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Abstract

Road traffic accidents consistently show a significant over-representation for young, novice

and particularly male drivers. This research examines the prefrontal cortex activation of

young drivers and the changes in activation associated with manipulations of mental work-

load and inhibitory control. It also considers the explanation that a lack of prefrontal cortex

maturation is a contributing factor to the higher accident risk in this young driver population.

The prefrontal cortex is associated with a number of factors including mental workload and

inhibitory control, both of which are also related to road traffic accidents. This experiment

used functional near infrared spectroscopy to measure prefrontal cortex activity during five

simulated driving tasks: one following task and four overtaking tasks at varying traffic densi-

ties which aimed to dissociate workload and inhibitory control. Age, experience and gender

were controlled for throughout the experiment. The results showed that younger drivers had

reduced prefrontal cortex activity compared to older drivers. When both mental workload

and inhibitory control increased prefrontal cortex activity also increased, however when

inhibitory control alone increased there were no changes in activity. Along with an increase

in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activa-

tion is more indicative of workload in the current task. There were no differences in the num-

ber of overtakes completed by younger and older drivers but males overtook significantly

more than females. We conclude that prefrontal cortex activity is associated with the mental

workload required for overtaking. We additionally suggest that the reduced activation in

younger drivers may be related to a lack of prefrontal maturation which could contribute to

the increased crash risk seen in this population.

Introduction

Young drivers (aged 16 to 24) consistently account for the greatest proportion of accidents

and fatalities on the roads [1–3]. Within this population there are different age groups; as

defined by the World Health Organisation [4] adolescents are aged 16 to 19 whereas young

people are defined as anyone 24 and under. More in depth examination of the young driver

population has shown that collision reduction with age is also evident when comparing

adolescents to those aged 20 and over [3] and when looking at year on year changes in
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accident rates [3,5]. More specifically, Maycock (2001) [6] modelled results of an accident lia-

bility survey [7] of around 13,500 drivers. Calculations from this model demonstrate a 10%

reduction in accident rates between ages 18/19 and 21/22 when the effects of driving experi-

ence are accounted for. These statistics suggest an underlying problem that decreases with

driver age.

A commonality among young drivers is their lack of driving experience. As with age,

increases in experience are associated with a decrease in both collision and fatality rates [8,9].

Young driver crashes are often attributed to inexperience and may in part explain the higher

collision and fatality rate of these drivers. However, young novice accident rates are double

that of older novices in the first months of unsupervised driving and consistently higher than

older novices for the first 24 months [10]. Therefore, a lack of experience cannot be the sole

explanation.

Gender is also an influential factor with nearly three times as many males to females involved

in road traffic injuries and fatalities each year [11]. Aggressive, and high risk road traffic colli-

sions which result in fatalities are particularly more common in male than female drivers [12–

14]. Males also self-report taking more driving related risks including; exceeding the speed limit,

tailgating and overtaking when illegal or unnecessary [15–17].

As well as risk taking being prominent in males [18], adolescents are generally seen to be

less risk averse than adults [19,20] and the common crash types of these young novice drivers

also supports a theory of increased risk taking, for example; speeding, overtaking, rear end

shunts and losing control of the vehicle are particularly common in young driver accidents

[6,21,22].

These common collision types and the inability of experience factors to entirely explain

young driver collisions emphasises the importance of other common and possibly unidentified

causes. The current research analyses the prefrontal cortex (PFC) activity of young drivers

based on the suggestion that increased crash risk in this population may be related to the matu-

rational process of the PFC [23] and in accordance with neuroimaging evidence showing asso-

ciations between reduced activation and maturation [24,25].

Development in the brain occurs in a back to front pattern, with the PFC being the last area

of the brain to fully develop [26]. This is a process which is not complete until around 25 years

of age in typically developing adults, [27,28] which is also the age that shows a significant

decrease in road casualty risk [29]. More specifically, research has shown linear increases in

PFC white matter with age, a process which begins in early childhood and continues through

adolescence until the mid-twenties [27,30]. These structural changes have also been found to

correlate with increases in PFC activity with age as demonstrated by Kwon, Reiss and Menon

(2002) [31] who found linear increases in activity in both the right and left hemispheres of the

PFC from ages seven to 22 during a working memory task. The PFC is linked to a number of

factors including memory, emotion and decision making. This research examines in more

depth the role of the PFC in inhibitory control and mental workload; both of which have been

linked to accident risk.

Inhibitory control is the ability to weigh up consequences and suppress impulsive and inap-

propriate behaviours; all of which are believed to be heavily dependent on the PFC [32,33]. As

already discussed, young novice and particularly male accident types are typically representa-

tive of high risk and poor inhibitory control. Neuroimaging methods have also shown correla-

tions between younger age groups, increased risk taking behaviour and reduced prefrontal

activity [34,35]. Similarly, patients with damage to the PFC make higher risk decisions [36–38].

Stimulation of specific PFC regions (e.g. Dorsolateral PFC) has also been reported as leading to

safer driving behaviours in a simulator such as fewer speeding errors and increased headway
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[39]. Thus a lack of PFC activity could be associated with the high levels of risk taking seen in

the young driver population.

Although there is no universal definition of mental workload, it is typically seen as the

amount of operator resources that is required to meet task demands [40]. Mental workload

related problems have been described as being responsible for the majority of road traffic acci-

dents [41] with both high and low levels causing insufficient perception and attention [42–44]

which in turn leads to driver error; a factor that is accountable for up to 90% of accidents

[45,46]. High levels of mental workload can also be linked to young novice accidents in that for

inexperienced drivers operating a vehicle is not an automatic task. In contrast, experienced

drivers have acquired more effective automation through practice. Therefore, driving induces a

higher level of mental workload for novices compared to more experienced drivers [47]. As

with inhibitory control, neuroimaging techniques have demonstrated increases in PFC activa-

tion with increases in mental workload [48]. After a certain threshold further increases in

workload lead to poorer performance and decreases in PFC activity [49]. This threshold can

further explain young novice accidents in that reduced activation may be associated with

reduced capacity [34] and also a significantly lower threshold, meaning that errors occur more

frequently.

The current research examined the PFC activation of this at risk young driver population

during driving tasks which were designed to manipulate mental workload and inhibitory con-

trol levels. This was done with simulated following and overtaking driving tasks and using

functional near infrared spectroscopy (fNIRS) to measure PFC activity.

Brain activity during driving has previously been measured using a range of techniques

including functional magnetic resonance imaging (fMRI) and positron emission tomography

(PET). However, these methods typically require participants to be in a supine position. Along

with the high sensitivity for motion artefacts these techniques pose issues when attempting to

create realistic driving scenarios. In contrast fNIRS is an extremely portable technique which

can be used in both simulated and real world driving; is more robust to issues such as motion

artefacts [50] and has a higher temporal resolution when compared to a number of other tech-

niques including fMRI and PET. fNIRS is a functional neuroimaging technique which has been

used extensively to record changes in brain activation as measured by changes in the concen-

tration of oxygenated and deoxygenated haemoglobin. This is based on their different absorp-

tion spectra of near infrared light and with respect to a resting baseline condition. Evidence of

an association between haemoglobin levels and white matter [51] suggests that the develop-

mental brain changes discussed earlier may also be evident in changes in haemodynamic

concentration as measured by fNIRS. More specifically, fNIRS has been used to show that

increases in prefrontal activation are associated with increases in development [24,52] such

associations have also been found using fMRI [25].

Research using this technique provides further support for the activation of the PFC as a

result of mental workload [53] and inhibitory control [54] manipulations. However, much of

this research does not use naturalistic tasks and none has focused on differences in PFC activity

specifically within the young novice driver category which may be an additional accident risk

factor for this population.

Accordingly, a number of predictions were made: with respect to PFC activity; younger

drivers will have less PFC activation than older drivers and inhibitory control and mental

workload increases will be associated with increases in PFC activity. With respect to driver

behaviour young drivers will overtake more than older drivers and male drivers will overtake

more than female drivers, consistent with the increased risks seen in young male populations.

Here we report our findings that PFC activation differed as a result of manipulations of driver

age and task demands.

Prefrontal Cortex Activation of Young Drivers
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Methods

Participants

Although psychological research has been criticised for relying on undergraduate participants

[55], this group has considerable advantages when looking at the young driver population and

age and experience effects within it. Typically undergraduate students fall into demographic

groups that span the ages 18 to 22 and include a wide variety of driving experience: while many

drive frequently some will have done little or no driving since passing their practical test. This

makes it possible to separate out differential influences of age and experience within an experi-

mental design. A total of 32 participants from the University of Nottingham participated in the

current study. Participants were split into eight groups of four based on their age (younger or

older), experience (novice or experienced) and gender (male or female). A younger driver

within this population was an adolescent aged 18 or 19 (M = 19.19 SD = .43) and older drivers

were aged 21 to 22 (M = 21.42 SD = .30). Novice drivers were represented by those who had

driven under 5,000 miles (M = 1631.31 SD = 1655.52) since passing their test and experienced

drivers had driven over 10,000 miles (M = 23125 SD = 32573.64). All participants held a full

UK driving licence.

The experimental procedure is in accordance with the principles set out in the Declaration

of Helsinki and was reviewed and approved by the School of Psychology ethics committee at

the University of Nottingham. All participants received a full explanation of the procedures

and provided written informed consent for participation in this study.

Materials

Driving Simulator

The experiment took place in the Nottingham Integrated Transport and Environment Simula-

tion (NITES) facility’s fixed base, mid-level fidelity driving simulator (NITES 2) (Fig 1). This

comprises of a car rig (driver’s seat, steering wheel, gear stick, accelerator, brake and clutch)

positioned facing the centre of a 180 degree circular projection screen (5 metre diameter) sub-

tending 180 degrees of the visual field and a rear view mirror allowing participants to see the

rear display screen (36 inch LCD television). The driving scenarios are formed on the screen

using three projectors. From the driver’s perspective they see the road ahead but no part of the

simulated car that they are operating, although this car occupies the same area of space on the

road that a real car would (with the participant seated on the right hand side).

Driving Scenarios

XPI (XPI Simulation, London, UK) driving simulation software was used to create five driving

scenarios which were presented to participants in a random order. All scenarios took place

along a 60mph stretch of single carriageway (Fig 1) and each lasted approximately three min-

utes. Four of the five scenarios were overtaking tasks at different traffic densities. For the pur-

poses of this experiment the highest (High) traffic density was considered to have 100%

oncoming traffic, with approximately 83 passing cars during the scenario. In relation to this

the high medium condition had 83%, low medium had 66% and low had 47% oncoming traffic.

The traffic on the drivers’ side of the carriageway was kept constant in all scenarios in order to

allow equal opportunities to overtake. These vehicles were also programmed to travel at a rela-

tive speed which was 10mph slower than that of the participant; similarly this was to create

opportunities to overtake. The fifth scenario was a following task along the same stretch of car-

riageway. These scenarios were designed to manipulate and dissociate mental workload and

inhibitory control. More specifically, the following task was designed to elicit low levels of both
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mental workload and inhibitory control compared to the overtaking tasks which were designed

to require higher levels of both. The increases in traffic density were expected to dissociate

workload and inhibitory control. As the nature of the task remained the same increases in den-

sity were expected to maintain mental workload, but create less opportunity to overtake thus

requiring a greater suppression of unsafe and impulsive behaviours and therefore greater levels

of inhibitory control with increases in traffic density.

fNIRS device

A BIOPAC 100A (BIOPAC Systems Inc, USA) continuous wave fNIRS device was used to

measure PFC activity. This particular device records at a frequency of 2Hz and consists of a

sensor pad (180x60x8mm) fitted with 4 LED light sources with an inter-optode distance of

25mm that emit near infrared light at 730nm and 850nm wavelengths, which are absorbed pri-

marily by deoxygenated and oxygenated haemoglobin respectively. The sensor pad also houses

10 light detectors (2.3mmx2.3mm silicon photodiode with integrated trans-impedance pre-

amp), creating 16 recording channels. The software used for recording the fNIRS data is the

Cognitive Optical Brain Imaging (COBI) Studio (fNIR Devices, Potomac, MD, USA) and

HomER2 software was used for the pre-processing of fNIRS data [56]. The fNIRS device was

placed behind the participant in the driving simulator (Fig 1) and setup was measured with the

centre of the device in line with the nasion (Fig 2). Care was taken to avoid hair from the eye-

brows or side of the head interfering with detectors and sources.

Questionnaires

Participants completed a brief driving demographic questionnaire prior to the experiment.

This questionnaire was used to record participants’ age, gender and driving experience. Experi-

ence was measured by the number of miles driven since passing their driving test. Participants

were given tables of average miles driven by different age and gender groups as well as distances

between major UK cities in order to aid them in their annual and total mileage estimates (for

demographic data see S1 appendix). An extended NASA-TLX workload questionnaire was

completed after each scenario. This is a self-assessed measure based on six 20 point scales with

Fig 1. NITES 2 driving simulator and fNIRS apparatus. Photograph of the experimental setup. The
participant is driving along the single carriageway road used in this experiment. The fNIRS computer is
shown on the right; during the experiment this was positioned behind the participant out of their field of view.

doi:10.1371/journal.pone.0156512.g001
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0 being “Very Low” and 20 “Very High.” The scales are: Mental Demand, Physical Demand,

Temporal Demand, Performance, Effort and Frustration. Mental Demand was the scale of

interest for mental workload and asked participants “Howmentally demanding was the situa-

tion?” A seventh scale of Inhibitory Control was also added with the wording “How hard did

you have to try to prevent yourself from performing dangerous manoeuvres when inappropri-

ate?” This questionnaire was used to subjectively assess mental workload and inhibitory control

levels.

Procedure

Following a five minute practice along roads not used in the experiment participants drove

each of the five scenarios in a random order. All drivers were told prior to each scenario

whether they were completing a following or overtaking task. For following tasks participants

were instructed to simply follow the vehicle ahead, while for overtaking tasks participants were

told that they could overtake if it was safe to do so. After each drive the participant completed

the extended NASA-TLX questionnaire. PFC activity was recorded using fNIRS throughout

each scenario.

fNIRS data pre-processing

Raw fNIRS data (16 channels x 2 wavelengths) was pre-processed using HomER2 software, a

graphical interface programme executed in Matlab (Mathworks Inc., Sherborn, MA) for visual-

isation of optical data. The function hmrPruneChannels was used to identify any ‘poor quality’

channels in which the signal was too weak, too strong or their standard deviation too great.

For 15 participants channels 5, 6, 9 and 10 were identified as poor quality channels, these were

thus removed from pre-processing and from further analysis for these participants. In order to

address any artefacts caused by participant motion the function hmrMotionCorrectWavelet

was used. For this wavelet transform a probability threshold (α) of 0.1 was selected as adopted

in previous studies [59–61]. This process reduces artefacts in up to 93% of cases [59] and there-

fore a further motion detection process was conducted using the hmrMotionArtifact algo-

rithm. Here motion artefacts were identified as a signal change (optical density units) greater

than an amplitude of 0.3 over half a second, any such time-points were marked for one second

and removed as a motion artefact; no additional artefacts were identified. A low-pass filter (3rd

order Butterworth filter) of 0.5Hz was applied in order to reduce high-frequency instrument

Fig 2. fNIRS probe placement. (a) Positioning of the 4 light sources (red) and 10 detectors (blue) with
references to the nasion. (b) Sensitivity profile of the fNIRS probe used in this experiment projected onto a
digital brain atlas based on the “Colin27” atlas [57] commonly used in MRI studies. The colour scale depicts
the sensitivity logarithmically. Both images were created using AtlasViewerGUI [58].

doi:10.1371/journal.pone.0156512.g002
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noise and physiological noise such as fast cardiac oscillations (e.g. heartbeat 1~1.5Hz). This fil-

ter band has also been adopted in previous fNIRS research [62,63]. HomER outputs changes in

oxygenated haemoglobin (ΔOxyHb), deoxygenated haemoglobin (ΔDeoxyHb) and total hae-

moglobin (ΔTotalHb = ΔOxyHb + ΔDeoxyHb). The results of this experiment focus primarily

on ΔDeoxyHb as this measure tends to be most highly correlated with other neuroimaging

measures such as the fMRI measured BOLD response both theoretically and in practice [64–

66]. It should be noted that strong correlations with both ΔOxyHb and ΔTotalHb have also

been found [67]. All fNIRS results are reported in micromoles (μM).

Data Analysis

Analyses were conducted to determine whether inhibitory control and mental workload were

successfully manipulated during these scenarios; whether driver age, experience and gender

influenced risk taking manoeuvres (i.e. overtaking) and whether there were differences in PFC

activity between the different tasks and the different driver categories (e.g. age). 2 (age) x 2

(experience) x 2 (gender) x 2 (overtake vs. follow) ANOVAs were used for subjective ratings

and PFC activity. 2 (age) x 2 (experience) x 2 (gender) x 4 (traffic density) ANOVAs were con-

ducted for subjective ratings, PFC activity and number of overtakes. 2 (age) x 2 (experience) x

2 (gender) x 2 (hemisphere) ANOVAs were used for PFC activity. Finally, 2 (age) x 2 (experi-

ence) x 2 (gender) x 3 (pre- during- post- overtake) ANOVAs were conducted for PFC activity

for different sections of the overtake manoeuvre. Self-report measures are discussed first, fol-

lowed by driver behaviour and finally fNIRS data.

Results

NASA-TLX: Follow Vs. Overtake

Raw TLX data scores from 0 to 20 were used for analysis. Raw scores were used as they are

more sensitive than other methods of data treatment such as scale weighting [68]. ANOVAs

showed a main effect of task for Mental Demand (F(1,24) = 153.102, p<.001, ηp
2 = .864) Par-

ticipants rated overtaking (M: 11.27, SD: 3.53) more mentally demanding than following (M:

4.44, SD: 2.31). Inhibitory Control showed a significant main effect of task (F(1,24) = 179.445,

p<.001, ηp
2 = .882), a significant main effect of age (F(1,24) = 5.000, p = .035, ηp

2 = .172) and a

significant interaction between age group and experience (F(1,24) = 6.830, p = .027, ηp
2 =

.187). Overtaking (M: 13.17, SD: 3.02) was considered to require more inhibitory control than

following (M: 4.41, SD: 3.54) and the older (FollowM: 5.38, SD: 1.14, Overtake:M: 13.97, SD:

0.82) group rated both conditions higher than younger drivers (FollowM: 3.44, SD: 0.45, Over-

take:M: 12.38, SD: 0.65) in terms of the amount of inhibitory control elicited. Bonferroni cor-

rected simple main effects analysis revealed a main effect of age for experienced drivers (F

(1,24) = 11.759, p = .002, ηp
2 = .033). Older experienced drivers (FollowM: 8.25, SD: 1.63,

Overtake:M: 15.38, SD: 0.86) reported using higher levels inhibitory control than younger

experienced drivers (FollowM: 3.13, SD: 0.48, Overtake:M: 12.47, SD: 0.96). No main effect of

age was found for novice drivers (Fig 3).

Increasing Traffic Density

ANOVAs showed a main effect of task (F(3,72) = 35.694, p<.001, ηp
2 = .598) with a significant

linear trend (F(1,24) = 71.083, p<.001, ηp
2 = .748). As the traffic density on the opposite side

of the carriageway increased the number of overtakes decreased (Fig 4). A main effect of gender

(F(1,24) = 6.475, p = .018,ηp
2 = .212), and a significant interaction between task and gender

was also found (F(3,72) = 3.190, p = .029, ηp
2 = .117). Male participants (M: 5.57, SD: 3.74)

Prefrontal Cortex Activation of Young Drivers

PLOS ONE | DOI:10.1371/journal.pone.0156512 May 26, 2016 7 / 18



completed more overtakes than females (M: 3.20, SD: 2.71) across the conditions, simple main

effects analysis revealed that this difference was significant in the Low Traffic Density (F(1,96)

= 13.500, p<.001, ηp
2 = .123) and in the High Medium condition (F(1,96) = 4.408, p = .038,

ηp
2 = .044) but was not significant for the LowMedium and High traffic densities. No signifi-

cant main effect of age was found (F(1,24) = .091, ns .76).

For the NASA-TLX workload scores, ANOVAs showed no significant main effect for Mental

Demand. However, inhibitory control showed a main effect of task (F(3,72) = 3.080, p = .033,

ηp
2 = .114) in a linear direction (F(1,24) = 5.994, p = .022, ηp

2 = .200) with participants recording

that they had to use greater inhibitory control as traffic density increased.

fNIRS data

Due to technical faults with the fNIRS device no data was recorded for the high density condi-

tion for participant 4 and the low and low medium conditions for participants 17 and 27.

Fig 3. NASA-TLX Inhibitory Control scores.Graph shows age by experience interaction (a) Older
experienced drivers reported higher levels of inhibitory control in both the following and overtaking conditions
when compared to younger experienced drivers. (b) No differences between older and younger novice driver
ratings of inhibitory control. Error bars represent standard error of the mean.

doi:10.1371/journal.pone.0156512.g003

Fig 4. Number of completed overtakes.Graph shows a main effect of task, a main effect of gender and a
significant interaction between traffic density (task) and gender. As traffic density increased number of
overtakes decreased. Males overtook more than females. This was significant in the low and high medium
traffic densities. Error bars represent standard error of the mean.

doi:10.1371/journal.pone.0156512.g004
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fNIRS analyses compared averages over the 16 recording channels except where hemisphere

analyses were conducted. For hemisphere analyses averages of channels 1 to 8 were used for

the left hemisphere and 9 to 16 for the right hemisphere. Where averages are calculated over

traffic density the remaining conditions were used. Missing data is represented with blank cells

in S1 Appendix.

ANOVAs showed a significant main effect of task (F(1,24) = 4.481, p = .045, ηp
2 = .157) and

a significant main effect of age (F(1,24) = 5.090, p = .033, ηp
2 = .175). Overtaking (M: 0.07, SD:

0.08) elicited a greater change in PFC activity than following (M: 0.04, SD: 0.05) (Fig 5) and

older drivers (M: 0.07, SD: 0.08) had a greater increase in PFC activity than younger drivers

(M: 0.04, SD: 0.05) (Fig 6).

There was also a significant task by age by experience by gender interaction (F(1,24) =

5.862, p = .023, ηp
2 = .196). Bonferroni corrected pairwise comparisons showed that the a priori

safest group had the greatest activation with old experienced females (M: 0.18, SD: 0.06) show-

ing greater activity than young experienced females (p = .009) (M: 0.05, SD: 0.08), than old nov-

ice females (p = .005) (M: 0.04, SD: 0.03) and old experienced male drivers (p = .023) (M: 0.07,

SD: 0.05) in the overtaking condition. Young novice males, the a priorimost dangerous group

had the lowest mean activity (M: 0.02, SD: 0.05), however, this difference was not significant.

Fig 5. PFC activation during overtaking and following tasks.Channel by channel activation maps
showing greater activity in the PFC during overtaking tasks (a) than following tasks (b). Z-scores represent
change from resting baseline.

doi:10.1371/journal.pone.0156512.g005

Fig 6. PFC activation of younger and older drivers.Channel by channel activation maps showing greater
activity in older drivers (a) than younger drivers (b). Z-scores represent change from resting baseline.

doi:10.1371/journal.pone.0156512.g006
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ANOVAs also revealed a significant main effect of hemisphere across all tasks (F(1,24) =

32.134, p<.001, ηp
2 = .572) and for both the overtaking (F(1,24) = 31.541, p<.001, ηp

2 = .568)

and following conditions (F(1,24) = 5.978, p = .022, ηp
2 = .199) separately. There were greater

increases in activity in the right hemisphere (M: 0.10, SD: 0.09) of the PFC than the left (M:

0.02, SD: 0.06) (Fig 7).

There was no significant difference in PFC activity when comparing the four levels of traffic

density (F(3,69) = .608, ns .612) in the overtaking conditions. As not all participants overtook

in each of the four overtaking tasks (and participant 4 only completed one overtake throughout

the experiment) global fNIRS data may not be representative of changes in PFC activity during

the specific overtake manoeuvre. Therefore, fNIRS data was extracted for each participant’s

first overtake in the Low density condition from 10 seconds before the point of overtake until

10 seconds after. Where the Low density fNIRS data was not available (participants 17 and 27)

fNIRS data from the lowest density condition available was used (High Medium). As the order

of drives was randomised this method kept the number of measurements taken for each partic-

ipant consistent whilst controlling for order effects. The point of overtake was defined as the

time when vehicle lane deviation was greater than 1.5 metres from the centre of the lane; once

participants reached this distance they always overtook. This resulted in 21 seconds of fNIRS

data, which was split into three groups of seven seconds to create approach, during and depar-

ture overtake windows. ANOVAs indicated a violation of sphericity for this data. Greenhouse-

Geisesr corrections revealed a marginally significant main effect of window (F(1.42,34.14) =

3.567 p = .053, ηp
2 = .129) with a linear trend over time (F(1,24) = 3.757, p = .064, ηp

2 = .135).

PFC activity increased during overtaking and continued to increase into the period immedi-

ately after the manoeuvre (Fig 8). There was also a significant quadratic relationship between

window and age group (F(1,24) = 4.581, p = .043, ηp
2 = .160) Older drivers had significantly

Fig 7. PFC activation by hemisphere. Channel by channel activation map showing greater activity in the
right hemisphere of the PFC than the left, measured across all tasks. Z-scores represent change from resting
baseline.

doi:10.1371/journal.pone.0156512.g007
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greater activity in the post overtake window than during the overtake (p = .039). There were no

significant differences for young drivers.

Discussion

The aims of this research were to examine the PFC activity of the young driver population and

to use simulated driving tasks to manipulate mental workload and inhibitory control; both of

which have been linked to young driver accidents and also changes in PFC activity.

As predicted; the older drivers had greater changes in PFC activity than younger drivers. The

a priori safest driving group (old experienced females) showed the greatest changes in PFC acti-

vation and older drivers also showed increased activation following a successful overtake, a

manoeuvre which is a high accident risk for young drivers [6]. However, younger drivers showed

no such PFC activation changes. As the brain is still developing in this population younger driv-

ers would be expected to have less PFC maturation than older drivers, which, as previous

research suggests could account for this reduced activity [24,25,69]. Generally, research has dem-

onstrated a correlation between brain activity and capacity or performance on a task [70,71].

Therefore reduced activation in younger drivers could be associated with poorer driving skill

and performance and thus increased road traffic accidents. More specifically for this research; in

terms of inhibitory control previous evidence demonstrates increased risk taking is correlated

with reduced prefrontal activity [34]. With respect to mental workload, due to their reduced

capacity the threshold for overload and errors is lower and as inexperienced drivers are already

operating at a higher workload [47] this further reduces the availability for workload increase in

young novice drivers.

Both inhibitory control and mental workload may play a role in young novice accidents.

However, this research suggests that PFC activity is more indicative of mental workload

changes than inhibitory control changes in the current task. This is based on a number of

results; overtaking increased both perceived inhibitory control and mental workload when

compared to the following task. PFC activity showed the same pattern in that there was greater

PFC activity in the overtaking tasks. However, our manipulation of traffic density created a sit-

uation in which mental workload remained relatively constant whilst inhibitory control

Fig 8. PFC activity changes during overtaking.Graph shows lane deviation and fNIRS data for
participants’ first overtake. Results are for ΔDeoxyHb and show a marginally significant main effect of window
in a linear direction. The dashed line marks the point at which lane deviation is 1.5 metres from the centre of
the lane, this is taken as the point of overtake (0 seconds). From this point approach, during and departure
overtake windows of 7 seconds were created. PFC activity increased during the overtake and continued to do
so in the overtake departure window. Error bars represent standard error of the mean.

doi:10.1371/journal.pone.0156512.g008
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increased. Our intention was to create a situation in which increases in traffic density increased

the amount of time in which it was not safe to overtake and thus cause drivers to inhibit their

desire to initiate overtaking manoeuvres. The inhibitory control scale suggests that this manip-

ulation was successful. This change in inhibitory control was not reflected in PFC activity as no

differences were seen between the different traffic density conditions. Looking more specifically

at the time of overtake also suggests that mental workload makes a clearer contribution. As

inhibitory control relates to the decision to perform a risky manoeuvre, the associated haemo-

dynamic response would be expected to occur in the approach to the overtake whereas these

results demonstrate an increase during the overtake and in the period immediately after. This

is more likely associated with the added workload of successfully executing the overtake

manoeuvre. Even with a hemodynamic delay of approximately 6 seconds [72,73] the peak of

the response would still occur during the overtake, after the decision has been made.

Despite seeing differences in PFC activity associated with age and with changes in mental

workload there were no age or experience differences in self report measures of mental work-

load. Although unexpected this is an interesting result which suggests that younger novice driv-

ers do not feel that overtaking requires a degree of workload beyond their capabilities; the

danger with this is that they may also be unaware of their reduced threshold for errors and

may subsequently struggle to identify high workload situations where errors occur. This is con-

sistent with evidence that novices overestimate driving skill, underestimate accident risk and

have poorer situational awareness [74–76]. As fNIRS did show differences in PFC activity relat-

ing to mental workload and age it may be possible to implement fNIRS as a detection tool for

different mental workload states [77] and in particular to examine and detect overload situa-

tions in young novice drivers.

Contrary to our expectations younger drivers did not overtake more, showing no additional

risk taking despite older drivers reporting that they used more inhibitory control. One possibil-

ity is that older drivers were safer in when they chose to overtake rather than how often. This

could be investigated in future by measuring gap acceptance or indecision time [78]. For exam-

ple by comparing the time available for the overtake and the time required to complete the

overtake. In contrast, male drivers did overtake more than female drivers, as predicted. This

supports previous research and statistics that males take more risks when driving [14,17].

Results also showed that there was more activity in the right hemisphere of the PFC (channels

9–16) than the left (channels 1–8). This is consistent with previous research by Shimizu, Nanbu

and Sunda (2011) [79] who found that when operating a right hand drive vehicle (as used in the

current experiment) there was greater activation in the right hemisphere of the frontal lobe. In

contrast, when participants operated a left hand drive vehicle greater activation was observed in

the left hemisphere. Results are also consistent with evidence that activity is greater on the side of

space contralateral to the allocation of attention [80–83]. As there is an added difficulty and thus

workload of perceiving the far side of the vehicle attention must be directed in the opposite direc-

tion of the driver’s seat (i.e. the left in this experiment). This is particularly crucial in this experi-

ment as when overtaking care must be taken to avoid colliding with the other vehicle.

Although this experiment suggests that PFC activity is related to some aspects of mental

workload during driving there were not consistent workload changes throughout each task. In

contrast changes in inhibitory control were seen both when comparing overtaking and follow-

ing tasks and when examining changes in traffic density. Therefore, a task in which mental

workload changes and inhibitory control remains constant should be implemented in future in

order to see if each mental workload change is also accompanied by a change in PFC activity.

Variations in road type could be used to manipulate mental workload in a naturalistic driving

task, for example areas with high traffic density and numerous curves and junctions which

have previously been classed as high complexity [84]. These characteristics of high workload
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road types are typically found in urban areas which are also the environments that demonstrate

the greatest accident rates [85].

Although this research achieved its aim of investigating young driver PFC activity and suc-

cessfully demonstrated that younger drivers have reduced activity it may be beneficial to imple-

ment a longitudinal design with structural scans in the future in order to examine changes in

functional activity and associated structural development over time. Although the suggestion

posed by the current research that reduced activity is related to reduced maturation is sup-

ported by previous research [24,25,52], it would be beneficial to provide direct evidence of this

association. Furthermore, previous research has suggested that NIRS could be used to assess

brain development [52].

It may also be advantageous to examine other populations in future. For example the brain

reaches maturation around age 25 [28] and so we would expect drivers of this age to also have

increased activity compared to teenagers and their slightly younger (age 21) counterparts. It

would also be valuable to examine older populations (age 55+) as this age group also have a

higher rate of fatal crashes [86] and evidence suggests that brain size begins to reduce at approx-

imately 40 years of age [87,88]. More specifically, studies have shown age related volumetric

reductions in prefrontal regions [89]. Furthermore, research has demonstrated decreases in PFC

activity for older participants (over 55) which were accompanied by deficits in performance as a

result of increases in workload demands [89]. Thus, reductions in brain size and associated

cognitive slowing [90] in older drivers may also contribute to the reduced performance and

increased crash risk seen for these drivers and may be evident in their PFC activity. However, a

major consideration when examining older populations is that as age increases it becomes more

difficult to successfully manipulate experience levels.

In conclusion, the results of this study support fNIRS as a valuable neuroimaging technique

which can be used in realistic situations such as vehicle driving and could be implemented in

the assessment and prediction of driver overload and subsequent error. Both mental workload

and inhibitory control have been linked to road traffic collisions and PFC activity, however

PFC activity appears to be more indicative of mental workload changes particularly in the cur-

rent simulated driving scenario. Finally, younger drivers, even within the confines of a rela-

tively young driver sample showed significantly less PFC activity than the older drivers. As the

PFC is still maturing during this phase this could go some way to explain the high accident and

fatality risk in this population.
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