples of ACSs are illustrated in Figure 5. *e
simplest ACS is a vertex with 1-cycle.

*emerger of fuzzy graph and autocatalytic set has led to
the idea of fuzzy autocatalytic set (FACS) by Tahir et al. [14].
*e formal definition of FACS is laid as follow.

Definition 6 (see [14]). A fuzzy autocatalytic set is a sub-
graph each of whose vertices has at least one incoming link
with membership value, μ(ei) ∈ (0, 1],∀ei ∈ E, from any
other vertices belonging to the same subgraph.

An example of FACS is given in Figure 6.
In the same paper, Tahir et al. [14] proved the following

theorems regarding fuzzy graph and FACS.

Theorem 1 (see [14]). Every crisp graph is a fuzzy graph.

Theorem 2 (see [14]). Every autocatalytic set is a fuzzy
graph.

Theorem 3 (see [14]). Every fuzzy autocatalytic set is also a
fuzzy graph.

*e relation between crisp graph, fuzzy graph, ACS, and
FACS is depicted in Figure 7.

In general, graphs have been widely used to model
various systems [19]. Graphs have been used in decision-
making problems such as in industry, government,
healthcare, business, and education [20]. In the next sub-
section, a decision-making technique called Potential
Method is reviewed.

2.2. Potential Method. Potential Method is a method in
decision-making process which utilizes graph. *e graph is
called preference. *e preference graph was developed by
Lavoslav Čaklović in 2002 to model pairwise comparisons
between alternatives. In general, suppose V is a set of al-
ternatives in which some preferences are being considered. If
an alternative u is preferred over alternative v (denoted as
u≻ v), it can be presented as a directed edge from vertex v to
vertex u (see Figure 8). *e edge is denoted by (u, v).

If the preference is described with an intensity (e.g.
equal, weak, moderate, strong, or absolute preference), then
the directed edge from v to u has a value, namely, weight,
and is denoted by F(u,v). In case of an equal preference
(denoted by u ∼ v), then F(u,v) � 0, and the direction of the
edge is irrelevant; i.e., edge (u, v) can be replaced by (v, u).

Čaklović [21] added that a preference graph has neither

loops nor parallel edges. It contains at most
n
2

( ) edges [22].
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Figure 3: An example of a fuzzy set.
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Figure 4: An example of a fuzzy graph.
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*e formal definition of a preference graph is given in
Definition 7 as follows.

Definition 7 (see [23]). A preference graph is a triple G �
(V,A, F) where V is a set of n ∈ N vertices (representing
alternatives), A⊆V × V is a set of directed edges, and
F: A⟶ R is a preference flow which maps each edge (u, v)
to the corresponding intensity, F(u,v).

Two examples of potential graph are illustrated in
Figure 9.

Directed graphs have appeared in connection with
various optimization problems, in particular, tournament
problems [24, 25]. *e description of a tournament problem
by means of a graph is described in the following subsection.

2.3. Tournament. Suppose that n players compete in a
round robin tournament whereby each player competes
with all other players. In other words, for every pair of
players u and v, either u beats v or v beats u and no draw is
allowed [26].

*e outcome of a tournament can be represented by a
directed graph [27, 28].*us, for each pair of vertices u and v
in a tournament graph, there is a directed edge from u to v or
from v to u, but not both. *e formal definition of a
tournament in form of a graph is given as follows.

Definition 8 (see [26]). A tournament graph with n vertices
is a pair T � (V, E) where V � v1, v2, . . . , vn{ } is a set of
vertices and E ⊂ V2 is a set of ordered pairs called directed
edges, so that for every two distinct vertices vi and vj either
(vi, vj) ∈ E or (vj, vi) ∈ E.

Some examples of tournament graphs are illustrated in
Figure 10.

Kendall and Smith [29] introduced a procedure to
compare between three objects (A, B, C) that can be rep-
resented by a triangle called triad.*e orientation of edges of
a triad is discussed by Harary and Moser [27], Tversky [30],
and Gass [31]. *e transitivity for a triad is categorized as
two types, simply as transitive and intransitive. *ey are
elaborated in the following subsections.

2.3.1. Transitivity. Consider a set of objects A, B, C{ }. A
respondent may choose B from the pair A, B{ } and A from
the pair A, C{ } and prefer B from B, C{ }. His choices can be
ordered as B, A, C{ } as shown in Figure 11. *e resultant
orientation is said to be a transitive [27, 29].

On the other hand, an intransitive orientation occurs
when the respondent selects B from the pair A, B{ }, A from
the pair A,C{ }, and C from the pair B, C{ } as illustrated in
Figure 12. An intransitive orientation produces a cycle [29].

However, only the transitive orientation is considered
and discussed in this paper.

Figure 5: Some examples of ACS.
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Figure 7: *e relation of ACS and FACS to fuzzy graph.
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Figure 9: Examples of potential graphs.
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2.3.2. Transitive Tournament. An orientation of a tourna-
ment is called transitive whenever a⟶ b and b⟶ c; then
a⟶ c. In other words, if ab and bc are edges in T, then ac is
also an edge in T (see Figure 13).

A graph which contains no cycle of any length is called
an acyclic graph.

Definition 9 (see [32]). A directed graph is called a directed
acyclic graph if it does not contain any directed cycles.

*erefore, a transitive tournament is an acyclic graph if it
contains no cycles as stated by *eorem 4 as follows.

Theorem 4 (see [27]). A tournament is transitive if and only
if it contains no cycles.

An acyclic graph is categorized as weakly connected and
defined by Skiena [33] and Préa [34] as follows.

Definition 10 (Skiena [33]). *e nodes in a weakly con-
nected digraph must all have either in-degree or out-degree
of at least 1.

Definition 11 (Préa [34]). *e relation which defines the
weak connectivity of a directed graph if there exists a path
from vertex x to vertex y or from y to x and it is not
transitive.

Furthermore, there are several definitions for transitive
tournament as documented in Harary and Moser [27] and

Moon and Pullman [35]. However, all of them are equiv-
alent. *e following theorem lists some properties of a
transitive tournament whose scores (s1, s2, . . . , sn) are in
nondecreasing order.

Theorem 5 (see [27]). Given a tournament T, the following
are equivalent:

(1) T is transitive

(2) T contains no oriented cycle

(3) =e score sequence of T is (0, 1, 2, . . . , n − 2, n − 1)

(4) T contains n(n − 1)(n − 2)/6 transitive triples

(5) T has exactly one  amiltonian path

A transitive tournament has exactly a sink and a source
[31]. A source is a vertex with zero in-degree; i.e.,
ind(v) � 0. A vertex v is called a sink if all n − 1 edges
ended at v. A sink is a vertex with zero out-degree; i.e.,
outd(v) � 0. Figure 14 shows a transitive 4-tournament. It
has no cycle, i.e., acyclic. Vertices B and D are the source
and sink, respectively.

A transitive tournament contains a source, i.e., a
vertex with no incoming link. It is not an ACS by Def-
inition 5. In other words, a transitive tournament is “not
a full pledge ACS.” *e condition has led to a new “weak
version” of ACS as described in detail in the following
section.

3. Weak Autocatalytic Set (WACS)

*is section presents the WACS. A WACS is derived from
transitive tournament. It is defined formally as follows.

Definition 12. A WACS is a non-loop subgraph in which it
has a vertex with no incoming link.

Figure 15 illustrates some examples of WACS.
New features of WACS are deduced. *ese features are

inspired from the work of Skiena [33] and Préa [34] on weak
connectivity. *e following theorem is an immediate con-
sequence of Definition 10 and 11.

Theorem 6. Every WACS is a weak connected graph.

Proof. Let G � (V, E) be a WACS. *erefore, by Defini-
tion 12, G contains a vertex which has no parallel edge,
say, from u to v or from v to u. Every node in G has either
out-degree or in-degree of at least 1. *erefore, every
WACS is a weak connected digraph by Definition 10 and
Definition 11. □

Figure 10: Examples of tournament graphs.
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Figure 11: Transitive (acyclic).

B C

A

Figure 12: Intransitive (cyclic).
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Figure 13: A transitive orientation.
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Consequently, a WACS has no Hamiltonian cycle. *is
particular feature leads to the following theorem.

Theorem 7. Every WACS must have at least a path, which is
not closed.

Proof. Let G � (V, E) be a WACS. A closed path begins and
ends at the same vertex. Since a WACS has a vertex with no
incoming link, it produces an open path. *erefore, every
WACS has at least a path which is not closed.

*e graph in Figure 16 shows a WACS with three
vertices and not closed. □

A graph can be represented in form of a matrix i.e.
adjacency matrix (see Definition 2). An adjacency matrix for

the graph in Figure 14 is A �

0 1 1 0
0 0 0 0
0 1 0 0
1 1 1 0

 .
In a WACS, the entries of main diagonal of its adjacent

matrix are all zeros. It contains a zero row, which shows that
there exists a vertex with no incoming link. Hence, every
WACS can be mapped to a square matrix as presented in the
following theorem.

Theorem 8. Let G(V, E) be a WACS defined by

Gk �
0 when i � j and ei ∉ E
μ(ei) ∈ 0, 1{ } when i≠ j and ei ∈ E

{ for k � 1, 2, . . . , n.

Consider G � Gk: k � 1, 2, . . . , n{ } be a finite set of WACS
and letMn×n

F � [aij]
n×n

: aij ∈ 0, 1{ }with aii � 0{ } be a square
matrix. Define f: G⟶Mn×n

F ∍f(Gk) � [aij]. =en f is a
bijective function.

Proof

(i) LetG(V, E) � G′(V′, E′)
⟹V � v1, v2, . . . , vn{ } � v1′, v2′, . . . , vn′{ } � V′ and
E � μ(vj, vi){ }

i,j�1,2,...,n
� μ(vj′, vi′){ }

i,j�1,2,...,n
� E′

⟹ μ(vj, vi) � aij � aij′ � μ(vj′, vi′)
⟹[aij] � [aij]′
∴f is a well − define function.

(ii) f is onto since for [aij] ∈Mn×n
F ,∃Gk∍f(Gk) �

[aij] and aij � μ(vi, vj) for (vi, vj) ∈ Gk
(iii) Suppose f(G1(V, E)) � f(G2(V, E))

aij � aij′⟹(vj, vi) � (vj′, vi′)
⟹ vi � vi′ and vj � vj′,∀i, j � 1, 2, . . . , n
⟹G1(V, E) � G2(V, E).
∴f is one to one

□
In general, aWACSwith n vertices contains a vertex with

no multiple edges. Consequently, the vertex will have n − 1
edges. However, the other n − 1 vertices may have multiple
edges. *e following theorem proves that a finite set of
vertices for WACS produces a finite set of edges.

Theorem 9. If G(V, E) is a WACS and |V| � n, then
|E|≤ (n − 1)2.

Proof. Let G(V, E) be a WACS and V � v1, v2, v3, . . . , vn{ }.
*ere exist a vertex with no incoming link and |V| � n. *e
most possible edges for G is

B

A C

D

Figure 14: A transitive 4-tournament.

Figure 15: Examples of WACS.
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|E|≤

v1, v2( ) v1, v3( ) v1, v4( ) · · · v1, vn( )
v2, v3( ) v2, v4( ) · · · v2, vn( )

v3, v4( ) · · · v3, vn( )
⋱ ⋮

vn− 1, vn( )




∪

vn, vn− 1( )
vn, vn− 2( ) vn− 1, vn− 2( )

vn, vn− 3( ) vn− 1, vn− 3( ) vn− 2, vn− 3( )
⋰ ⋮ ⋮ ⋮

vn, v1( ) vn− 1, v1( ) vn− 2, v1( ) · · · v2, v1( )




\ v1, vn( ),{

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· v2, vn( ), v3, vn( ), . . . , vn− 1, vn( )}∣∣∣∣

(4)

Hence,

|E(n)|≤ ∑n
j�2

v1, vj( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�3

v2, vj( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�4

v3, vj( )∣∣∣∣∣ ∣∣∣∣∣ + · · · + 2 + 1 +
· 1 + 2 + · · · +∑n

j�4

vj, v3( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�3

vj, v2( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�2

vj, v1( )∣∣∣∣∣ ∣∣∣∣∣  − ∑n− 1
i�1

vi, vn( )∣∣∣∣ ∣∣∣∣ .
(5)

Consequently,

|E|≤
n

2

  +
n

2

  − (n − 1)

� 2
n

2

  − (n − 1)

� 2
n!

2!(n − 2)!
( ) − (n − 1)

�
n!

(n − 2)!
− (n − 1)

�
n(n − 1)(n − 2)!

(n − 2)!
− (n − 1)

� n2 − 2n + 1

�(n − 1)(n − 1)

�(n − 1)2.

(6)

*erefore, |E|≤ (n − 1)2
Hence, a WACS with n vertices has number of edges at

most (n − 1)2. □

*e following subsection establishes the relation between
transitive tournament and WACS.

3.1. Transitive Tournament as a WACS. A tournament
consists of pairwise comparisons between objects. *e
procedure for the comparisons is discussed in Kendall [24]
and David [25]. *e most possible number of edges for a
tournament graph is formalized in *eorem 10 as follows.

Theorem 10. =emost possible edges for a tournament graph

T(V, E) with n vertices is
n
2

( ).
Proof. Suppose T(V, E) is a tournament graph with n
vertices.

vn

v1

v2

v3

v4

v5

All its possible edges can be written as a set E such that

Figure 16: A WACS with path, which is not closed.
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E �

v1, v2( ) v1, v3( ) v1, v4( ) · · · v1, vn( )
v2, v3( ) v2, v4( ) · · · v2, vn( )

v3, v4( ) · · · v3, vn( )
⋱ ⋮

vn− 1, vn( )




, (7)

and the number of edges of E is

|E(n)| �

v1, v2( ) v1, v3( ) v1, v4( ) · · · v1, vn( )
v2, v3( ) v2, v4( ) · · · v2, vn( )

v3, v4( ) · · · v3, vn( )
⋱ ⋮

vn− 1, vn( )





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

|E(n)|≤ ∑n
j�2

v1, vj( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�3

v2, vj( )∣∣∣∣∣ ∣∣∣∣∣ +∑n
j�4

v3, vj( )∣∣∣∣∣ ∣∣∣∣∣ + · · · + 2 + 1.
(8)

In particular,

|E(n)| �(n − 1) +(n − 2) + · · · + 2 + 1

2|E(n)| �[(n − 1) +(n − 2) + · · · + 2 + 1] +[(n − 1) +(n − 2)

+ · · · + 2 + 1]

�[(n − 1) +(n − 2) + · · · + 2 + 1] +[1 + 2 + · · ·

+(n − 2) +(n − 1)]

� n + n + n + · · · + n

� n(n − 1).

(9)

Thus, |E(n)| � n(n − 1)/2 �
n
2

( ).
Such that (vi, vj)means (vi, vj) or (vj, vi).
Hence, the most possible number of edges for T(V, E)

is
n
2

( ). □

A comparison number of edges between WACS and
transitive tournament is established, namely the number of
edges produced by a tournament is less than the number of
edges produced by a WACS with respect to a given graph.
*e following lemma is needed.

Lemma 1.
n
2

( )< (n − 1)2 for n> 1.

Proof.

n

2

  �
n!

2!(n − 2)!

�
n(n − 1)(n − 2)!

2!(n − 2)!

�
n(n − 1)

2!
�
n(n − 1)

2

�
n

2
(n − 1)

<(n − 1)(n − 1) for n> 1

since
n

2
�
n − 1 + 1

2
�
n − 1

2
+
1

2
< n − 1 + 1

2
whenever n> 1

�(n − 1)2

(10)
*erefore,

n
2

( )< (n − 1)2. □

Consequently, the relation between a transitive tour-
nament and a WACS is established by the following
theorem.

Theorem 11. Every transitive tournament is a WACS.

Proof. Firstly, a transitive tournament is guaranteed to have
a vertex with no incoming link by *eorem 4 as well as no

loops by *eorem 5. Furthermore, it contains
n
2

( ) number
of edges. *eorem 9 and *eorem 10 guarantee that the
possible maximum number of edges produced by aWACS is

(n − 1)2 for the same number of n vertices. *erefore, the
number of edges for a transitive tournament will not exceed
the number of edges of a WACS by Lemma 1. *us, every
transitive tournament is a WACS by Definition 12. □

Figure 17 depicts the relation between transitive tour-
nament and ACS.

*e aim of this paper is to establish the relation between
ACS and PM. In the following section, the preference graph
of Potential Method (PM) is reviewed. In this work, we use
the term “potential graph” in short to refer the preference
graph of the Potential Method. A brief definition of PM are
presented in Section 2.2. *ere are two types of orientation
as pointed in Section 2.3.1. In this paper, we consider the
transitive orientation for the potential graph.

4. Transitive Potential Graph

*e following example is obtained from Čaklović and
Kurdija [23] with some additional information to illustrate a
transitive orientation for the potential graph.
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Example 1. Let a, b, c and d be preference items. Assume the
following preferences over a, b, c, andd.

(i) a is preferred to b by 1.

(ii) a is better than c by 2.

(iii) a is preferred to d by 4.

(iv) b is better than c by 1.

(v) b is better than d by 3.

(vi) c is more preferred to d by 2

In short, the preferences are a≻ b, a≻ c, a≻d, b≻ c,
b≻d, and c≻ d with intensities of 1, 2, 4, 1, 3, and 2,
respectively. *e following are the edges of the preferences:

(i) Edge (a, b) with flow F(a,b) � 1

(ii) Edge (a, c) with flow F(a,c) � 2

(iii) Edge (a, d) with flow F(a,d) � 4

(iv) Edge (b, c) with flow F(b,c) � 1

(v) Edge (b, d) with flow F(b,d) � 3

(vi) Edge (c, d) with flow F(c,d) � 2

*e transitive potential graph is illustrated in Figure 18.
*e vertices represent the preference items a, b, c, and d. *e
intensity value for an edge represents the strength between
two preference items.

Clearly, any transitive potential graph contains no cycle
of any length. *is situation leads to the following theorem.

Theorem 12. A potential graph is transitive if and only it
contains no cycles.

Proof. (⟹) Assume a potential graph G is transitive but
contains a cycle v1, v2, . . . , vn, v1. For n � 2,G contains
parallel arcs v1v2 and v2v1, thus contradicting G being a
potential graph. Further, for n≥ 3, v1v2 and v2v3 are arcs;
transitivity implies v1v3 is an arc. Now we know that v1v3 is
an arc, and since v3v4 is an arc, again transitivity implies v1v4
is an arc. We reason like this, n − 2 times to conclude that
v1vk is an arc. However, vkv1 is also an arc of the digraph

since it is part of the cycle.*us,G contains parallel arcs v1vk
and vkv1, contradicting G being a potential graph.

(⟸) Assume a potential graph G contains no cycle.
Suppose G contains arcs uv and vw. We know u≠w since G
contains no parallel arcs. *e potential graph cannot have
wu as an arc because if it did, it would contain the cycle
u, v, w, u. Since it is a potential graph and u≠w, either uw or
wu is an arc. *us, uw is an arc. Hence, G is transitive. □

Some examples of transitive potential graphs are shown
in Figure 19.

*us, a transitive potential graph is indeed a WACS and
presented in the following theorem.

Theorem 13. Every transitive potential graph is a WACS.

Proof. A transitive potential graph has neither loops nor
parallel edges. It is a weak connected graph by *eorem 6.
Hence, it contains no cycle of any length as indicated by
*eorem 12. *us, it produces an open path by *eorem 7.
*erefore, by Definition 12 every transitive potential graph
is a WACS. □

Potential graph usually arises from optimization or mul-
ticriteria problem. Hence, such transformed problem can be
studied as a special graph, namely,WACS, rigorously. AWACS
is a crisp graph since its edges are either 0 or 1. *e following
section discusses the relation of WACS and fuzzy graph.

4.1. Weak Autocatalytic Set as Fuzzy Graph. *e concept of
fuzzy graph is the fuzzification of the crisp graph using fuzzy
set. A fuzzy graph is a replication of a crisp graph [36].
*eorem 14 proves that WACS is a special case of a fuzzy
graph.

Theorem 14. Every WACS is a fuzzy graph.

Proof. Every crisp graph is a fuzzy graph by *eorem 1.
*erefore, every WACS is also a fuzzy graph since WACS is
just a special kind of a crisp graph. □

A WACS is a crisp graph. All crisp graphs are fuzzy but
not the other way around. *erefore the converse of the
above theorem is not true.

*e following theorem is an immediate consequence of
*eorem 14.

Theorem 15. Every transitive potential graph is a fuzzy
graph.

Proof. Every transitive potential graph is a WACS by
*eorem 13. Hence, every WACS is a fuzzy graph by
*eorem 14. Consequently, every transitive potential graph
is a fuzzy graph. □

*e converse of *eorem 15 is not true by similar ar-
gument as *eorem 14 earlier; i.e., all crisp graphs are fuzzy
but not the other way around.

ACS

WACS

Transitive

tournament 

Figure 17: Transitive tournament is a WACS.
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In the following section, a new concept called fuzzy weak
autocatalytic set is outlined.

5. Fuzzy Weak Autocatalytic Set

*e fuzzification of WACS has led to a new structure,
namely, fuzzy weak autocatalytic set (FWACS). *e defi-
nition of FWACS is formalized in Definition 13. An example
of a FWACS is shown in Figure 20.

Definition 13. A fuzzy weak autocatalytic set (FWACS) is a
WACS such that every edge ei has a membership value,
μ(ei) ∈ [0, 1] for ei ∈ E.

A WACS is a crisp graph and it is a special type of
FWACS as presented in *eorem 16.

Theorem 16. Every WACS is a FWACS.

Proof. Every crisp graph is a fuzzy graph by *eorem 1.
*us, every ACS is a special case of FACS; hence every
WACS is FWACS. □

Furthermore, the following theorem is an immediate
consequence of *eorem 16.

Theorem 17. Every FWACS is a fuzzy graph.

Proof. *eorem 1 established that every crisp graph is a
fuzzy graph. Every FACS is also a fuzzy graph by*eorem 3,
which immediately implies every FWACS is fuzzy
graph. □

*ere are 5 types of crisp graph as documented in Blue
et al. [13]. Every crisp graph is a fuzzy graph and the converse
is not true. Not all crisp graphs are autocatalytic sets. Clearly,
the converse of *eorem 17 is not true either.

We have proven that a transitive potential graph is a
WACS and a special case of fuzzy graph. *e next section
introduces preferences flow on edges.

5.1. Fuzzy Edges of Transitive Potential Graph. Consider the
potential graph in Figure 18. *e adjacency matrix for the
graph is

db

c

2

3

4
1

21

a

Figure 18: Transitive potential graph.

Figure 19: Examples of transitive potential graphs.

0.3

0.5

0.6
a

b

c

0.8

Figure 20: A FWACS.
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A �

0 1 1 1

0 0 1 1

0 0 0 0

0 0 1 0


. (11)

*e transformation of the preference flows to fuzzy
membership values is described in the next subsection.

5.1.1. Membership Value of Fuzzy Edge via Linear
Transformation. *e preference flows interval of Example 1
is transformed to fuzzy membership values linearly as il-
lustrated in Figure 21.

In Example 1, the interval [0, 4] is used to indicate the
strength of alternatives. Table 1 lists the transformed in-
tensity preference to fuzzy membership values.

*e crisp and fuzzy graphs of Example 1 are illustrated in
Figure 22.

*e same color and thickness of each edge in the crisp
graph (see Figure 22(a)) indicate that the connectivity
among vertices is considered the same. *e value 1 is
assigned when there is an edge between two vertices. If there
is no edge, the value 0 is given.

Figure 22(b) illustrates the fuzzy graph. *e edges have
different “strengths” which are determined by their mem-
bership values. Furthermore, the greater the membership
value, the stronger the connection between two vertices of

0

0.25

0.5

0.75

1

F
u

zz
y 

m
em

b
er

sh
ip

 v
al

u
e

1 2 3 40

Preference scale

Figure 21: Linear transformation of preference flows.

Table 1: Fuzzy membership value of preference scale.

Preference scale Intensity preference of potential method Fuzzy number

Equal 0 0
Weak 1 0.25
Fairly strong 2 0.5
Very strong 3 0.75
Absolute 4 1

2

3

4
1

2
1

A

B

C

D

(a)

0.25

0.5

0.5

0.75

10.25

B

C

D

A

(b)

Figure 22: Crisp and fuzzy graphs of Example 1. (a) Transitive potential graph. (b) FWACS.
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the graph. Hence, different thickness and color of an edge
represent the strength connection of its vertices.

*us, the adjacency matrix for the FWACS is

A �

0 0.25 0.5 1

0 0 0.25 0.75

0 0 0 0

0 0 0.5 0


. (12)

In the following subsection, we present the relation
between transitive potential graph and FWACS.

5.2. Transitive Potential Graph as FWACS. *e relation
between transitive potential graph and FWACS can be
observed immediately. *e relation is formalized in the
following theorem.

Theorem 18. Every transitive potential graph is a FWACS.

Proof. *eorem 13 proves that a transitive potential graph is
a WACS. A transitive potential graph is a fuzzy graph by

*eorem 14. *e edges are fuzzy with membership values of
[0, 1].*erefore, every transitive potential graph is a FWACS
by Definition 13. □

Every FWACS is a fuzzy graph by *eorem 17. But the
converse of *eorem 15 is not true; i.e. a fuzzy graph is not
necessarily a transitive potential graph. Consequently, the
converse of *eorem 18 is not true either.

5.3. Preference Graph as Fuzzy Graph Type 5. As a matter of
fact, the general version of *eorem 18 can be deduced
directly from the recent definition of preference graph (see
Definition 7) introduced by Čaklović and Kurdija [23].

Theorem 19. Every preference graph is a fuzzy graph Type 5.

Proof. Let G(V,A, F) be a preference graph as defined by
Definition 7. Consider the preference flow F: A⟶ R as
given in Definition 7. *e R is homeomorphic to (0, 1), i.e.
R � (0, 1) [37]. But then, (0, 1) ⊂ [0, 1]; hence the pref-
erence flow F can be written as F: A⟶ (0, 1) ⊂ [0, 1]

�eorem 11 �eorem 18

�eorem 16

�eorem 13

�
eo

re
m

 14

�
eorem 2

�eorem 3
(Tahir et al., 2010)

�eorem 1

(T
ahir e

t a
l., 

2010)

Crisp graph Fuzzy graph

Autocatalytic set
(ACS)

Fuzzy autocatalytic set
(FACS)

Weak autocatalytic set
(WACS)

Fuzzy weak autocatalytic set
(FWACS)

Transitive potential graph

�
eo

re
m

 1
5

�
eo

re
m

 1
7

Transitive tournament

Preference graph

Fuzzy graph
Type 5

�
eo

re
m

 1
9

(Tahir et al., 2010)

Figure 23: A schematic diagram to illustrate the relation between preference and fuzzy graphs.
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since R � (0, 1). Consequently, G(V, A, F) is now a fuzzy
graph Type 5 as categorized by Blue et al. [13] and Tahir
et al. [14]. □

A fuzzy graph Type 5 is a crisp graph with fuzzy weights
for its edges defined in Blue et al. [13]. On the other hand, a
preference graph is a triple G � (V,A, F) where V is a set of
n ∈ N vertices (representing alternatives), A⊆V × V is a set
of directed edges, and F: A⟶ R is a preference flow which
maps each edge (u, v) to the corresponding intensity, F(u,v),
as stated in Definition 7. However, fuzzy graph Type 5 is
more general than preference graph since the former can
accommodate directed or undirected edges. Hence, it is
quite obvious that every preference graph is a fuzzy graph
Type 5 and not the converse.

Figure 23 summarizes the relation between ACS, WACS,
FACS, and FWACS.

6. Conclusion

*is paper has introduced a novel definition of weak version
of ACS, namely, WACS. *e WACS is originally derived
from transitive tournament which serves as a “bridge” be-
tween PM and ACS. *e WACS has offered some new
insights into PM. Furthermore, the FWACS is defined for
PM with uncertainty where the edges are fuzzy. Finally, we
proved that any preference graph of PM is a fuzzy graph
Type 5.

In short, the major thrust of this paper is to materialize
the framework proposed by Čaklović [21, 22] for PM. *e
developed FWACS is able to handle multicriteria decision
making (MCDM) of uncertainty problems. Some of them
can be found in Siti Salwana et al. [38].
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