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Defined Affymetrix control dataset<p>We present a 'spike-in' experiment for Affymetrix GeneChips that provides a defined dataset of 3,860 RNA species. A 'best route' com-bination of analysis methods is presented which allows detection of approximately 70% of true positives before reaching a 10% false dis-covery rate.</p>

Abstract

Background: As more methods are developed to analyze RNA-profiling data, assessing their

performance using control datasets becomes increasingly important.

Results: We present a 'spike-in' experiment for Affymetrix GeneChips that provides a defined

dataset of 3,860 RNA species, which we use to evaluate analysis options for identifying differentially

expressed genes. The experimental design incorporates two novel features. First, to obtain

accurate estimates of false-positive and false-negative rates, 100-200 RNAs are spiked in at each

fold-change level of interest, ranging from 1.2 to 4-fold. Second, instead of using an uncharacterized

background RNA sample, a set of 2,551 RNA species is used as the constant (1x) set, allowing us

to know whether any given probe set is truly present or absent. Application of a large number of

analysis methods to this dataset reveals clear variation in their ability to identify differentially

expressed genes. False-negative and false-positive rates are minimized when the following options

are chosen: subtracting nonspecific signal from the PM probe intensities; performing an intensity-

dependent normalization at the probe set level; and incorporating a signal intensity-dependent

standard deviation in the test statistic.

Conclusions: A best-route combination of analysis methods is presented that allows detection of

approximately 70% of true positives before reaching a 10% false-discovery rate. We highlight areas

in need of improvement, including better estimate of false-discovery rates and decreased false-

negative rates.

Background
Since their introduction in the mid 1990s [1,2], expression-

profiling methods have become a widespread tool in numer-

ous areas of biological and biomedical research. However,

choosing a method for analyzing microarray data is a daunt-

ing task. Dozens of methods have been proposed for the
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analysis of both high-density oligonucleotide (for example,

Affymetrix GeneChip) and spotted cDNA or long oligonucle-

otide arrays, with more being put forward on a regular basis

[3]. Moreover, it is clear that different methods can produce

substantially different results. For example, two lists of differ-

entially expressed genes generated from the same dataset can

display as little as 60-70% overlap when analyzed using dif-

ferent methods ([4] and see Additional data file 1). Despite

the large number of proposed algorithms, there are relatively

few studies that assess their relative performance [5-9]. A sig-

nificant challenge to undertaking such studies is the scarcity

of control datasets that contain a sufficiently large number of

known differentially expressed genes to obtain adequate sta-

tistics. The comparative studies that have been performed

have used a small number of positive controls, and have

included a background RNA sample in which the concentra-

tions of the various genes are unknown, preventing an accu-

rate assessment of false-positive rates and nonspecific

hybridization.

The most useful control datasets to date for evaluating the

effectiveness of analysis methods for Affymetrix arrays are

cRNA spike-in datasets from Affymetrix and Gene Logic. The

Affymetrix Latin square dataset [10] is a series of transcrip-

tional profiles of the same biological RNA sample, into which

42 cRNAs have been spiked at various known concentrations.

The dataset is designed so that, when comparing any two

hybridizations in the series, all known fold changes are pow-

ers of two. The Gene Logic dataset [11] has a similar experi-

mental design, but with 11 cRNAs spiked in at varying fold

changes, ranging from 1.3-fold upwards.

Here we present a new control dataset for the purpose of eval-

uating methods for identifying differentially expressed genes

(DEGs) between two sets of replicated hybridizations to

Affymetrix GeneChips. This dataset has several features to

facilitate the relative assessment of different analysis options.

First, rather than containing a limited number of spiked-in

cRNAs, the current dataset has 1309 individual cRNAs that

differ by known relative concentrations between the spike-in

and control samples. This large number of defined RNAs ena-

bles us to generate accurate estimates of false-negative and

false-positive rates at each fold-change level. Second, the

dataset includes low fold changes, beginning at only a 1.2-fold

concentration difference. This is important, as small fold

changes can be biologically relevant, yet are frequently over-

looked in microarray datasets because of a lack of knowledge

as to how reliably such small changes can be detected. Third,

our dataset uses a defined background sample of 2,551 RNA

species present at identical concentrations in both sets of

microarrays, rather than a biological RNA sample of

unknown composition. This background RNA population is

sufficiently large for normalization purposes, yet also enables

us to observe the distribution of truly nonspecific signal from

probe sets which correspond to RNAs not present in the

sample.

We have used this dataset to compare several algorithms

commonly used for microarray analysis. To perform a direct

comparison of the selected methods at each stage of analysis,

we applied all possible combinations of options to the data.

Thus, it was possible to assess whether some steps are more

critical than others in maximizing the detection of true DEGs.

Our results show that at several steps of analysis, large differ-

ences exist in the effectiveness of the various options that we

considered. These key steps are: first, adjusting the perfect

match probe signal with an estimate of nonspecific signal (the

method from MAS 5.0 [12] performs best); second, checking

that the log fold changes are roughly distributed around 0 (by

observing the so-called M versus A plot [13], the plot of log

fold change (M) versus average log signal intensity (A)), and

if necessary, performing a normalization at the probe-set

level to center this plot around M = 0; and third, choosing the

best test statistic (the regularized t-statistic from CyberT [14]

is most accurate). Overall, we find a significant limit to the

sensitivity of microarray experiments to detect small

changes: in the best-case scenario we could detect approxi-

mately 95% of true DEGs with changes greater than twofold,

but less than 30% with changes below 1.7-fold before exceed-

ing a 10% false-discovery rate. We propose a 'best-route' com-

bination of existing methods to achieve the most accurate

assessment of DEGs in Affymetrix experiments.

Results and discussion
Experimental design

A common use of microarrays is to compare two samples, for

example, a treatment and a control, to identify genes that are

differentially expressed. We constructed a control dataset to

mimic this scenario using 3,860 individual cRNAs of known

sequence in a concentration range similar to what would be

used in an actual experimental situation (see Materials and

methods). The cRNAs were divided into two samples - 'con-

stant' (C) and 'spike' (S) - and each sample was hybridized in

triplicate to Affymetrix GeneChips (six chips total). The S

sample contains the same cRNAs as the C sample, except that

selected groups of approximately 180 cRNAs each are present

at a defined increased concentration compared to the C sam-

ple (Figure 1, Table 1). Out of the 3,860 cRNAs, 1,309 were

spiked in with differing concentrations between the S and C

samples. The rest (2,551) are present at identical relative con-

centration in each sample, to serve as a guide for normaliza-

tion between the two sets of microarrays. For the sake of

consistency with typical discussions of microarray experi-

ments, we sometimes refer to the cRNAs with positive log fold

changes as DEGs, despite their not representing true gene-

expression data.

Assignment of Affymetrix probe sets to DGC clones

In the Affymetrix GeneChip design, the expression level of

each RNA species is reported by a probe set, which in the

DrosGenome1 chip [15] comprises 14 oligonucleotide probe

pairs. Each probe pair contains two 25-mer DNA
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Schematic depiction of the experimental protocolFigure 1

Schematic depiction of the experimental protocol.

Table 1

The number of clones and assigned fold change for each pool of PCR products

Pool number Number of clones Number of assigned 
Affymetrix probe sets

Assigned fold change 
(S vs C)

Amount of RNA added to 
each C chip (µg)

Amount of RNA added 
to S chip (µg)

1 87 84 1.2 0.47 0.56

2 141 143 2 0.43 0.85

3 85 83 1.5 0.35 0.52

4 180 185 2.5 0.73 1.82

5 90 89 1.2 0.29 0.35

6 88 96 3 0.65 1.94

7 186 188 3.5 0.76 2.67

8 90 95 1.5 0.44 0.67

9 180 190 4 0.78 3.11

10 183 191 1.7 0.48 0.81

13 391 385 1 0.37 0.37

14 369 355 1 1.23 1.23

15 394 404 1 0.40 0.40

16 452 453 1 0.57 0.57

17 419 434 1 0.44 0.44

18 372 407 1 0.31 0.31

19 163 191 1 0.27 0.27

Also depicted is the total amount of cRNA for each pool that was placed on each chip, and the number of Affymetrix probe sets that are assigned to 
each pool. There were 10,131 probe sets not assigned to any spiked-in clone (called empty). Pools 11 and 12 were not included in this dataset.

}
}
}

Individual PCR products 

(cDNAs) in 96-well plates

Hybridize 

(3x each)

Pool plates into 

pools of 96-384 

PCR products each

Make labeled 

cRNA

Mix labeled pools at

specified relative concentrations 

(fold-change levels)

Spike (S) chip

Control (C) chip

4x

2x

1x

1x

1x

1x
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oligonucleotide probes; the perfect match (or PM) probe

matches perfectly to the target RNA, and the mismatch (or

MM) probe is identical to its PM partner probe except for a

single homomeric mismatch at the central base-pair position,

and thus serves to estimate nonspecific signal.

The DrosGenome1 chip used in this experiment is based on

release version 1.0 of the Drosophila genome sequence and

thus does not represent the most up-to-date annotated ver-

sion of the genome. To ensure that probe-target assignments

are made correctly, we assigned the 14,010 probe sets on the

DrosGenome1 GeneChip to the spiked-in RNAs by BLAST of

the individual PM probe sequences against the Drosophila

Gene Collection release 1.0 (DGC [16]) clone sequences that

served as the template for the cRNA samples (Materials and

methods). Of the 3,860 DGC clones used in this study, 3,762

(97%) have full-length cDNA sequence available at the DGC

web site, 90 have 3' and 5'-end sequence only, and eight have

no available sequence. For each probe set, all clone sequences

with BLAST matches to PM probe sequences in that probe set

are collected, allowing at most two (out of 25 base-pair (bp))

mismatches, and only allowing matches on the correct strand.

If at least three PM sequences match to a given clone, then the

probe set is assigned to that clone. Matches of one probe set

to more than one clone are allowed. In this manner, 3,866

probe sets are assigned to at least one DGC clone each. Among

these probe sets, 1,331 have an increased concentration

between the S and C chips, whereas 2,535 represent RNAs

with equal concentration between the two samples. Among

those probe sets which do not have any assignment using this

criterion, if fewer than three PM probes within the probe set

have a BLAST match to any clone, the probe set is then called

'empty' (that is, its signal should correspond to nonspecific

hybridization). There are 10,131 empty probe sets; combined

with the 2,535 1x probe sets, about 90% of the probe sets on

the chip represent RNAs with constant expression level

between the C and S samples. The rest of the probe sets are

then called 'mixed', meaning that they match to more than

one clone, but each with only a few PM probe matches. There

are only 13 mixed probe sets. The numbers of probe sets

assigned to each fold-change class are depicted in Table 1.

Assessment of absent/present call metrics

Our dataset design provides the rare knowledge of virtually all

of the RNA sequences within a complex sample (excepting the

small number (3%) of clones for which only partial sequence

was available, and the possible rare mistakenly assigned or

contaminated clone). We can therefore evaluate various

absent/present call metrics on the basis of their ability to dis-

tinguish between the known present and absent RNAs. We

investigate this issue at both the probe pair level and probe set

level. For the probe pair level assessment, we first identify the

probe pairs which we expect to show signal, and those which

should not. We thus define two classes of probe pairs: first,

perfect probe pairs, whose PM probe matches perfectly to a

target RNA sequence, and neither PM nor MM probe matches

to any other RNA in the sample with a BLAST E-value cutoff

of 1 and word size of 7, and second, empty probe pairs, whose

PM and MM probes do not match to any RNA sequence when

using the same criteria.

On the chip, which contains 195,994 probe pairs, there are

50,859 perfect probe pairs and 117,904 empty ones. Observa-

tion of the signal for these probe pairs (Figure 2a,b) clearly

shows that there is considerable signal intensity for the empty

probe pairs. Figure 2c shows the ability of several metrics -

log2(PM/MM), PM-MM,  and log2(PM) -

to distinguish between perfect and empty probe pairs, by cal-

culating receiver-operator characteristics (ROC) curves using

the perfect probe pairs as true positives and the empty ones as

true negatives. Each point on a curve depicts the specificity

and sensitivity for RNA detection, when using a specific value

of the corresponding metric as a cutoff for classifying probe

sets as present or absent. Instead of depicting the false-posi-

tive rate (the fraction of true negatives that are detected as

present) on the x-axis, which is customary for these types of

graphs, we show the false-discovery rate (the fraction of

detected probe sets which are true negatives), which distin-

guishes between the metrics more effectively for the top-scor-

ing probe sets. Figure 2 clearly shows that metrics that

compare the PM signal with the MM signal, such as log2(PM/

MM) and PM-MM, are the most successful at distinguishing

perfect from empty probe pairs. This indicates that the PM

signal alone is a less effective indicator of RNA presence,

probably because the probe hybridization affinity is highly

sequence-dependent. However, even with the more success-

ful metrics, only about 60% of the perfect probe sets are

detected before reaching a 10% false-discovery rate, indicat-

ing that there is still a high level of variability in probe pair

sensitivity, even when using the MM signal to estimate the

probe hybridization affinity.

When signals from the 14 probe pairs in each probe set are

combined to create a composite absence/presence call, a

much larger fraction of the spiked-in RNA species can be

detected reliably. To obtain absent/present calls at the probe-

set level, we perform the Wilcoxon signed rank test using each

of the metrics listed above [17]. The p-values from this test are

used to generate the ROC curves in Figure 2d. Again, the best

results are obtained when the metric compares PM with MM

signals, as opposed to monitoring signal alone. The metric

used in MAS 5.0 ((PM-MM)/(PM+MM)), which is equivalent

to log2(PM/MM), performs best. Therefore, the MM signals

are important in generating accurate presence/absence calls.

In our dataset, about 85% of the true positives could be

detected before having a 10% false-discovery rate. The detec-

tion of perfect probe pairs is not improved when we include

additional information from replicates. The 15% of probe sets

which are called absent may represent truly absent RNAs,

owing to failed transcription or labeling (see Additional data

file 5). However, as we do not have an independent measure

log ,2 PM MM×
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of failed transcription for the individual cRNA sequences in

the target sample, we cannot completely rule out the

possibility that they are the result of non-responsive probes

or a suboptimal absent/present metric that fails to score low-

abundance cRNAs. Regardless, as non-responsive probes or

missing target cRNAs should affect both the C and S chips

identically, these factors should not limit the value of this

dataset in making relative assessments of different analysis

methods.

Generating expression summary values

The first task in analyzing Affymetrix microarrays is to com-

bine the 14 PM and 14 MM probe intensities into a single

number ('expression summary') which reflects the concentra-

tion of the probe set's target RNA species. Generating this

value involves several discrete steps designed to subtract

background levels, normalize signal intensities between

arrays and correct for nonspecific hybridization. To compare

the effectiveness of different analysis packages at each of

these steps, we created multiple expression summary data-

sets using every possible (that is, compatible) combination of

the options described below. Algorithms were chosen for

their popularity with microarray researchers and their open-

source availability, and were generated using the implemen-

tations found in the Bioconductor 'affy' package [18]. Figure 3

summarizes the options that we chose within Bioconductor.

We also used the dChip [19] and MAS 5.0 [12] executables

made available by the respective authors in order to cross-

check with the open-source implementations within Biocon-

ductor. In addition, we applied two analysis methods that

Signal of individual probes and dependence on present versus absent RNA moleculesFigure 2

Signal of individual probes and dependence on present versus absent RNA molecules. (a, b) Plot of probe-pair signals for the three C chips, highlighting (a) 
the empty probe pairs or (b) the present probe pairs in green. (c) Receiver-operator characteristic (ROC) curves at the probe-pair level for several 
absent/present metrics. The metric (PM - MM)/(PM + MM) gives the same result as the green curve. (d)Receiver-operator characteristic curves at the 
probe-set level for several absent/present metrics combined using the Wilcoxon rank sum test.
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incorporate probe sequence-dependent models of

nonspecific signal (Perfect Match [20] and gcrma [21]). The

combinations of options that were used to generate the 152

expression summary datasets are detailed in Additional data

file 2.

Background correction

An estimate of the background signal, which is the signal due

to nonspecific binding of fluorescent molecules or the

autofluorescence of the chip surface, was generated using two

possible metrics. The MAS background [17] is calculated on

the basis of the 2nd percentile signal in each of 16 subsections

of the chip, and is thus a spatially varying metric. The Robust

Multi-chip Average (RMA) algorithm [22] subtracts a back-

ground value which is based on modeling the PM signal inten-

sities as a convolution of an exponential distribution of signal

and a normal distribution of nonspecific signal.

Normalization at the probe level

The signal intensities are normalized between chips to allow

comparisons between them. Because in our dataset, a large

number of RNAs are increased in S versus C (and none are

decreased), commonly used methods often result in apparent

downregulation for spiked-in probe sets in the 1x change cat-

egory. We thus added a set of modified normalization meth-

ods which used our knowledge of the 1x probe sets. The

following different methods were applied. Constant is a glo-

bal adjustment by a constant value to equalize the chip-wide

mean (or median) signal intensity between chips. Constant-

subset is the same global adjustment but equalizing the mean

intensity for only the probe sets with fold change equal to 1.

Invariantset [23] is a nonlinear, intensity-dependent nor-

malization based on a subset of probes which have similar

ranks (the rank-invariant set) between two chips. Invariant-

setsubset is the same as invariantset but the rank-invariant

set is selected as a subset of the probe sets with fold change

equal to 1. Loess normalization [24] is a nonlinear intensity-

dependent normalization which uses a local regression to

make the median fold change equal to zero, at all average

intensity levels. Loesssubset normalization is the same as

loess but using only the probe sets with fold change equal to

1. Quantile normalization [24] enforces all the chips in a data-

set to have the same distribution of signal intensity. Quan-

tilesubset normalization is the same as quantile but

normalizes the spiked-in and non-spiked-in probe sets

separately.

PM correction

We chose three ways to adjust the PM signal intensities to

account for nonspecific signal. The first is to subtract the cor-

responding MM probe signal (subtractmm). The second is

the method used in MAS 5.0, in which negative values are

avoided by estimating the nonspecific signal when the MM

value exceeds its corresponding PM intensity [17]. The third

is PM only (no correction). The subtractmm and MAS meth-

ods are compatible only with the MAS background correction

method; that is, it does not make sense to combine these with

RMA background correction.

Expression summary

The 14 probe intensity values were combined using one of the

following robust estimators: Tukey-biweight (MAS 5.0);

median polish (RMA); or the model-based Li-Wong expres-

sion index (dChip). Analyses including the subtractmm PM

correction method require dealing with negative values when

PM is less than MM, which occurs in about a third of the

cases. Within Bioconductor, the Li-Wong estimator can han-

dle negative values, but the other two metrics mostly output

'not applicable' (NA) for the probe set when any of the constit-

uent probe pairs has negative PM - MM. The result for MAS

and median polish is NA for about 85% of the probe sets on

the chip. To study the consequence of losing so many probe

sets, we modified one of these two metrics (median polish) to

accept negative (PM - MM) (medianpolishna), and added this

metric whenever subtractmm was used.

Normalization at the probe set level

Many of the expression summary datasets that were pro-

duced still show a dependence of fold change on the signal

intensity (Figure 4a). To correct this, a second set of expres-

sion summary datasets was created, in which a loess normal-

ization at the probe set level was used to center the log-fold

changes around zero (Figure 4b).

Comparison of the observed fold changes with known 

fold changes

For each of the 150 expression summary datasets that we gen-

erated, fold changes between the S and C samples were calcu-

lated and then compared with the actual fold changes. Most

expression summary datasets show good correlation between

The set of options that were investigated using Bioconductor's affy packageFigure 3

The set of options that were investigated using Bioconductor's affy 
package. The choices that optimize the detection of DEGs are circled in 
red. Broken circles indicate choices that are slightly suboptimal but still 
rank within the top 10 datasets.

Expression summaryBackground correction

RMA

Normalization

Quantile (RMA)

PM adjustment Statistics

Normalization

MAS (v4,5)

Constant
Invariantset (dChip)

Loess

PM only (dChip)

MAS (v5)
Subtract MM

Basic t-test
CyberT (Baldi)

SAM (Tibshirani)

Loess

None

MAS (v5)

Li-Wong (dChip)

medianpolish (RMA)
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the observed and actual fold changes (Figure 5). The greatest

sources of variability are probe sets with low signal intensity;

as Figure 5b shows, the correlation improves dramatically

when we filter out the probe sets with low signal. For all the

expression summary datasets, the agreement between

observed and actual fold changes is good (R2 = 86 ± 3%) when

the probe sets in the lowest quartile of signal intensity are fil-

tered out. The expression summary datasets which involve

correcting the PM signal by subtracting the MM signal (sub-

tractmm) have the highest correlation coefficient, because

low-intensity probe sets have been filtered out during

processing, as described above. We therefore suggest that an

important feature of a successful microarray analysis is to

account for probe sets with low signal intensity, either by fil-

tering them out or by using a signal-dependent metric for sig-

nificance. Several ways of accomplishing such filtering are

described below.

We also observed that the fold changes resulting from the

chips are consistently lower than the actual fold changes.

Apparently, the decrease in fold change is only partly the

result of signal saturation (Figure 5b-c), and is not a byprod-

uct of the robust estimators used to calculate expression sum-

maries (because the low fold changes are also observed at the

probe pair level; see Additional data file 3). In other experi-

ments we have also observed that our Affymetrix fold-change

levels are smaller than those obtained by quantitative reverse

transcription (RT)-PCR (data not shown). One likely explana-

tion is that we do not have an adequate estimate for nonspe-

cific signal. For example, if we choose the MM signal as the

nonspecific signal (thus calculating PM - MM, or PM - CT

from MAS 5.0), we are probably overestimating the nonspe-

cific signal, as the MM intensity value responds to increasing

target RNA concentrations, and therefore contains some real

signal. On the other hand, if we choose not to use a probe

sequence-dependent nonspecific signal (such as in RMA), we

are likely to underestimate the nonspecific signal for a large

number of probes. In either case, the result is decreased fold

change magnitudes. Artificially low fold-change values have

been noted by others, including those investigating the

Affymetrix Latin square [6], GeneLogic [22] and other [25]

datasets, although some of the differences they report are

smaller than are observed here.

Test statistics and ROC curves

Because a typical microarray experiment contains a large

number of hypotheses (here 14,010) and a limited number of

replicates (in this case three), high false-positive rates are a

common problem in identifying DEGs. An important factor in

minimizing false positives is to incorporate an appropriate

error model into the signal/noise metric. We compared three

t-statistic variants, which differ in their calculations of noise.

The first is significance analysis for microarrays (SAM) [26],

in which the t-statistic has a constant value added to the

standard deviation. This constant 'fudge factor' is chosen to

minimize the dependence of the t-statistic variance on stand-

ard deviation levels. The second is CyberT [14], in which the

standard deviation is modeled as a function of signal inten-

The dependence of log fold change on signal intensity (M versus A plots)Figure 4

The dependence of log fold change on signal intensity (M versus A plots). (a)M versus A plot before the second normalization step and (b) after a loess fit 
at the probe set level. FC in the key denotes the spiked-in fold change value.

0 5 10
Log2 signal

L
o
g

2
 f
o
ld

 c
h
a
n
g
e

0 5 10

-3

-2

-1

Log2 signal

L
o
g

2
 f
o
ld

 c
h
a
n
g
e

Empty
FC = 1
FC = 1.2
FC = 1.5
FC = 1.7
FC ≥ 2 

0

1

2

3

(a) (b)

3

2

1

0

-1

-2

-3



R16.8 Genome Biology 2005,     Volume 6, Issue 2, Article R16       Choe et al. http://genomebiology.com/2005/6/2/R16

Genome Biology 2005, 6:R16

sity. The third is the basic (Student's) t-statistic. For CyberT

and the basic t-test, we performed the tests on the expression

summaries after log transformation, as well as on the raw

data. As shown in the example ROC curve, the CyberT statis-

tic outperforms the other statistics for the vast majority of

expression summary datasets (Figure 6a). Inspection of the

false positives and false negatives shows the reason for the

different performance. Because CyberT uses a signal inten-

Correlation of observed with actual fold changes for a representative expression summary dataset (Additional data file 2, using dataset 9e.b)Figure 5

Correlation of observed with actual fold changes for a representative expression summary dataset (Additional data file 2, using dataset 9e.b). (a) The fold 
change for each probe set with spiked-in target RNA is depicted as a cross. Empty probe sets are not shown. For each actual fold-change level (on the x 

axis), a boxplot shows the distribution of the corresponding observed fold changes. A linear fit of the data is shown in cyan. Fit parameters: R2 = 0.508; 
slope = 0.505; y-intercept = -0.061. (b-d) Increasingly more of the low-intensity probe sets are filtered out of the plot. All probe sets are ranked according 
to average signal level, and those in the lowest 25th (b), 50th (c), or 75th (d) percentile of signal level are eliminated from (a). Fit parameters: (b) R2 = 
0.870; slope = 0.546; y-intercept = -0.008; (c) R2 = 0.895; slope = 0.517; y-intercept = -0.015; (d) R2 = 0.906; slope = 0.457; y-intercept = -0.017.
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sity-dependent standard deviation, probe sets at low signal

intensities have reduced significance even when their

observed fold change is high (Figure 6b). As shown in Figure

6c, the SAM algorithm (using the authors' Excel Add-in) does

not effectively filter out these same false-positive probe sets

(with low signal intensity and high fold change). Upon further

inspection, we observed that the SAM algorithm favors using

large values for the constant fudge factor, so that the t-statis-

tic depends more on the fold change value, than on the noise

level. The basic t-statistic is prone to false positives resulting

from artificially low standard deviations, owing to the limited

number of replicates in a typical microarray experiment

(scattered magenta spots in Figure 6d). This comparison

agrees with the result of Broberg [9], who also found that the

CyberT approach (there called 'samroc') outperforms several

other methods. Because the CyberT statistic clearly performs

the best, we use only this statistic to compare the options for

the other steps in microarray analysis, below.

Comparison of options at each of the other analysis 

steps

Performance of the various options that were investigated

varied significantly, as seen by the ROC curves shown in Fig-

ure 7. First, we find that a second loess normalization at the

probe set level generally yields a superior result (Figure 7a,f),

as could be expected by observing the strong intensity-

dependence of the fold-change values in Figure 4. This inten-

sity-dependence is most likely the result of the unequal con-

centrations of labeled cRNA for the C and S chips. However,

this artifact is not unique to this dataset. We routinely observe

similar intensity-dependent fold changes in comparisons of

biological samples, especially when there are small differ-

ences in starting RNA amounts between the two samples (see

Additional data file 4 for an example). Therefore, in the

absence of a biological reason to suppose that the fold change

should depend on signal intensity, it is important to view the

plot of log fold change versus signal and recenter it around y

= 0 when necessary. Owing to the significant improvement

seen when the second normalization is used, the subsequent

figures (Figure 7b-f) only show the comparison of the remain-

Comparison of three t-statistic variantsFigure 6

Comparison of three t-statistic variants. (a)ROC curves for a particular expression summary dataset, using the different t-statistics. Location of false 
positives and false negatives are shown for the (b) CyberT, (c) SAM, and (d) basic t-statistic when considering the top 1,000 probe sets as positive DEG 
calls.
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ROC curves for all expression summary datasetsFigure 7

ROC curves for all expression summary datasets. The curves are color-coded to highlight how the ability to detect differential expression is dependent on 
the different options at each step of analysis, using the CyberT regularized t-statistic metric. (a) All 152 expression summary datasets are represented 
here, with the different colors depicting whether the second loess normalization step at the probe set level was performed. In general, the second loess 
normalization (blue) improves the detection of true DEGs. (b-f)To decrease clutter, only the 76 expression summary datasets involving the second 
normalization step are shown. (b) When comparing the two background correction methods, the MAS algorithm is superior to the RMA algorithm. (c) 
The various probe-level normalization methods do not show great differences between each other. (d) Among the different PM-correction options, using 
the method in MAS 5.0 clearly is the most successful. (e) Various robust estimators were examined, revealing that the median polish method is the most 
sensitive (with MAS 5.0's Tukey Biweight a close second). (f) Depiction (in blue and orange) of the 10 datasets which maximize detection of truly 
differentially expressed genes, while minimizing false positives. These datasets are generated using the options circled in Figure 3. MAS 5.0, with the 
inclusion of the second loess normalization step, falls within these top 10.
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ing options in conjunction with this step (blue curves in Fig-

ure 7a).

Among the background correction methods, the MAS 5.0

method generally performs better than the RMA method

(Figure 7b). No clearly superior normalization method was

found at the probe level (Figure 7c), even when using the sub-

set normalization variants, although quantile normalization

tended to underperform in the absence of the second normal-

ization step.

With respect to adjusting the PM probe intensity with an esti-

mate of nonspecific signal, Figure 7d clearly shows that either

subtracting the MM signal (subtractmm), or using the MAS

5.0 correction method, is better than using uncorrected or

RMA-corrected PM values (PM-only). The MAS 5.0 method

performs the best because it does not create any negative val-

ues. This result is in apparent conflict with the conclusions of

Irizarry et al. [5], who show drastically reduced noise at low

signal intensity levels when the PM signal is not adjusted with

MM values, and therefore better detection of spiked-in probe

sets when using the fold change as the cutoff criterion. How-

ever, when Irizarry et al. use a test statistic that takes the var-

iance into account, PM-only and MM-corrected methods

(MAS) have similar sensitivity/specificity (Figure 3d,e from

[5]). In the dataset presented here, the MAS PM-correction

method yields a high variance at low signal-intensity levels,

which effectively reduces the false-positive calls at this inten-

sity range when using CyberT, thus resulting in better per-

formance than when using PM-only. We can reconcile the

Irizarry et al. result with our observations by considering a

major difference between the datasets used by the two stud-

ies. Both the Affymetrix and GeneLogic Latin square datasets

used in [5] involve a small number (10-20) of spiked-in

cRNAs in a common biological RNA sample, and therefore

comparisons are made between two samples that are almost

exactly the same. As a result, the nonspecific component of

any given probe's signal is expected to be almost identical in

the two samples, and should not contribute to false-positive

differential expression calls. In contrast, a large fraction of

our dataset is differentially expressed; in addition, the C sam-

ple contains a high concentration of (unlabeled) poly(C) RNA.

Because nonspecific hybridization depends both on a probe's

affinity and on the concentrations of RNAs that can hybridize

to it in a nonspecific fashion, we expect that each probe's sig-

nal can have different contributions of nonspecific

hybridization between the C and S chips. Figure 2a shows that

nonspecific hybridization can be a large component of a

probe's signal. We hypothesize that, for our dataset, PM-only

performs worse than MM-corrected methods (subtractmm or

MAS) because PM-only does not try to correct for nonspecific

hybridization in a probe-specific fashion. In contrast, for the

Latin square datasets used in [5], PM-only works just as well

as MM-corrected methods because the contribution of non-

specific hybridization is constant. Therefore, datasets which

compare substantially different RNA samples (such as two

different tissue types) should probably be processed using the

MAS 5.0 method for PM correction.

Figure 7e compares the different robust estimators that were

used to create expression summaries. Of these, median polish

(RMA) and the Tukey Biweight methods (MAS 5.0) perform

the best. Figure 7f highlights the 10 best summary method

option sets, which are also depicted in Figure 3, as well as

straight applications of some popular software, with or with-

out an additional normalization step at the probe-set level.

The result from the MAS 5.0 software, when adjusted with the

second loess normalization step, ranks among the top 10.

However, the other methods (dChip, RMA and MAS 5.0 with-

out probe-set normalization) are not as sensitive or specific at

detecting DEGs.

We were concerned that some of our analyses might be con-

founded by a possible correlation between low fold change

and low expression summary levels, which could affect the

interpretations of Figure 7 (comparing different methods)

and the detection of small fold changes (see below). We there-

fore examined the distribution of expression levels within

each spiked-in fold change group, and compared the methods

with respect to their ability to detect a subset of probe sets

with low expression summary levels (Additional data file 5).

We found that the distribution of expression levels for the

known DEGs was comparable among all the fold-change

groups, and that all the conclusions reported here are simi-

larly applicable to the low expression subset. However, the

sensitivity of all methods was reduced, suggesting that they

perform less well on weakly expressed than on highly

expressed genes. As the number of low signal spike-ins was

relatively small (265 probe sets), resulting in reduced accu-

racy for the ROC curves, the development of additional con-

trol datasets specifically focusing on DEG detection at low

cRNA concentrations will be an important extension of this

study.

Models dependent on probe sequence provide a promising

route to improving the accuracy of nonspecific signal meas-

ures. Here, we applied two different models (perfect match

and gcrma) to the control dataset. With respect to detecting

the true DEGs, these two models perform reasonably well,

although slightly less well than the MAS 5.0 PM correction

method. When we consider only the low signal DEGs (Addi-

tional data file 5), gcrma outperforms perfect match, and is

similar in effectiveness to the top analysis option

combinations.

Estimating false discovery rates

We have identified a set of analysis choices that optimally

ranks genes according to significance of differential expres-

sion. To decide how many of the top genes to investigate fur-

ther in follow-up experiments, it would be useful to have

accurate estimates of the false-discovery rate (FDR or q-

value), which is the fraction of false positives within a list of
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genes exceeding a given statistical cutoff. We used our control

dataset to compare the actual q-values for the 10 optimal

expression summary datasets with q-value estimates from the

permutation method implemented in SAM. As shown in Fig-

ure 8b, permutation-based q-value calculations using each of

the top ten datasets underestimate the actual q-value for a

given cutoff. We attempted to reduce the contribution of

biases inherent in any given data-processing step by combin-

ing the results from the top 10 expression summary datasets.

The goal is to pinpoint those genes that are called significant

regardless of small changes in the analysis protocol (changes

that only marginally affect the DEG detection sensitivity and

specificity according to our control dataset). To identify these

'robustly significant' genes, we created a combined statistic

from the top 10 datasets depicted in Figure 7f, taking into

account the significance of each individual test, as well as the

variation in fold change between datasets (see Materials and

methods). This combined statistic distinguishes between true

and false DEGs equally as well as the best of the 10 input data-

sets (Figure 8a). To make false-discovery rate estimates using

this combined statistic, each of the 10 datasets was permuted

(using the same permutation) and the combined statistic was

recalculated. Figure 8b shows that this combined statistic

gives a more accurate q-value estimate than any of the indi-

vidual datasets. However, there is still considerable differ-

ence between the estimated and actual q-values. For example,

if we estimate q = 0.05, the corresponding CyberT statistic

has an actual q = 0.18, and if we estimate q = 0.1, then the

actual q = 0.3. Therefore, until more accurate methods for

estimating the false-discovery rate are developed, we recom-

mend that a conservative choice of false-discovery rate cutoff

be used (for example < 1%) to prevent actual numbers of

false-positive DEG calls (that is, the true, rather than esti-

mated, FDR) from being too high.

Assessment of sensitivity and specificity

As the identities and relative concentrations of each of the

RNAs in the experiment were known, we were able to assess

directly the sensitivity and specificity obtained by the best-

performing methods. Examination of the ROC curves in Fig-

ure 7 reveals that sensitivity begins to plateau as the false dis-

covery rate (q) increases from 10% to 30%. Taking an upper

acceptable bound for q as 10%, the maximum sensitivity

obtained is about 71%. Thus, under the best-performing

analysis scheme, roughly 380 (29%) of the 1,309 DEGs are

not detected as being differentially expressed, with the

number of false positives equaling about 105. At q = 2%, sen-

sitivity reduces to around 60%, meaning that more than 520

DEGs are missed, albeit with fewer than 20 false positives.

We next looked at the dependence of sensitivity and specifi-

city on the magnitude of the spiked-in fold-change value. We

find that at q = 10%, sensitivity is increased to 93% when only

cRNAs that differ by twofold or more are considered as DEGs

(Figure 9a). This sensitivity decreases only slightly (to 90%)

when q is lowered to 5%. However, sensitivity drops off

sharply as differences in expression below twofold are consid-

ered. At q = 10%, only 82% of DEGs with 1.5-fold or greater

The accuracy of false discovery rate estimates (q-values)Figure 8

The accuracy of false discovery rate estimates (q-values). The top 10 expression summary datasets (named 9a-9e, 10a-10e in Additional data file 2) were 
combined to generate a composite statistic, which was used to rank genes based on the robustness of their significance over the 10 datasets. (a) The 
composite statistic performs as well as the best summary dataset in terms of sensitivity and specificity. (b) In addition, permutation tests carried out using 
this composite statistic yield q-value estimates which are more accurate than any of the 10 component datasets, although still lower than the true false-
discovery rate.
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changes in expression are identified, dropping to 71% for all

DEGs at 1.2-fold change or above (77% and 67% at q = 5%,

respectively). The reduction in sensitivity is almost wholly

due to the low-fold-change genes: less than 50% of DEGs with

fold change 1.5, and none of the DEGs with fold change 1.2,

are detected at q = 10% (Figure 9b).

It is tempting to conclude from this that we are achieving ade-

quate sensitivity in our experiments and merely need not

bother with DEGs below the twofold change level. However,

we would argue that obtaining greater sensitivity should be an

important goal. There is ample demonstration in the biologi-

cal and medical literature that small changes in gene expres-

sion can have serious phenotypic consequences, as seen both

from haploinsufficiencies and from mutations that reduce

levels of gene expression through transcriptional regulation

or effects on mRNA stability. Furthermore, effective fold

changes seen in a microarray experiment might be consider-

ably smaller than actual fold changes within a cell, if the sam-

ple contains additional cell populations that dilute the fold-

change signal. As it is often not possible to obtain completely

homogeneous samples (for example, when profiling an organ

composed of several specialized cell types), this is likely to

prove a very real limitation to detecting DEGs. In cases where

pure cell populations can be obtained, for example by laser

capture microdissection, the numbers of cells are often small

and RNA needs to undergo amplification in order to have

enough for hybridization. Here, non-linearities in RNA

amplification might also lead to observed fold changes that

fall below the twofold level. We used three microarray repli-

cates for this study, as this is frequently the number chosen by

experimentalists because of cost and limiting amounts of

RNA. One possible extension of this work would be to

examine how many replicates are necessary for reliable detec-

tion of DEGs at a given fold change level.

Conclusions
We have compared a number of popular analysis options for

the purpose of identifying differentially expressed genes

using an Affymetrix GeneChip control dataset. Clear differ-

ences in sensitivity and specificity were observed among the

analysis method choices. By trying all possible combinations

of options, we could see that choices at some steps of analysis

are more critical than at others; for example, the normaliza-

tion methods that we considered perform similarly, whereas

the choice of the PM adjustment method can strongly influ-

ence the accuracy of the results. On the basis of our observa-

tions, we have chosen a best route for finding DEGs (Figure

3). As any single choice of analysis methods can introduce

bias, we have proposed a way to combine the results from sev-

eral expression summary datasets in order to obtain more

accurate FDR estimates. However, these estimates remain

substantially lower than actual false-discovery rates, demon-

strating the need for continued development of ways to assess

the false-discovery rate in experimental datasets. Our

analysis further revealed the existence of a high false-negative

rate (low sensitivity), especially for those DEGs with a small

fold change, and thus suggests the need for improved analysis

methods for Affymetrix microarrays. In order to be feasible,

this study investigated only a fraction of the current options.

The raw data from our hybridizations are available in Addi-

tional data files 6-7 and on our websites [27,28], and we

encourage the use of this dataset for benchmarking existing

DEG detection sensitivity and specificity as a function of spiked-in fold change levelFigure 9

DEG detection sensitivity and specificity as a function of spiked-in fold change level. (a, b)ROC curves using the composite statistic, and different 
definitions of the true-positive probe sets (criteria given in the legends; FC, spiked-in fold change). The true negatives remain the same for all curves (the 
probe sets which were not spiked in, or were spiked in at 1x).

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

0.8

1.0

False-discovery rate

F
ra

c
ti
o
n
 o

f 
tr

u
e
 p

o
s
it
iv

e
s
 f
o
u
n
d

FC≥1.2 (N=1326)
FC≥1.5 (N=1146)
FC≥1.7 (N=975)
FC≥2 (N=789)
FC≥2.5 (N=640)
FC≥3 (N=454)
FC≥3.5 (N=361)
FC≥4 (N=177)

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

0.8

1.0

False-discovery rate

F
ra

c
ti
o
n
 o

f 
tr

u
e
 p

o
s
it
iv

e
s
 f
o
u
n
d

FC=1.2 (N=167)
FC=1.5 (N=169)
FC=1.7 (N=179)
FC=2 (N=139)
FC=2.5 (N=182)
FC=3 (N=93)
FC=3.5 (N=184)
FC=4 (N=177)

(a) (b)



R16.14 Genome Biology 2005,     Volume 6, Issue 2, Article R16       Choe et al. http://genomebiology.com/2005/6/2/R16

Genome Biology 2005, 6:R16

and future algorithms. Also important will be the construc-

tion of additional control datasets to explore issues not well

covered by the present study, such as performance of the

analysis methods for specifically detecting low-abundance

RNAs and the effects of including larger numbers of replicate

arrays. We hope that these experiments will help researchers

to choose the most effective analysis routines among those

available, as well as guide the design of new methods that

maximize the information that can be obtained from expres-

sion-profiling data.

Materials and methods
cRNA and hybridization

PCR products from Drosophila Gene Collection release 1.0

cDNA clones [16] were generated in 96-well format, essen-

tially as described [29]. Each PCR product includes T7 and

SP6 promoters located 5' and 3' to the coding region of the

cDNA, respectively. Each PCR reaction was checked by gel

electrophoresis for a band of detectable intensity and the

correct approximate size. Those clones which did not yield

PCR product were labeled as 'failed' and eliminated from sub-

sequent analysis. From sequence verification of randomly

selected clones, we estimate the number of mislabeled clones

to be < 3%. The contents of the plates were collected into 19

pools, such that each pool contained the PCR product from

one to four plates (approximately 96-384 clones). Bioti-

nylated cRNA was generated from each pool using SP6

polymerase (detailed protocol available upon request) and

the reactions were purified using RNeasy columns (Qiagen).

Concentration and purity for each pool was determined both

by spectrophotometry and with an Agilent Bioanalyzer. The

labeled products were then divided into each of two samples

- constant (C) and spike (S) - at specific relative concentra-

tions (Table 1, Figure 1). Because the C sample contains less

total RNA than the S sample, 20 µg of (unlabeled) poly(C)

RNA was added to the C sample to equalize the nucleic acid

concentrations. By mixing the labeled pools just before

hybridization, we ensured that the fold change between C and

S is uniform for all RNAs within a single pool, while still

allowing the absolute concentrations of individual RNAs to

vary. The two samples were then hybridized in triplicate to

Affymetrix Drosophila arrays (DrosGenome1) using standard

Affymetrix protocols. We chose to hybridize each replicate

chip from an aliquot of a single C (or S) sample, resulting in

technical replication; thus this dataset does not address the

noise introduced by the labeling and mixing steps. The clones

comprising each pool can be found in Additional data file 8,

and the resulting Affymetrix chip intensity files (.CEL) files

are available in Additional data files 6-7.

Estimate of RNA concentrations

The total amount of labeled cRNA that was added to each chip

(approximately 18 µg) was comparable to a typical Affymetrix

experiment (20 µg). Although we do not know the individual

RNA concentrations, we estimate that these span the average

RNA concentration in a biological GeneChip experiment. Our

biological RNA samples typically result in about 40% of the

probe sets on the DrosGenome1 chip called present, so the

mean amount of individual RNA is 20 µg/(14,010 × 0.40) =

0.003 µg/RNA. In the C chips, the average concentration of

individual RNAs in the different pools range from 0.0008 to

0.007 µg/RNA, so the concentrations are roughly similar to

those in a typical experiment. We note, however, that there is

no way to ensure that the concentration distribution is truly

reflective of a real RNA distribution. This is especially true

with respect to the low end of the range, as it is usually

unknown how many of the absent genes on an array are truly

absent versus weakly expressed and thus poorly detected by

the analysis algorithms used. Therefore, our analysis possibly

favors methods that perform best when applied to highly

expressed genes.

Software

All of the analysis was performed using the statistical pro-

gram R [30], including the affy and gcrma packages from Bio-

conductor [18], and scripts adapted from the hdarray library

by Baldi et al. [31,32]. In addition, we used the dChip [19],

MAS 5.0 [12], Perfect Match [20,21] and SAM [27] executa-

bles made available by the respective authors. Note that the

false-discovery rate calculations were slightly different

depending on the t-statistic variant: for the SAM statistic,

false discovery rates from the authors' Excel Add-in software

was used, whereas for the CyberT and basic t-statistics, the

Bioconductor false-discovery rate implementation was

applied, which includes an extra step to enforce monotonicity

of the ROC curve. In our experience, this extra step does not

qualitatively alter the results. All scripts generated in this

study are available for use [27,28].

Calculation of the statistic that combines the results of 

multiple expression summary datasets

Say we have n datasets and Cij, Sij are the logged signals for a

given probe set in the jth C and S chips, respectively, in data-

set i. The mean signal (for this probe set) for the C chips in

dataset i is:

where  is the number of C chips in dataset i; similarly, the

mean signal for the S chips in dataset i is:

The mean fold change over all datasets is:
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The modified standard deviation for the C chips in dataset i is

based on the CyberT estimate:

where const is the weight for the contribution of the average

standard deviation  for probe sets with the same aver-

age signal intensity as Cij. The modified standard deviation

for the S chips in dataset i (sd.Si) is defined analogously. The

pooled variance over all 10 datasets is defined as:

The variance between the 10 datasets is defined as:

Then the combined statistic was chosen to be:

Additional data files
Additional data is available with the online version of this

article. Additional data file 1 contains a figure and explana-

tory legend showing the degree of overlap between two lists of

differentially expressed genes. Additional data file 2 lists all

analysis option combinations used to generate the expression

summary datasets in this study. Additional data file 3 is a plot

of observed vs actual spiked-in fold changes at the probe level.

Additional data file 4 shows an example of asymmetric M

(log2 fold change) vs A (average log2 signal) plot for the com-

parison of two biological samples. Additional data file 5 con-

tains a comparison of the analysis methods with respect to the

detection of DEGs with low signal. Additional data file 6 is a

Zip archive containing plain text files (in Affymetrix CEL for-

mat), Affymetrix *.CEL files for the C chips in this dataset.

Additional data file 7 is a Zip archive containing plain text

files (in Affymetrix CEL format), Affymetrix *.CEL files for

the S chips in this dataset. Additional data file 8 contains

detailed information for the individual DGC clones used in

this study.

Additional data file 1A figure and explanatory legend showing the degree of overlap between two lists of differentially expressed genesA figure and explanatory legend showing the degree of overlap between two lists of differentially expressed genesClick here for additional data fileAdditional data file 2All analysis option combinations used to generate the expression summary datasets in this studyAll analysis option combinations used to generate the expression summary datasets in this studyClick here for additional data fileAdditional data file 3A plot of observed vs actual spiked-in fold changes at the probe levelA plot of observed vs actual spiked-in fold changes at the probe levelClick here for additional data fileAdditional data file 4An example of asymmetric M (log2 fold change) vs A (average log2 signal) plot for the comparison of two biological samplesAn example of asymmetric M (log2 fold change) vs A (average log2 signal) plot for the comparison of two biological samplesClick here for additional data fileAdditional data file 5A comparison of the analysis methods with respect to the detection of DEGs with low signalA comparison of the analysis methods with respect to the detection of DEGs with low signalClick here for additional data fileAdditional data file 6A Zip archive containing plain text files (in Affymetrix CEL format), Affymetrix *.CEL files for the C chips in this datasetA Zip archive containing plain text files (in Affymetrix CEL format), Affymetrix *.CEL files for the C chips in this datasetClick here for additional data fileAdditional data file 7A Zip archive containing plain text files (in Affymetrix CEL format), Affymetrix *.CEL files for the S chips in this datasetA Zip archive containing plain text files (in Affymetrix CEL format), Affymetrix *.CEL files for the S chips in this datasetClick here for additional data fileAdditional data file 8Detailed information for the individual DGC clones used in this studyDetailed information for the individual DGC clones used in this studyClick here for additional data file
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