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Abstract 
Based on an abstract framework for nonmono­
tonic reasoning, Bondarenko et at. have ex­
tended the logic programming semantics of ad­
missible and preferred arguments to other non­
monotonic formalisms such as circumscription, 
autoepisternic logic and default logic. Al­
though the new semantics have been tacitly as­
sumed to mitigate the computational problems 
of nonmonotonic reasoning under the standard 
semantics of stable extensions, it seems ques­
tionable whether they improve the worst-case 
behaviour. As a matter of fact, we show that 
credulous reasoning under the new semantics in 
propositional logic programming and preposi­
tional default logic has the same computational 
complexity as under the standard semantics. 
Furthermore, sceptical reasoning under the ad­
missibility semantics is easier ~ since it is triv-
ialised to monotonic reasoning. Finally, scepti­
cal reasoning under the preferability semantics 
is harder than under the standard semantics. 

1 Introduction 
Bondarenko et a/. [1997] show that many logics for non­
monotonic reasoning, in particular default logic (DL) 
[Iteiter, 1980] and logic programming (LP), can be un-
derstood as special cases of a single abstract framework. 
The standard semantics of thes^ logics can be under­
stood in terms of stable extensions of a given theory, 
where a stable extension is a set of assumptions that does 
not attack itself and it attacks every assumption not in 
the set. In abstract terms, an assumption is attacked 
if its contrary can be proven, in some appropriate un­
derlying monotonic logic, possibly with the aid of other 
conflicting assumptions. 

Bondarenko et al. [1997] also propose two new se­
mantics generalising, respectively, the admissibility se­
mantics [Dung, 1991] and the semantics of preferred ex-
tensions {Dung, 1991] and partial stable models [Sacca 
and Zaniolo, 1990] for LP. In abstract terms, a set of 
assumptions is an admissible argument of a given the­
ory, iff it does not attack itself and it attacks all sets of 

assumptions which attack it. A set of assumptions is a 
preferred argument iff it is a maximal (wrt. set inclusion) 
admissible argument. 

The new semantics are more general than the stabil­
ity semantics since every stable extension is a preferred 
(and admissible) argument, but not every preferred ar­
gument is a stable extension. Moreover, the new se­
mantics are more liberal because for most concrete log­
ics for nonmonotonic reasoning, admissible and preferred 
arguments are always guaranteed to exist, whereas sta­
ble extensions are not. Finally, reasoning under the new 
semantics appears to be computationally easier than rea­
soning under the stability semantics. Intuitively, to show 
that a given sentence is justified by a stable extension, 
it is necessary to perform a global search amongst all 
the assumptions, to determine for each such assump­
tion whether it or its contrary can be derived, indepen­
dently of the sentence to be justified. For the semantics 
of admissible and preferred arguments, however, a "lo­
cal" search suffices. First, one has to construct a set 
of assumptions which, together with the given theory, 
(monotonically) derives the sentence to be justified, and 
then one has to augment the constructed set with further 
assumptions to defend it against all attacks. 

However, from a complexity-theoretic point of view, 
it seems unlikely that the new semantics lead to better 
lower bounds than the standard semantics since all the 
"sources of complexity" one has in nonmonotonic rea­
soning are present. There are potentially exponentially 
many assumption sets sanctioned by the semantics. Fur­
ther, in order to test whether a sentence is entailed by a 
particular argument one has to reason in the underlying 
monotonic logic. For this reason, one would expect that 
reasoning under the new semantics has the same com­
plexity as under the stability semantics, i.e., it is on the 
first level of the polynomial hierarchy for LP and on the 
second level for logics with full propositional logic as the 
underlying logic [Cadoli and Schaerf, 1993]. However, 
previous results on the expressive power of DATALOG^ 
queries by SaccA [1997] suggest that this is not the case 
for LP. Indeed, these results imply that reasoning under 
the preferability semantics for LP is at the second level 
of the polynomial hierarchy. 

In this paper, we extend these results and show that 

36 AUTOMATED REASONING 

mailto:yannis@cs.ucy.ac.cy
mailto:nebel@informatik.uni-freiburg.de
mailto:ft@doc.ic.ac.uk


forkP and DL 

• credulous reasoning under the admissibility and 
preferability semantics has the same complexity as 
under the stability semantics, 

• sceptical reasoning under the admissibility seman­
tics is easier than under the stability semantics -
since it reduces to monotonic reasoning with the 
given theory, and, finally, 

• sceptical reasoning under the preferability seman­
tics is harder than under the stability semantics. In 
other words, here intuition seems to clash severely 
with the complexity-theoretic results. 

The paper is organised as follows. Section 2 sum­
marises the abstract framework introduced by Bon-
darenko et al. [1997], its semantics and concrete in­
stances capturing LP and DL. Section 3 gives complexity 
theory background and introduces the reasoning prob­
lems. Section 4 gives abstract upper bounds for credu­
lous and sceptical reasoning, parametric wrt. the com­
plexity of the under lying monotonic logic. Section 5 gives 
the completeness results. Section 6 discusses the results 
and concludes. 

2 Default Reasoning via Argumentation 
Assume a deductive system where is some 
formal language with countably many sentences and R 
is a set of inference rules inducing a monotonic deriv-
ability notion Given a theory and a formula 

is the deductive closure 
of T. Then, an abstract (assumption-based) frame­
work is a triple where and is a 
mapping from A into , the theory, is a (possibly 
incomplete) set of beliefs, formulated in the underlying 
language, and can be extended by subsets of A, the set of 
assumptions. An extension of an abstract framework 

is a theory with (sometimes 
an extension is referred to simply as Finally, 
given an assumption denotes its contrary. 

LP is the instance of the abstract framework 
where T is a logic program, the assumptions in A are 
all negations not p of atomic sentences and the con­
trary notp of an assumption not p is p. is Horn logic 
provability, with assumptions, notp, understood as new 
atoms, p*. 

DL is the instance of the abstract framework 
where the monotonic logic is classical logic augmented 
with domain-specific inference rules of the form 

where ' are sentences in classical logic. T is a 
classical theory and A consists of all expressions of the 
form M where is a sentence of classical logic. The 
contrary . ,1 of an assumption 

In the remainder of the paper, without loss of general­
ity, we will assume that the set of assumptions A in the 

abstract framework for DL consists of all assumptions 
M occurring in the domain-specific inference rules. 

Given an abstract framework and an assump­
tion set attacks an assumption A iff 

and attacks an assumption set 
attacks some assumption 

The standard semantics of extensions of DL [Reiter, 
1980] and stable models of LP [Gelfond and Lifschitz, 
1988] correspond to the "stability" semantics of abstract 
frameworks, where an assumption set A is stable 
iff 

1. does not attack itself, and 
2. attacks each assumption 
A stable extension is an extension for 

some stable assumption set, 
Bondarenko et al. define new semantics for the ab­

stract framework, e.g., by generalising the admissibility 
semantics originally proposed for LP by Dung [1991]. An 
assumption set A is admissible iff 

1. does not attack itself, and 
2. for all attacks then attacks 
Maximal (wrt. set inclusion) admissible assumption 

sets are called preferred. In this paper we use the fol­
lowing terminology: an admissible (preferred) argu­
ment is an extension for some admissible 
(preferred) assumption set Bondarenko et al. show 
that preferred arguments correspond to preferred exten­
sions [Dung, 1991] and partial stable models [Sacci and 
Zaniolo, 1990] for LP. 

In order to illustrate the effects of the different seman­
tics, let us consider the following logic program: 

This logic program has no stable extension, two preferred 
arguments and and four admissi­
ble arguments (additionally and . If we drop 
the clause we get the same admissible and 
preferred arguments. In addition, the preferred argu­
ments are also stable. 

In [Bondarenko et al., 1997], the definition of stable 
and admissible sets includes a third condition, namely, 
that the set must be closed, i.e., 
and in part 2 of the definition of admissible sets all f 

are required to be closed. Here we omit these conditions 
because in the LP and DL instances of the framework 
every set is guaranteed to be closed. FVameworks with 
this property are called flat. 

In the sequel we will use the following properties: 
P rop i : Every preferred assumption set is (trivially) ad­

missible and every admissible assumption set is 
a subset of some preferred assumption set [Bon­
darenko et o/., 1997, Theorem 4.8]; 

Prop2: The empty assumption set is always admissible, 
trivially, for all concrete LP and DL frameworks. 

3 Reasoning Problems and Complexity 
We will analyse the computational complexity of the fol­
lowing reasoning problems for the propositional variants 
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of the frameworks for LP and DL under admissibility 
and preferability semantics: 

• the credulous reasoning problem, i.e., the prob­
lem of deciding for any given sentence in the set 
of possible queries whether for some 
assumption set sanctioned by the semantics; 

• the sceptical reasoning problem, i.e., the prob­
lem of deciding for any given sentence in the set 
of possible queries whether for all 
assumption sets sanctioned by the semantics. 

The set of possible queries consists of (variable-free con­
junctions of) literals in the LP case and formulas in 
propositional logic in the DL case. 

Instead of the sceptical reasoning problem, we will of­
ten consider its complementary problem, i.e. 

• the co-sceptical reasoning problem, i.e, the 
problem of deciding for any given sentence (in a 
set of possible queries) whether for 
some assumption set sanctioned by the semantics. 

The computational complexity1 of the above problems 
for all frameworks and semantics we consider is located 
at the lower end of the polynomial hierarchy. This is an 
infinite hierarchy of complexity classes above NP defined 
by using oracle machines, i.e. Turing machines that are 
allowed to call a subroutine—the oracle—deciding some 
fixed problem in constant time. Let C be a class of deci­
sion problems. Then, for any class defined by resource 
bounds, denotes the class of problems decidable on 
a Turing machine with an oracle for a problem in C and 
a resource bound given by Based on these notions, 
the s e t s a r e defined a s follows: 

i 

t 

The "canonical" complete problems are SAT for 
NP and , where QBF is the 

problem of deciding whether the quantified boolean for­
mula 

is true. The complementary problem, denoted by co-
QBF, is complete for 

All problems in the polynomia hierarchy can be solved 
in polynomial time iff P = NP. Further, all these prob­
lems can be solved by worst-case exponential time algo­
rithms. Thus, the polynomial hierarchy might not seem 
too meaningful. However, different levels of the hierar-
chy differ considerably in practice, e.g. methods working 
for moderately sized instances of NP complete problems 
do not work for complete problems. 

The complexity of the problems we are interested 
in has been extensively studied for existing logics for 
nonmonotonic reasoning under the standard, stability 

lFor the following, we assume that the reader is familiar 
with the basic concepts of complexity theory [Papadimithou, 
1994], i.e., the complexity classes P, NP, and co-NP and the 
notion of completeness with respect to log-space reductions. 
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semantics [Cadoli and Schaerf, 1993; Gottlob, 1992; 
Niemela, 1990; Marek and Truszczynski, 1993; Stillman, 
1992]. In particular, the credulous reasoning problem is 
NP-complete for LP and complete fot DL, and the 
sceptical reasoning problem is co-NPH-complete for LP 
and -complete for DL, 

4 Generic Upper Bounds 
We identify upper bounds for the credulous and scepti­
cal reasoning problems by exploiting the following guess-
and-verify algorithm that, in order to decide these prob­
lems, guesses an assumption set, verifies that it is sanc­
tioned by the semantics, and verifies that the formula 
under consideration is derivable or not derivable, respec­
tively, from the set of assumptions and the given theory 
in the underlying monotonic logic. The upper bounds 
are parametric on the complexity of the derivability 
problem in the underlying monotonic logic. Moreover, 
the upper bounds are determined by exploiting upper 
bounds for their sub-problem that an assumption set is 
sanctioned by the semantics, called the assumption set 
verification problem. 

In LP, the underlying logic is (propositional) Horn 
logic, hence the derivability problem is P-complete (un-
der log-space reductions) [Papadimitriou, 1994, p. 176]. 
In DL, the underlying logic is classical (propositional) 
logic extended with domain-specific inference rules. 
However, these extra inference rules do not increase the 
complexity of reasoning. It is known (e.g. see [Gottlob, 
1995, p.90]) that for any DL like propositional monotonic 
rule system 5, checking whether is N P-complete. 
Therefore, the following proposition follows immediately. 
Proposition 1 Given a DL framework decid­
ing for a sentence . and an assumption set 
whether is co-NP-complete. 

We now prove the basic membership result for flat 
frameworks in general and LP and DL in particular. In 
fact, flatness seems to be a computationally important 
property. For non-flat frameworks, the assumption set 
verification problem under the admissibility and prefer­
ability semantics seems to become harder in general. 

Theorem 2 Given a flat framework with derivability 
problem in C, the assumption set verification problem 
is 

under the stability semantics, 
under the admissibility semantics, and 

under the preferability semantics. 

Proof: 1. Only polynomially many C-oracle calls are 
needed to verify that a given assumption set does not 
attack itself and it attacks all assumptions 

2. The following deterministic, polynomial-time algo­
rithm using a C-oracle decides whether a given assump­
tion set is admissible: 

(a) Verify that does not attack itself 
calls to a C-oracle). 



(b) Compute does not attack 
calls to a C-oracie). 

(c) Verify that does not attack 
(Polynomially many oracle calls). 

If test (c) falls, then is not admissible, since 
attack* but, by (b), does not attack A* and, by 
(a), does not attack itself.2 Otherwise, let be any 
attack against then, by monotonicity 
of the underlying derivability, . a t t a c k s , thus 
contradicting that test (c) succeeds. Therefore, , 

attacks 
Thus, attacks and, by (a), is admissible. 

■3* The following nondeterministic, polynomial-time 
algorithm using a -oracle decides whether a given as­
sumption set is not preferred: 

• Verify that is admissible (one call to a -oracle, 
by part (2)). If not, succeed, otherwise 

• Guess a set 
• Verify that is admissible (one call to a - o r a c l e , 

by part (2)). If it is, succeed, else fail. 
The guess-and-verify algorithm and Theorem 2 di­

rectly give upper bounds for the credulous and (co-
)sceptical reasoning problems. However, properties 
Propi and Prop2 in section 2 allow to reduce these up­
per bounds. Indeed, by Propi, credulous reasoning un­
der the preferability semantics is equivalent to credulous 
reasoning under the admissibility semantics, and the two 
problems have the same upper bounds. Moreover, by 
Prop2, the sceptical reasoning problem under the admis­
sibility semantics reduces to the underlying derivability 
problem. As a consequence, the following upper bounds 
hold, for flat frameworks with a derivability problem in 
C: 

Credulous 
Sceptical 

Stable 
NPC 

co-NPc 

Admissibility 
NPC 

C 

Preferability 
NPC 

co-NPNpC 

In particular, the credulous reasoning problem for sta­
bility, admissibility and preferability semantics is in NP 
for LP and in for DL, the sceptical reasoning problem 
for the stability semantics is in co-NP for LP and for 
DL, the sceptical reasoning problem for the admissibility 
semantics is in P for LP and co-NP for DL, and the scep­
tical reasoning problem for the preferability semantics is 
in for LP and for DL. The results summarised 
in section 3 imply that these upper bounds are tight 
for the stability semantics. Since the sceptical reasoning 
problem for the admissibility semantics reduces to the 
derivability problems in the underlying monotonic logic 
for LP and DL, and these are P-complete and co-NP-
complete, respectively, the corresponding upper bounds 
are also tight. In the next section we will prove that the 
remaining upper bounds are tight as well. 

2See that if the framework is not flat, the set of assump­
tions need not to be closed. Therefore, even if (c) 
fails, can be still admissible, since it can be the case that 

attacks an assumption that is derivable torn 

5 Completeness Results 
By instantiating the generic upper bounds of the previ­
ous section to the concrete reasoning problems we con­
sider in the following, we obtain the necessary member­
ship results. Therefore, in order to show completeness, 
it is sufficient to prove hardness. 

The next two results show that credulous reasoning 
under the admissibility and preferability semantics is as 
hard as under the stability semantics. Intuitively, this 
is the case because the number of assumption sets that 
need to be considered under the admissibility semantics 
is not smaller than under the stability semantics, and it 
can be, as in the case of stability, exponentially large. 

The following theorem is & direct corollary pf the result 
by Sacca [1997] that the expressive power of DATALOG-
queries under the "possible M-stable semantics" (corre­
sponding to credulous reasoning under the preferabil­
ity semantics) is DB-NP, i.e., such queries characterise 
all collections of databases that are recognisable in NP. 
Prom that it is immediate that credulous reasoning in 
propositional logic programs is N P-complete. 

Theorem 3 Credulous reasoning in LP under the ad-
missibility and preferability semantics is HP-complete. 

As one would expect, reasoning in DL increases the 
computational complexity to the second level of the poly­
nomial hierarchy. 

Theorem 4 Credulous reasoning in DL under the ad­
missibility and preferability semantics is -complete. 

Proof: We have seen that credulous reasoning under 
the preferability semantics coincides with credulous rea­
soning under the admissibility semantics. We prove the 
theorem by a straightforward reduction from 2-QBF to 
the credulous reasoning problem under the admissibil­
ity semantics. Assume the quantified boolean formula 

with a formula in 3CNF over 
the propositional variables We con­
struct a default theory such that the given quanti­
fied boolean formula is true iff some admissible argument 
for contains 

The language o f consists o f a t o m s D 
consists of the default rules 

for each (simulating the choice of a truth 
value for the propositional variable 

Obviously, this construction of D) can be done in 
log-space. Moreover, it is easy to see that the given 2-
QBF is true iff there exists an admissible extension of 

D) containing 

As noted earlier, sceptical reasoning under the admis­
sibility semantics is "trivial" in the sense that it reduces 
to the underlying derivability problem. Therefore, the 
sceptical reasoning problem needs to be considered only 
for the preferability semantics. Theorem 2 suggests that 
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this problem has higher complexity than the correspond­
ing problem under the stability semantics, since in order 
to verify that a set is preferred we need to check that 
none of its supersets is admissible. The following two 
theorems show that we cannot do better than this. 

Again Sacck [1997] has shown that the expressive 
power of CATALOG- queries under the "definite M-
stable semantics" (corresponding to sceptical preferabil-
ity semantics) coincides with the class DB- Hence, as 
a corollary we immediately obtain the following result. 
Theorem 5 Sceptical reasoning in LP under the prefer-
ability semantics is complete. 

We now show that sceptical reasoning has a similar 
effect on DL. 
Theorem 6 Sceptical reasoning in DL under the prefer-
ability semantics is complete. 
Proof: We show that co-sceptical reasoning is hard 
by a reduction from 3-QBF. Assume the following quanti­
fied boolean formula: 
with a formula in 3CNF over the propositional vari­
ables We build a de­
fault theory such that the given quantified boolean 
formula is true iff some sentence F is not contained in 
some preferred argument for 

The language of contains atoms 
and as well as atoms 

intuitively holding if a truth value for the vari­
ables has been chosen. D consists of 

for each (to indicate that vari­
ables are assigned either true or false, but not both, and 
that a truth value for and has been chosen), 

(to prohibit truth choices on qj that render satisfiable), 

for each (to enforce that truth 
value choices are made either for all - 's or for no and 
truth value choices are made either for all 's or for none 
of the 's and 's), and 

for each (to guarantee that no 
admissible set contains M or any of 

We will prove that the given quantified boolean for­
mula is true iff there is a preferred argument not con­
taining 

If t? is a truth assignment to the s, we denote by 
the assumption set 

Similarly, we denote by the 

assumption set 
false] for some truth assignment to the 

s. 

First of all, it ie obvious that no admissible set can 
contain any of the assumptions Fur­
thermore, it is easy to see that for any truth assignment 

to the 's, the set is an admissible set. Moreover, 
every preferred assumption set must contain a set for 
some truth assignment to the 's. Finally, if is not 
preferred, then there exists a truth assignment u to the 

's such that is preferred. 
Assume that the quantified boolean formula is true 

under a particular truth assignment to the 's. We 
will show that the set is a preferred assumption set. 
Suppose that we try to extend by adding to it the set 

for some truth assignment to the 's. If the new set 
is admissible, it means that it counter attacks the attack 

hence the QBF is not 
true for the truth assignment u, a contradiction. Hence, 

is a preferred argument that does contain 
• 

Conversely, assume that i has a preferred ar­
gument P = , . . that does not contain F = 

. Clearly , for some truth assignment 
to the 's. Since P is preferred and does not contain 

F, none of the sets for every possible truth 
assignment to the 's is admissible. This means that 
none of these sets of assumptions can counter attack the 
attack and derive therefore the QBF is true. 

Obviously, the above construction can be done in log-
space. Thus, the construction of is a log-space 
reduction from 3-QBF to co-sceptical reasoning in DL 
under preferred arguments and hardness holds. 

It should be noted that similar results to those for DL 
have been recently obtained for the case of disjunctive 
logic programs [Eiter et a/., 1998]. 

6 Discussion 
We have shown that credulous reasoning in DL and LP 
using the admissibility and preferability semantics is as 
hard as it is under the standard, stability semantics. 
Moreover, sceptical reasoning under the preferability se­
mantics is harder than under the stability semantics. 

There appears to be a clash between these results and 
the intuition spelled out in the Introduction, namely, 
that admissibility and preferability arguments are seem­
ingly easier to compute than stable extensions. However, 
our results are not as surprising as they might appear. 
Since the admissibility and preferability semantics do not 
restrict the number of extensions, one would expect that 
nonmonotonic reasoning under these semantics is as hard 
as under the stability semantics. The higher complexity 
of the sceptical reasoning problem under the preferabil­
ity semantics is due to the fact that in order to verify 
that an assumption set is preferred, one needs to check 
that none of its supersets is admissible. 

Of course, our results do not contradict the expecta­
tion that in practice constructing admissible arguments 
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is often easier than constructing stable extensions. For 
example, given the propositional logic program 
with P any set of clauses not defining the atom p, the 
empty set is an admissible argument for the query p 
that can be constructed "locally", without accessing P. 
Moreover, if is stratified or order-consistent [Bon­
darenko et a/., 1997], p is guaranteed to be a credulous 
consequence of the program under the stability seman­
tics. Indeed, in all cases where the stability seman­
tics coincides with the preferability semantics (e.g. for 
stratified and order-consistent abstract frameworks) any 
sound (and complete) computational mechanism for the 
admissibility semantics is sound (and complete) for the 
stability semantics. 

The "locality" feature of the admissibility seman­
tics renders it a feasible alternative to the stability 
semantics in the first-order case, when the proposi-
tional version of the given abstract framework is infi­
nite. For example, given the (negation-free) logic pro­
gram: the empty set of assumptions 
is an admissible argument for the query p(0) that can 
be constructed "locally", even though the propositional 
version of the corresponding abstract framework is infi­
nite. 

The complexity results in this paper discredit sceptical 
reasoning under admissibility and preferability seman­
tics as trivial and "unnecessarily" complex, respectively. 
However, this does not seem to matter for the envisioned 
applications of this semantics, because credulous reason­
ing only is required for these applications [Kowalski and 
Toni, 1996]. For example, in argumentation in practi­
cal reasoning in general and legal reasoning in particu­
lar, unilateral arguments are put forwards and defended 
against all counterarguments, in a credulous manner. In­
deed, these domains appear to be particularly well suited 
for credulous reasoning under the admissibility seman­
tics. 
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