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Prior research has shown that musical beats are salient at the level of the cortex in

humans. Yet below the cortex there is considerable sub-cortical processing that could

influence beat perception. Some biases, such as a tempo preference and an audio

frequency bias for beat timing, could result from sub-cortical processing. Here, we used

models of the auditory-nerve andmidbrain-level amplitudemodulation filtering to simulate

sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated

activity to determine the tempo or beat frequency of the music. First, irrespective of

the stimulus being presented, the preferred tempo was around 100 beats per minute,

which is within the range of tempi where tempo discrimination and tapping accuracy are

optimal. Second, sub-cortical processing predicted a stronger influence of lower audio

frequencies on beat perception. However, the tempo identification algorithm that was

optimized for simple stimuli often failed for recordings of music. For music, the most

highly synchronized model activity occurred at a multiple of the beat frequency. Using

bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a

learned and possibly top-down mechanism that scales the synchronization frequency

to derive the beat frequency greatly improves the performance of tempo identification.

Keywords: auditory, rhythm, tempo induction, musical beat, biomimetic model

INTRODUCTION

When we spontaneously tap our feet to music, we are “feeling the beat.” A musical beat is
frequently defined by the effect it has on motor entrainment (Patel, 2010; London, 2012), and it
is often identified as the fundamental level in the metrical hierarchy for keeping time (Lerdahl and
Jackendoff, 1983). Many cultures have music with a beat, and the presence of beat-based music is
highly related to communal dance (Savage et al., 2015). Clearly, perceiving the beat is key to the
perception of music.

In many genres of music, musical beats often, but not always, occur at isochronous intervals
(London, 2012). Previous models have simulated the perception of isochronous beats using an
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internal clock (Povel and Essens, 1985), pattern matching
(Rosenthal, 1992; Parncutt, 1994), an internal resonator (van
Noorden and Moelants, 1999), or a bank of neural oscillators
(Large et al., 2015). These models often compute the beat
frequency of discrete pulses, although a few have used
annotated performances as input (ex. Rosenthal, 1992) or “onset
signals” computed from cochlear-like filtering of audio signals
(Scheirer, 1998; Large, 2000). Using electroencephalography and
magnetoencephalography, it has been shown that cortical activity
time-locks to the perceived beat for simplistic stimuli (Snyder and
Large, 2005; Iversen et al., 2009; Nozaradan et al., 2011, 2012;
Fujioka et al., 2012, 2015; Tierney and Kraus, 2015; Tal et al.,
2017; but see Henry et al., 2017). Yet multiple stages of processing
occur prior to cortical processing, each of which could affect the
placement of musical beats.

Even for basic acoustic events, human subjects are biased
to tapping to beats at inter-onset intervals of 500 to 700ms
(Parncutt, 1994), equivalent to a tempo range of 85 to 120 BPM.
This range encompasses the “indifference interval” (Fraisse,
1963; London, 2012) for which subjects tap naturally at a
regular rhythm (Semjen et al., 1998), discriminate tempi best
(Drake and Botte, 1993), and can best replicate the duration
of the interval (Stevens, 1886; Woodrow, 1934) (for review
see Fraisse, 1963; Patel, 2010; London, 2012). This range also
overlaps the range of tempi for a large proportion of dance
music, which centers on 450 to 600ms for intervals between
beats, or equivalently 100 to 133 BPM (van Noorden and
Moelants, 1999). However, an explanation for this optimal
range of tempi is unclear. Motor entrainment plays a role in
this bias since subjects tap naturally within this range, but
it does not completely explain the optimization observed in
studies that do not involve motor entrainment. Modulation
tuning in the sub-cortical central nervous system would affect
the synchronization strength of neural activity to isochronous
acoustic events, which in turn could influence the preferred
tempo.

Additionally, there is some evidence that our perception of
musical beats is biased to certain ranges of audio frequencies.
Listeners’ ratings of “groove” in music, a subjective quality related
to howmuch people want tomove to themusic, is correlated with
the fluctuation in energy in low frequency (<200Hz) and mid-
frequency (400–1600Hz) bands (Stupacher et al., 2016). Subjects
also identify beats in piano ragtime music better when the left
hand (lower frequency) is played alone than when the right hand
(higher frequency) is played alone, although this could be due
to the regularity of the left hand for this type of music (Snyder
and Krumhansl, 2001). A low-frequency bias for beat timing
could result from cochlear processing, where low frequencies
cause a greater spread of excitation than higher frequencies
(Hove et al., 2014), but these effects need to be disambiguated
from cochlear delays that can produce similar biasing effects
for simultaneous events (Wojtczak et al., 2017). For repeating
“frozen” noise, where the noise signal was identical on each
repetition, subjects focus on mid-frequency perturbations in the
signal, between 300 and 2,000Hz, when tapping along with the
repetition (Kaernbach, 1993). Overall, while there does appear to
be a frequency bias for time locking beats in music and repeating

sounds, the exact frequency range of the bias, and the influence
of subcortical processing on the bias, is still unclear.

Separately, several groups have developed “tempo-induction”
algorithms that identify the tempo of musical recordings (for
review see Gouyon et al., 2006; McKinney et al., 2007). These
algorithms typically consist of three stages: identify onsets in
the music, determine the pattern and speed of those onsets, and
determine the tempo based on several representations of these
factors (ex. Elowsson and Friberg, 2015). While some of these
algorithms use processes that are similar to the auditory system
(ex. Scheirer, 1998), none have been built on biomimetic models
of auditory processing that simulate the neural activity produced
by stages of auditory processing below the cortex. This processing
is important because beat perception is based on the neural
activity projected to the cortex. Both physiological modulation
tuning and the inherent randomness of neural signals present in
realistic auditory processing could affect beat perception in real
music.

Here, we developed a model that determines the tempo of
recordings of music based on the simulated neural activity of
the auditory nerve and amplitude modulation tuning in the
brainstem and midbrain. We hypothesized that physiologically
plausible synaptic processing, which results in amplitude
modulation tuning in the midbrain, can impose a preferred
tempo near 100 BPM (London, 2012). We also hypothesized that
innate processing in the auditory nerve can explain our low-
audio-frequency bias for timingmusical beats. Lastly, we quantify
the strength of neural synchronization tomusical beats inmusical
recordings and assess different ways in which the beat frequency
may be inferred based on sub-cortical processing.

MATERIALS AND METHODS

Modeling
Sub-cortical neural activity was simulated using a cascade of two
biomimetic models for different stages of auditory processing.
The sound input was converted to time-varying firing rates
using a model of auditory-nerve (AN) fibers (Zilany et al., 2014)
(Figure 1). Each AN fiber was tuned to a particular characteristic
frequency (CF). The bandwidths of the model AN fibers matched
human cochlear tuning (Shera et al., 2002). High-spontaneous-
rate AN fibers were simulated with CFs from 125 to 8 kHz
spaced every 0.05 octaves (121 fibers total). This model includes
cochlear compression and firing rate adaptation (Zhang et al.,
2001; Zilany et al., 2009). Our focus was on high-spontaneous-
rate AN fibers because of their predominance in the auditory
nerve (Liberman, 1978). Additionally, high-spontaneous-rate
fibers alone can encode speech across a wide range of sound levels
and in noisy environments (Carney et al., 2015), suggesting that
they might also be especially important for encoding acoustic
events relevant for musical beat perception.

The time-varying AN fiber firing rate was filtered using a
model of synaptic processing in the ventral cochlear nucleus
(VCN) and the inferior colliculus (IC) (Nelson and Carney,
2004; Carney et al., 2015). The model produces bandpass
modulation sensitivity via two-stage same-frequency inhibition
and excitation (SFIE), where the time constants, delays, and
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FIGURE 1 | The model used to simulate sub-cortical neural activity consisted of three stages. First, the sound was filtered through 121 model AN fibers, each of

which include bandpass filtering from the basilar membrane, compression due to the outer hair cells, and firing rate adaptation. Second, the output firing rates of

these AN fibers were filtered using an SFIE model that simulated processing in the VCN and IC. Lastly, neural activity was simulated for each CF using the output time

varying firing rate of the second stage. The simulated activity was then summed across CFs to get the summed PSTH.

strengths of the inputs affect the neuron’s best modulation
frequency (Figure 2). The SFIE model also accentuates onset
responses in the firing rate function that are akin to neural
responses in the inferior colliculus or the medial geniculate body
of the thalamus (Rouiller et al., 1981; Krishna and Semple, 2000;
Bartlett and Wang, 2007; Nelson and Carney, 2007). We varied
the SFIE model parameters (Table 1) to examine their effects on
the strength of synchronization to a range of tempi.

For each of the 121 CFs, we randomly generated spike trains
in response to each stimulus, assuming that the spike times obey
an inhomogeneous Poisson process (Brown et al., 2002) with
a time-varying rate parameter determined by the output of the
SFIE stage. The spike trains across CF were then summed to form
a post-stimulus time histogram (PSTH) for each response to a
stimulus.

We hypothesized that the beat frequency of the stimulus could
be determined based on the phase-locking of the PSTH to the
beat frequency. The PSTH was first filtered using a Gaussian-
shaped temporal smoothing window. The shape of the window
was based on prior results showing a Gaussian-like variation in
performance for detecting events that deviate from isochronous
intervals (Repp and Penel, 2002). Periodicities in the PSTH
were then identified by taking the Fourier transform of the
PSTH and normalizing by the average value of the PSTH (or
the magnitude of the Fourier component at 0Hz) (Figure 3A).
This value is computationally identical to the “vector strength”
which quantifies the synchronization strength of neural activity
to a particular frequency (Goldberg and Brown, 1969). The
model’s “synchronization tempo” was the tempowhere the vector
strength was maximal.

In the Fourier domain the temporal smoothing window
imposed a low-pass filter on the vector strength and thus
suppressed the vector strength of fast tempi (Figure 3B). Several
studies have demonstrated that the upper limit of the human

FIGURE 2 | The rate modulation transfer functions for the three SFIE models

we examined. The functions were computed by averaging the firing rate of the

output of the SFIE model using a single input AN fiber (CF = 800Hz) for 4 s of

sinusoidally amplitude modulated broadband noise repeated 20 times. The

parameters for each of the SFIE models can be found in Table 1.

perception of isochrony occurs at inter-onset intervals around
100ms (for review see Repp, 2005; London, 2012). To enforce this
upper limit, the standard deviation (σ ) of the temporal window
was empirically set to 40ms because it was the minimum σ such
that the vector strength for isochronous clicks at 600 BPM (inter-
onset interval of 100ms) was no larger than the vector strength
for 100% jittered clicks at the same average rate (Supplementary
Figure 1). The temporal window width of 40ms was used for all
SFIE models examined.

Throughout, all stimuli were set to 70 dB SPL and were up-
sampled to a 100 kHz sampling rate, which was required for the
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AN fiber model. For stimuli that started or ended with a non-zero
signal (for example, amplitude modulated noise), 15ms raised-
sine ramps were applied to the start and end of the stimulus.

Stimuli and Hypotheses for Preferred
Tempo Analyses
Stimuli were 10 s long and consisted of either 1ms clicks
(0.5 condensation followed by 0.5ms rarefaction), sinusoidally
amplitude modulated (SAM) broadband noise (0–50 kHz),
square wave (SW) modulated broadband noise with a duty cycle
of 50%, and raised-sine 100-ms-long tone pips with carrier
frequencies of 250Hz, 1 kHz, or 4 kHz. The tempo was varied
from 30 BPM to 600 BPM in 30 BPM steps, and each stimulus

TABLE 1 | Parameters used for each two-stage SFIE model (see Nelson and

Carney, 2004; Carney et al., 2015).

SFIE model parameters

τexc (ms) τinh (ms) Sinh dinh (ms) A

VCN stage 0.5 2 0.6 1 1.5

IC A 5 10 1.1 2 6

IC B 2 6 1.1 2 2

IC C 1 3 1.5 2 2

The parameters in the ventral cochlear nucleus (VCN) stage, the first stage of the model,

were always used. The parameters for the second stage of the model, inferior colliculus

(IC) model, was varied.

was presented 10 times. The phase of the stimulus modulation
was randomized for each presentation. The preferred tempo
was determined for each type of stimulus using quadratic
interpolation. To evaluate the effects of the SFIE model on this
result, the analysis was repeated for each type of SFIE unit and
also for the summed activity of the AN fibers alone.

Several studies have demonstrated that humans’ ability to
perceive and reproduce regular events is optimized for inter-
onset intervals around 600ms, corresponding to a tempo of
100 BPM (London, 2012). We hypothesized that the modulation
filtering of the SFIE model and the temporal smoothing window
could produce a vector strength maximum around 100 BPM.
Additionally, Henry et al. (2017) showed that the strength of
perceived musical beats is independent of the envelope of the
stimulus. Based on this, we expected the tempo exhibiting the
maximum vector strength (the “preferred tempo”) to remain the
same irrespective of the stimulus being used.

Assessing a Frequency Bias for Tempo
Induction
To identify a frequency bias in tempo induction that could
result from subcortical processing, we presented the model
with stimuli consisting of two stimulus trains of 100ms raised-
sine tone pips presented at two different tempi (from the
range 60 to 180 BPM) and two different frequencies (from the
range 125 to 8,000Hz) (an example stimulus can be found in
Figure 6A). The tempi, frequencies, and phases of the two tones
were randomly selected to generate 1000 different stimuli, and
each stimulus was presented once. The frequencies of the two

FIGURE 3 | (A) The summed PSTH was convolved (represented by an asterisk) with a Gaussian-shaped temporal smoothing window with a standard deviation of

40ms (see Materials and Methods). Then the Fourier transform of the smoothed PSTH was used to compute the vector strength of the neural activity, which quantifies

the strength of synchronization, at each tempo. The “synchronization tempo” using this method was equal to the tempo with the peak vector strength between 30

and 600 BPM. (B) The Fourier transform of the temporal smoothing window. The temporal smoothing window smooths the PSTH and suppresses the vector

strengths at high tempi.
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tone pips were spaced at least one octave apart to reduce AN
adaptation effects (Zilany et al., 2009) that could produce cross-
frequency forward masking. For each stimulus, we computed the
normalized synchronization tempo (NST):

NST =
Tsync − TL

TH − TL

where TL and TH are the tempi for the low carrier frequency and
high carrier frequency pulse trains, respectively, and Tsync is the
synchronization tempo.

We expected the synchronization tempo to be close to the
tempo of either the tone pips with the low-frequency carrier or
the high-frequency carrier for most of the stimuli, resulting in an
NST near either zero or one, respectively. Of those stimuli, we
next examined how the other factors, the tempi of the two tone
pips and their carrier frequencies, affected the NST. A logistic
generalized linear model was fit to the NST values that were
within ±0.08 of either zero or one (807/1000 trials) using fitglm
in Matlab:

P (NST = 0|µ) =
eµ

eµ + 1

where:

µ = β0 + βfL (
fL

125
)+ βfH log2 (

fH

125
)+ βTLTL + βTHTH

where fL and fH are the carrier frequencies of the low and high
frequency tone pips respectively, and the beta values quantify the
linear dependence between each parameter and the probability
that the NST equals one. If the NST was independent of the
stimulus parameters, then the model should not do significantly
better than a constant model (µ = β0). The significance of
this difference was assessed using a likelihood ratio test. The
significance of the individual coefficients in the model was also
assessed using a likelihood ratio test comparing the full model to
a reduced model with each component removed individually.

Tempo Induction of Real Music
Lastly, we examined how well this model could correctly identify
tempi for two datasets of music: a “Ballroom” dataset of 685 clips
of ballroom dance music (after removing exact and recording
replicates, see Sturm, 2014), and a “Songs” dataset of 465 clips of
music from a wide variety of genres and cultures, including some
dance music (Gouyon et al., 2006). These datasets are standards
for assessing the performance of tempo-induction and beat-
detection algorithms (Gouyon et al., 2006;McKinney et al., 2007).
We determined the synchronization tempo based on the tempo
between 30 and 600 BPM with the maximum vector strength.
Throughout, the synchronization tempo was identified as correct
if it fell within ±8% of the ground truth tempo (standard for the
MIREX tempo induction competition, seeMcKinney et al., 2007).

Computing the Tempo Using a Classifier
Often, the peak vector strength occurred at a multiple of the
ground truth tempo rather than at the actual ground truth
tempo. One possibility is that we “feel the beat” for every 2–4

events depending upon the speed of the music (Parncutt, 1994;
London, 2012). Additionally, we may be using the pattern of
events in the music, or the “rhythm”, to determine the beat
frequency, since beat perception is affected by rhythm (Povel
and Essens, 1985; Parncutt, 1994). To understand the importance
of speed and rhythm on tempo induction, we used regularized
multi-class linear discriminant analysis (mcLDA) (fitcdiscr.m in
Matlab, other classification algorithms did not perform as well) to
develop two different classifiers that identify the “scaling factor”
equal to the ratio of the synchronization tempo to the ground
truth tempo, either 1, 2, 3, or 4. The first classifier used the
synchronization tempo alone to classify the scaling factor; faster
synchronization tempi were more likely to have higher scaling
factors. For the second classifier, we reasoned that, if the model
neurons were synchronizing to events in the music, then the
rhythm of the music could be quantified by the number of times
certain intervals appear between simulated spikes. The within-
and across-CF interspike interval (ISI) histogram for the summed
neural activity was computed using the autocorrelation of the
summed PSTH, and the “ISI ratio” for a particular interval
was computed by summing the ISIs within a 20ms rectangular
window surrounding the interval and dividing by the total
number of ISIs between 0.1 and 30 s. The ISI ratio was computed
for ISIs at the following multiples of the event period: 1/16,
1/12, 1/9, 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, and 1. All stimuli from
both datasets were included in this analysis, and the ratios were
rounded to closest integer between 1 and 4. This classification
procedure was repeated for 1000 random re-samplings of the
stimuli, selecting 75% of the stimuli for training and 25% for
testing. We determined whether the second classifier performed
significantly better than the first by testing the null hypothesis
that the distribution of differences in performance between the
two classifiers for the 1000 re-samplings was no greater than 0.

RESULTS

Dependence of Model Vector Strength on
Stimulus Tempo
Firstly, we examined if the vector strength of the model PSTH
wasmaximal over a specific range of tempi.We hypothesized that
sub-cortical processing could contribute to this biasing, which
has been observed around 100 BPM. The vector strength as a
function of tempo was computed using three different midbrain
models (Table 1) that were tuned to different best modulation
frequencies (Figure 2). For comparison, the vector strength was
also computed based on the unfiltered summed AN fiber output.

While the temporal smoothing window suppressed vector
strengths at high tempi (Figure 3B), there was also a reduction
in vector strengths at low tempi due to an intrinsic property
of the auditory nerve model. Figure 4 shows examples of the
summed firing rate across CF for different SFIE models, which
was the input to the Poisson spike generator (Figure 1). For click
trains at 30 BPM (Figure 4A), SFIEmodel A generated the largest
firing rates in response to a click, but it also produced the highest
spontaneous rate, resulting in the lowest vector strength of the
three midbrain models. For SAM noise (Figure 4B), the firing
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FIGURE 4 | Firing rates for the different SFIE models in response to 1ms

clicks (A), SAM broadband noise (B), and SW noise (C) at 30 BPM (SFIE A:

blue, SFIE B: green, SFIE C: red). The corresponding stimulus is shown above

each plot of the firing rate. All stimuli were presented at 70 dB SPL. The firing

rates were summed across CF and averaged across 10 repetitions of each

stimulus with different noise tokens. Spontaneous firing during silences (A,C)

and saturating firing rates during continuous noises (A,B) contributed to a

falloff in vector strength at lower tempi (see Figure 5).

rates of high-spontaneous rate AN fibers saturated at moderate
sound levels, resulting in saturating SAM responses for moderate
to high SPLs which reduced their synchronization strength (see
also Joris et al., 2004). The saturating responses were maintained
for the models with high peak modulation frequencies, SFIE B
and C. In contrast, SFIE A showed a stronger onset response
during the rising phase of the stimulus modulation followed by a
reduction in firing during the rest of the cycle of the modulation.
As a result, SFIE A had a larger vector strength than the other two
models. For SW noise (Figure 4C), the response for model SFIE
A showed both a suppression of sustained firing as well as high
spontaneous firing.

Across a wide variety of stimuli (clicks, SAM noise, SW
noise, tone pips), SFIE A consistently produced preferred tempi
between 86 and 150 BPM (Figure 5, peak values summarized in
Table 2). In contrast, peak vector strengths occurred at a much
wider range of tempi for the other two SFIE models and for the
AN fiber activity. Since human perception of musical beats is
invariant to the envelope of the stimulus (Henry et al., 2017),
these results strongly suggest that neurons with long excitatory

FIGURE 5 | Vector strength as a function of tempo in response to 1ms clicks

(A), SAM broadband noise (B), SW broadband noise (C), and tone pips with

carrier frequencies of 250Hz (D), 1 kHz (E), and 4 kHz (F). The vector

strengths for the different SFIE models are color coded identically to Figure 4.

Error bars designate interquartile ranges for 10 repetitions of each stimulus.

The vector strength using the AN fiber activity alone, without an SFIE stage, is

also shown in black. SFIE model A consistently produced peak vector

strengths within the range of tempi typically associated with the “indifference

interval” (around 100 BPM) and overlapping the range of tempi for dance

music (van Noorden and Moelants, 1999). The preferred tempos were

determined by quadratic interpolation. The black dashed line in the inset in (A)

shows the quadratic fit to the points surrounding the maximum vector strength

for SFIE A. The preferred tempo is equal to the peak of the quadratic fit.

Preferred tempos and peak vector strengths are quantified in Table 2.

and inhibitory synaptic time constants are important for musical
beat perception and responsible for biasing the preferred tempo
around 100 BPM. Such neurons would produce strong onset
firing and reduced sustained firing necessary for creating salient
beats. We also found empirically that vector strengths were larger
for musical recordings using SFIE A than the other two models
(Supplementary Figure 2). For these reasons, SFIE A was used
when simulating sub-cortical neural activity in the following
experiments.

Dependence of the Synchronization Tempo
on Stimulus Audio Frequency
There is some evidence that human perception of musical
beats may be biased to particular frequency ranges, but the
strength of this effect and the underlying mechanism are unclear.
We hypothesized that subcortical processing may produce a
frequency bias for tempo induction. Specifically, when multiple
carrier frequencies are present with temporal modulations at
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TABLE 2 | Preferred tempi (upper) and peak vector strengths (lower) are shown

for each stimulus and SFIE model, including the summed AN fiber output without

the SFIE model applied (see Figure 5).

Preferred tempo (BPM)

Peak vector strength

Clicks SAM

noise

SW

noise

Tone pips

250Hz 1kHz 4kHz Average ± st dev

SFIE A 111 146 142 112 86 106 117 ± 23

0.68 0.50 0.61 0.60 0.64 0.57 0.60 ± 0.06

SFIE B 94 223 30 87 76 98 101 ± 64

0.77 0.16 0.52 0.68 0.72 0.65 0.58 ± 0.23

SFIE C 51 299 30 56 30 52 86 ± 105

0.94 0.07 0.58 0.87 0.91 0.88 0.71 ± 0.34

AN fibers 267 117 120 204 201 206 186 ± 58

0.09 0.13 0.31 0.12 0.17 0.13 0.16 ± 0.08

Maxima were computed using quadratic interpolation.

distinct tempi, we expected the synchronization tempo to equal
the tempo of the lowest carrier frequency.

1000 stimuli were generated, consisting of two tone pips
with carrier frequencies, tempi, and phases that were selected
randomly (see Figure 6A for example). For each stimulus, the
synchronization tempo was normalized relative to the tempos of
the two tone pips to get the NST (Figure 6B). An NST of zero
means that the synchronization tempo was closer to the tempo
of the tone pip with the low-frequency carrier, and an NST of
one means that it was closer to the tempo for the high-frequency
carrier. 80.7% of the stimuli produced NSTs that were within
±0.08 of zero or one (Figure 7A). There were significantly more
stimuli that producedNSTs near zero than near one (Chi-squared
test: χ2 = 149, p < 0.001). On average, synchronization tempi
were biased to lower audio frequencies.

The distribution of NSTs, however, also varied with the carrier
frequencies (Figure 7B) as well as the tempi of the tone pips
(Figure 7C). Each showed a monotonic relationship with the
proportion of NSTs equal to zero. To quantify these dependences
and assess their significance, we fit a logistic generalized linear
model to the individual NSTs with the low-frequency carrier (fL),
high-frequency carrier (fH), and the tempi of those tone pips
(TL and TH respectively) as dependent variables (see Materials
and Methods). We found that the generalized linear model fit
significantly better than a constant model (Likelihood ratio test:
χ2 = 530, p < 0.001), meaning that the carrier frequencies and
tempi had a significant effect on the NST relative to the average
bias observed initially (Figure 7A). Specifically, the NST was
significantly dependent on fH (βfH = 1.39, χ2 = 78, p < 0.001)
and both tempi (TL: βTL = 0.043,χ2 = 253, p< 0.001; TH: βTH =

−0.034, χ2 = 193, p < 0.001). The effect of fL was not significant
(βfL =−0.033, χ2 = 0.08, p= 0.77).

Overall, synchronization tempi were biased to the tempo
for the tone pips with the lower carrier frequency, but the
biasing was weakest when the interfering modulations from
the higher carrier frequency was close to the lower carrier

FIGURE 6 | (A) To test for a frequency bias in tempo induction, stimuli

consisted of two sets of tone pips at two different carrier frequencies and

different tempi. An example stimulus power spectrogram is shown (tone 1: fL
= 500Hz, TL = 140 BPM; tone 2: fH = 3 kHz, TH = 100 BPM; phase = 0 for

both). (B) The vector strength as a function of tempo for the stimulus in (A) is

shown. Dashed lines mark the tempi for the tone pips with the low-frequency

carrier (blue) and the high-frequency carrier (red). The synchronization tempo

was 138 BPM and the NST was 0.05, indicating that it is close to TL.

frequency. Both low-CF and high-CF responses resulted in
similar vector strengths for broadband stimuli with tone-pip-
like modulations, suggesting that the biasing observed here was
due to the spread of excitation in the basilar membrane and
not due to differences in the response properties of different
CFs (Supplementary Figure 3). However, the tempi of the tone
pips had a stronger influence on the synchronization tempo
than the carrier frequency, and the synchronization tempo was
more likely to equal the fastest tempo. This was contrary to
our earlier finding that the vector strength was maximized
around 100 BPM for salient, isochronous stimuli. When multiple
competing modulations are present in complex stimuli, the faster
modulations dominate in the summed synchronized activity,
primarily because faster modulations produce more events and
are more likely to mask slower modulations (Supplementary
Figure 4).

Tempo Induction of Real Music
We lastly evaluated tempo-induction performance using two
datasets widely used for testing tempo-induction algorithms
(Gouyon et al., 2006): a “Ballroom” dataset of 685 ballroom dance
music clips, and a “Songs” dataset of 465 songs from a wide
variety of genres. For each stimulus the synchronization tempo
was computed and compared to the ground-truth tempo for the
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FIGURE 7 | (A) Distribution of the NSTs for all 1000 randomly generated

stimuli consisting of two tone pips. An NST of 0 means that the

synchronization tempo is equal to TL. An NST of 1 means that the

synchronization tempo is equal to TH. On average, the synchronization tempi

were closer to TL. (B) Proportion of trials with NST = 0 with respect to the

carrier frequencies of the stimulus. Each bin shows the marginal probability

given fL and fH. (C) Proportion of trials with NST = 0 with respect to the tempi

TL and TH, plotted similarly to (B).

recording. The synchronization tempo was equal to the ground-
truth tempo for only 19.9% of the stimuli (25.0% for ballroom,
12.4% for songs) (Figure 8). More often, the synchronization
tempo was twice the ground-truth tempo (31.7% for ballroom,
28.8% for songs, 30.5% overall).

When the PSTH was not smoothed with the temporal
smoothing window, fewer synchronization tempi were equal to

FIGURE 8 | The histogram of the ratio between the synchronization tempo

and the ground truth tempo is plotted for the Ballroom dataset (A) and the

Songs dataset (B) without the temporal Gaussian window applied (black) and

with the temporal Gaussian window (red). Colored dashed lines mark the

scaling factors of 1x (black), 2x (blue), 3x (green), and 4x (red).

the ground-truth tempo (18.0% for ballroom, 3.9% for songs,
12.2% overall) (Figure 8). However, most of the synchronization
tempi occurred at a multiple of the ground-truth tempo: 75.5% of
the stimuli produced synchronization tempi at 1-4x the ground
truth (81.8% for ballroom, 66.2% for songs) (Figure 9). This
accounted for 25.1% more of the stimuli than the number
that had synchronization tempi at 1-2x the ground truth after
smoothing the PSTH.

Thus, while the temporal smoothing window suppresses faster
synchronous activity by low-pass filtering the PSTH, it does not
unearth a subharmonic peak in vector strength at the true beat
frequency of themusic. Instead, themodel’s synchronized activity
at a multiple of the ground truth tempo may serve as a reference
for determining the actual tempo of the music.

Scaling the Synchronization Tempo
Why is the most synchronous activity at a multiple of the ground
truth tempo? One possibility is that the synchronous activity
occurs at the “event frequency” of the music, a higher tempo
than the beat frequency, such as the frequency of notes played
by an instrument or the frequency of drum hits (London, 2012,
see also Ding et al., 2017 for a similar result using the modulation
spectrum). Indeed, we found that the ratio of the synchronization
tempo to the actual tempo, the “scaling factor,” depended upon
the genre of the ballroom dance music, suggesting that the
relationship between the synchronization tempo and the actual
tempo may depend upon the rhythm of the music (Figure 10A).
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FIGURE 9 | Synchronization tempo using the vector strength of the summed

PSTH without the temporal smoothing window is plotted as a function of the

ground truth tempo for the Ballroom dataset (A) and the Songs dataset (B).

Dotted lines mark the slopes corresponding to scaling factors 1–4, as in

Figure 8. For the combined datasets (1163 stimuli total), 75.5% of the

synchronization tempi fell within ±8% of these four slopes.

Alternatively, the relationship between the event frequency and
the tempo could depend upon the speed of events. As the speed
of the events increases, the event frequency would need to be
divided by a larger scaling factor in order to get the correct tempo.
Because different ballroom dance genres can be qualitatively
characterized by different speeds (for example: tango is slower
than samba), the event frequencies may also be dependent
upon genre. Indeed, we found that the synchronization tempo
was dependent upon the genre of the music (Figure 10B).
Whether the scaling factor is dependent upon the speed or the
rhythm of the events, it should be possible to simply divide the
synchronization tempo by a scaling factor in order to get the
actual beat frequency of the music.

To determine the scaling factor for each stimulus we
used mcLDA to design two classifiers (see Materials and

FIGURE 10 | (A) The ratios of the synchronization tempo to the ground truth

tempo (the “scaling factors”) and (B) the synchronization tempi for the 685

Ballroom stimuli are plotted as a function of the ballroom dance genre. Colored

dashed lines mark the ratios 1–4, as in Figures 8, 9. Synchronization tempo

and the scaling factor both depend upon the genre of the ballroom dance

music.

Methods). The first classifier used only the synchronization
tempo, which captures the speed of the music (Figure 11A).
The second classifier also contained ISI ratios at fractions of
the synchronization tempo to capture information about the
rhythm of the music that was present in the synchronized activity
(Figure 11B).We combined the Ballroom and Songs datasets and
randomly selected 75% of the stimuli for training the classifiers
and 25% for testing, with 1000 re-samplings of training and
testing trials.

Using the synchronization tempo alone, the scaling factor
was classified correctly 72.3 ± 2.3% (mean ± standard deviation
averaged across all re-samplings) of the time during testing.
By dividing the synchronization tempo by the classified scaling
factor, tempo-induction performance improved to 55.6 ± 2.5%.
The classes were centered on synchronization tempos of 114 ±

2 BPM, 223 ± 2 BPM, 359 ± 13 BPM, and 397 ± 2 BPM for
scaling factors 1–4, respectively. As expected, the class for the 1x
scaling factor was centered on the 450–600ms interonset interval
range described for other music corpora from a previous study
(van Noorden and Moelants, 1999) and the centers for the 2x
and 4x scaling factor distributions were roughly twice and four
times this range of intervals. The 3x scaling factor was never
classified correctly and was often confused with the 2x and 4x
classes (Figure 12A).

When rhythm information was included, the scaling factor
was classified correctly for 76.4 ± 2.2% of the testing stimuli,
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FIGURE 11 | In order to determine the scaling factor, we created two

classifiers that used speed and rhythm information in the summed PSTH. (A)

The first classifier used the speed alone, quantified by the synchronization

tempo. A distribution of synchronization tempi for each scaling factor is

shown. (B) The second classifier used both speed and rhythm. Rhythm was

quantified by the ISI ratios (the number of ISIs at a particular interval divided by

the total number of ISIs) at intervals corresponding to fractions of the

synchronization tempo. The median and interquartile range of the ISI ratios for

each fraction is shown for each scaling factor.

and tempo-induction performance improved to 60.3 ± 2.6%
(61.9 ± 3.3% for ballroom, 58.0 ± 4.1% for songs). The
difference in performance between the two classifiers was only
moderately significant (p = 0.016 for classification, p = 0.002
for tempo induction). The primary reason for the improvement
in performance was due to an improvement in classification
accuracy for the 3x scaling factor (Figure 12B). Thus, the
perceived beat frequency may depend primarily on the speed of
events, with a smaller contribution of rhythm.

DISCUSSION

In this study, we used models of the AN (Zilany et al., 2014),
brainstem, andmidbrain (Nelson and Carney, 2004; Carney et al.,
2015) to simulate neural activity in response to isochronous
sound sequences and real music. Our goal was to quantify tempo
induction performance based on the simulated sub-cortical
neural activity to directly identify the mechanisms necessary to
“feel the beat” in music. Furthermore, by using a biomimetic
model of acoustic processing in the brainstem and midbrain,
we could identify specific additional stages of processing that
are necessary to find the beat frequency of music. We found
that midbrain-level processing, inherent randomness in neural
activity, and a smoothing temporal window together limit the
strength of neural synchronization to regular acoustic events

FIGURE 12 | Confusion matrices for classifying each scaling factor with a

classifier that just used the synchronization tempo (A) or a classifier that

included the ISI ratios (B). By including rhythm, there was an improvement in

the classification of the 3x scaling factor but little improvement for classifying

the other scaling factors.

and produce a preferred tempo around 100 BPM, in agreement
with prior literature. Additionally, cochlear processing generates
a low-audio-frequency bias for beat perception, but the tempi
of the modulations themselves have a stronger effect on the
synchronization tempo than the carrier frequencies. Lastly,
despite these successes with simplistic acoustic stimuli, we found
that the simulated neural activity often did not synchronize to
the beat frequency, but instead synchronized to a multiple of
the beat frequency. By using a classifier to appropriately scale
the synchronization tempo to the actual beat frequency, tempo-
induction performance improved considerably.

We found that midbrain model neurons with strong onset
responses produced consistent preferred tempi around 100 BPM
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for clicks, SAM noise, SW noise, and tone pips. The SFIE
model simulates synaptic mechanisms that could give rise to
amplitude modulation tuning in the midbrain (Nelson and
Carney, 2004). Alternatively, onset responses can also occur from
adaptation mechanisms. Rajendran et al. (2017) showed that
adaptation mechanisms in the midbrain of gerbils accentuate
onsets in complex rhythms that could give rise to beat perception.
However, the authors did not look at various envelope shapes.
The responses of our model to these rhythmic stimuli for various
event durations produced consistent vector strengths at the event
frequency and variable vector strengths at all other possible
tempi, and often the synchronization was strongest at the event
frequency (Supplementary Figure 5), in agreement with our
findings for musical recordings. If the events are short enough,
we expect that adaptation mechanisms will accentuate the onsets
of all events and could produce an equivalent result. Additionally,
subjects vary regarding when they choose to tap to these stimuli
(Nozaradan et al., 2012; Rajendran et al., 2017), which also
suggests that the relationship between subcortical activity and
the beat frequency is not one-to-one and may involve a learned
mechanism that varies across subjects.

On average, cochlear processing in the AN fiber model
appeared to produce a bias to low audio frequencies because
the synchronization tempo was more often equal to the tempo
for the tone pips with the low-frequency carrier. This bias
provides a potential neurobiological reason for why low-
frequency instruments carry the beat in some music (for example
see Snyder and Krumhansl, 2001). However, it is tricky to test this
perceptually; multiple instruments often play simultaneously on
the beat, and cochlear delays can explain biases for simultaneous
events (Wojtczak et al., 2017). Our stimuli used amplitude
modulations at distinct tempi and phases to reduce the effects
of simultaneous events, and we quantified the bias using the
synchronization strength of neural activity rather than timing to
specific events. The presence of a bias may be tested perceptually
using these stimuli by having subjects either subjectively identify
the beat of the stimulus or tap along with the stimulus at the
beat frequency that they perceive. A crowdsourcing design may
be most appropriate to properly sample the parameter space of
these stimuli.

We used a temporal smoothing window to limit the upper
range of tempi to 600 BPM based on previous work (Repp, 2005).
This limit does not necessarily correspond to a peripheral motor
limit because at this event rate musically trained participants
are unable to accurately tap to every fourth event in a fast,
isochronous sequence of acoustic events (Repp, 2003). For
isochronous, simplistic stimuli, the temporal window was critical
in producing the preferred tempo around 100 BPM in our
model. However, we found that sub-cortical synchronization
often occurred at a multiple of the tempo in musical recordings,
and ultimately, by including a classification stage, tempo-
induction performance was better without the temporal window.
Then when is this temporal window applied? The temporal
window defines a constant tolerance for detecting irregular
events, but subjects can discriminate click rates around 10Hz
with an accuracy of about 3% (Ungan and Yagcioglu, 2014)
implying that it cannot correspond to a limit in acoustic

processing. Additionally, it is well known that cortical neurons
can synchronize to acoustic periodicities at much faster rates
(Joris et al., 2004). The window more likely corresponds to
predictive tolerance rather than acoustic tolerance. The exact
mechanism is unclear, but it could result from motor planning
mechanisms that are used for tapping to regular events (Mendoza
and Merchant, 2014; Patel and Iversen, 2014; Merchant et al.,
2015; Merchant and Yarrow, 2016; Nozaradan et al., 2017).
Motor synchronization may also affect the processing of regular
acoustic events in the brainstem and midbrain (Nozaradan
et al., 2016), and the accuracy of motor synchronization appears
to be correlated with the temporal consistency of brainstem-
level encoding of the speech syllable /da/ (Tierney and Kraus,
2013). However, in these studies, sub-cortical activity clearly
synchronizes to the acoustics at frequencies higher than 10Hz, so
it is unlikely that the temporal window is applied in the brainstem
or midbrain. To explain our findings for musical recordings in
particular, it is more likely that temporal limitations are applied
cortically and only after the beat frequency has been determined.

Our results suggest that the beat frequency cannot be
determined based on the sub-cortical neural activity alone, and
a second higher-level mechanism is necessary to perceive the
beat. The importance of the relationship between the heard event
frequency and the perceived beat frequency has been proposed
in the past (London, 2012; Ding et al., 2017). It is unclear
from our work what this mechanism might be; internal neural
oscillators (Large et al., 2015), motor planningmechanisms (Patel
and Iversen, 2014; Merchant et al., 2015; Merchant and Yarrow,
2016), or temporal coding of sequences in the hippocampus
(Geiser et al., 2014) could produce patterns of neural activity
at subharmonics of the synchronization tempo. However, the
process of going from the neural synchronization tempo to the
actual tempo is likely to involve a dynamic, high-level system.
Listeners can change where they perceive the beat for stimuli with
identical rhythms (Iversen et al., 2009). One’s preference for the
location of the beat is based on experience, since beat perception
varies with culture (Drake and El Heni, 2003) and infants prefer
different beat frequencies for identical stimuli depending upon
the frequency of vestibular sensation during training (Phillips-
Silver and Trainor, 2005). Lastly, whereas people often agree on a
particular beat for a piece ofmusic, peoplemay tap individually to
music at different frequencies and phases relative to the expected
tempo (McKinney and Moelants, 2006; Patel and Iversen, 2014).
Thus, the relationship between the event frequency and the beat
frequency is likely learned through experience and is not due to
an innate mechanism.

The techniques used in ourmodeling work are similar to those
used in other algorithms for tempo induction, but our model
is unique in predicting the tempo of music using biomimetic
models of sub-cortical auditory processing. Several tempo-
induction algorithms introduce a template-matching stage that
determines the proximity of the computed onset histogram for a
single clip of music to a database of onset histogram templates
for different rhythms (Seyerlehner et al., 2007; Holzapfel and
Stylianou, 2009). Elowsson and Friberg (2015) also included
the “speed” of the music, which was determined by a weighted
average of the two most probable tempi for the song. In
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their implementation, both the rhythm information and the
speed were used as inputs to a logistic classifier that ultimately
determined the tempo (see also Levy, 2011 for the importance
of speed judgments in tempo induction algorithms). Our
classification scheme is similar. We show that a classifier based
on the “speed” alone (the synchronization tempo) does well at
identifying the appropriate scaling factor for determining the
tempo. We also found that the pattern of interspike intervals,
which was used to quantify rhythm, provides a small, albeit
significant, amount of information for tempo induction. Also,
in our implementation, we assumed that beats are determined
based on the summed activity across CF. Similar algorithms
detect onsets when the energies in multiple audio frequency
bands peak simultaneously (Scheirer, 1998; Klapuri et al., 2006;
Ellis, 2007). In contrast, other algorithms have used the frequency
content to categorize onset events (Elowsson and Friberg, 2015;
Krebs et al., 2016). It is clear that the auditory system combines
frequency content into discrete events (Bregman, 1990; Darwin,
1997; Shamma et al., 2011), but where this combination occurs
relative to beat processing is unclear. Nevertheless, our model
might improve in performance if we introduce a stage that
isolates cross-CF neural activity into discrete temporal objects
and identifies the tempo based on the pattern of objects rather
than on the summed neural activity alone.

Our technique inherently assumes that events equally divide
beats and the rhythm that results is based on small integer ratios,
which is true for the songs in the datasets we used. However,
there are some songs in which the beat of the music is not
isochronous, particularly when the music has a complex meter
(London, 1995). Our model will identify the regular intervals of
events in this case, but a more complex learning mechanism that
can identify the explicit timing of non-isochronous beats would
be necessary for these particular applications. More strikingly, in
Malian jembe drumming, events do not occur at integer ratio
subdivisions of the beat (Polak et al., 2016). Music with more
complex subdivisions of the beat is particularly problematic for
our model because it relies on the initial identification of an event
frequency. The issue can be resolved, however, by recognizing
that humans have a fairly high tolerance for deviations from
synchrony when listening to regular events (Repp and Penel,
2002). The drumming is produced with consistent offsets from
the isochronous subdivisions of the beat but they may still
be within our perceptual tolerance to asynchrony. A similar
effect is observed in classical music; performers slightly vary

the timing of notes relative to the strict note durations of
the piece for expressive purposes (for review see Patel, 2010).
If perceptual processes and motor processes can distinctly
subdivide beats, then non-musicians in Mali might subdivide
isochronous intervals more evenly than jembe musicians who
have experience reproducing the non-isochronous events in the
music (see Jacoby and McDermott, 2017).

Our results demonstrate the importance of using real music
to study beat perception. Previous studies have primarily used
acoustically salient events with complex rhythms. We have
shown that the speed of events is relatively more important for
tempo induction than the rhythm of those events in musical
recordings. We encourage other groups to study the perception
of rhythm with biomimetic models of the auditory system. We
also encourage others to use real music as stimuli, since musical
recordings provide more realistic conditions by which we can
better understand how the human brain processes music in
general.
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