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0. 'Introduction. In [Sc 81] a logic is said to bound a -property P if all proper

extensions have P while the logic itself lacks P. If all extensions of a-logic have P then we

say that this logic has P essentially. For some properties such as being tabular bounding

logics- have been found:; for other- their existence- has been- proved without =a particular

example being known. We will- construct logics bounding various properties in the lattice

of normal modal logics and in-the- lattice -of intermediate logics. In [Sc 81] the prime

examples of modal logics bounding certain properties are non-normal logics and thus our

results will be a definite improvement on this. We concentrate on properties of finite

axiomatizability and f.m.p. The first to note that finite axiomatizability is a bounded

property was [Ra 79]. Shortly after that [Wr 79] constructed a logic bounding which

is based on a 3-valued matrix. The case of normal modal logics was still open. Our first

example is an extension of K4.3, and it bounds f.m.p. as well; we have thus proved that

not all extensions of K4.3 have f.m.p., unlike the case of S4.3. We will also construct

an intermediate logic bounding finite axomatizability thus solving a problem posed in

[Ra 79] and also logics bounding f.m.p. and other completeness properties. In order to

prove these results a number of theorems had to be established concerning the modal

theory of infinite frames and eliminability of points in frames.-' I guess these auxiliary

results have made the investigation into these rather obscure logics_ worthwile.. I wish to

thank first of all Vladimir Rybakov for his extreme care in checking this manuscript and

Dick de Jongh for reading parts of an earlier version. If errors have remained, it is of course

my own responsibility. Wolfgang Rautenberg has helped me greatly with his knowledge of

the field. Furthermore, I wish to thank Sun Ra, Abdus Salam- and the Kageyama School

of Go for- the inspiration.

1. Notation. In this essay all logics are transitive, that is, extensions of K4. We will

assume familiarity with the notions of modal logic and we will keep our notation standard.

A frame is as- usual a pair f = =(f; a). where d is- a binary relation on f. No distinction is

made between a frame and its `set of worlds. We write an ordinary arrow p f -* -g if p is -a

p-morphism. If in addition p is injective we denote this by p : f >-+ g and if p is a surjective

p-morphism we denote this by p : f -* g. A frame g is called an extract of f if g is

the p-morphic image of a generated subframe of f. We -say that f omits g if g is not an

extract of f .. If _p embeds f as a subframe in, the sense of [Fi 85] then we write f - g. If f

is a transitive frame we call t a weak successor of s if either s = t or s < t. A successor is

called strong if it is not a weak successor. A frame f is one-generated if there is- a point

s.. E f such that every point t E f is aweak successor of s. logics in this,

essay will be of finite width; to be more- precise; they will all be of width 2. Logics of finite

width have been defined and closely studied in [Fi 74a]. They are known to be complete

with respect to Kripke-frames; moreover, the Kripke-frames can be chosen such that the

:
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function assigning depth to points can be extended over the whole frame. In general, the

depth of a point is therefore an ordinal number, possibly infinite. If s E f is a point of

depth a( W e write dpf(s) = a) and t a strong successor then dp f(t) < a. If t is only a weak

successor then dp f(t) < a. Taking the usual definition of an ordinal number as the set

of all smaller ordinals, this allows us to define the depth via dp f(s) _ {dp f(t)Is i t .4 s};

note that by this definition terminal points have depth 0 but this is rather welcome for

our purposes. For a frame f we let dp(f) {dp f(s)Is E f }, and so a one-point frame is of

depth I.'

For axiomatizing logics we use two tools. That of a splitting ([Ra 80] and [Kr 90aj)

and than of a FINE-splitting -([Fi- 85]). If A is a logic containing K4 and f a finite, one-

generated frame we denote by A/ f the logic obtained by splitting f from A - which is

the smallest logic 0 containing A such that f V Md(O) - and by A{ f } the smallest logic

containing A and the subframe logic K4f. (We are not using the subscript notation of

[Fi 85] here in order to avoid small print.) Extensions considered here are usually of the

kind K4M/N where M and N are (possibly infinite) sets of finite, one-generated frames.

K4M/N simply denotes the splitting of the subframe logic K4M by the frames of N.

For a property P a logic is said to have P essentially if all extensions have P. A logic

is said to bound P or to be pre-P if all proper extensions- have P but the logic itself

is not. For finite model property and finite axiomatizability two important facts can be

proved. If A1, A2 are transitive logics which are essentially La. (have f.m:p. essentially)

then Al fl A2 is- essentially La. (has f.m:p. essentially). Both are seen using the next

lemma. A property P of logics is said to be intersective if from the fact that Al and, A2

both have P we can infer that At n A2 has P as well.

Lemma 1 Suppose that both Al and A2 have P essentially and that P is intersective.

Then Al fl A2 has P essentially. In other words, to have P essentially is intersective as

well:

Proof. Suppose that 0 D Al fl A2. Then (0 U A1) fl (0 U A2) 0 U-(A1 fl A2) = 0, by

distributivity. By hypothesis, both O U Al and 0 U A2 have P and since P is intersective,

0 has P as well. H

By this lemma, to have f:mp. essentially is intersective. Moreover, to be La. is intersective

if we concentrate on extensions of K4; thus to be essentially La. is intersective for transitive

logics.

Some particular notations for frames will also be useful. A reflexive point is denoted

_
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by and- an irreflexive point by x. The box .0 stands for either ,e or x.

2. Strings and Decompositions. In. most cases it is not to, decide whether a particular

frame can be mapped p-morphically onto another and to see that a given map is. a p-

morphism is mostly also not straightforward. The story of this paper had to be rewritten

a number of times because a certain p-morphism has been overlooked. In order to have

some more rigorous methods for checking, two tools will be introduced here. The first is

the decomposition of p-morphisms. Call a p-morphism it f -» g minimal if it is not an

isomorphism and for every factorization f -» h -» g h is isomorphic either to g or to f .

Likewise a p-morphism t : f - >-- g which is not an isomorphism is minimal if for every

factorization f >-- h >- g h is isomorphic to either g or f. Here is a lemma that shows the

importance of minimal morphisms in our context. It is an adaptation of a result originally

found in [dJ 66] and rediscovered in [Be 88].

Lemma 2 Suppose that f, ,g are Grz frames without ascending chains. Then 7r ; f -» g is

minimal iff there is exactly one nontrivial fibre 7r-1(x) and it contains two points. t : f >--> g

is minimal iff #(g - t(f)) = 1.

Proof. In each case the conditions on minimality are sufficient-. That they are also

necessary will be shown. Let 7r : f g be minimal. Then take a point s of minimal depth

such that there is a t s with ir(t) = 7r(s). If both are of equal depth then the map p

identifying just s with t is a p-morphism; for if p(s) d p(x) then either p(x) i p(s) in which

case x = s and so s < x or p(x) p(s) in which case it-1(x) = {x'} since 7r-1(x) must

contain points of lesser depth than s (and t). But 7r was a p-morphism and so t < x' as

well.. Similarly for the remaining cases of p(x) 4 p(y). If, however, the depth of t is greater

than the depth of s then take an immediate predecessor x of s. By -the same methods

show that the map p identifying x with s is a p-morphism. If 7r was not minimal, then it

factors through p.

Now if t : f >-* g is minimal, let M = g - t(f ). Since M has no ascending chains there

is a maximal point m E M. Now h = t(f) U {m} is a generated subframe of g and t clearly

factors through the embedding h >-- g. d

It is clear that between such frames p-morphisms are decomposable into the elementary

operations of adding a point, conflating two points or dropping a point. (The latter two

are not the same.)

The next tool is that of a- linear decomposition of -frames. If f and g are frames, let

fog denote -the frame obtained by putting f - before g. To be precise; f (g,= (f +g, 4 f U

:

-»
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<y U-f x g) with f +-g being the disjoint union. Any sequence GiEafi with a--E Ord°P,

the -converse well-orders, is -called a string and the f are the segments. Segmentation

plays a role in the decomposition of p-morphisms: The operation -0 produces chains of

frames, while the disjoint union ® produces what- is sometimes called an anti-chain.

Lemma 3 it : f j-g =» d is a p-morphism iff it r f and 7r [ g are p-morphisms. t

f O g >-+ d is a p-morphism iff t r g is an isomorphism and t[ f a p-morphism. -1

Moreover, if f @ g >- d then d f' ®g for some f. For surjections -» this need not

hold. But for minimal p-morphisms we can get a clear picture of the possibilities. Let

f @ g -- d a minimal p-morphism such that the nontrivial fibre 7r-'(x) is not -contained

in either f or g. Then, as 7r-1(x) has two points, s,t say, one of them is in f the other in

g. Let then s E f, t E g. We have s < t -A s. It then follows that g must be one-generated

and therefore g 0 g. Thus 7r may only conflate and end point of f with the generator

of g. If iEa fi is a maximal decomposition if every fi cannot be decomposed into two

segments, then the following holds.

Lemma 4 Suppose that f = 0 iEafi is -a maximal decomposition and 7r : f -» g a minimal

p-morphism. Then it is either of type iri : fi --w fz or of type iri : fi J. -» fl o . In the
first case 7r is said to be decomposable. In the second case we call 7r a fusion. -i

Finally a word about subframe axioms: In [Fi 85]° it is shown that for most frames f the

subframe axiom for f reduces to a non-embeddability condition for a set F of frames.

In the special case of axioms that we are considering, this set reduces to f . - Namely,

these are frames of -the type (lp,n ®0n) where 0n, b,,,, are linear. Moreover, if 3g is

indecomposable non-embeddability of gg into a string g A can be checked segment-

by-segment by looking whether g embeds into a segment of A; again, our frames have this

property. -

3. Homogenization and dropping points. We will make heavy use of the homoge-

nization technique as developed in [Kr 90b]. The ideas, which were extracted from [Fi 74a]

and [Fi 85], are as follows. Given the sentence letters Pn = {pili E n} and a k E w let

Fm(k, n) denote the set of formulas based on Pn and of modal degree < k. Fm(k, n) is a

boolean algebra whose atom set we denote by At(k, n). For the rest of this essay, k and

n will remain fixed throughout and P E Fm(k, n). Suppose now that there is a model

(g, -y, s) J= P with dom(-y) = P,. Then, as it was noted -in [Fi 74a]ti and; [Fi 85] that a much

simpler model -can be -constructed for P. Call- u 'E g 'A-maximal in (g, y) if (g, y, u) J= A

and for all x D u such that (g, 7, x) J= A we have x < u. Call u maxima[ifit is A-maximal

^_'

7r :

^_'

@
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for some atom A E At(k, n). This A is called the atom of u-in (g, y). Since we are working

with frames without strictly ascending chains of points we know that for every x E g such

that (g, y, x) = A there exists a maximal weak successor x1 with atom A. There is now

an important observation on from a model. -Let gµ denote the subframe

of `maximal points in g, let h be a subframe of g such that g1l"- - h - g; then by induction

it can- be shown that for P E Fm(k, n)

(g, y, s) = P t * & A ) P,

where y : Pn-=-> 2h is the natural restriction of y : Pn - 29 (see [Kr 90b] for a proof). Thus

we can drop any set of non-maximal points from a model for P and still we retain a model

for P. Finally, if g is one-generated and a frame for Grz{wd(1)} then #g1 < n).

This is so because if x1I 4 yµ then the atom of x12 must be different from the atom of yµ.

Therefore a.strictly ascending chain in gµ contains at .most At(k, n) points. Moreover,

for every A there can be at most £ maximal points with atom A.

The method of homogenization- developed in [Kr 90b] is not sophisticated enough to

yield the results we need. What is called for in our context is a result which allows to

`move' the subframe of maximal points into a certain position. There is a rather simple

theorem telling us when this, can be_ achieved. Let ga _g be a, subframe of g. We call

g° m-compatible with if there exists an isomorphism c : gA -, ga such that for every

x E g there is a x E g such that for the sets xS := {_y E gaIx d y} and xM :_ {y E g1Jx 4-y}

we have xs =-c[xM]. We define x on g by letting x = t-i(x) if x E ga and else choose x

such that xs = c(xM). Next we define xI := t(ill). The next theorem tells us that there

is a valuation such that ga is the subframe of maximal points of (g, y) and that x and

XI have the same. atom in (gz y). .

Theorem 5 Let g° be m-compatible with Then there exists a valuation y such that

for all P E Fm(k, n)

(t) xEy(P)<* Ey(P)

Consequently, gU is the subframe of maximal points of (g., y) and x and x° have the same

atom.

Proof. -Define 7 by x E y(p) E y(p) for, p. E-_Pn (t) is: now-proved by induction.

The only critical step is P = OQ. If x E y E -y(Q) for- some y. b- x. By IH,

ya E. (Q) G ya E -t(Q) yu E -y(Q) (since ga = y y E y(Q). Hence

_-

Pn -->

-C+

y

<* x

' a '
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ya E -y(Q)- as well as yA E y(Q) and sox E y(OQ) since x 4yµ. (This is so because

y° E xs and thus E t-1[xs] = Ym.)

Conversely,, assume x E y(OQ). Then y c y(Q) for some y D Y. We can assume that

y yµ and soy=zf, for z = t(y). By 111, z E (Q) since = y. But < = and so

P E-iM from which z E xs and consequently x < z. Thus x E y(OQ).

Now x c j(P) b x E y(P) q ill E y(P) q x° E j(P) which proves _that x and x'
have the same atom in (g, y). To see that x° is maximal, assume that - x° 4 y and that

both have the same atom in (g, y). Then xU < y° and so YA 4 yA. Since YA and YA have

the same atom in (g, y), y 4zµ and so ya d x° from which y 4 x°. -1

Theorem 5 has consequences worth reflecting on. First, if we have a model, then this

theorem says that we can drop some or all non-maximal points with impunity. However,

sometimes dropping points has to be used with care. For if g is a frame for a logic A it is

not-guaranteed. that dropping points will yield another frame for A. Thus -can dropping

M from g safe if Th(g - M) = Th(g); moreover-, call dropping M supersafe if for every

f, h T h(f (Dg - M @ h) = T h(f (Dg J h). If g - M is an extract of g, dropping M is safe

and if g - M is a p-morphic image of g dropping M is supersafe.

In addition to dropping from a model there is the possibility of dropping from a frame

analoguous to [Fi 74a]. But the difference is that; we can actually give some explicit criteria

for when points can be dropped. Let .us call a set N C g eliminable if for every finite

subframe gA C g there is an m-compatible ga such that no point of N is a point of g°.

Then any model for a formula P on g can be made into a model of P on g_ - N. (For by

eliminability, for any model for P we can assume that no maximal point is in N =since we

have finite width and no ascending chains; but N can be dropped from the model.) Hence

Th(g - N) C Th(g). However, the following theorems demonstrate that the situation is

as good as it can be.

Theorem 6. Suppose that N_C g is a set of eliminable points. Then dropping N is safe.

Proof. We=need- to- show that Th(g - N) Th(g). Thus let P be consistent with

Th(g-N). Then there is _a model (g-N; y; s) P. We will find a S such that (g, b, s) (= P.

To this end let (-)4 be as usual the function assigning to each x E g -- N- a maximal

weak successor with the same-atom (with respect to y). Now extend-,(-)µ to a function

H U : g ---+ g by choosing for each x E: N a successor =x" .which is, also maximal, that

is, x"µ = x" (by which also x" = x"). (For example-, there always is a successor of

depth -0- that is maximal.) Now define -x E S(p)` .= i" Er y(p). Then we want to show by

yµ

= z x z zA
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induction on Q E Fm(n,-k) that x E b(Q) q x" E y(Q).. In particular, it follows that

if x V N, x :E y(Q) q x" E y(Q) (by- definition of (-)/') q x" E -y(Q) (since xt, = x")

q x E S(Q). After having done the induction we have that (g, S, s) 1= P since s E g - N

and (g - N, y, s) = P.

In the induction there is only one critical case, that of O. Let thus Q = OR. If

x E S(OR) then for some successor y E S(R). By III, Y" E y(R) whence y" E S(R) since

y"" = y". Thus x E S(OR), as x i y". Conversely, if x" E y(OR) then for some successor

y E y(R) from which y N and hence by III yA E y(R) and so y" E y(R) from which

again by IH y E S(R). Now as x i y, x E S(OR). -I

Lemma 7 -Let N be elirninable in g. Then N is elirninable in f (D g (D h for every pair of

frames f, h....

Proof.:. Suppose N C f ®g g-h: Let N f _= Nn f, N. _=- N=n g-, Nh = N n.h. By assumption

on g,-there is a N9 -such that N9 n M = 0 and N9 is m-compatible with N. in g. We have

to show now that in that case N is in-compatible in f 0 g(D h with N' = N f U N9 U Nh.

-To start, we have an isomorphism G9 :.N9 -} N9 such that for every x g there is a Y

so thatxN9 = c9[2N9]. Now lets : 1V -.. N' be defined by t(x) = c9(x) if x E g and t(x) = x

otherwise. Now define x by x x if x E f U h and x =_i if x E g. Then c is first of all an

isomorphism as is readily checked; moreover, if x E f g 0 h then c[xN'] = xN. To see this,

note three cases. Case 1: x E h. Then x = x. And so c[xN] = t[xN'] = xN' = xN. Case

2:_ x E g. Then 1[x N'] = t[xN'] = cg[iN'ng:]Uth[xNnh] = xNng.u.xNnh = xN. Case 3:

x E f. Thent[xN'] _,tf[xN'nf]Ucg[xN.ng]Uth[xN'nh] = xN'nf.u.ag[xNng].U.xN'nh =

xN n f. U .xN n g. U xN fl h= xN. H

Corollary 8 Let N be eliminable in, :.[Then dropping N is supersafe. -1

4. A logic bounding finite axiomatizability. If a is a converse well-order, that is

a°1 E Ord, a is a isomorphic to the string OiEax. The logic of all converse well-orders is

G.3. Every proper extension of G.3 is finitely axiomatizable and tabular while G.3 has

f.m.p. and is La. Although this also follows from the subframe theorem of [Fi 85] we will

give -a -proof using the dropping technique `to make the reader familiar with it. Take any

finite aA C a. Then aA is a finite well-order of cardinality k. Take as a° the points of

depth < k in a. This subframe is m-compatible with crt`. By consequence, all points of

depth > w can be dropped. Thus for infinite a, Th(a) = Th(w°p). Now we are studying

the logic of the frames- Oa', -a-E Ord°P1-; Let K4.30= f (Th( 0a)ja E Ord°p). K4.3

E

=

@
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is a subframe logic; namely, if we add to K4.3 the three following axioms we get K4.3' .

(Note that matches with either or x.)

The first frame excludes that we have a non-initial reflexive point, while the second ex-

cludes proper clusters. Again by [Fi 85] K43 =1 has f.m.p. - a fact which the dropping

technique can also show nicely. Now it is easy to show that K4.3 has V0 extensions and

therefore not all extensions can be decidable. Just consider from the powerset of w into

the lattice of normal extensions of K4.3' denoted by EK4.3' the map c : P(w) -* EK4.3'

defined by t : N K4.3'/{ gala c N}. Since for finite a, / Js is not an extract
of tJ a unless a = Q the logics T h( (D a) and Th( () are incomparable for differ-

ent numbers; therefore, c is injective and so #EK4.3 = 2K0. (See [Fi 74b] for a similar

argument.) Now consider- the logic Ref := t(w). This logic is not f.a.; for we have an

axiornatization by' infinitely many-axioms none of which is dispensable. On the other

hand; Ref has the same finite models as G.3. Consequently, as G.3 is f.a., the two must

be different. So Ref lacks frn.p. This proves first of all that K4.3 does not possess

f.m.p. essentially. But there is more. Using Theorem 6 we can show that for infinite a,

Th( (Da) = Th( ow) by showing that all points of depth > w are elminable except

for the reflexive point. K4.3' = l(Th( Ga)la°P E Ord) =' f(Th( Ga)la°P E cv + I)

and so we have that Ref = Th( 0 w) since we have eliminated the finite ®@ a. Then

no proper extension of Ref can have G-w among its models, nor any other G a. Thus

every proper extension includes the logic of the converse ordinals, which is G.3.

Theorem 9 The' logic Ref _ K4.3'/{ 0a[a°P E w} bounds finite axiomatizability and

finite model property: Moreover, Ref Th( Gw°P). -I

The extension lattice of Ref looks as follows.

H

C)

=
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Th(1)

t G.3

Ref

This can be interpreted as a splitting result as follows. We observe that (Dw°P is a

Ref-frame and therefore Op A (p A Op) is consistent with Ref. Hence Ref i Op -}

O(p A -ip), that is, Ref J p) -* p. But now, since Th( Ja) = Th( 0,3) for
all infinite converse ordinals, we have that Ref = G.3 flTh( (Dw°P) = Th( @w°P). Thus

G.3 = Th( (Dw°p)l C)w°P. Indeed, the algebra of finite and cofinite sets of (w°P is

finitely presented by factoring out the equation a -* Oa 1 from the freely one-generated

algebra; in symbols, Af ( (Dw°P) FRef(a)/{a =4 Oa}. We thus obtain that G.3 =

p) - p) (see [Kr 90a]). It is striking-that in the presence of this axiom

we can forget almost all -other axioms; for we have G.3 = K4.30 (0 (Op --+ P) -+ Op). So

while Th( Ow°P) is obtained by splitting out countably many frames and yet is not f.a.,

G.3 is obtained by splitting just one more frame and it is f.a. The paradox is quickly

resolved if we remind ourselves of the following facts. If N is a finite subset of w then t(N)

canbe shown to have the finite model property and therefore Af ( Gw°P) is not finitely

presentable and does therefore riotinduce a splitting. However,' as soon as N is cofinite,

t(N) contains sufficiently many axioms to make Af ( 6)w°P) finitely presentable.

5. The- intergalactic research program.. The intermediate case is by far more

complex. Obviously, one cannot use the example of a linear logic since- all extensions of

Grz.3 have the finite model property. But we need not go very far -beyond that. The

logic we are looking for will be of width Q.

Th(2)

Th(3)

4 Th(4)

=
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wd(2)

(We are now omitting the arrows; they are assumed to go from left to right.) Frames for

Grz{wd(2)} which are one-generated have at most two points of given depth. We call

the set sE f(a) = Is E f , dp f(s) = a}_ the a-slice of f . Following [Kr 90b] we say that

a logic containing K4 is of tightness n if is contains the logic K4{ti(n)} where ti(n) is

the following set of frames.

Alternatively, A is of tightness n if, for every one generated frame f for a point s there

does not exist a chain of n points, incomparable to a successor of s. For example, A D K4

is of tightness 1 iff no point in a one-generated frame is incomparable with any other iff

every one-generated- frame is linear if A D K4.3. Logics of finite width are complete with

respect to frames in which every point has a depth. If f is such. -a frame and s a point

of depth a = w x k +,3 with 0 < w then the maximally connected subframe containing

s- of points of depth less than, w x.,(k + 1) but at least k x w is called the galaxy of s..

(This is reminiscent of the definition of a galaxy in non-standard analysis.) If F, A C f

are galaxies of f we write IF 4 A if for all g E 17 and all d E A g 4 d; F and A are called

comparable if either r 4 A or A 4 F or r = A. A frame is called a street if is a string

of galaxies. In a street there is in addition to the notion of adepth also the rather. coarse

notion of -galactic- depth. -A point is said to be of galactic depth k + 1 if it is of depth

k x w + 0 for some 0. In that case we also say that this point is of local depth /; here

it pays-off to let terminal points have depth 0, since for points of galactic depth 0 local

depth and depth are the same.' The depth is thus determined by the local depth and the

galactic depth. Likewise, a frame is of galactic depth k if it is of depth k x w + ,'-for

some . It can be shown that logics -of finite width and finite tightness are complete with

respect to streets. For let A 3 K4{wd(m),ti(n)}. Then A is complete; thus let f be a

one-generated A-frame. Let all galaxies of depth < , be linearly ordered. Assume that

there are two galaxies of depth a, namely r and A. They must then be incomparable but

there is- a-s such that s precedes -both F and A. Then neither s E F nor s .&L1. In addition,

one-of IF, A must be an infinite galaxy; if not, s must belong to one of the galaxies. Let

J
n

3
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r be infinite. Then F contains a chain of n points none of which is comparable with any

point of A. Since ti(n) does not embed into f, must be empty. So F is the only galaxy

of depth 3. It is perhaps instructive to see an example of a frame with a non-finite and

non-initial galaxy in order to understand why the argument is not entirely trivial.

A logic has f.m.p. iff it is complete with respect to frames of galactic depth 1. A logic

has galactic f.m.p. it is complete with respect to frames of finite galactic depth.

Theorem 10 All extensions of S4 of finite width and finite tightness have galactic f.m.p.

Proof. We -prove that dropping a galaxy of nori-zero galactic depth is supersafe. It the

follows that any street is modally equivalent to its galactically finite substreets. Thus

let (E (D)F 3 E be a street. (The bracketed segment is optional.) Then (E-O )F (D E -»

But Th((E0)E) by the lemma given below. -4

Lemma 11 Let f be a one-generated S4-frame of finite width and finite tightness. Assume

that f has exactly one point w of depth k x w > 0. Then {w} is eliminable.

Proof. Suppose that N C f is finite. Let N+ _ {x E Nix 4 w x}, N- {x E

NI w 4 x .4 w}. Then by our assumptions about f,_ N = N+_ U {w} U N- and N+ _ {x E

Nldpf(x) > dpf(w)}, N- = {x E Nldpf(x) < dpf(w)}.

Claim: For every finite set M C f of points of depth < dp f(w) there exists a point of

depth < dpf(w) seeing -all points of M.

Assume that f is of tightness .£. The proof is by induction on the cardinality of M. The

case where M = {t} is trivial. Now assume M = {t} U M'. By induction hypothesis, there

exists a so 4 M. Now take any strictly ascending chain se 4 sQ_1 4 ... 4 so. We can have

it that the depth of sQ is < k x w. By tightness, sQ 4 t.. Thus se 4 M, as required.

The lemma is now proved by taking w' to be a point of depth < k x w such that

w' 4 N-. Then N' := N+ U {w'} U N_ is m-compatible with N. -i

6. The subatomic research program. The-following frames are of particular interest

to ..us,.

A

_

dp
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Let us call a generated subframe of cw a photon, a generated subframe of A,,, a lepton

and a generated subframe µ,, -a meson. A string is photonic all segments are photons

and leptonic if all segments are leptonic or photonic and mesonic if all segments are

either photonic, leptonic or mesonic. Our goal here is to determine the logic of photonic,

leptonic and mesonic strings. To do this we will develop a solid arithmetic of p-morphisms

for these frames. The photons might not seem worth a discussion, but it is worthwile

starting with the simplest case and see what gets lost when we go further down in the

lattice of intermediate logics.

=Thus let us begin with the photons. They come in a variety ck where k is the depth-

of the frame. Note that 01 = and cn+k = On @ Ok so that in fact photons decompose

complete into a. Any photonic string is then a string of s, which is the most basic

component of `frame matter'.. Minimal p-morphisms are Ok >- Ok+l -» Ok; moreover,

Ok >-' Ow - Ok,

Theorem 12 Pho = Grz.3 = Grz{wd(1)} is the logic of photonic strings. Pho is
pretabular, pre-compact, has f.m.p. essentially and is essentially- f.a. and essentially

decidable.

We will prove a selection of the claims, which are known anyway. In this simple case we

meet a number of standard arguments. First, if-" is a photonic string, and (Dµ C a

finite subset of maximal points, we can supersafely drop non-maximal @ (i) if they are

behind a (ii) if they are directly followed by a @ (iii) if they are of depth k x w > 0.

Thus if 4W # 0 everything outside t can be supersafely dropped. If µ = 0, we can drop

everything except one . This shows that for- every photonic string Th(4)) has f.m.p. and

thus- that Pho has f.m.p. essentially. Thus every extension of Pho is a splitting logic.

000<

4 4
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For if Pho- C A let N be the set of finite, one-generated photons which are not frames

for A. Then Pho/N C A; but since the logics have the same finite models they- are in

fact equal. Now., A is finitely. axiomatizable, if N- is finite or if N. can be- replaced by a

finite set. But certainly N is a set of photons; and for k < £, 5k is an extract of 4p and so

Pho/O,e C. Pho::/g$k. Thus, as the photons are -linearly ordered. by the :odder of being an

extract of the other, we. can replace- N in -the ,splitting representation by 01 with :being

the least k .with g$k_ E N. Hence. A =.Pho/g5.e. - Decidability follows as well- as tabularity -

Now on to the leptons. Leptons of depth k come in two varieties, one-generated and

two-generated. Let us write Ak for the one-generated lepton of depth k and ak for its two-

generated companion.. It turns out that A,,, is best classified as one-generated;- logically,

this is reasonable since a,,, and a4J have the same logical theory. Dropping or adding

this point is supersafe.

There is a- decomposition .1k =-'0jEkA1 and ak+`i = 1 Ak, th=us any leptonic string

decomposes into .1i and ai. Moreover-, ai = 01 r and -A = -®' -. This leaves, in.

order to get= a -full picture of admissible p-morphisms, only two choices: We have fusion

ai @)`i -' Ai and ai -w ai. On the side of embeddings note ai >-+ Ai. We conclude this

lemma.

Lemma 13 There are p-morphisms Ak -» an for all k > n. There are no p-morphisms

kk _-» A', n k -< w + 1. Every finite leptonic string is an extract of A,,,.

Proof. If k > n then k = n+t for some f. Then Ak = At* @ ai @ A _1 -. Ae (D Ai 0 an-I -

. To -see that no p-morphisms ak --* an exist simply note that everykl @ an _1 = A
71

minimal p-morphism produces at least a segment A. The last observation goes as follows.

An >-* A,,; .if A is a leptonic string of depth n, A decomposes, completely into the leptons,

by applying ai -» ai in each segment where. it isAm, A'. We can' now reduce an to A

necessary.

Theorem 14 The logic Lep = G-rz{wd(2)., ti(2)} is the logic of leptonic strings. More-

over, Lep Th(a,).. - Lep has- f.m.p. essentially, is essentially

f

®

A4' X14

@

=

-» <

d

=
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Proof. First, Lep- is complete with- respect- to one-generated strings.' We have to show

that any Lep-string is a leptonic string and. vice versa. This is not hard to do. The strategy

is- now to-show that .Th(A),has, f.m.p. for A a-,one-generated leptonic string. If any such

logic-has. f.m.p. then -Lep has f.m.p. essentially. Now taken one-generated A=-0iEaa(i)1

with A(i)k = A , A'. Now. assume -a finite subframe ,AA C A -of -maximal points. In any

segment that contains ;two -points which are not both maximal we supersafely drop. one

non-maximal, point. This leaves us with, finitely many components of type ai.- In -between

these components sit photonic strings- which can be supersafely reduced to either 0 or a

photon containing the maximal points. If we cannot drop any more points we end up with

asubframe,A' D At, of cardinality < 3/2 x #Aµ. (Check that any non-maximal point must

immediately precede two maximal points in order not to be dropped at some stage.)

Now the theorem is proved if we show that Lep is essentially La.,- since essential

decidability will follow. Since Lep has f.m.p. essentially, every extension of Lep is a

splitting of Lep. The- question is then whether we. can always choose a finite set, F such

that A = Lep/F.- To this end define a partial order on the set Cep of one=generated

finite leptonic strings by f --g iff f is an extract of .g.. The order = is a well-partial, order

(wpo) in the sense of [Ks 60]- as we will show below. Recall that a partial order is called

a well partial order if for all sets N the-set min M-, of- minimal_elements exists and

every, set of mutually incomparable elements (anti-chain) .is finite. If CC-,< has minima

and has no infinite antichains, neither has Moreover, if -i are wpo's on Mi -(i = 1, 2)

then -,<1 U 2 is a wpo on M1 UM2 and _x. 2 a wpo on Ml X M2 (see [Ks 60]).=

Proposition 15 The following are equivalent.

(i) - is a well-partial order.

(ii) Lep is essentially f.-a.

(iii) Lep is -essentially decidable.

Proof. Clearly, since Lep/M = Lep/min M, (i) implies (ii). However, if (i) does not

hold there is a set N such that min N is infinite. Then there is an extension which is not

f.a. Thus (i) and (ii) are-'equivalent. Moreover, in that case for every M, M' C min N

we have Lep/M = Lep/M' M = M' whence Lep has uncountably many extensions;

but only countably many of them are decidable. Hence (iii) implies (i). Now if Lep is

essentially f.a.-, it is essentially decidable -since it has f.mp. essentially. This shows (ii)

-<

-,<1

q

(iii). -I
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All that is left to show is that - is =wpo on .yep Now let A E .yep. Then A = ®
iEnak(i)

for some numbers n;k(i) E w. If A = iE;A is another such frame then A + A if
k(i)

there exists an isotone embedding o : n >-+ ii with o(0) = 0 and k(i) < k(o(i)). Thus if we

represent members of .yep by sequences (k(i)l i E n) and define an order C according to this

definition then C is almost a wpo according to [Ks 60]. If we ignore the clause `a(0) = 0'

then we have exactly the definition of non-branching trees over (w, <), the latter being a

wpo, and hence the whole is a wpo by Kruskal's Theorem. The extra clause is a harmless

complication which we can in fact ignore (this produces an order which is a direct product

of the space of trees-over-(w, <) with The uneasy reader may-however observe

that our order is isomorphic to the order obtained for S4.3-frames ordered also by `being

extract of. By appealing to the result of [Fi-71]. that this is a wpo, our case is proved. H

Now we are treating the mesons; their case is much more involved and the decompo-

sition method will do its job rather well here. Again we use the subscript µk to denote

a meson of depth k and the superscript µ for a one-generated meson and µ° for a two-

generated one. But it turns out that this does not determine them completely. Depending

on which point generates µ we -get a=different meson and likewise we have two choices for

two=generated=mesons Namely, if µk is two-generated of depth k then the two generating

points- might be of equal depth or of different depth. This we distinguish by writing µk

in the one case and µk< in the other. Since a one-generated meson µk decomposes into

µk_1 this distinction is carried over to the one-generated mesons and we write µk for

the meson whose generating point has immediate successors of equal depth and pk< if it

has immediate successors of different depth.

/14

The- mesons are indecomposable= with the exception of µk = - Gµk-1, µk< µ l
, ;They can be generated via minimal embeddings from each other as -follows.

!J

(w, <)).

_
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pk - p'k+l = Pk ' -Ak+l. Pk ->-+ P-k µk- Pk

Ak )- pk+l Ilk< >--I. Ilk

No other arrows exist. With respect to minimal p-morphisms we first observe that there

exist only two. The best- way to see this is to recall that, if a minimal p-morphism that

identifies two points s, t then s and t share all successors which are not equal to s or t.

Then there are two choices. (i) s and t are of equal depth. Then if s or t had a successor,

we had decomposability. Thus s and t are of depth 0. (ii) -s -precedes t. Then s cannot

have two immediate successors.` Hence s is of depth 1. This gives the following cases:

These p-morphisms produce the following outputs which for beauty's sake are listed in

commutative diagrams.. By decomposability of the one-generated mesons,, we list only, the

two-generated cases.

A k+-2

µk @ A11 K+1 0 Al
-

Itk+ 0 Al

Pk+1 ®A1

By the o<- = o< o o<above it follows that µk+o= n+1,

pk+n -" pk n -" pk p
o
k

<'
Also, µw Al -p µ. (2 An -+ A,,,. We thus get that any 0 A with A a finite

mesonic string is a p-morphic image of pw: As a result we note that there is no p-

morphism p -» µ' between mesons unless µ' is leptonic because p-morphisms introduce

> >

µk+2 Pk+3

t t t

>-

Yk+1 Pk+1 >-+ µk+2

I I I

µk< @ Al µk 0 AT1

} n+1 -" A
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decomposability into a meson and a lepton, and- the, lepton never disappears. -Note that

there are a few exceptional mesons.

µi-=pi" =Ai= fez==Ai@Ai

/11 IL1 = a1 /Lay = Ai @ Ai

A final note. -Cal a string one-mesonic if it is -either leptonic or of the type /2 )1

where A is a leptonic string and p a meson. Our considerations above show that if a string

contains n mesons then any extract of that string contains at most n mesons. Hence the

class of one-mesonic -strings is closed under p-morphic images and generated subframes.

Moreover, any finite one-mesonic string is an extract of (We define p2 = (D (02 (D 02)

P2 excludes two parallel two-element chains.)

Theorem 16 The logic Mes = Grz{wd(2), ti(3), p} is the logic of mesonic strings.

Mes has f.m.p. essentially.

Proof. It suffices to study the one-generated strings. Since the subframes wd(2), ti(3), p2

are of the form g for an indecomposable g; we can- check by segmentwise inspection

whether Mes is the logic of mesonic- strings-. Now -take a frame 0 5J y such that µ is

indecomposable. If y is a meson (lepton, photon) then it is -a Mes-frame; thus the converse

needs to be established. Thus assume that p is not a lepton; then it has at least three

points, and so there is some slice {x, a} of local depth n E w. We now investigate the

points behind this slice. Suppose we have a point y- immediately preceding x. If a has no

predecessors (in p) then neither has y, by non-embeddability of ti(3). Thus if we have not

exhausted the points behind x or a, there must be at least a predecessor of a. Now since

p2 is not embeddable, either y < a or b a x. By symmetry, we may only deal with one

case, say b 4 x. If there is still another point, y has a predecessor. Otherwise let there

be only a predecessor c 4 b. Then c .4 y implies embeddability of ti(3) and thus c 4 y,

which was excluded. So, indeed there is an immediate predecessor z 4 y. Then we must

have z 4 a by ti(3) but we cannot have z 4 b; for otherwise y was decomposable, for any

c q_b c must also satisfy c 4 y as we have seen.

c h a

z x
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Now, n was completely arbitrary. If we start with n- = 0 we see inductively that µ is in

fact a meson µk , µk for some k. -

Now let -M be .a mesonic string and let Mµ C_ M be a -finite. subset. We know by

previous proofs that leptonic and photonic segments can be made rare (at most Mµ such

segments) by supersafe dropping. In addition, mesons without maximal points can be

reduced to., and almost always be dropped,, which leaves us with finitely many mesons.

Thus the only problem we have is that there might be a galactic meson ,u. But here

comes a surprise.

Lemma 17- In µ,,, 0 µu, the first galaxy is eliminable.

Proof. Assume gA- C g. Let go be -the- part of gµ containing all points of infinite depth

in y µ and let gi contain all the points of finite depth. gi is finite and all points

are of depth, say, <- n.- Then we can shift go into the finite part of µ,,, O,u , by mapping

each point of depth w + k into a-point of depth n-°+-k. It is not hard to see that this-map

satisfies the conditions of Theorem -5. -

By this lemma, for any meson y, Th(IL p,,,) = Th(p,,) and for every lepton Th(AGjz ,) _

Th(µ,,,). Thus if M contains ,u,, we may forget all points seeing µ,,,. Consequently,

Th(M) = Th(,u M') for some finite mesonic string M'. And so Th(M) has f.m.p. for

every M.

Theorem 18. Mes1 = Mes/{ (o µ2<, 0 e () po< @ } is the logic of one-mesonic

strings. Moreover, Mesl = Th(p.).

Proof. If M is not one mesonic, let M = (Ml @)1j(GM2) µ'(GM3) be such

that y' is an indecomposable meson. Then M -» G lc°(J M2) J µ'°(J M3) -» J

This was excluded. But if M is indeed a one-mesonic

string then it omits the depicted frames since they are not one-mesonic. The last claim

follows from the fact that a finite one-mesonic string µ 0 A is an extract of ,,,,, which itself

is one-mesonic. -I

7. An intermediate logic bounding finite axiomatizability. Consider the set files'

of one generated, finite strings ordered by f g f is an extract of g. Call y 0 A thick

if µ is not a lepton and A = An for some n E w. Ih is the set of thick frames.

Lemma 19 is a well partial order on 9ne. 1--

-1

0

0 0

G

< *

-
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Proof. - is- a well-partial order on the leptonic strings of fined; thus it suffices to look ot

the non-mesonic =ones. Take any two it @ AIL' @ A. Then u @ A is -an extract of p'@ A if

only A! -» A and µ is an extract of W. The one-generated mesons are linearly ordered= by

inclusion. Moreover; C defined f - C g iff g -» f -is a wpo on- the finite leptons which are

not- of the form AO.- Now the product of two wpo's is again a wpo; hence is a wpo. H

Lemma 20 is-not a wpo -on Th. In particular, {1t3< &AnIn E. w} is an infinite- an-

ticha_in. -I

Theorem 21 Mesl(3) = -Mesl/{µ4=, µ4<}/°{µ3< 0 AO In E w} bounds finite axiomatiz-

ability. Moreover, Mesl(3)-= Th(µ3< aw):

Proof. `-We have seen that the set of splitting frames, is an infinite antichain and hence

Mesl(3) is not f.a. Yet for any proper extension Mesl(3) C A we must have M V

Fr(A) for some finite one-mesonic string M; -moreover, M is not thick. But then since

M = (p @)A for some leptonic string A, M is an extract of almost all thick frames.

Hence Mes1(3):/M is f.a. Any extension of A is characterized by non-thick frames and by

Lemma 19 f.a. over A. 4

The logic Mes1(3) nevertheless has f.m.p. and from that it follows that it is [,-reducible in

the lattice of normal modal logics:' This refutes a plausible conjecture that logics bounding

certain properties invariable are (l-irreducible.

8. Logics bounding f.m.p. and other types of completeness. The logic Ref was

not only pre-f.a. but also pre-f.m.p. whereas our example of a pre-f.m.p. logic still has

f.m.p. essentially. If we want to find a logic bounding f.m.p. we have to descend further

in the lattice of intermediate logics. It turns out that logics of frames s y, fail to have

f.m.p. if 0 is not mesonic. There is an easy way to show this using an idea that goes back

to [Fi 72]. Consider the following frame.

Let A be an axiom saying that whenever the subframe of blobs is embeddable, so is the

frame with the circled points added. If our logic contains such an axiom and moreover if the

-,<

-,<

0

0



20

frame of the blobs can be embedded, the logic fails to have f.m.p. because the construction

ensures that it is continuously reproduced. and we end up with a frame at least containing

wd(2) Op,,. Abstractly, this situation is characterized as a map id" 0 t : p 0 Q -C). P 0 r

where t : a - r is an embedding. There is -a requirement that the points of r that are

new (i. e. not in t[a]) should be definable in :terms of what old points they can see. If

that is so then such a map corresponds to an axiom saying that any embedding p GO' c, g

factors through id,, 0 t. Such -a map as well the frame it generates are called a monkey

ladder. (Observe that failure of fm.p. for. the logic Ref can also be attested with a

monkey ladder.) The frames Q.@ µ,,, 0 A all, satisfy a monkey ladder axiom analoguous_ to

the one depicted above. Hence in order to find a frame whose logic bounds f.m.p. we just

have -to find frames that are minimal with- respect to allowing- such a monkey ladder.: -It

turns out that, A and # ='wd(2), ti(3),, p2 all are-possible choices. _) wd(2) is, best

suited .for our apurposes.-

Theorem 22 Th(wd(2)O ttu,@.) bounds f.m.p..

Proof. Define Mon(1, 0) = Grz{wd(3),.Jwd(2), ti(3), p2}/{. g . Oµ2< 0., wd(1)}/

M where M is the set of the following ten frames. (Not all of them are necessary in this

context, but we will need the set as it is later. Observe that the frames of M collect all

convergent frames with a 2-slice following or being followed by a 3-slice.)

=
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Let then f be a Mon(1,0)-frame; it can be assumed to be a one-generated street. Con-

sider the case where wd(2) (Dµ2 is embeddable.° Then the embdding is first of all such

that wd(2) is initial in the frame by exclusion of ®wd(2); moreover, the frames of M

-forbid that this antichain of three points is immediately followed by two points. Thus

f is decomposable into wd(2) Gg 0 - where g is one-generated and of width 2. It fol-

lows -that g is one-mesonic by- splitting of 0 @ µ2"- J . Moreover, g can, by the

same splitting frame, not be finite since it is not a leptonic string. Thus by familiar

arguments Th(g 0 ) = Th(p, J 0 ) and that had to be proved. Now consider the case

when wd(2) 0 t is not embeddable. Then either 'f is of width 2 in which case it is

one-mesonic and so an extract of wd(2) ®µ4, Q) by which T h(f) has f.m.p.; or it is not

of width 2. In that case we cannot embed ti(2) and so f is completely decomposable and

f = wd(2) 0A where A is a leptonic string. Finally, the frames of M have excluded that

A is two-generated. Thus f is again an extract of wd(2) Gµw @ and Th(f) has f.m.p.

All this together yields the proof.

Now that we. have shown that there is a logic bounding f.m.p. there still remains the

question of how big models must be; up to now, models of galactic depth 2 were sufficient.

Now call a logic (k, t)-complete if is complete with respect to models of depth < k x w+£.

Then we know that all logics of finite width and finite tightness are (w, 0)-complete so one

does not need to go higher. But the next theorem shows that one cannot do better. Proofs

from now on are only sketched since they use similar arguments to the ones we have used

quite often now.

Theorem 23 Mon(w,-0) = Grz{wd(3), ti(3), p2}/{wd(1)}/M is complete with respect

to extracts of iterated monkey ladders En wd(2) Jµ,,,. Moreover, Mon(w, 0)

bounds (w, 0) -completeness.

Proof. By the splitting axioms of M, if a Mon(w, 0)-frame contains an anti-chains with

three points then it must be a segment separated by a buffer segment of type from the

other segments. Prove that finite segments are leptonic strings and that only the galactic

meson µ4l is allowed as a segment. This shows the completeness part. Consider now the

-
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formula saying- that there exist a point seeing n different monkey ladders; for this formula

a model must have at least galactic depth n. On the other hand, any proper extension

must -contain _an axiom that forbids- than there; can be .more- than a_given number n of

monkey ladders. But any such axiom forces that any model can be reduced to a model of

galactic depth < n-+ 1. H

We can fine-tune this method. First observe the following.

Lemma 24 -The logics Mon(0, ). T Gr; : }'bound (0; 1) -completeness. H- -

Lemma 25 The logics'Mon(k, 2_+ 1) Mon(w, 0){4p+1.0. bound (k, .)-com-

pleteness for 1---> 0. The logics Mon(k, 0) Mo.n(k,1_) = Mon(w; 0){ JiEk+ie} bound

(k, 0)- as well as (k,1)-completeness.

Proof. Consider formulas stating that £ steps ahead from here we can still-see k different

monkey ladders. Such formulas can only be realized on a- model -with, depth at least

k x w + t. For the lemma it is enough- to show that such a formula is satisfiable on a

frame f iff f is modally equivalent to the frame Ot. 0 . and if this formula is not

satisfiable on f then f is 'modally equivalent. to a frame of lesser depth. H

Theorem 26 The logics M on(k,t) bound (k, t)-completeness., -I_

= G

=
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