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Abstract Preferential deposition of snow and dust over complex terrain is responsible for a wide range
of environmental processes and accounts for a significant source of uncertainty in the surface mass
balances of cold and arid regions. Despite the growing body of literature on the subject, previous studies
reported contradictory results on the location and magnitude of deposition maxima and minima. This
study aims at unraveling the governing processes of preferential deposition in a neutrally stable
atmosphere and to reconcile seemingly inconsistent results of previous works. For this purpose, a
comprehensive modeling approach is developed, based on large eddy simulations of the turbulent airflow,
Lagrangian stochastic model of particle trajectories, and immersed boundary method to represent the
underlying topography. The model is tested against wind tunnel measurements of dust deposition around
isolated and sequential hills. A scale analysis is then performed to investigate the dependence of snowfall
deposition on the particle Froude and Stokes numbers, which fully account for the governing processes of
inertia, flow advection, and gravity. Model results suggest that different deposition patterns emerge from
different combinations of dimensionless parameters, with deposition maxima located either on the
windward or the leeward slope of the hill. Additional simulations are performed, to test whether the often
used assumption of inertialess particles yields accurate deposition patterns. Results indicate that this
assumption can be justified when snowflakes present dendritic shape but may generate unrealistic results
for rounded particles. We finally show that our scale analysis provides qualitatively similar results for hills
with different aspect ratios.

1. Introduction

The spatial variability of snowfall deposition over complex terrain is one of the larger unknowns in the sur-

face mass balance of alpine and polar regions (Grünewald et al., 2010; Lenaerts et al., 2012) and is caused by

physical processes acting at different spatial scales (Mott et al., 2014). At large scales, orographic precipita-

tion is likely to be larger on the windward side of mountain ranges, where cloud formation is enhanced by

updrafts of moist air (Houze, 2012). At intermediate scales, an increase of precipitation around the moun-

tain top may occur due to the seeder-feeder mechanism, consisting of accretion of precipitation particles

formed in an upper-level cloud that fall through a lower-level cloud capping the mountain top (Choularton

& Perry, 1986). At smaller scales, a uniform precipitation above the surface may lead to a inhomogeneous

deposition due to near-surface flow-particle interactions, the so-called preferential deposition (Orlandini &

Lamberti, 2000; Zängl, 2008). The importance of this last process with respect to the larger-scale precipi-

tation gradients was confirmed by Scipión et al. (2013) through radar measurements and more recently by

Gerber et al. (2019) through numerical modeling.

The concept of preferential deposition was first introduced by Lehning et al. (2008) and has thus far been

investigated in the context of snowfall deposition. However, the same physical process is relevant to deposi-

tion of other heavy particles.Wind-blown volcanic ashes and desert dust deposit on snow-coveredmountain

regions at global scale, causing a decrease in surface albedo and a faster snow melt (Di Mauro et al., 2018;

Painter et al., 2010). Moreover, dust deposition on complex landforms provides a fundamental supply of

nutrients to a variety of ecosystems, whose long-term productivity is limited by the availability of dustborne

phosphorus (Kok et al., 2012; Okin et al., 2004).
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Despite the recent advances in our understanding of preferential deposition, the effects of near-surface flow,

particle properties, and topography have not been clearly identified. Because field measurements do not

allow us to separate the effect of preferential deposition from those of precipitation gradients, wind-driven

erosion and deposition, and microphysical processes (Gerber et al., 2017; Vionnet et al., 2017), research

in the field relies to a great extent on mathematical modeling. However, results from previous numerical

studies are not entirely consistent.

The first numerical models of preferential deposition adopted a simplified description of the transport pro-

cess, based on a stationary formof the advection-diffusion equation that does not include the effect of particle

inertia (Lehning et al., 2008; Mott & Lehning, 2010; Mott et al., 2010). These studies suggested that on the

windward side of amountain strong updrafts reduce the settling velocity of the particles, leading to a reduced

deposition. This, in turn, generates an increase of particle concentration in the air that flows uphill toward

the hilltop. Once on the leeward side, the reduced wake velocity and the large particle concentration induce

a local increase of deposition.

More recent numerical studies that included the effect of particle inertia only partially supported these initial

results. Salesky et al. (2019) showed that the effect of particle inertia leads to a larger snow deposition on the

windward side, while Wang and Huang (2017) suggested that the deposition on the leeward side increases

with increasing flow advection. The reason for such differences may be that particle dynamics depend on

the interplay among flow advection, gravity, and particle inertia, which may vary with flow velocity and

height of surface features.

Further elements of uncertainty include the small-scale interaction between turbulent flows and non-

spherical particles (see, e.g., the review by Voth & Soldati, 2017). This problem is particularly relevant for

snowflakes, which present a remarkable variety of size and shape depending on the atmospheric condi-

tions upon formation (Nakaya, 1954). Parameterizations of the drag coefficient for dendritic crystals have

been proposed in the literature (Loth, 2008) and adopted to investigate snow particle trajectories in turbu-

lent flows (Huang et al., 2011). However, the influence of snow particle shape on preferential deposition has

never been investigated before.

Here, we aim to provide a more comprehensive understanding of preferential deposition over hills and rec-

oncile the seemingly inconsistent results of previous studies. Specifically, we perform a series of numerical

experiments to test the sensitivity of the deposition pattern to the Froude and Stokes numbers, the two

dimensionless parameters that characterize the dynamics of heavy particles in neutrally stable atmospheric

flows. Furthermore, we provide insight into the sensitivity of the deposition process to the particle shape and

inertia in boundary layer flow over an idealized Gaussian hill. A sensitivity analysis is also performed with

respect to the aspect ratio of the Gaussian hill, that is, to the ratio between its height and standard deviation.

For this purpose, we develop a novel and comprehensive modeling framework based on large eddy simula-

tions (LES) of the flow field and a Lagrangian stochastic model (LSM) of particle trajectories.We account for

the form drag exerted by the surface topography on the surrounding flow through an immersed boundary

method (IBM).

In section 2, we provide the details of the LES-LSMmodel developed for this study and introduce the dimen-

sionless formulation of the particle transport equations. In section 3, we test the model results against wind

tunnel measurements of dust deposition over Gaussian hills. In section 4, we describe the model setup and

the simulations performed for the scale analysis. In section 5, we present the results of the scale analysis and

the sensitivity analysis to particle shape, particle inertia, and hill aspect ratio. Discussion and concluding

remarks will follow.

2. Methods
2.1. LES

The LES approach aims at resolving the energy-containing scales of the turbulent flow while providing

an appropriate model for the effects of the small-scale motions (Pope, 2000). These small scales ideally

belong to the inertial subrange, whose dynamics present well-known characteristics and thus allow us to
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develop effective parameterizations. We adopt a LESmodel that solves the isothermal filtered Navier-Stokes
equations (Orszag & Pao, 1975) for incompressible flows

𝜕ũi
𝜕t

+ ũ𝑗

(
𝜕ũi
𝜕x𝑗

−
𝜕ũ𝑗

𝜕xi

)
= −

𝜕�̃�

𝜕xi
−

𝜕𝜏SGS
i𝑗

𝜕x𝑗
− Π1 + F̃

Γs
i
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i
in Ω × [0,T], (1a)

𝜕ũi
𝜕xi

= 0 in Ω × [0,T], (1b)

𝜕ũ1
𝜕x3

=
𝜕ũ2
𝜕x3

= ũ3 = 0 in Γt × [0,T], (1c)

(ũ · ñ)ñ = ũn = 0 in Γs × [0,T], (1d)

𝜏w = −

⎡
⎢⎢⎢⎣

𝜅(||ũ − ũn||)
ln

(
1 + Δ

z0

)
⎤
⎥⎥⎥⎦

2

in Γs × [0,T]. (1e)

In equations (1), the tilde indicates spatially filtered quantities. ũi are the velocity components in the three
Cartesian directions (i = 1, 2, 3), �̃� = p̃∕𝜌𝑓 + 1∕3𝜏SGS

ii
+ 1∕2 ũiũi is a modified filtered pressure field, and 𝜌f

is a reference density. The contribution 1∕2 ũiũi in the modified pressure field derives from expressing the
advection term in rotation form, which ensures conservation of kinetic energy in the discrete system (Moin
& Kim, 1982). Π1 is a fixed pressure gradient that we impose to drive the flow, and 𝜏SGS

i𝑗
is the subgrid scale

stress tensor. Further, F̃
Γs
i
is a volumetric forcing term arising from the immersed boundary method; F̃p

i
is

a volumetric forcing term that includes the effect of inertial particles on the filtered flow; ñ is the surface
normal vector; ũn is the normal-to-surface velocity vector, and 𝜏w the stress magnitude over fully rough
surface.

Equation (1e) expresses the equilibrium logarithmic law of the wall, which is applied at the surface Γs to

evaluate tangential-to-surface stresses in LES. 𝜅 = 0.41 is the von Kármán constant, Δ =
(
Δx × Δ𝑦 × Δz

)1∕3
is the width of the LES spatial filter, and z0 is the aerodynamic roughness. The surface stress 𝜏w is calculated
by applying the logarithmic law of thewall in the direction ñnormal to the surface, that is, based on the value
of tangential velocity ũ− ũn evaluated at distanceΔ from the surface. Although the assumptions underlying
the law of the wall do not hold in case of separated flow, previous studies (e.g., Kaimal & Finnigan, 1994)
showed that equation (1e) is able to provide reliable simulations of turbulent flow over hills. The use of a
simple algebraic wall model is in fact justified when considering that most of the surface drag is due to the
resolved pressure field around the hill, and the tangential stresses (those we model via the wall law) are a
minor contribution. A schematic representation of the system is shown in Figure 1.

This version of the LES and its wall model were tested and adopted to investigate the performance of a num-
ber of SGS models (Bou-Zeid et al., 2005; Meneveau et al., 1996; Porté-Agel et al., 2000), land-atmosphere
interactions (Albertson & Parlange, 1999), wind-farm effects on the atmospheric boundary layer (Sharma
et al., 2016), turbulent flows over realistic urban canopy layers (Giometto et al., 2017, 2016), and drifting
snow sublimation (Sharma et al., 2018).

We solve the equations on a regular domainΩ using a pseudo spectral collocation approach (Orszag & Pao,
1975) in the horizontal directions and a staggered second-order accurate centered finite differences scheme
in the vertical direction. We perform the time integration in the interval [0,T] adopting a fully explicit
second-order accurate Adams-Bashforth scheme and employ a fractional step method to compute the pres-
sure field. We apply different conditions at the partitions of the computational boundary 𝜕Ω = Γs ∪ Γt ∪ Γl,
that is, a stress-free boundary conditions at the upper boundary Γt (equation (1c)), no-slip impermeable
wall at the surface Γs (equation (1d)), and periodic conditions at the lateral boundaries Γl due to the Fourier
expansions used in the pseudo spectral approach.

We rely on the static Smagorinsky closure model to evaluate 𝜏SGS
i𝑗

. This model evaluates the SGS terms as
functions of the resolved-scale strain rate tensor

𝜏SGSi𝑗 = −2𝜈tS̃i𝑗 = −2
(
csΔ

)2|S̃|S̃i𝑗 , (2)
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Figure 1. Schematic representation of the computational domain. Γt indicates the upper boundary and Γs the
immersed boundary, here represented as a Gaussian ridge. The logarithmic law of the wall, equation (1e), is applied in
the direction ñ normal to the surface. Nx , Ny, and Nz indicate the number of nodes of the Cartesian grid in the x, y, and
z directions.

where 𝜈t is the eddy viscosity, S̃i𝑗 is the filtered strain rate tensor, and cs is the Smagorinsky coefficient.
Although a constant value cs = 0.16 can be theoretically derived in case of homogeneous, isotropic turbu-
lence with a sharp spectral cutoff filter (Lilly, 1967), this value is known to be overdissipative in LES of shear
flows and models of boundary layer turbulence normally adopt cs = 0.1. Because cs should approach 0 in
the near wall region, we adopt a wall damping function (Mason & Thomson, 1992) to avoid overdissipation
of turbulence kinetic energy. The Smagorinsky coefficient has the following expression

c2s (x, 𝑦, z) =

[
c−n0 +

Δ

k
(
Ψ̃(x, 𝑦, z) + z0

)n
]−

2
n

, (3)

where c0 = 0.1, n = 2 is a calibration parameter suggested by Mason and Thomson (1992), and Ψ̃(x, 𝑦, z)

is the distance function from the surface (see section 2.2 for more details). According to equation (3), cs
approaches c0 in the outer region, deviates significantly from c0 at Ψ̃(x, 𝑦, z) ≈ Δ1∕n, and approaches 0 in the
close vicinity of the surface.

2.2. Immersed BoundaryMethod

We represent the complex topography Γs(x, y) by adopting a signed distance (or level set) function Ψ̃(x, 𝑦, z),
such that the computational domain is partitioned in two regions, that is, the below-surface regionΩs where
Ψ̃(x, 𝑦, z) < 0, and the above-surface regionΩf where Ψ̃(x, 𝑦, z) > 0. The surface topography is then identified
by the zero level set Ψ̃(x, 𝑦, z) = 0. Our implementation of the immersed boundary method is similar to the
one proposed in Chester et al. (2007) and has been recently used to investigate the characteristics of urban
canopy layers (Giometto et al., 2017, 2016).

We fix the velocity field to zero in the inside regionΩs and enforce the law of thewall in all the grid nodes that
fall in the region−1.1Δ < Ψ̃(x, 𝑦, z) < 1.1Δ. We do this by interpolating the tangential flow velocity ũ− ũn at
distanceΔ+z0 from the grid node in the direction normal to the surface and calculating the tangential stress
𝜏w with equation (1e). Because the solution of equations (1a)–(1e) is of class C0 in a given horizontal
plane intersecting the surface, that is, with discontinuous first derivatives, the spectral representation of the
flow field results in Gibbs phenomenon, which is characterized by oscillations with progressively increasing
amplitude as the surface is approached. To mitigate this drawback, we perform a Laplacian smoothing of
the velocity field in Ωs before the spectral differentiation step, similar to that first proposed in Tseng et al.
(2006). Therein, the smoothing algorithm was thoroughly tuned and tested in flow over a squared cylinder,
where it proved to yield accurate results for this class of problems (see also Fang et al., 2011).

2.3. LSM

The LSM provides us with an evolution equation to model the SGS velocity of fluid parcels in turbulent
flows. Used in combination with the LES technique, it allows us to account for the full turbulence spec-
trum and to thus perform accurate simulations of particle dispersion. We implement a modified version of
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the LSM proposed by Thomson (1987). Therein, the author derived a stochastic evolution equation for the
velocity fluctuations of a fluid parcel based on the local ensemble-mean velocity and velocity variances of the
flow. Here, we replace the ensemble-mean velocity with the LES-resolved velocity and calculate the veloc-
ity variances based on the SGS closure model. A similar LSM approach was previously used to simulate the
dispersion of passive tracers in a convective boundary layer (Weil et al., 2004) and the aeolian transport of
snow particles (Zwaaftink et al., 2014).

If the SGS velocity component is isotropic, as commonly assumed in LES closure models, we can express
the evolution of the SGS velocity along a fluid particle's trajectory Xf as

dUSGS
i

= −
𝛼USGS

i

T𝑓

dt +
1
2

(
1
𝜎2

d𝜎2

dt
USGS
i

+
𝜕𝜎2

𝜕xi

)
dt +

(
𝛼2𝜎2

T𝑓

)1∕2

d𝜉i, (4)

where 𝜎2 = 2e∕3 is the SGS velocity variance, which is directly proportional to the SGS turbulence kinetic
energy (Pope, 2000)

e =

(
𝜖Δ

c𝜖

)2∕3

, (5)

with 𝜖 is the energy dissipation rate,Δ is thewidth of the LES spatial filter, and c𝜖 = 0.93 in neutral andunsta-
ble conditions. We compute the turbulence dissipation 𝜖 assuming that the mean energy production equals
the mean energy dissipation (Kolmogorov, 1941). We thus perform a time average of the energy production
term P over intervals of one eddy turnover time Te = Lz∕u𝜏 , where Lz is the height of the computational
domain and u𝜏 the average friction velocity. We then compute the energy dissipation in each grid node as

𝜖 ≈ ⟨P⟩ = ⟨−𝜏i𝑗 S̃i𝑗⟩. (6)

In equation (4), 𝛼 ∈ [0; 1] is the SGS fraction of the total turbulence kinetic energy, that is, 𝛼 = e∕(e + k); e
is given by equation (5) and k is the resolved turbulence kinetic energy

k =
1
2
⟨u′

i
u′
i
⟩, (7)

where angle brackets indicate time averaging and u′
i
= ũi − ⟨ũi⟩ are the turbulent fluctuations. Further,

d𝜉i ∼  (0, dt) is a random number sampled from a normal distribution of zero mean and variance dt.
Tf = 2𝜎2∕C0𝜖 is the Lagrangian velocity autocorrelation timescale, with C0 ≈ 4 (Weil et al., 2004).

Because the trajectory of a heavy particle does not generally coincide with a fluid parcel's trajectory,
equation (4) should be modified to predict the turbulence fluctuations along the heavy particle's trajectory.
For this purpose, Wilson (2000) suggested a reduction of the Lagrangian velocity autocorrelation timescale
Tf . We therefore replace Tf with Tp (Wilson, 2000)

Tp =
T𝑓√

1 +
(𝛽Up,3)

2

𝜎2

, (8)

where Up,3 is the vertical component of the Lagrangian particle velocity; 𝛽 ≈ 2 is a calibration coefficient
suggested by Wilson (2000).

We then compute the Lagrangian trajectories of the heavy particles based on drag and gravitational forces.
We neglect the other terms in the particle momentum equation assuming that particles are small

(
dp << 𝜂

)
and heavy

(
𝜌p∕𝜌𝑓 >> 1

)
(Maxey & Riley, 1983), where 𝜂 is the Kolmogorov microscale. Indicating the

particle position as Xp,i and the Lagrangian particle velocity as Up,i, we can write

dXp,i
dt

= Up,i, (9)

dUp,i

dt
=

Δu

tp
− g𝛿i3. (10)
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Δu = ũi + USGS
i

− Up,i is the difference between the flow velocity and the particle's velocity, where USGS
i

indicates the SGS flow velocity felt by the heavy particle. In equation (10), tp is the particle relaxation time,
which reads

tp =
𝜌pd

2
p

18𝜇
1

𝑓
(
Rep

) , (11)

being Rep = |Δu|dp∕𝜈 the particle Reynolds number and 𝑓
(
Rep

)
= 1 + 0.15Re0.687p (Clift et al., 2005).

For particle sizes comparable to or larger than the Kolmogorov microscale 𝜂, additional terms should be
included in equation (10) to account for velocity gradients across the diameter of the particles (Maxey &
Riley, 1983). In the specific case of snowflakes, the analytical formulation of these additional terms is hin-
dered by the complex particle geometry. Nonetheless, corrections to equation (11) that account for the finite
size and nonsphericity of particles have been proposed in the literature (e.g., List & Schemenauer, 1971).
Particularly relevant for this study is the correction proposed by Loth (2008) for dendritic crystals. Their
experimental investigations suggest that these crystals present amuch smaller relaxation time, which is well

reproduced using 𝑓
(
Rep

)
= 𝑓s

[
1 + 0.15

(
RepCs∕𝑓s

)0.687]
with fs = 3.1 and Cs = 25.

We perform a time integration of equation (10) with a second-order accurate Verlet scheme (Verlet, 1967),
which is an explicit integration method often used in molecular dynamics. After updating particle position
and velocity, we compute the forcing term F̃

p

i
in equation (1a) as

F̃
p

i
(x, t) = −

Np∑
n=1

𝑓 n
i

(
Xn
p
, t
)
𝛿

(
x − Xn

p

)
, (12)

where Np is the total number of particles, 𝛿
(
x − Xn

p

)
is a Dirac delta function centered on the particle's

position, and 𝑓 n
i

(
Xn
p
, t
)
is the drag force that the flow exerts on the nth particle, that is,

𝑓i
(
Xp, t

)
=

𝜌p

𝜌𝑓

Δu

tp
. (13)

Similarly, the particle mass flux reads

Φ̃i (x, t) =

Np∑
n=1

mn
p
Un
p,i

(
Xn
p
, t
)
𝛿

(
x − Xn

p

)
, (14)

wheremn
p
is themass of thenth particle. A discrete version of 𝛿

(
x − Xn

p

)
is used in our algorithm, to evaluate

the point forces of the particles mass loading (equation (12)), which corresponds to an inverse distance
weighting (see, e.g., Richter & Sullivan, 2013). This allows to preserve the integral value of the feedback
force while preventing numerical instabilities.

2.4. Dimensionless Formulation

To identify the dependency of flow-particle interactions on the length and velocity scales of interest, we refer
to the dimensionless form of the particle transport equations. We can obtain the dimensionless form of the
filtered Navier-Stokes equations by normalizing each term of equation (1a) by an appropriate combination
of a reference velocity scale U and a reference length scale L, such that

𝜕 ̂̃ui

𝜕t̂
+ ̂̃u𝑗

(
𝜕 ̂̃ui
𝜕x̂𝑗

−
𝜕 ̂̃u𝑗

𝜕x̂i

)
= −

𝜕 ̂̃𝜋

𝜕x̂i
−

𝜕𝜏SGS
i𝑗

𝜕x̂𝑗
− Π̂1 +

̂̃𝑓
Γs

i
−

𝜌p

𝜌𝑓St

Np∑
n=1

Δn
û𝛿

(
x̂ − X̂n

p

)
. (15)

In equation (15), the hat denotes dimensionless variables and

St =
tpU

L
(16)

is the Stokes number. It is worth noting that we focus our interest on highly turbulent atmospheric flows
where viscous stresses are generally negligible with respect to turbulent stresses in the bulk of the flow.
Further, we are focusing on cases where surface drag is mostly caused by pressure effects (as implicitly
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assumed via the usage of equation (2.1e)). For this reason, the Reynolds number does not appear as a control
parameter in the normalized LES momentum conservation equation (15).

The dimensionless particle equation of motion reads

dÛp,i

dt̂
=

Δû

St
−

1
Fr2

𝛿i3, (17)

where

Fr =
U√
gL

(18)

is the Froude number. Equation (17) suggests that, in neutrally stable atmospheric conditions, the dynamic
of small heavy particles depend on two control parameters, that is, the Stokes number and the Froude num-
ber. St expresses the ratio between particle inertia and flow advection, while Fr the ratio between particle
inertia and gravity. In particular, when St → 0, the first term on the right-hand side of equation (17) becomes
dominant and particle dynamics become advection controlled. Conversely, when Fr → 0, the second term
becomes dominant and particle dynamics become gravity controlled. In all intermediate conditions, any
combination of reference length scale L and velocity scale U yields a unique set of St and Fr and thus a
scale-specific deposition process.

It is noteworthy that several previous modeling studies of preferential deposition adopted a form of the
advection-diffusion equation that neglects the effect of particle inertia (Lehning et al., 2008;Mott & Lehning,
2010;Mott et al., 2010).We can easily obtain the inertialess form of the particle equation ofmotion by setting
the acceleration term in equation (10) to zero, which yields

Up,i = ũi + USGS
i

−Ws𝛿i3. (19)

In equation (19), Ws = gtp denotes the settling velocity of the particles. The dimensionless form of this
equation is readily obtained by dividing all terms by the reference velocity scale U, such that

Ûp,i = ̂̃ui +Û
SGS
i

− Ŵs𝛿i3, (20)

where Ŵs = Ws∕U is the dimensionless settling velocity. Equation (20) suggests that the deposition process
of inertialess particles depends on the velocity scale U but not on the length scale L.

3. Model Testing

We validate our model against wind tunnel measurements of dust deposition onto isolated hills (Goossens,
2006) and sequential hills (Goossens, 1996). These experimental studies provide us with detailed informa-
tion on flow field, sediment, and deposition patterns and are thus ideal test cases for the validation of our
model. The experiments were conducted in a closed-return wind tunnel of width 120 cm and height 60 cm.
The hills were located at the end of a 760-cm-long test section. Upwind of the topography, a turbulent bound-
ary layer developed on a flat rough surface. Dust particles were injected into the air flow using a dust cloud
producer. The durations of the experiments were 12 min for the isolated hill and 15 min for the sequential
hills. The mass release rate in all experiments was approximately 13 kg/hr. At the end of the experiments,
the dust height was determined through scanning of the hill surface (Goossens, 1996) or using an analytical
balance (Goossens, 2006). Goossens (2006) and Goossens (1996) indicated that all experiments are Reynolds
number independent based on the criterion proposed by Cermak (1984), that is, u𝜏 h̄∕𝜈 > 70, where u𝜏 is
the friction velocity, h̄ the mean elevation of the hills, and 𝜈 the kinematic viscosity of air.

In order to minimize the influence of the periodic boundary conditions in the isolated hill simulation
(section 3.1), we assign a sufficient domain extension in the x direction, Lx, to recover the boundary layer
at the section upwind of the hill. In the sequential hill simulation (section 3.2), the inlet flow is different
between the experiment and the simulation because of the periodic boundary conditions. The flow simu-
lation should however be more representative of the experimental flow downwind of the first hill, as the
influence of the inlet boundary layer progressively vanishes. In the experiments by Goossens (2006) the
wind speed was too low to produce resuspension of deposited dust. We accounted for this by calculating the
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Figure 2. Flow field and mass fluxes over the isolated hill, as provided by the large eddy simulation-Lagrangian
stochastic model. (a) Streamlines of the wind field, (b) horizontal mass flux, and (c) vertical mass flux around the
Gaussian hill. All quantities are averaged in time and in the y direction. The mass fluxes in (b) and (c) are normalized
by reference mass fluxes obtained on flat surface conditions with identical u𝜏 , particle seeding, domain size, and grid
resolution. Solid black lines represent streamlines of wind velocity and mass flux.

deposition pattern assuming that settling particles adhere to the surface. The duration of the simulations is

30Te, where Te is the eddy turnover time.

In our simulations, we release dust particles uniformly from ahorizontal plane at elevation 0.8Lz, whereLz is

the height of the computational domain. When particles cross the lateral boundaries, we reinject them from

the opposite side of the domain at the same elevation, consistently with the periodic boundary conditions

of the flow field.

Since the duration of the experiments was much longer than in our simulations, we compare normalized

deposition distributions. Such normalization is necessary because the spatial mean and standard deviation

of dust deposition grow in time. At the end of the simulations, we thus compute the normalized dust height

distribution (D− ⟨D⟩)∕𝜎D, where ⟨D⟩ is the spatial mean and 𝜎D the spatial standard deviation and compare
it with that obtained from the experimental results. Note that we adopt this normalization procedure for

all deposition patterns presented in this paper. We verified that for simulations longer than 30Te the dust

deposition distributions do not show apparent variations.

3.1. Deposition Over Isolated Hill

We design the first simulation of dust deposition over an isolated hill to reproduce the experimental condi-

tions described in Goossens (2006). We consider a Gaussian hill with height h = 4 cm, standard deviation

𝜎h = 2 cm, and constant profile in the y direction (hill 1 in Goossens, 2006). The boundary layer generated

in the fetch of the wind tunnel has free stream velocity U∞ = 172 cm/s, friction velocity u𝜏 = 6 cm/s, and

roughness length z0 = 0.001 cm. The dust particle density is 𝜌p = 2, 650 kg/m3, and the particle diameter has
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Figure 3.Modeled and measured dust deposition profiles over the isolated hill. The deposition distributions are
normalized by the corresponding mean values ⟨D⟩ and standard deviations 𝜎D. The profiles are obtained by averaging
the deposition distributions in the y direction.

lognormal distribution with mean dp = 50μm, and standard deviation 𝜎d = 20μm. The particle relaxation
time, calculated with equation (11) using the mean particle diameter, is tp ≈ 0.02 s.

We define a computational domain with dimensions Lx = 20 h, Ly = 5 h, and Lz = 5 h. The domain is
discretized using a Cartesian grid with Nx = 128, Ny = 32, and Nz = 49 nodes, leading to computational
cells with dimensions Δx = Δy = 0.156 h and Δz = 0.1 h. The eddy turnover time is Te = 3.3 s, and the
simulation time step is Δt = 0.01tp. The release rate is 530 particles·m

−2·s−1.

Figure 4. Flow field and mass fluxes over the range of hills, as provided by the large eddy simulation-Lagrangian
stochastic model. (a) Streamlines of the wind field, (b) horizontal mass flux, and (c) vertical mass flux around the
Gaussian hills. All quantities are averaged in time and in the y direction. The mass fluxes in (b) and (c) are normalized
by reference mass fluxes obtained on flat surface conditions with identical u𝜏 , upper particle seeding, domain size, and
grid resolution. Solid black lines represent streamlines of wind velocity and mass flux.
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Figure 5.Modeled and measured dust deposition profiles over the sequential hills. The deposition distributions are
normalized by the corresponding mean values ⟨D⟩ and standard deviations 𝜎D. The profiles are obtained by averaging
the deposition distributions in the y direction.

We show in Figure 2a the time-averaged flow field over the Gaussian hill. The flow accelerates on the wind-
ward side of the hilltop, and a wake region extends for a distance of approximately 10 h beyond the hilltop.
We also observe an intense and localized updraft region on thewindward slope and awider downdraft region
downwind of the hill.

Because mean flow advection plays an important role in the dynamics of dust particles, the time-averaged
particle mass flux presents similar features to the mean flow. Figures 2b and 2c show the horizontal and
vertical mass fluxes over the Gaussian hill. Note that all figures in this paper represent particle mass fluxes
over hills normalized with respect to the corresponding reference mass fluxes over flat surfaces, obtained
with equivalent u𝜏 , upper particle seeding, domain size, and grid resolution. Mass fluxes over hills are thus
enhanced with respect to reference mass fluxes on flat terrain in regions whereΦi∕Φ

ref
i

> 1, reduced other-
wise. The horizontal particle supply is relatively strong on the windward slope but almost negligible in the
wake region (Figure 2b). Furthermore, the wind updraft reduces the downward mass flux around the hill-
top by keeping dust particles aloft, while enhancing particle settling in the downdraft region beyond the hill
(Figure 2c).

The dust height profiles resulting from the simulation and from the experiment are compared in Figure 3.
Themodel results agree with themeasurements on the location andmagnitude of depositionmaximum and
minimum. In particular, we observe an increasing deposition on the windward slope and a local maximum
before the hilltop. The dust height then drops rapidly and reaches a local minimum beyond the hilltop. The
dust height remains relatively small on the leeward slope and slowly increases toward the mean value in
the area below the wake region. We notice that the model predicts a larger deposition below the recircula-
tion region and a slightly smaller dust deposition far downwind of the hill, most likely due to the limited
extension of our computational domain in the windward direction in conjunction with the use of periodic
boundary conditions.

3.2. Deposition Over Range of Hills

We design the second simulation of dust deposition over a range of hills to reproduce the experimental con-
ditions described in Goossens (1996). Therein, the author investigates dust deposition patterns over ranges
of hill with different height and aspect ratios. Here, we consider the case of six consecutive two-dimensional

Table 1
List of Simulations Performed to Study the Sensitivity of the Deposition Process to the Stokes and Froude Numbers

Name Lx Ly Lz Δx Δy Δz Δt Te h 𝜎h∕h u𝜏 St Fr

S1 800 200 200 3.13 3.13 2.02 0.01 178 40 0.75 1.00 0.0124 0.0300

S2 400 100 100 1.56 1.56 1.01 0.01 178 20 0.75 0.50 0.0124 0.0150

S3 200 50 50 0.78 0.78 0.51 0.01 178 10 0.75 0.25 0.0124 0.0075

S4 800 200 200 3.13 3.13 2.02 0.01 357 40 0.75 0.50 0.0062 0.0075

S5 3,200 800 800 12.50 12.50 8.08 0.01 713 160 0.75 1.00 0.0031 0.0075

Note. All lengths are given in (m), times in (s), and velocities in (m/s).
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Table 2
List of Simulations Performed to Test the Sensitivity of the Deposition Process to the Snowflake Shape

Name Lx Ly Lz Δx Δy Δz Δt Te h 𝜎h∕h u𝜏 St Fr

S6 800 200 200 3.13 3.13 2.02 0.01 178 40 0.75 1.00 0.0124 0.0300

S7 200 50 50 0.78 0.78 0.51 0.01 178 10 0.75 0.25 0.0124 0.0075

S8 3,200 800 800 12.50 12.50 8.08 0.01 713 160 0.75 1.00 0.0031 0.0075

Note. All lengths are given in (m), times in (s), and velocities in (m/s).

(y independent) Gaussian hills with height h = 4 cm and and standard deviation 𝜎h = 5.6 cm. The bound-

ary layer upwind of the topography is characterized by a free stream velocity U∞ = 192 cm/s and friction

velocity u𝜏 = 9.3 cm/s. The dust particles have density 𝜌p = 2, 650 kg/m3, and lognormal diameter distribu-

tion with mean dp = 30μm and standard deviation 𝜎d = 7μm. The particle relaxation time, calculated with

equation (11) using the mean particle diameter, is tp ≈ 0.01 s.

Our computational domain has dimensions Lx = 42 h, Ly = 10.5 h, and Lz = 10.5 h. The Cartesian grid has

Nx = 256, Ny = 64, and Nz = 99 nodes, that is, a spatial discretization Δx = Δy = 0.165 h and Δz = 0.105 h.

The eddy turnover time is Te = 4.5 s, and the simulation time step is Δt = 0.02tp. The particle release rate is

approximately 530 particles ·m−2 · s−1.

We show in Figure 4a the time-averaged flow field over the range of hills. The surface geometry (macror-

oughness) acts as a displacement height for the boundary layer, which recovers horizontal homogeneity at

z ≈ 3 h (roughness sublayer height). The flow field within the interfacial layer, defined as the layer below

the hill height, presents a weak wake zone that is limited in extension by the interhill distance.

Figures 4b and 4c show the horizontal and vertical mass fluxes over the range of hills, normalized with

respect to the reference mass fluxes over flat terrain. The particle mass flux reflects some of the features

of the flow field. As experimentally observed by Goossens (1996), the horizontal particle supply to the val-

leys is almost negligible (Figure 4b) as most of the mass flux is provided vertically by the flow downdrafts

(Figure 4c).

Figure 5 shows the comparison between the modeled and the measured dust height profiles at the surface.

We notice that the differences betweenmodel results and experiments are larger over the first hill, where the

LES is less representative of the experimental flow due to the periodic boundary conditions. The results are

however in good agreement downwind of the first hill, where the LES provides a more accurate description

of the experimental flow. In particular, model and experiments indicate a relatively large deposition on the

windward slopes, with local maximum before the hilltops, a rapid drop corresponding to each hilltop and

a small deposition on the leeward slopes. The cross comparison between Figures 4 and 5 suggests that the

increase of deposition at the toes of the windward slopes is mainly due to the flow downdrafts, while the
local maxima before the hilltops are mainly due to horizontal mass flux supply.

It is worth noting that the simulation indicates the presence of a dip and increase in deposition on the lee-
ward slopes, which is not clearly visible in the experiments. From a cross comparison of Figures 4 and 5, we
notice that the locations of the dips correspond to the locationswhere the particlemass flux is approximately
parallel to the hill surface, that is, where the flux normal to the surface is minimum. The reason for the pres-
ence of this dip in our simulations could thus lie in a slight overestimation of the horizontal component of
the mass flux with respect to the experiments.

Table 3
List of Simulations for Inertialess Particles With Corresponding Domain Size, Spatial and Temporal Resolutions, and
Dimensionless Settling Velocity

Name Lx Ly Lz Δx Δy Δz Δt Te h 𝜎h∕h u𝜏 Ŵs

S9 800 200 200 3.13 3.13 2.02 0.01 178 40 0.75 1.00 0.08

S10 200 50 50 0.78 0.78 0.51 0.01 178 10 0.75 0.25 0.33

S11 3,200 800 800 12.50 12.50 8.08 0.01 713 160 0.75 1.00 0.08

Note. All lengths are given in (m), times in (s), and velocities in (m/s).
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Table 4
List of Simulations Performed to Study the Sensitivity of the Deposition Process to the Hill Aspect Ratio

Name Lx Ly Lz Δx Δy Δz Δt Te h 𝜎h∕h u𝜏 St Fr

S12 800 200 200 3.13 3.13 2.02 0.01 178 40 0.375 1.00 0.0124 0.0300

S13 200 50 50 0.78 0.78 0.51 0.01 178 10 0.375 0.25 0.0124 0.0075

S14 3,200 800 800 12.50 12.50 8.08 0.01 713 160 0.375 1.00 0.0031 0.0075

Note. All lengths are given in (m), times in (s), and velocities in (m/s).

Although small differences between simulations andmeasurements are visible, our model provides reliable
simulations of dust deposition on both isolated and sequential hills. Although a direct validation for snow
particle deposition is impaired by the lack of experimental data,we feel confident to use themodel to perform
snowfall simulations given that particle shape, dimension, and density are explicitly accounted for in the
transport equations.

4. Simulation Setup for the Sensitivity Analysis

We perform a series of snowfall simulations over a Gaussian hill, adopting different combinations of U and
L to test the sensitivity of snowfall deposition to the Stokes and Froude numbers. Specifically, we define
L ≡ h and U ≡ u𝜏 , where h is the height of the Gaussian hill and u𝜏 ≈

√
Π1Lz is the friction velocity, which

includes both the hill pressure drag and the skin friction drag. The Gaussian hill has standard deviation
𝜎h = 0.75 h and a constant profile in the y direction. We locate the hill in a regular computational domain
of dimension Lx = 20 h and Ly = Lz = 5 h. Even though the flow boundary conditions are periodic, the
length of domain in the x direction is sufficient to have an approximately undisturbed flow field upwind of
the hill (Grimmond & Oke, 1999). We define the grid resolution based on the resolution analysis presented
in Appendix A, which indicates that a Cartesian grid with Nx = 256, Ny = 64, and Nz = 99 nodes in the x, y,
and z directions is sufficient to simulate snowfall deposition patterns at the scales of interest.

Snowflakes present remarkable differences in shape depending on temperature and humidity upon forma-
tion (Nakaya, 1954). We can account for some of the effects of aspherical geometries by assuming spherical

Figure 6. Large eddy simulation flow field over the Gaussian hill. (a) Horizontal flow velocity and (b) vertical flow
velocity. All quantities are averaged in time and in the y direction. Solid black lines represent streamlines of wind
velocity.
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Figure 7. (a) Turbulent kinetic energy of the large eddy simulation-resolved flow field (see equation (7)),
(b) time-averaged subgrid scale turbulent kinetic energy (see equation (5)), and (c) subgrid scale flow fluctuations as
predicted by the Lagrangian stochastic model (see equation (4)). All variables are averaged in time and in the y
direction.

particleswith an equivalent diameter, here dp = 2mmand reducing the effective particle density 𝜌p.Magono

(1965) and Passarelli and Srivastava (1979) collected a large number of natural snowflakes and observed

that their effective density approximately decays with the square of their effective diameter. According to

their studies, the equivalent density of snowflakes with effective diameter dp = 2 mm is approximately

𝜌p = 500 kg/m3, yielding a particle relaxation time tp ≈ 0.5 s.

We release snowfall particles from a horizontal plane at elevation 0.8 Lz. The precipitation has intensity of

10 mm/hr, corresponding to a particle release rate of 83 particles ·m−2 · s−1, constant in time and uniform

over the plane of release. If snow particles cross the lateral boundaries, they are relocated in the opposite

side of the domain at the same elevation.We calculate the deposition pattern assuming that settling particles

adhere to the surface. We assume that the aerodynamic roughness is typical of a snow surface, that is, z0 =

0.1mm (Kikuchi, 1981).

It is worth noting that large snowflakes are likely to break into smaller fragments upon impact with the

surface (Comola et al., 2017; Sato et al., 2008). These smaller particles are then easily lifted from the surface

through aerodynamic entrainment and granular splash (e.g., Comola & Lehning, 2017; Diplas et al., 2008),

which lead to drifting snow events. Because the focus of this study is snowfall deposition, we do not account

for drifting snow in our simulations. The separation of snowfall from drifting snow, albeit artificial, allows

us to single out the role played by preferential deposition in the snow height spatial variability.

We list in Table 1 the series of simulations performed to test the sensitivity of the deposition process to the

Stokes and Froude numbers. The progression S1→ S2→ S3 is characterized by a constant Stokes number

and a decreasing Froude number, that is, an increasing effect of gravity on particle dynamics. Conversely, the
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Figure 8. Evolution of the vertical mass flux around the Gaussian hill for decreasing values of Froude number.
(a) Simulation S1 (St = 0.0124, Fr = 0.0300), (b) simulation S2 (St = 0.0124, Fr = 0.0150), and (c) simulation S3
(St = 0.0124, Fr = 0.0075). The fluxes are averaged in the y direction and normalized by the reference mass flux
obtained on flat surface conditions with identical u𝜏 , particle seeding, domain size, and grid resolution. Solid black
lines represent streamlines of mass fluxes.

progression S3→ S4→ S5 is characterized by a constant Froude number and a decreasing Stokes number,

that is, a growing control of flow advection on particle dynamics.

A second series of model simulations (S6, S7, and S8), listed in Table 2, carried out with a reduced relax-

ation time that best represents the dynamics of dendritic crystals (Loth, 2008). In terms of hill size and flow

velocity, simulation S6 is equivalent to simulation S1, S7 is equivalent to S3, and S8 is equivalent to S5. This

analysis will clarify whether the assumption of small, spherical particles holds for snowflakes of finite size

and irregular shape. Adopting an equivalent diameter dp = 2 mm, 𝜌p = 910 kg/m3 (ice density), fs = 3.1,

and Cs = 25 in equation (11), we obtain a reduced particle relaxation time tp ≈ 0.05 s.

The third series ofmodel runs (simulations S9, S10, and S11 listed in Table 3) are performedwith the inertia-

less version of the particle equation of motion (equation (19)). We aim at investigating if the approximation

of inertialess snowflakes, adopted in most previous studies on preferential deposition (Lehning et al., 2008;

Mott & Lehning, 2010; Mott et al., 2010), can provide effective simulations of the deposition process. In par-

ticular, simulation S9 presents the same length and velocity scales as simulation S1, simulation S10 the same

as S3, and simulation S11 the same as S5. We adopt a settling velocityWs = 1m/s, which corresponds to the

mean value observed in recent field investigations (Garrett & Yuter, 2014).

The fourth series of simulations, listed in Table 4, aims at highlighting the effect of the hill aspect ratio on

the deposition process. The hill steepness, in fact, may significantly affect the near-surface flow field and

thus the control of flow advection on particle dynamics. We thus perform three simulations (S12, S13, and
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Figure 9. Snow height profiles, averaged in the y direction, for decreasing values of Froude number (see Table 1 for
more details). The plots show the deposited snow height D, normalized with respect to the spatial mean ⟨D⟩ and spatial
standard deviation 𝜎D. The profiles are averaged in the y direction.

S14) that have the same h and u𝜏 of simulations S1, S3, and S5 but a steeper hill with standard deviation
𝜎h = 0.375 h.

All simulations have a duration of 6Te. At the end of each simulation, we compute the snow height distri-
bution by subtracting to the height in each surface node D the spatial mean ⟨D⟩ and dividing by the spatial
standard deviation 𝜎D. We verified that for simulations longer than 6Te the snow deposition distributions
do not show visible variations.

5. Results
5.1. Flow Field

We show in Figure 6 the LES-resolved flow field around the Gaussian hill in absence of airborne particles,
normalizing velocities and lengths with respect to u𝜏 and h, respectively. Figure 6a indicates that a wake
region extends for a distance of 6 h beyond thehilltop and that the undisturbed flow field is visually recovered
at a distance 12 h from the hill. The vertical flow velocity, shown in Figure 6b, presents a strong updraft at
the windward side of the hill and an extended downdraft region between 3 and 10 h beyond the hill. The
modeled flow field around the hill and in particular the extension of the wake region are in good agreement
with the wind tunnel studies by Simoëns et al. (2015), carried out in flow regimes that satisfy the criterion
for Reynolds number independence proposed by Cermak (1984).

Figures 7a and 7b show the spatial variation of resolved turbulence kinetic energy k, (equation (7)) and
subgrid turbulence kinetic energy e (equation (5)). Figure 7a shows that the largest fraction of resolved
turbulence kinetic energy k is produced in the shear layer that separates from the hill, as was also observed
in previous experimental and model studies (Kim et al., 1997), while the largest fraction of the subgrid
turbulence kinetic energy e is maximum just beyond the hilltop where the flow shear is largest (Figure 7b).
This is also the region where we observe the largest subgrid scale turbulent fluctuations (USGS

i
), as indicated

in Figure 7c. Equation (4), in fact, suggests that USGS
i

is larger where the SGS fraction of the total turbulent
kinetic energy is large, that is, where 𝛼 = e∕(e + k) approaches unity.

5.2. Sensitivity of Preferential Deposition to the Froude Number

Here, we present our model results for decreasing values of the Froude number, that is, for a deposition
process that progressively becomes gravity controlled. Figure 8 shows the spatial variation of the vertical
mass flux and the direction of the mass flux (black arrows) for decreasing values of the Froude number.
The model results highlight that the direction of the mass flux progressively turns downward as the Froude
number decreases (simulations S1 → S3). In fact, the snowfall direction is significantly affected by flow
updrafts and downdrafts when the Froude number is large (Figure 8a). Conversely, for the smallest Froude
number (Figure 8c), the snowfall direction is predominantly vertical andweakly affected by the near-surface
flow. In fact, as gravity forces particle trajectories to align along the vertical direction, the vertical mass flux
tends to become spatially homogeneous.
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Figure 10. Evolution of the vertical mass flux around the Gaussian hill for decreasing values of Stokes number.
(a) Simulation S3 (St = 0.0124, Fr = 0.0075), (b) simulation S4 (St = 0.0062, Fr = 0.0075), and (c) simulation S5
(St = 0.0031, Fr = 0.0075). The fluxes are averaged in the y direction and normalized by the reference mass flux
obtained on flat surface conditions with identical u𝜏 , particle seeding, domain size, and grid resolution. Solid black
lines represent streamlines of mass fluxes.

The snow height profiles (Figure 9) indicate that, for the largest values of Fr (simulation S1), the deposition
pattern is characterized by a relatively small local maximum on the windward slope, a local minimum on
the hilltop, and a second large local maximum on the leeward slope. Moreover, a significant amount of
snow deposits on the flat terrain beyond the hill. The locations of the deposition maxima well correspond
to the areas of strong downward mass flux seen in Figure 8a. As the Froude number decreases and particle
dynamics become gravity controlled (simulation S3), the local deposition maximum on the windward slope
increases and the local maximum on the leeward slope decreases. We also notice the formation of a second
local maximum at the toe of the leeward slope. Furthermore, the depositionmaximum below the wake zone
progressively disappears.

The reason for the increased deposition on the windward slope lies in the reduced sensitivity of the
gravity-controlled process to the flowupdraft, as shown in Figure 8c. As a consequence, fewer particles reach
the sheltered lee side of the hill and the deposition maximum on the leeward slope decreases. The small
sensitivity of the particle mass flux to the flow downdraft in the wake region (Figure 8d) also explains the
reduction in snowfall deposition on the flat terrain beyond the hill.

Because the Stokes number is constant, the effect of flow advection on particle acceleration in the x direction
is preserved.Accordingly, the locations of depositionmaxima andminima are approximately constant across
the simulations, as shown in Figure 9.

5.3. Sensitivity of Preferential Deposition to the Stokes Number

As anticipated in section 2.4, a decrease in the Stokes number leads to a larger control of flow advection on
particle dynamics. Figure 10 shows the spatial variations in the vertical mass flux and the direction of the
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Figure 11. Snow height profiles, averaged in the y direction, for decreasing values of Stokes number (see Table 1 for
more details). The plots show the deposited snow height D, normalized with respect to the spatial mean ⟨D⟩ and spatial
standard deviation 𝜎D. The profiles are averaged in the y direction.

mass flux (black arrows) across simulations S3→ S5. The results indicate that the direction of the particle
mass flux changes according to the near-surface flow field when the Stokes number decreases (Figures 10a
to 10c). In particular, flow advection intensifies the horizontal component of the mass flux with respect to
the vertical one. Furthermore, the flow updraft effectively reduces particle settling on the windward slope,
while the flowdowndraft beyond the hill enhances particle deposition.With respect to the gravity-controlled
deposition (simulation S3), the verticalmass of the advection-controlled process presents a spatial variability
that is well correlated to that of the vertical wind velocity.

Figure 11 shows the snow height profiles obtained from simulations S3 → S5. We notice that the snow
height on thewindward slope decreaseswith decreasing Stokes number, as the flow updraft effectively keeps
particles aloft. Figure 11 highlights that a decrease in the Stokes number is associated to a downwind dis-
placement of the deposition maximum on the windward slope. Moreover, we observe the formation of a
second localmaximumon the leeward slope, just beyond the flow separation point. Furthermore, the results
indicate a remarkable difference in snow height on the flat terrain beyond the hill, where the much larger
deposition occurs in the case of small Stokes number due to the flow downdraft (see Figure 6b for a pseudo
color plot of the vertical velocity field).

Similar to what was observed in section 5.2, a decrease in the depositionmaximum on the windward slope is
compensated by an increase of deposition on the leeward slope.As the flowupdraft effectively keeps particles
aloft, more andmore snowflakes are caught in the separated flow region and eventually settle on the leeward
slope. The location of the deposition maxima and minima, however, is not preserved across simulations
S3 → S5. Variations in the Stokes number affect the response of particle dynamics to flow acceleration in
both horizontal and vertical directions. This leads to the visible downwind displacement of the deposition
maximum on the windward slope and the upwind displacement of the depositionmaximum on the leeward
slope, as flow recirculation advects particles uphill.

5.4. Deposition of Dendritic Crystals and Inertialess Particles

Figures 12a–12c show the deposition patterns of inertial spherical particles (dash-dotted blue lines), inertial
dendritic crystals (solid magenta lines), and inertialess particles (dashed cyan lines) for the three different
combinations of h and u𝜏 listed in Tables 2 and 3.

The results suggest that the snowflake shape and the particle inertia significantly affect the deposition pat-
tern for all the tested length and velocity scales. In particular, when the reference velocity scale is large
(Figures 12a and 12c), the deposition pattern of dendritic crystals presents a remarkable deposition maxi-
mum beyond the hilltop, almost reversing the pattern of spherical particles. Interestingly, we also observe
such deposition maximum in the deposition profile of inertialess particles. On the other hand, when the
reference velocity scale is small (Figure 12b), the deposition patterns of dendritic crystals and inertialess
particles seem to be reasonably close to that of spherical particles, although some differences are visible
around to the hilltop. Specifically, dendritic crystals yield a smaller deposition on thewindward slope, a local
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Figure 12. (a–c) Results of the snow deposition simulations assuming dendritic crystals and inertialess particles, as
listed in Tables 2 and 3. The plots show the deposited snow height D, normalized with respect to the spatial mean ⟨D⟩
and spatial standard deviation 𝜎D. The profiles are averaged in the y direction.

Figure 13. Time-averaged large eddy simulation flow field over the steeper Gaussian hill. (a) Horizontal flow velocity
and (b) vertical flow velocity. The flow field is averaged in the y direction. Solid black lines represent streamlines of
wind velocity.
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Figure 14. Results of the snow deposition simulations for the two different hill aspect ratios. (a) Deposition profiles for
simulations S1, S3, and S5 (see Table 1). (b) Deposition profiles for simulations S12, S13, and S14 (see Table 4). The
plots show the deposited snow height D, normalized with respect to the spatial mean ⟨D⟩ and spatial standard
deviation 𝜎D. The profiles are averaged in the y direction.

maximum on the hilltop, and a larger deposition on the leeward slope. The snow accumulation around the
hilltop becomes even larger and more localized when assuming inertialess particles.

5.5. Sensitivity of Preferential Deposition to the Hill Aspect Ratio

We show in Figure 13 the LES-resolved flow field around the steeper Gaussian hill, obtained with a lower
variance of the surface-generating Gaussian function. Figure 13a shows the near-surface flow in the x direc-
tion and indicates that the wake region extends for a slightly longer distance compared to the reference hill
(Figure 6a). Moreover, the steeper hill seems to produce a longer wake region. The vertical flow velocity,
shown in Figure 13b, is characterized by a more intense updraft that extends further downwind from the
hilltop compared to the reference hill (Figure 6b). The downdraft region also extends further downwind
compared to the reference hill.

Figure 14 compares the deposition patterns over the reference hill (a) and the steeper hill (b) for different
combinations of Stokes and Froude numbers. Overall, our results suggest that the general trend observed for
the reference hill is preserved in the deposition profiles of the steeper hill. In particular, for larger Stokes and
Froude numbers (simulation S12) the deposition profile presents a deposition maximum on the windward
slope, a remarkable minimum and a subsequent maximum on the leeward slope, and a large deposition
below the downdraft regions. For large Stokes number and small Froude number (simulation S13), there is
an increase of the depositionmaximumon thewindward slope, a decrease of the depositionminimumon the
leeward slope, and a flattening of the deposition profile downwind of the hill. For small Stokes and Froude
numbers (simulation S14), the windward slope deposition drops, the deposition maximum moves down-
wind toward the hilltop, and the overall deposition increases on the leeward side and below the recirculation
region.
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Interestingly, for the steeper hill case we observe the formation of persistent local maxima at the toes of the

hillslopes, particularly the leeward slope, probably due to an increased flow blocking.

6. Discussion and Conclusions

The preferential deposition of heavy particles on complex terrain is relevant to a variety of environmental

processes, such as the cycles of snowaccumulation andmelting in alpine regions and the supply of dustborne

nutrients to ecosystems over landforms. We aimed at unraveling the governing processes and the relevant

scales of heavy particle deposition over hills. Specifically, we carried out model simulations to investigate

how different deposition patterns emerge from different combinations of hill size h, the reference length

scale, friction velocity u𝜏 , and the reference velocity scale. Each combination is characterized by a specific

set of Froude and Stokes number and thus by a specific interaction among particle inertia, flow advection,

and gravity.

The model results suggest that the combination of Stokes and Froude numbers significantly affects the

snowflake deposition process. In particular, gravity dominates particle dynamics when the Froude number

decreases. On the other hand, flow advection dominates the deposition process when the Stokes number

decreases. Model results indicate that, when particle dynamics are gravity dominated, snowflake deposi-

tion becomes less sensitive to the near-surface flow. The resulting deposition pattern is characterized by a

relatively large snow height on the windward slope, an upwind displacement of the local maximum, and a

flattening of the local maximum on the leeward slope. These results are consistent with those obtained by

Salesky et al. (2019), who used an Eulerian framework to simulate deposition of heavy particles in similar

topographic and atmospheric conditions.

Conversely, when snowfall deposition is advection dominated, particle inertia plays a limited role and

snowflakes are easily accelerated upward and downward by the near-surface flow. We showed that the

resulting snow height distribution is consistent with the preferential deposition pattern initially described

by Lehning et al. (2008), with a relatively small deposition on the windward slope, a local maximum on

the hilltop, and a second one on the leeward slope. Moreover, our model results support and extend previ-

ous findings by Wang and Huang (2017), who observed that the deposition on the leeward slope increases

with increasing flow advection. Even though our analysis focused on the effect of mean flow advection on

preferential deposition, turbulence significantly enhances particle mixing both at large and small scales.

Turbulence-drivenmixing is likely to play a fundamental role in simulations of seeder-feeder and orographic

precipitation, where particle release above the topography is not well mixed but rather localized in intense

source areas.

In light of our scale analysis, we can interpret the results of the dust deposition experiments (section 3). Both

experiments present Froude and Stokes numbers much larger than those tested in the snowfall analysis,

Fr2 = 4.38, St = 0.86 for the deposition on the single hill and Fr2 = 4.89, St = 0.48 for that on the range of

hills. The effects of both gravity and flow advection on the dynamics of dust particles around the hill are thus

small compared to the snowfall case. Consequently, particles maintain their inertial trajectories and settle

on the windward slope causing the local deposition maximum. The small deposition on the leeward slope

and on the flat terrain beyond the hill, or in the valleys in case of range of hills, is due to the small effect

of advection in the wake and downdraft regions. We thus refer to this type of deposition process as inertia

controlled.

Our results further highlight the significant sensitivity of the deposition pattern to the shape of the

snowflakes, as dendritic crystals can fully reverse the deposition pattern with respect to rounded snow parti-

cles. Dendritic crystals tend to follow the flow trajectories more closely than rounded grains because of their

smaller Stokes number. Interestingly, there seems to be a good agreement between the deposition pattern

of dendritic crystals and that of inertialess particles, particularly in case of large friction velocity. This sug-

gests that the assumption of inertialess particles, used in several previous studies of preferential deposition

(Lehning et al., 2008; Mott & Lehning, 2010; Mott et al., 2010), may provide effective simulations of snowfall

deposition for dendritic crystals in high speed flows. For more rounded shapes, however, neglecting particle

inertia may lead to large errors in the snow height distribution. Note that because LES models only resolve

the energy-containing scales of turbulence, our simulations do not account for small-scale anisotropic inter-

actions between the flow and aspherical particles. Consequently, some aspects of snowfall deposition may
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bemisrepresented. For instance, snowflakes may present preferential orientations and lower sedimentation

rates in the shear layer, whereas their orientation may be randomized and their sedimentation rate closer to

the isotropic average in the recirculation zone (Voth & Soldati, 2017).

We finally showed that the results of our scale analysis are qualitatively similar for hills with different aspect

rations 𝜎h∕h. It is worth noting that our simulations highlighted an increased deposition at the toe of the

slopes of the steeper hill, which is sometimes observed in nature as a result of flow blocking in front of

extremely steep slopes. It is also possible that a much larger deposition at the toe of windward slope may

form in condition of stable atmospheric stratification. It would be interesting to quantify the impact of

atmospheric stability in future studies of snowfall deposition, for example, by including the Brunt-Väisälä

frequency in the definition of the Froude number (Dadic et al., 2013).

Further work is also necessary to investigate the influence of drifting snow on the spatial variability of snow

depth. A comprehensive study on the combined effect of snowfall deposition and drifting snow may ulti-

mately lead to a deeper insight on the dynamics leading to the formation of snow surface features, such as

snow dunes, sastrugi, and snow cornices.

Figure A1. Results of the grid resolution analysis. S3 indicates the reference simulation (see Table 1) with Nx = 256,
Ny = 64, and Nz = 99 grid points in the x, y, and z directions. S3− indicates the coarser numerical grid with Nx = 128,
Ny = 32, and Nz = 49 and S3+ the finer grid with Nx = 384, Ny = 96, and Nz = 149. (a) Vertical profiles of streamwise
velocity ũ. (b) Profiles of vertical velocity w̃. (c) The deposition profiles. Velocity profiles show the flow field averaged in
time and in the y direction.
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In conclusion, we have attempted a comprehensive exploration of the main factors influencing heavy parti-
cle deposition over hills, that is, the Stokes and Froude numbers, particle shape and inertia, and hill aspect
ratio. Our analyses indicate that the deposition patterns of dust and snow over hills present deposition max-
ima located either on the windward or the leeward side depending on the scales of interest and particle
properties. Moreover, our investigation clearly identified the effect of each parameter and provided useful
benchmarks to evaluate what deposition pattern should be expected in real world cases, given certain hill
height h, friction velocity u𝜏 , and particle geometry.

Appendix A: Grid Resolution Analysis

We present here the results of the grid resolution analysis that we performed to assign the appropriate num-
ber of grid points to the LES simulations presented in section 4. For this purpose, we selected simulation S3
as a test case (see Table 1). In addition to the reference resolution Nx = 256, Ny = 64, and Nz = 99, we test a
coarser grid with Nx = 128, Ny = 32, and Nz = 49 (simulation S3−) and a finer grid with Nx = 384, Ny = 96,
and Nz = 149 (simulation S3+). The duration of the simulations is 6Te, and the time step is Δt = 0.02tp.

We show in Figure A1 the comparison between the vertical profiles of the time-averaged streamwise velocity
ũ (Figure A1a) and time-averaged vertical velocity w̃ (Figure A1b) in relevant sections of the computational
domain, that is, in correspondence of local maxima and minima (the entire flow field is represented in
Figure 6 for reference). Overall, all three simulations provide similar and consistent results, although there
are some visible differences. Specifically, Figure A1a indicates that simulation S3− is affected by a velocity
deficit with respect to simulations S3 and S3+, both in the speedup and in the recirculation zones. Moreover,
Figure A1b suggests that simulation S3− slightly underestimates the updraft and downdraft with respect
to simulations S3 and S3+. These differences in the mean flow result in small yet visible variations in the
deposition pattern shown in Figure A1c. In particular, simulation S3− leads to slightly smaller deposition
on the windward slope and larger deposition on the leeward slope.

Small differences are also visible between simulations S3 and S3+. Figure A1b indicates that the mean verti-
cal velocity in simulation S3 is overestimated on the windward slope while underestimated over the hilltop.
These differences, however, do not lead to significant variations in the predicted deposition pattern. The
analysis thus suggests that the reference Cartesian grid with Nx = 256, Ny = 64, and Nz = 99 is sufficient
for the purpose of investigating snowfall preferential deposition at the scales of interest.
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