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Abstract 

Nowadays, most approaches in the evolutionary 

multiobjective optimization literature concentrate mainly 

on adapting an evolutionary algorithm to generate an ap-

proximation of the Pareto frontier. However, this does not 

solve the problem. We present a new idea to incorporate 

into a MOEA the Decision Maker (DM) preferences, ex-

pressed in a set of solutions assigned to ordered catego-

ries. We modified the Non-dominated Sorting Genetic 

Algorithm 2 (NSGA2) to make selective pressure towards 

non-dominated solutions that belong to the most preferred 

category. In several instances, on the project portfolio 

problem, our proposal outperforms the standard NSGA2, 

achieving non-dominated solutions that best match the 

DM’s preferences.  

Keywords:   evolutionary algorithms; multiobjective op-

timization; preference incorporation; multicriteria sorting. 

1. Introduction 

Most real world optimization problems involve multiple 

criteria to be considered simultaneously ([1, 2]). As a 

consequence of the conflicting nature of the criteria, it is 

not possible to obtain a single optimum, and, consequent-

ly, the ideal solution of a multiobjective problem (MOP) 

cannot be reached. As was stated by Fernandez et al. 

([3]), unlike single-objective optimization, the best solu-

tion of a MOP is not well-defined from a purely mathe-

matical point of view. To solve a MOP means to find the 

best compromise solution according to the decision mak-

er’s (DM’s) particular system of preferences. Since all the 

compromise solutions are mathematically equivalent, the 

DM should provide some additional information for 

choosing the most preferred one. 

 

Multi-Objective Evolutionary Algorithms (MOEAs) are 

particularly attractive to solve MOPs because they deal 

simultaneously with a set of possible solutions (the 

MOEA’s population) which allows them to obtain an ap-

proximation of the Pareto frontier in a single algorithm’s 
run. Thus, by using MOEAs the DM and/or the decision 

analyst does not need to perform a set of separate single-

objective optimizations (as normally required when using 

operations research methods) in order to generate com-

promise solutions. Additionally, MOEAs are more robust 

regarding the shape or continuity of the Pareto front, 

whereas these two issues are a real concern for operations 

research optimization methods (cf. [4]). These features 

are shared by other population-based multiobjective 

metaheuristics. However, according to Deb ([5]) and Fer-

nandez et al. ([3, 6]), one aspect that is often disregarded 

in the MOEAs’ literature is the fact that the solution of a 

problem involves not only the search, but also the deci-

sion making process. Most current approaches in the 

metaheuristic multiobjective optimization literature con-

centrate on adapting a metaheuristic algorithm to generate 

an approximation of the Pareto optimal set. Nevertheless, 

finding this set does not completely solve the problem. 

The DM still has to choose the best compromise solution 

out of that set. This is not a difficult task when dealing 

with problems having 2 or 3 objectives. However, as the 

number of criteria increases, two important difficulties 

arise ([3]): 

 

a. The algorithm’s capacity to find this Pareto fron-

tier quickly degrades (e.g. [2, 7]). 

b. The cardinal of a representative portion of the 

known Pareto frontier may be too large. It be-

comes harder, or even impossible for the DM to 

establish valid judgments in order to compare 

many solutions with several conflicting criteria. 

Besides, the approaches from the field of 

multicriteria decision analysis do not perform 

well on such large decision problems, making 

difficult to obtain a unique solution. 

In order to make the decision making phase easier, the 

DM would agree with incorporating his/her multicriteria 

preferences into the search process. This preference in-

formation is used to guide the search towards the Region 

Of Interest (ROI) ([8]), the privileged zone of the Pareto 

frontier that best matches the DM’s preferences. 
The DM’s preference information can be expressed in 

different ways. According to Bechikh ([9]), the following 

are the most commonly used ones: 
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 Those in which importance factors (weights) are as-

signed by the DM to each objective function. 

 Those in which the DM makes pair-wise compari-

sons on a subset of the current MOEA’s population 
in order to rank the sample’s solutions. 

 When pairwise comparisons between pairs of objec-

tive functions are performed in order to rank the set 

of objective functions. 

 Those based on goals or aspiration levels to be 

achieved by each objective (reference point). 

 When the DM supplies his/her aspiration levels and 

his/her reservation point, that is, the worst value 

he/she considers acceptable. 

 When the DM identifies acceptable trade-offs be-

tween objective functions. 

 When the DM supplies the model’s parameters to 
build a fuzzy outranking relation. 

 Construction of a desirability function that is based 

on the assignment of some desirability thresholds. 

 

An explicit expression of preferences is used by the 

above methods. But preferences may be also implicitly 

given. Let us suppose that a set of solutions has been sort-

ed by the DM on a set of ordered categories like Very 

Good, Good, Acceptable, No Good, Bad. These assign-

ments express the DM’s assignment policy. So, the set of 

assignments can be considered preference knowledge. Us-

ing this knowledge in the framework of a multicriteria 

sorting method, each new solution generated by the 

search process can be assigned to one of those categories. 

To some extent, such preference information surrogates 

the DM in judging new solutions. A way of using this ca-

pacity to make selective pressure towards the ROI is 

needed in order to complete this original approach. 

The paper is structured as follows: some background is 

given is Section 2. Our proposal is described in Section 3, 

followed by numerical experiments in Section 4. Finally, 

we draw concluding remarks in the last section. 

2. Background  

2.1. Notation and premises 

Let us consider a MOP of the form: 

 

Max F = (f1(z), f2(z),…, fn(z))                (1) 

z є RF 

in which z denotes a vector of decision variables and RF is 

determined by a set of constraints. 

Let us denote by O the image of RF in the objective 

space mapped by the vector function F. An element x  

O is a vector (x1, … xn ), where xi is the i-th objective 

function value. 

Some premises follow: 

 

i) The DM can define a finite set of ordered categories 

Ct = C1,…, CM, which he/she judges adequate for rep-

resenting the quality of the solutions; CM  is assumed to be 

the preferred category.  

ii) The DM agrees with certain decision policy defined 

on a subset O’ of O. According to this policy, there 

should be a certain function G: O’ Ct such that for each 

x  O’ the DM accepts that G(x) is the most appropriate 

assignment of x. G expresses the assignment policy from 

the DM.  

 iii) The DM is able to provide a set of reference ob-

jects or training examples T, which is composed of ele-

ments bk,h
  O’ assigned to category Ck, (k= 1,...M).  

iv) The DM’s multi-criteria preferences can be aggre-

gated in a fuzzy outranking relation (x, y) defined on a 

representative subset of OO. Its value models the truth 

value of the predicate ‘x is at least as good as y’ from the 
DM’s perspective.   can be set by using outranking mul-

ticriteria methods (e.g. [10]). The parameter setting of  

can be directly performed by the DM (probably in a con-

structive framework collaborating with a decision ana-

lyst), or be inferred by using an indirect elicitation 

method ([11, 12]). 

 

Let us consider a real value   0.5. 

Definition 1: The following crisp binary relations are 

given on a representative subset of O: 

 

(x,y)  S() iff (x,y)   (-outranking) 

(x,y)  P() iff  (x, y)      (y, x)  

             0.5 (-strict preference) 

(x, y)  Q() iff   (x, y)      0.5    

             (y, x)   (-weak preference) 

(x, y)  I()  iff  (x, y)      (y, x)   

              (-indifference). 

 (x, y)  R() iff (x, y)      (y, x)   

               (-incomparability). 

 

2.2. A brief reminder of the THESEUS method 

Proposed by Fernandez and Navarro ([13]), the THE-

SEUS method is based on comparing a new object to be 

assigned with reference objects through models of prefer-

ence and indifference relations. The assignment is not a 

consequence of the object intrinsic properties; it is rather 

the result of comparisons with other objects whose as-

signments are known.  In the following C(x) denotes a 

potential assignment of object x and C(b) is the actual as-

signment of b.  According to THESEUS, C(x) should sat-

isfy: 

 

xU, bT 

xP()b  C(x) ≿  C(b)                           (2.a) 

bP()x  C(b) ≿   C(x) 

 

xQ()b  C(x) ≿  C(b)                           (2.b) 
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bQ()x  C(b) ≿  C(x)                                                                

 

xI()b   C(x) ≿  C(b)  C(b) ≿ C(x)  

            C(x) = C(b)                             (2.c)  

 

Note that C(x) is a variable whose domain is the set of 

ordered categories. Equations (2.a-c) express the neces-

sary consistency amongst the preference model, the refer-

ence set and the appropriate assignments of x. The as-

signment C(x) should be as compatible as possible with 

the current knowledge about the assignment policy. 

THESEUS uses the inconsistencies with Equations (2.a-

c) to compare the possible assignments of x. More spe-

cifically: 

 

 The set of P()-inconsistencies for x and C(x) is de-

fined as DP = (x,b), (b,x), bT such that  (2.a) is 

FALSE. 

 The set of Q()-inconsistencies for x and C(x) is de-

fined as DQ = (x,b), (b,x) bT such that  (2.b) is 

FALSE. 

  The set of I()-inconsistencies for x and C(x) is de-

fined as DI = (x,b), bT such that  (2.c) is 

FALSE. 

 

Some I()-inconsistencies might be explained by ‘dis-

continuity’ of the description based on the set of catego-

ries. The cases in which xI()b  k-j=1 will be called 

second-order I()-inconsistencies and grouped in the set 

D2I. The set   D1I = DI – D2I contains the so-called first-

order I()-inconsistencies, which are not consequences of 

the described discontinuity effect. Let nP, nQ, n1I, n2I de-

note the cardinality of the above-defined inconsistency 

sets, and N1= nP + nQ + n1I, N2 = n2I. 

THESEUS suggests an assignment that minimizes the 

above inconsistencies with lexicographic priority favoring 

N1, which is the most important criterion (cf. [13]). The 

basic assignment rule is: 

 

a. Assign the minimum credibility level   0.5. 

b. Starting with k =1 (k=1,…,M) and considering 

each bk,hT, calculate N1(Ck). 

c. Identify the set Cj whose elements hold Cj = 

argmin N1 (Ck). 

d. Select Ck*= argmin N2 (Ci) 

                   Cj 

e. If Ck* is a single solution, assign xj to Ck*; other 

situations are approached below. 

The suggestion may be a single category or a sequence 

of categories. The first case is called a well-defined as-

signment; otherwise, the obtained solution highlights the 

highest category (CH) and the lowest category (CL) which 

is appropriate for assigning the object, but fails in deter-

mining the most appropriate. 

3. The MultiCriteria Sorting Genetic Algorithm  

(MCSGA) 

In a MOP the ROI should be composed of solutions that 

belong to the most preferred category CM. So, the ROI is 

characterized by two features: i) to be non-dominated; ii) 

to be assigned to CM. The simple idea behind this new 

proposal consists in making selective pressure towards 

solutions that hold both properties. 

We propose to use a variant of the popular NSGA2, 

which is called here the MultiCriteria Sorting Genetic Al-

gorithm. It works like the NSGA2, with the following dif-

ferences: 

 

a. Each solution of the first front of NSGA2 (the non-

dominated front) is assigned by THESEUS to one 

category of the set Ct; 

b. The first front of NSGA2 is divided in M’M sub-

fronts; the first ranked sub-front contains the solu-

tions that were assigned to the most preferred cate-

gory; 

c. The fronts of the current NSGA2 population are re-

ordered by considering each sub-front of the origi-

nal non-dominated front as a new front; 

d. The same operations of NSGA2 are applied, but 

considering the new fronts; particularly, the 

NSGA2 elitism concerns the new first front, which 

is now composed of non-dominated solutions be-

longing to the most preferred category. 

The basic procedure is shown below: 

 
PROCEDURE MCSGA (L, Number_of_Generations) 

Set preference information 

      Initialize Reference set T 

      Initialize - parameters 

Initialize Population P 

Generate random population with size L 

Evaluate objective values 

Generate non-dominated fronts on P 

Assign to these fronts a rank (level)  

Calculate  on R1 R1 

For each xR1, assign x to one preference category 

Form M’ sub-fronts of R1 

Assign to these sub-fronts a rank (level) and  

update the levels of the remaining fronts 

Generate Child Population Q with size L 

            Perform Binary Tournament Selection 

            Perform Recombination and mutation 

FOR I = 1 to Number_of_Generations  DO 

         Assign P’ = P  Q 

         Generate non-dominated fronts on P’ 
         Assign to these fronts a rank (level)  

         Calculate  on R1 R1 

         For each x R1, assign x to one preference category 

         Form M’ sub-fronts of R1 

         Assign to these sub-fronts a rank (level) and 

         update the levels of the remaining fronts 

         FOR each parent and child in P’ DO 

               Calculate crowding distance 

               Loop (inside) by adding solutions to the next generation 

               until L individuals have been found 

        End FOR 

       Replace P by the L individuals found 

       Generate Child Population Q with size L 

                 Perform Binary Tournament Selection 
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                 Perform Recombination and mutation 

End FOR 

End PROCEDURE 

 

Remarks: 

In order to form the reference set, the DM should eval-

uate several existing or fictitious solutions. This infor-

mation can be used by an indirect elicitation method to 

infer the outranking model’s parameters. 

Some inconvenience could arise when T is populated 

with fictitious solutions. In the beginning of the search 

process, the DM is usually unable to identify good solu-

tions in the objective space with pre-image in the feasible 

decision variable space. In this starting phase the DM 

does not know even a rough approximation to his/her 

ROI. So, he/she can hardly identify feasible solutions be-

longing to the most preferred categories. Hence, the selec-

tive pressure towards the ROI is weak. 

To overcome this drawback, we propose to hybridize 

the above MCSGA. This will be combined with another 

multiobjective metaheuristic approach, which provides an 

approximation to the Pareto frontier. The DM’s prefer-

ences will be expressed on a subset of that approximation, 

T being thus constructed. Once T has been initialized, the 

outranking model’s parameters can be inferred by an indi-

rect elicitation method ([11]). The hybrid procedure is de-

scribed below: 

 
PROCEDURE H-MCSGA (L, Number_of_Generations) 

Run a multiobjective optimization method and  

obtain an approximation to the Pareto frontier PF 

      Initialize Reference set T by using a subset of PF 

      Set - parameters agreeing with T 

Initialize Population P 

Generate random population with size L 

Evaluate objective values 

Generate non-dominated fronts on P 

Assign to these fronts a rank (level)  

Calculate  on R1 R1 

For each xR1, assign x to one preference category 

Form M’ sub-fronts of R1 

Assign to these sub-fronts a rank (level) and  

update the levels of the remaining fronts 

Generate Child Population Q with size L 

            Perform Binary Tournament Selection 

            Perform Recombination and mutation 

FOR I = 1 to Number_of_Generations  DO 

         Assign P’ = P  Q 

         Generate non-dominated fronts on P’ 
         Assign to these fronts a rank (level)  

         Calculate  on R1 R1 

         For each x R1, assign x to one preference category 

         Form M’ sub-fronts of R1 

         Assign to these sub-fronts a rank (level) and 

         update the levels of the remaining fronts 

         FOR each parent and child in P’ DO 

               Calculate crowding distance 

               Loop (inside) by adding solutions to the next generation 

               until L individuals have been found 

        End FOR 

        Replace P by the L individuals found 

        Generate Child Population Q with size L 

                 Perform Binary Tournament Selection 

                 Perform Recombination and mutation 

End FOR 

End PROCEDURE 

4. Several computer experiments 

4.1. Multiobjective optimization of a portfolio’s 
measures derived from a project ranking 

Let us suppose that in the first phase of the process low-

quality project proposals are discarded, and that the 

ranked projects are acceptable proposals for the funding 

organization. 

The information provided by the simple project ranking 

is very poor for portfolio optimization purposes. It is nec-

essary to compare the quality of the possible portfolios in 

order to find the best one. This problem was approached 

by Fernandez and Olmedo ([14]) under the assumption 

that “the portfolio impact on a decision maker’s mind is 
determined by the number of supported projects and their 

particular rank”. If project a is clearly ranked better than 

b, then a is admitted to have “more social impact” than b. 
The DM should take this information from the ranking 

into account. The appropriateness of a portfolio is not on-

ly defined by the quality of the included projects, but also 

by the amount of contained projects. The purpose is to 

build a good portfolio by increasing the number of sup-

ported projects and controlling the possible disagreements 

with respect to the DM’s preferences, which, it is as-

sumed, are incorporated into the input ranking. Some dis-

crepancies may be acceptable between the information 

provided by the ranking and the decisions concerning the 

approval (hence supporting) of projects, whenever this 

fact increases the number of projects in the portfolio. 

However, this inclusion should be controlled because the 

admission of unnecessary discrepancies is equivalent to 

underestimating the ranking information. A 

multiobjective optimization problem is solved by using 

NSGA2, in which the objective functions are the number 

of supported projects and the number of discrepancies 

(separately in several functions, in regard to the im-

portance of each kind of discrepancy). 

Fernandez and Olmedo ([14]) define: 

 

 A set of absolute discrepancies Da =  (a,b)  Pr  

Pr such that  a  b,  b  C  and a   C   

 A set of strict discrepancies Ds =  (a,b)  Pr  Pr 

such that  a  b, b  C  and a  C  

 A set of weak discrepancies Dw =  (a,b)  Pr  Pr  

such that a >~ b, b  C and a  C  

where  

C is a portfolio; 

Pr is the set of projects 

a >> b means absolute preference according to the rela-

tive ranks of projects a,b; 

a  b means strict preference according to the relative 

ranks of projects a,b; 

a >~ b denotes weak preference. 

Let na, ns, nw denote the respective cardinality of the 

above sets. Considering also the number of supported pro-

jects in C (denoted by npr), Fernandez and Olmedo ([14]) 

propose to solve the problem: 
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Max npr, Min (na, ns, nw)       (3) 

             C 

As illustration, let us consider the problem of distrib-

uting 2.5 billion dollars among 100 projects, all of them 

deserving individual financing. Information about these 

projects (costs in million dollars and their ranks according 

to some preference ordering) is shown in Table 1. 

The NSGA2 was used as the first step of the hybrid 

MCSGA. Binary encoding was used; a ‘1’ in the individu-

al m-th allele means that the m-th project belongs to this 

particular portfolio. One-point crossover and the standard 

mutation operator were implemented (cf. [15]). Binary 

tournament selection was performed as suggested by [1]. 

The approach for handling constraints is based on the 

principle that any individual satisfying the constraints is 

always better than any individual that does not. If the fea-

sible individuals in the population are classified into k 

non-dominated classes, then any unfeasible individual is 

relegated to class k+1. This implies that in binary tour-

naments any feasible individual shall have priority over 

any non-feasible individual. 

The parameters of the evolutionary search were: cross-

over probability = 1; mutation probability = 0.02; popula-

tion size = 100, number of generations= 500. 

A representative sample of the Pareto front is shown in 

Table 2. Solution 63 (npr, na, ns, nw) = ( 22, 0, 0, 0) corre-

sponds to allocating funds according to the ranking. If the 

DM is willing to accept some minor discrepancies, he/she 

can select the solutions (npr, na, ns, nw) = ( 25, 0, 16, 0), or 

(24, 0, 13, 0). 

 
Table 1. Information about projects 

Position in 

Ranking 

Requirements 

(million  

dollars) 

 
Position in 

Ranking 

Requirements 

(million  

dollars) 

 
Position in 

ranking 

Requirements 

(million  

dollars) 

 
Position in 

ranking 

Requirements 

(million  

dollars) 

1 84.00  26 31.25  51 27.50  76 46.50 

2 124.50  27 26.50  52 41.25  77 44.00 

3 129.75  28 36.25  53 29.50  78 25.75 

4 147.75  29 50.00  54 25.25  79 38.25 

5 126.00  30 34.75  55 40.00  80 40.75 

6 137.25  31 48.25  56 30.75  81 42.75 

7 96.00  32 46.00  57 39.00  82 43.00 

8 84.75  33 36.75  58 44.50  83 32.25 

9 93.00  34 34.00  59 47.50  84 37.75 

10 121.50  35 26.00  60 36.00  85 44.75 

11 102.75  36 31.75  61 28.50  86 27.00 

12 141.75  37 29.75  62 29.00  87 39.50 

13 105.75  38 37.25  63 30.25  88 30.00 

14 98.25  39 26.75  64 49.50  89 37.50 

15 101.25  40 43.75  65 33.00  90 49.00 

16 83.25  41 27.25  66 38.50  91 41.75 

17 109.50  42 47.00  67 33.50  92 39.25 

18 107.25  43 41.00  68 48.50  93 34.50 

19 135.00  44 30.50  69 35.00  94 49.75 

20 97.50  45 45.25  70 28.75  95 48.00 

21 127.50  46 26.25  71 25.50  96 29.25 

22 114.00  47 45.50  72 40.25  97 47.75 

23 106.50  48 44.25  73 38.75  98 42.25 

24 94.50  49 48.75  74 46.75  99 46.25 

25 43.50  50 33.25  75 37.00  100 39.75 

         Total 5542.00 

 
Table 2. Some Pareto solutions 

 

In order to construct the reference set, the DM express-

es his/her preferences trough the set of categories Good, 

Probably Good, No Good, Bad, Very Bad. T is shown in 

Table 3.  

Note that the reference set contains five fictitious solu-

tions, which are useful for providing the DM’s tradeoffs. 
Applying the indirect parameter elicitation method 

from ([11]), we obtained: 

 

Weights = (0.210, 0.608, 0.122, 0.060) 

Indifference thresholds = (0, 0, 0, 0) 

Strict preference thresholds = (1, 1, 1, 2) 

Pre-veto thresholds = (1, 1.818, 2.95, 3.96) 

Veto thresholds = (3.006, 2.550, 4.880, 5.996) 

The credibility threshold  = 0.67. 

 

These parameter values are used to calculate the degree 

of credibility of outranking according to ELECTRE III 

(cf. [10]), with the simplification introduced by Mousseau 

and Dias ([16]). 

Solution (npr, na, ns, nw)  Solution (npr, na, ns, nw) 

63 (22, 0, 0, 0)  117 (31, 0, 78, 0) 

91 (24, 0, 13, 0)  107 (32, 0, 86, 0) 

93 (25, 0, 16, 0)  286 (33, 0, 103, 0) 

100 (26, 0, 27, 0)  198 (34, 3, 114, 0) 

110 (26, 0, 27, 0)  25 (34, 6, 112, 0) 

112 (27, 0, 31, 0)  123 (35, 6, 129, 0) 

191 (28, 0, 44, 0)  400 (36, 12, 156, 1) 

114 (29, 0, 57, 0)  154 (37, 16, 170, 0) 

252 (30, 0, 70, 0)  155 (38, 24, 182, 2) 

48 (31, 0, 78, 0)  30 (37, 25, 159, 1) 
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Table 3. The reference set 

Id npr na ns nw Category 

1 22 0 0 0 Probably Good 

2 24 0 13 0 Good 

3 25 0 16 0 Good 

4 26 0 27 0 Probably Good 

5 27 0 31 0 Probably Good 

6 28 0 44 0 No Good 

7 29 0 57 0 No Good 

8 30 0 70 0 No Good 

9 31 0 78 0 No Good 

10 34 3 114 0 Bad 

11 34 6 112 0 Very Bad 

12 35 6 129 0 Very bad 

13 23 0 0 2 Good 

14 24 0 0 15 Good 

15 25 0 0 20 Good 

16 23 1 0 0 No Good 

17 23 2 0 0 Bad 

 

Running the second phase of the H-MCSGA the follow-

ing solutions are identified as shown by Table 4: 

 
Table 4. The ROI 

Id  (npr, na, ns, nw) Category 

1 (25, 0, 12,0) Good 

2 (24, 0, 11, 0) Good 

 

Note that these solutions dominate those previously 

considered Good by the DM. Represented in the decision 

variable space, the above solutions are shown in Figure 1. 

Analyzing the chromosome structure, Solution 1 should 

be preferred since it contains slightly more and higher 

ranked projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The ROI represented in the decision variable space 

 

 

4.2. Multiobjective optimization of project portfolios 

described by many criteria 

Let us consider a decision making situation in which the 

DM is choosing among L’ different public policies (pro-

jects) each with a direct social impact. This is measured 

by using a K-dimensional vector (N1, N2, . . . , NK). Ni = 

nkj denotes the number of people belonging to the k-th so-

cial category (e.g. Extreme Poverty, Poverty, Middle) 

who receive the j-th benefit level (e.g. High Impact, Mid-

dle Impact, Low Impact) from that policy or project. In 

the following 
m

i
N  denotes the value of Ni associated to 

the m-th project. The project quality is measured as the 

number of beneficiaries for each of i criteria established 

previously. C’ denotes a portfolio (a subset of the L’ pro-

jects which receives financial support). The value of Ni 

for the whole portfolio is Ni (C’) = x1
1

i
N  + … +  xL

L

i
N  

where xj = 1 if the j-th project is supported and xj = 0, oth-

erwise. The aim of this decision problem is to choose the 

‘‘best” portfolio satisfying some budget constraints. For-

mally, the problem is: 

 

Max (N1(C’), N2(C’), …, NK(C’))                   (4) 

C’ ϵ RF 

 

where RF  is a feasible region determined by budget con-

straints. There is a total budget that the organization is 

willing to invest, which is denoted as B, and each project 

proposal l has an associated cost to carry it out, denoted 

as cl, it is understood that the formation of any portfolio 

C’ is subject to the constraint: 

 

 1

L

l l

l

x c B



                                    (5) 

 

Other budget constraints are imposed by the area of 

project (educational, health, etc.), and its geographic re-

gion. In either case, the budget is bounded by a lower and 

upper limit. In this problem the only accepted solutions 

are those that satisfy the constraints.  

Let us consider, as an illustration to the application of 

H-MCSGA, the problem of distributing 2.5 billion dollars 

in a set of applicant projects. This set is composed of 100 

proposals and nine objectives each, all of which deserve 

financing. Information about some projects (values of ob-

jectives, costs, area, and the region) is shown in Table 5. 

In the first phase of the H-MCSGA, the Ant Colony Op-

timization Algorithm (ACO) by Rivera et al. ([17]) was 
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used. This algorithm incorporates preferences by using 

the outranking model from ([3]). The ACO parameters 

were the same as those reported in the article, but we did 

not use local search or consider synergy. The solutions 

were categorized by simulating a DM whose preferences 

are compatible with the outranking model from ([3]). 

 

 
Table 5. Information about some projects 

Project N1 N2 N3 N4 N5 N6 N7 N8 N9 Cost Area Region 

1 42890 8915 25565 13685 28980 15900 32300 13500 67295 9450 1 2 

2 47565 24220 35845 11540 50315 14320 37085 21950 49010 6360 3 2 

3 35435 18125 31280 23450 32650 24875 64150 18000 48310 5890 2 1 

4 11010 32855 43650 13995 37600 28755 29025 37485 29625 7820 3 2 

5 23030 31265 29890 26510 66610 24140 78980 37430 15740 9555 2 2 

The model’s parameters were set as follows: 

 

Weights: (10, 13, 10, 12, 7, 13, 10, 7, 18). 

Veto thresholds = (60000, 45000, 75000, 50000, 

84000, 60000, 100000, 78000, 79000). 

Indifference thresholds = (7500, 6000, 9000, 6000, 

12000, 7500, 12000, 10500, 10500). 

The credibility threshold  = 0.67. 

 

Examples of solutions included in a reference set are 

shown in Table 6. It is noteworthy that the number of el-

ements of the most preferred category in the reference set 

is very small. 

The classified solutions were processed in order to con-

struct a consistent reference set that satisfies Equations 

(2.a-c). In cases of poorly populated reference sets, it is 

necessary to add fictitious solutions (derived from an ex-

isting solution). These solutions are used to extend and 

intensify the reference set when some category is poorly 

represented. 

The procedure to generate them is as follows: search a 

pair of objectives with similar weights, choose a solution 

and at the corresponding objectives add and subtract the 

same amount.  The way in which fictitious solutions are 

generated is pointed-out in Table 7. 

We experimented with five random instances, creating 

for each of them one distinct reference set. Every instance 

was run ten times, and the parameters of the evolutionary 

search in the second phase of the H-MCSGA were: cross-

over probability = 1; mutation probability = 0.05; popula-

tion size = 100, number of generations = 500. 

The second phase of the H-MCSGA was run, and the 

obtained solutions were compared with the solutions from 

the standard NSGA2. The results are illustrated in Table 8. 

 

 
Table 6. Some ACO solutions included in the reference set 

Portfolio N1 N2 N3 N4 N5 N6 N7 N8 N9 Category 

1 1247615 884570 1396870 914930 1689460 1147495 1773720 1421840 1520465 Bad 

2 1303565 1000930 1547800 949515 1684295 1260020 2008440 1399745 1623460 Bad 

66 1320410 1008765 1612695 977740 1696005 1317720 2046040 1449645 1782705 No Good 

67 1341340 976635 1579975 1021985 1731610 1337660 2076355 1464060 1695565 No Good 

98 1346255 1013065 1563525 1012980 1678160 1292620 2089570 1432275 1820135 Probably  Good 

99 1327040 1014050 1596565 982735 1681330 1328230 2095395 1464250 1793820 Probably  Good 

100 1334615 1038825 1616815 976525 1714145 1322735 2099215 1474210 1775945 Good 

101 1333585 1001165 1569390 1000915 1705255 1307305 2098165 1499430 1807120 Good 

Table 7.  Real and fictitious solutions 
Reference  

element 
N1 N2 N3 N4 N5 N6 N7 N8 N9 Category 

12 1320410 1008765 1612695 977740 1696005 1317720 2046040 1449645 1782705 No Good 

(real) 

13 1320910 1008765 1612195 977740 1696005 1317720 2046040 1449645 1782705 No Good  

(fictitious) 
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Table 8. Comparative results between NSGA2 and H-MCSGA 

Instance 

 

Instance  

description 
Algorithm 

Average 

Highest 

Category 

Highest 

Category 

Frequency 

Highest 

Net Flow 

Frequency 

Size of the 

solution set 

Solutions that remain 

Non-dominated in  

A  B 

1 

9 objectives 

100 projects 

NSGA2 117 70 3 100% 0% 

H-MCSGA 54 54 4 100% 100% 

2 

9 objectives 

100 projects 

NSGA2 120 76 3 100% 0% 

H-MCSGA 24 24 4 100% 100% 

3 

9 objectives 

100 projects 

NSGA2 124 70 3 100% 0% 

H-MCSGA 54 54 4 100% 100% 

4 

9 objectives 

150 projects 

NSGA2 115 37 3 90% 0% 

H-MCSGA 72 72 4 100% 100% 

5 

9 objectives 

150 projects 

NSGA2 112 63 3 100% 0% 

H-MCSGA 25 25 4 100% 100% 

Note: A is the set of solutions obtained by NSGA2; B is the set obtained by H-MCSGA 

 

We can see a better performance of the H-MCSGA. Our 

proposal satisfies the ROI conditions, that is, it always 

finds non-dominated solutions of the most preferred cate-

gory. Many solutions from the NSGA2 are dominated, and 

there is no NSGA2 solution belonging to the best catego-

ry. Also, we used the outranking net flow score to rank 

the set A  B. The net flow is a very popular measure de-

fined as (cf. [18]) 

 

 
{ }

( ) [ ( , ) ( , )]
n c A a

F a a c c a 
 

   

 

As can be seen in the last column of Table 8, the H-

MCSGA always obtains solutions with the highest net 

flow, confirming a better convergence towards the ROI. 

The results also reveal that our proposal provides a bet-

ter characterization of the most preferred category with 

respect to the reference set used, which was obtained by 

ACO. This characteristic is measured in terms of the 

number of solutions contained in the best category. 

5. Conclusions  

An original idea to incorporate preferences into multi-

objective evolutionary optimization has been presented. 

To the best of our knowledge this is the first time in 

which an implicit way of modeling the DM’s preferences 
has been suggested. 

Our proposal is basically a derivation from the standard 

NSGA2 but making selective pressure towards the Region 

of Interest instead the Pareto front. The DM’s preferences 
are captured in a reference set of solutions assigned to or-

dered categories. Using the THESEUS multi-criteria sort-

ing method, a sort of “assignment machine” is built. Thus, 
good solutions are identified by the algorithm, and a con-

venient selective pressure towards the ROI is performed. 

Unlike Pareto-based evolutionary algorithms, the num-

ber of “good” solutions in the earlier populations does not 

depend on the dimension of the objective space. There-

fore, the selective pressure is not degraded with the num-

ber of objective functions. 

In examples with 9 objectives, this proposal improves 

solutions obtained by NSGA2. Besides, we obtained a 

better characterization of the most preferred category with 

respect to the solutions given by an ant colony algorithm 

with “a priori” incorporation of preferences.   More ex-

perimentation is required to reach definitive conclusions. 
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