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Social cognition is a complex process that requires the integration of a wide variety
of behaviors, including salience, reward-seeking, motivation, knowledge of self and
others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition
represents a sensitive domain commonly disrupted in the pathology of a variety of
psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia
(SCZ). Here, we discuss convergent research from animal models to human disease that
implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting
that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology
of psychiatric disorders with shared social deficits. We take a translational perspective
of social cognition, and review three key behaviors that are essential to normal social
processing in rodents and humans, including social motivation, social recognition, and
dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social
cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ
have been linked to an altered balance of excitation and inhibition (E/I ratio) within the
cortex generally, and PFC specifically. A clear picture of the mechanisms by which
altered E/I ratio in the PFC might lead to disruptions of social cognition across a
variety of behaviors is not well understood. Future studies should explore how disrupted
developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance
and subsequent deficits in the social domain.

Keywords: social cognition, social behavior, prefrontal cortex, autism, schizophrenia

INTRODUCTION

Social behavior deficits are a fundamental dimension of many psychiatric disorders including
the neuordevelopmental disorders ASD and SCZ, yet much remains to be learned about the
underlying pathophysiology of these deficits. In 2010, the NIMH put forward a Research
Domain Criteria1 initiative, which establishes a framework aimed at encouraging researchers to
investigate common behavioral domains and neurobiological mechanisms that underlie multiple
disorders. This collaborative effort identified five major domains that are disrupted across
psychiatric disorders including cognitive systems, negative valence systems, positive valence
systems, arousal/regulatory systems, and last but not least, social processing1. While defects in

1http://www.nimh.nih.gov/research-priorities/rdoc/social-processes-workshop-proceedings.shtml
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social processing underlie multiple disorders, it is still unclear if
a common neurobiology mediates a ‘social brain.’ The prefrontal
cortex (PFC) may be a candidate regulator in mediating social
cognition (see Table 1) in both humans and rodents. In humans,
social cognition develops throughout childhood and adolescence,
and the appropriate maturation of the circuitry within PFC may
play a key role in this trajectory. However, more detailed insights
into the underlying molecular and cellular mechanisms can only
be acquired by the study of small laboratory animals. Here we
discuss the role of the PFC in mediating a broad range of social
behaviors in rodents, with the hope that this framework might
provide valuable insights for evaluating animal models of human
psychiatric disease.

SOCIAL COGNITION IN HUMAN:
RELEVANCE TO PSYCHIATRIC
DISORDERS

Social cognition can be broadly defined as the set of mental
operations used to identify and interpret social signals, and
the use of those signals to guide the flexible performance of
appropriate social behaviors given a changing context (Millan
and Bales, 2013). In this review, we focus on three major
facets of social cognition: social motivation, knowledge of self
and other, and group dynamics, because these aspects of social
behavior have shown relevance to psychiatric disorders, not only
in humans but also in translational animal models (Figure 1). It
should be noted that these three aspects of social cognition are
not necessarily mutually exclusive (Ochsner, 2008; Green et al.,
2015). We feel focusing on these three behaviors allows for an
interesting comparison between social cognition in humans and
animal models.

Social motivation, or the desire to seek social contact, is
an elemental social behavior that includes social orienting and
approach, social reward and cooperation, and maintaining social

TABLE 1 | Glossary.

Social cognition – The set of mental operations used to identify and interpret
social signals and the use of those signals to guide behavior. We use this term in a
broad sense, to incorporate social behaviors including social motivation, and group
related behaviors including dominance and hierarchy.

Social motivation – An intervening variable that describes the desire of an
organism to seek out social contact and interaction with conspecifics. Experimental
procedures examining social motivation often use dependent variables of social
approach, social investigation, and social contact, all of which are aspects of a
more general ‘social motivation.’

Social memory – The ability to recognize other individuals that have been
previously encountered.

Social hierarchy – The establishment of dominant and subordinate relationships
between animals living in groups. These relationships often relate to aggressive
behavior and access to resources including food and mates. However,
establishment of hierarchies also includes species-specific behaviors not related to
aggression.

Sociability – A tendency or trait describing the degree of social motivation.

E/I balance – This concept describes the ratio of cellular excitation to inhibition,
usually within the cortex.

contacts (Chevallier et al., 2012). Behaviors such as social
affiliation, orienting, and approach are evolutionarily conserved
behaviors that are present in many species, including some
invertebrates (Insel and Young, 2000; Toth and Robinson, 2007;
Rosa Salva et al., 2011; Sheehan and Tibbetts, 2011). Social
motivation also emerges early in development (Di Giorgio
et al., 2012; Jakobsen et al., 2015). For example, newborns
prefer to look at faces with open eyes, showing a natural
propensity for social interaction from birth (Farroni et al.,
2006). Social motivation is disrupted in many psychiatric
disorders, including ASD and SCZ (Dawson et al., 1998;
Buchanan, 2007; Chevallier et al., 2012; Blanchard et al.,
2015; Dubey et al., 2015; Fervaha et al., 2015). The social
motivation theory of autism suggests lack of social interest
in childhood may contribute to additional social cognitive
deficits that emerge later in development (Chevallier et al.,
2012), suggesting the possibility that social motivation is a
developmental and evolutionary building block required for
other social behaviors.

Knowledge of self and others is an essential element of
human social cognition. This level includes behaviors like facial
recognition, empathy, evaluating emotion and motivation of
others [‘mentalizing’ also known as theory of mind (ToM)],
knowledge about the affective state and personality traits of
the self and others, implicit and explicit biases, and moral
judgments. Behaviors in this category rely on a human ability to
use knowledge about ones own mental state to make inferences
about the mental states of others (Mitchell, 2009). Many social
behaviors require both motivation and knowledge of self and
others, like making charitable contributions and engaging in
cooperation. Other behaviors, like perspective taking and moral
judgments are somewhat independent from social motivation.
Behaviors related to knowledge of self and others are disrupted
in a variety of psychiatric disorders including ASD and SCZ
(Perner et al., 1989; Frith, 1994; Corcoran, 2001; Senju, 2012).
For example, the majority of children with ASD do not pass the
false-belief test, a common ToM test that examines the ability of
subjects to recognize that others have differing sets of knowledge
about a scenario depending on what they see (Baron-Cohen et al.,
1985).

Group living is common in mammalian societies, and the
evolutionary pressure to adapt to living in groups has been
proposed as a main driver of the evolution of the primate PFC
(Dunbar and Shultz, 2007; Adolphs, 2009; Dunbar, 2009). Studies
examining group living are concerned with the interaction
between the individual and the social group as well as the
emergent properties of the group as a whole. Dominance
hierarchies are particularly well established in many different
species, and this complex group behavior involves many other
important social behaviors, like knowledge of the position of
the self relative to others in the group, communication, and
social decision making. Additionally, hierarchies have important
consequences for the health and well being of individuals within
the group, making them an interesting behavior for further study.
For example, in non-human primates, subordinate status within
a social hierarchy can be a potent stressor, and in humans health
is strongly influenced by socioeconomic status (Sapolsky, 2004).
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FIGURE 1 | Working model for prefrontal regions involved in social cognition in human and mouse. Medial regions of the prefrontal cortex (PFC) are
specifically related to social behavior, while the lateral regions, dlPFC and vlPFC, are sometimes active during social tasks, but are considered ‘domain general.’ The
dmPFC is involved in perceptions of others as well as cooperation (Amodio and Frith, 2006; Mitchell et al., 2006). The mPFC has also been associated with
perceptions of others, but some research suggests that it is more strongly associated with perceptions of self and similar others (Johnson et al., 2002; Mitchell et al.,
2006; Mitchell, 2009). Ventral regions of the PFC are involved in social reward and punishment, motivation and ‘value’ (including economic) (de Quervain et al., 2004;
Fehr and Camerer, 2007; Kohls et al., 2012). Parts of these divisions in the human brain share homology with the rodent PFC, as indicated. VmPFC contains BA 25,
which is homologous to the rodent IL region, and area 32 is homologous to the PL. Area 24 in humans shares homology with the rodent ACC. These regions thus
may play a shared role in social cognition across mammalian lineages.

In addition to hierarchies, some social phenomena that emerge
from group living in humans are organization of governments,
societies, and cultures.

PFC REGULATION OF SOCIAL
COGNITION IN HUMAN HEALTH AND
DISEASE

The PFC has been implicated in a wide range of behaviors
including working memory, decision making, goal-directed
behaviors, and social behavior (Duncan and Owen, 2000; Wood
and Grafman, 2003; Wood et al., 2003). The PFC is connected
with other cortical and sub-cortical regions of the brain,
including hub regions of ‘the social brain’ such as the nucleus
accumbens (NAc), amygdala, ventral tegmental area (VTA),
hypothalamus, and regions of the cortex involved in processing
sensory and motor inputs and responses (Ongur and Price, 2000;
Croxson et al., 2005; Wise, 2008). Additionally, regions of the
PFC are densely interconnected (Passingham et al., 2002).

Social behaviors within all three levels of social cognition are
subserved by the PFC acting in conjunction with other cortical
and subcortical regions (Figure 1). However, different regions
within the PFC are associated with different categories of social
cognition (Wood, 2003; Wood and Grafman, 2003; Amodio and
Frith, 2006; Mitchell, 2009). The primary brain regions that
underlie social motivation are regions that are related to reward
behaviors in general, including the ventral striatum, amygdala,
and the ventromedial prefrontal cortex (vmPFC: Brodmann
cytoarchitectonic areas (BA) 25, 32 11,12 and parts of 10) (Kas
et al., 2014) which includes the medial orbital frontal cortex
mOFC (BA 11 and parts of 10) (Chevallier et al., 2012) and the
perigenual anterior cingulate cortex (ACC: BA 25 and parts of

32) (Meyer-Lindenberg and Tost, 2012) (Figure 1). Many lines
of evidence have demonstrated the importance of the vmPFC for
social motivation and reward. For example, patients with vmPFC
lesions demonstrate social isolation and apathy (Barrash et al.,
2000) and decreased prosocial behavior in several social decision
making games (Krajbich et al., 2009). Additionally, subjects who
rate highly on a psychopathy scale show a decrease in the
activity of the vmPFC when choosing to cooperate compared
with controls (Rilling et al., 2007). The vmPFC is engaged when
subjects feel social acceptance (Moor et al., 2010), and is activated
when learning which cues predict social reward (Lin et al.,
2012). Interestingly, performance on a vmPFC dependent task
in ASD patients ages 3–4 correlates with joint-attention ability,
suggesting a relationship between social motivation deficits and
vmPFC functioning in early ASD development (Dawson et al.,
2002b). Children with ASD show decreased vmPFC and striatal
responses to social reward in an implict learning task (Scott-Van
Zeeland et al., 2010). Interestingly, children with ASD also show
decreased responses to peer rejection in regions of the vmPFC
and vlPFC (Masten et al., 2011), including in the subgenual
ACC. These findings show impaired vmPFC responses to social
reward and rejection in ASD patients, which are closely related
to social motivation. Regions of the subgenual ACC (BA 32 and
24) have been implicated in social motivation in primates as well.
For example, lesions of the ACC gyrus (BA 32 and 24) disrupt
social interest and valuation in macaques (Rudebeck et al., 2006;
Noonan et al., 2010).

Social behaviors requiring knowledge of self and other
are consistently related to activation within the PFC, and in
particular a medial region of the PFC that includes the mPFC
and the dmPFC (Amodio and Frith, 2006) (Figure 1). This
area is activated by a diverse range of social cognitive tasks
that include evaluating one’s own mental state or determining
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whether certain personality traits apply to you, perception
and judgment of the mental states of others (ToM), moral
decision making, cooperation, and empathizing about the pain
of others (Amodio and Frith, 2006). In healthy adults, this
region is typically more active in joint attention tasks than in
solo attention tasks, but this difference does not exist in adults
with ASD (Redcay et al., 2013). In ASD patients, alterations in
mPFC activity and connectivity are a consistent finding, and
these deficits likely relate to social deficits in this disorder. For
example, decreased blood flow in the mPFC in children with ASD
correlates with poor social functioning (Ohnishi et al., 2000).
ASD patients performing a ToM task that involves attributing
mental states to geometric figures show decreased activity within
the mPFC relative to controls (Castelli et al., 2002; Kana et al.,
2015) and decreased functional connectivity between mPFC and
parietal regions (Kana et al., 2009). SCZ patients and their
unaffected relatives show impaired performance on ToM tasks
and decreased mPFC (Mohnke et al., 2015) and inferior frontal
gyrus (Das et al., 2012) activation while performing this task.
These findings demonstrate a common mPFC hypoactivation
in behaviors related to knowledge of self and other in ASD
and SCZ. Since ASD and SCZ both share neurodevelopmental
origins, it is important to examine the development of these
deficits in social processing. The mPFC is responsive to social
stimuli in developing infants (Grossmann, 2015). In particular,
the mPFC is sensitive to signs that an interaction is directed
at the infant (‘self relevance’) (Grossmann, 2013). For example
viewing a mothers smile, or hearing infant directed speech
activates this region (Saito et al., 2007; Minagawa-Kawai et al.,
2009). Additionally, the mPFC is engaged in joint engagement
tasks in infants, in which an adult uses gaze to direct the
attention of an infant to a third object (triadic interaction) as well
as during a dyadic mother–infant social interaction (Urakawa
et al., 2014; Grossmann, 2015). Joint engagement tasks and gaze
following rely on both social motivation and interpretation of
social signals, and are some of the earliest behavioral predictors
of ASD (Toth et al., 2006). These findings suggest that some
of the same brain regions may underlie knowledge about self
and other throughout development. The mPFC shows decreased
glucose metabolism in a population of Romanian orphans that
show social and cognitive impairments, suggesting this region is
sensitive to early life stressors that result in social deficts (Chugani
et al., 2001). Interestingly, patients who sustained damage to
their mPFC during infancy demonstrated anti-social behavior
and poor moral decision making in adulthood, in contrast to
patients who sustained damage to this region as adults (Anderson
et al., 1999). This finding suggests that this region may have
a developmental critical period for establishing an appropriate
social cognition in humans.

Within the category of knowledge of self and other, attempts
have been made to dissociate contributions of different brain
regions. For example, emotional/implicit social cognition has
been contrasted with explicit or effortful social cognition. Regions
outside of the PFC including the inferior frontal gyrus and
amygdala are primarily associated with the former, and dmPFC
and mPFC are primarily associated with the later (Frith and
Frith, 2008; Mitchell, 2009; Shamay-Tsoory et al., 2009). Within

the PFC, many theories dissociate contributions of lateral PFC
with medial PFC. Some research suggests that lateral PFC
regions are ‘domain general’ and are recruited to resolve conflicts
in social cues while medial PFC regions are specific to the
use of contextual social cues to guide social behaviors like
joint-attention, social reward, moral judgments and mentalizing
(Wood, 2003; Wood and Grafman, 2003; Amodio and Frith,
2006; Zaki et al., 2010). An alternative theory to explain medial
and lateral PFC contributions to social cognition posits that the
mPFC is involved in tasks that require internal social processing
of both self and other, for example empathy, mentalizing, self-
reflection and personal moral reasoning whereas the lateral
PFC is part of a network that is activated by externally guided
processing in the social domain, for example imitation, abstract
social reasoning, and resolving conflict in social cues (Lieberman,
2007). In psychiatric diseases that share social deficits, lateral
regions of the PFC have also been associated with poor social
functioning. For example, activation in the dorsolateral PFC
(dlPFC: BA 9, 46: Figure 1) in response to social cues is
aberrant in patients with SCZ (Shin et al., 2015). Interestingly,
transcranial direct simulation of the dlPFC improved some
parameters of social cognition, such as ‘emotion identification,’
in subjects with SCZ (Rassovsky et al., 2015). Additionally, both
paranoid SCZ and ASD patients show decreased activation in the
ventrolateral PFC (vlPFC: BA 47, 45, 44: Figure 1) when making
trustworthiness judgments (Pinkham et al., 2008). Finally, some
research dissociates functions of the dorsal and medial regions
of the PFC, suggesting the dmPFC is engaged when mentalizing
about others, while the mPFC is engaged preferentially in self-
referential tasks like preference and affective state judgments
(Gusnard et al., 2001; Johnson et al., 2002) as well when taking the
perspective of similar, but not dissimilar others (Mitchell et al.,
2006). While no theory provides a conclusive description of the
contributions of sub-regions of the PFC to different aspects of
knowledge about self and other, there is a consensus that both the
dmPFC and mPFC are specifically related to this form of social
cognition.

The third category of social cognition, group dynamics, relies
on both motivation and knowledge of self and other. Living
in groups often involves a hierarchical organization, and this
organization requires that individuals perceive both their own
status within the group, as well as the status of others around
them in order to behave appropriately (Rowell, 1974; Watanabe
and Yamamoto, 2015). The neural mechanisms supporting
perception of hierarchy in humans rely largely on the PFC acting
in conjunction with subcortical regions including the amygdala
and ventral striatum, which help interpret the stressful or
rewarding values often associated with changes in status (Wang
et al., 2014; Watanabe and Yamamoto, 2015). In macaques, gray
matter volume in the rostral and dorsal PFC correlates with the
size of a social network and with social status (Sallet et al., 2011;
Noonan et al., 2014) and in humans the gray matter volume of
the vmPFC varies with both metalizing competence and social
network size, showing a shared neural circuit for distinct facets
of social cognition (Lewis et al., 2011). Patients with lesions
spanning vmPFCandmPFCdo not alter their behavior according
to differing ranks in a professional setting, suggesting disruptions
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in this region lead to poor understanding of the social cues
dictated by hierarchy (Karafin et al., 2004). The lateral PFC has
also been shown to have an important role in perceptions of
hierarchy. For example, viewing an individual that ranks above
you in a hierarchy activates the dlPFC in both stable and unstable
hierarchy conditions, and activates the mPFC and the amygdala
only in unstable hierarchy conditions (Zink et al., 2008). This
suggests that the lateral regions of the PFC may be important for
knowledge about your own place in a hierarchy, while activity
in the mPFC and amygdala may help coordinate appropriate
behaviors when a hierarchy is changing, and knowledge must be
continually updated.

Overall, there is strong evidence in the field of social cognition
that medial regions of the PFC including the mPFC, dmPFC, and
the vmPFC are crucial for a wide variety of behaviors that include
motivation, understanding of the self and others, and formation
of complex group behaviors (Figure 1). In the following, we
compare the human data presented above with rodent models
that converge on the hypothesis that evolutionarily shared
regions of the mPFC mediate social behavior across species.

SOCIAL COGNITION AND THE PFC IN
RODENTS

If animal models are to provide useful insights in evaluating how
alterations within the PFC circuitry can lead to social deficits in
models of human disease, we must first determine to what extent
‘social cognition’ is related to a consistent neural mechanism
across mammalian lineages, including rodents. Some controversy
exists in translational neuroscience about the existence of the
rodent PFC, and many researchers have debated the homology
between specific regions in primate and rodent forebrain (Preuss,
1995; Uylings et al., 2003; Wise, 2008). A consensus has emerged
that regions of the human mPFC including the vmPFC and
the dmPFC share some homology with regions within the
rodent mPFC (Figure 1). The rodent prelimbic (Riedel et al.,
2009) cortex is considered homologous to BA 32, which lies
within the mPFC and vmPFC (Wise, 2008), although some have
suggested this region contains some similarities with human
dlPFC as well (Uylings et al., 2003). The rodent infralimbic
cortex (IL) is considered homologous to BA 25, and lies within
the vmPFC (Wise, 2008). Additionally, the rodent mOFC is
considered homologous with the human mOFC (Preuss, 1995).
The human dmPFC includes parts of the dorsal ACC, which
shares homology with the rodent ACC (Wise, 2008). Other
regions of the human PFC are generally considered not to
share homology with the rodent brain. Rodents do not have
a granular PFC, and therefore granular regions of the human
PFC including the dlPFC do not have a homologous structure
within the rodent brain (Preuss, 1995; Wise, 2008; but see
Uylings et al., 2003). In this review, we discuss the evidence
that the PFC might regulate social behaviors in rodents, as
well as in humans, and that pathologies leading to social
deficits in rodent models of psychiatric disease might be related
to altered functioning in the PFC. Although there are clear
differences between social cognition in humans and rodents,

there are common underlying functions that are achieved
in species-specific ways. For this reason, it is important to
use ethologically relevant behavioral models that capitalize on
natural rodent behaviors requiring social processing (Thompson
and Levitt, 2010). Here we review a burgeoning literature
examining the PFC contribution to social behaviors in rodents.
We focus on behaviors that are not directly related to mating
or parent–offspring relationships but that are ethologically
relevant to social processing demands in rodents, including
social motivation/affiliation, social memory/recognition, and
dominance. These behavioral domains can be conceptually
compared to the human categories: social motivation, knowledge
of self and others, and hierarchies within groups.

In rodents, behavioral paradigms that assess social motivation
often rely on social preference tests that assess time spent with a
novel social target compared with time spent with a novel object
(Moy et al., 2004) (Figure 2A). These tests have frequently been
used to assess social deficits in genetic mouse models of ASD
(Silverman et al., 2010). The interaction typically takes place in
a three chamber apparatus that allows for preference of the social
chamber to be assessed. In these tests, the novel social stimulus
is generally constrained in a compartment that allows sniffing
and interaction but no physical contact. This controls for the
behavior of the stimulus to influence the social interaction. Other
paradigms simply measure the time spent investigating in an
unconstrained interaction.

Inmice and rats, paradigms aimed atmeasuring levels of social
recognition exploit a natural propensity of mice to habituate
to a familiar conspecific, and to explore a novel mouse more
than a familiar one (Thor and Holloway, 1982) (Figure 2B).
A focal mouse is exposed to a novel stimulus mouse, generally
an ovariectomized female or a juvenile to diminish aggressive
behavior. The presentation of the stimulus mouse is repeated
multiple times with a delay between presentations. A decrease
in the sniffing time across the repeated trials reflects recognition
that the mouse is familiar. After repeated presentations, a novel
mouse is presented, and increased investigation of the novel
mouse reflects social novel preference (Thor andHolloway, 1982)
(Figure 2B). This can also be assessed in the three chamber
apparatus: After the social vs. object presentation, a second
social target is added to the opposite chamber, and increased
investigation of the novel vs. the familiar animal reflects a social
novelty preference that relies on the recognition of a novel animal
(Moy et al., 2004) (Figure 2A).

An interesting line of translational research aims to study
empathy behavior in rodent models. This research generally
follows one of two behavioral paradigms. The first capitalizes on
the ability of mice and rats to alter their behavior by observing
conspecifics (Choleris et al., 1997; Chen et al., 2009). For example,
mice and rats demonstrate social transmission of pain (Langford
et al., 2006), fear (Chen et al., 2009; Kim et al., 2012), and food
preference (Choleris et al., 1997). The second general method
assays prosocial behavior by placing rats in a situation where they
have the opportunity to free a trapped conspecific in the presence
of a valued food source (Bartal et al., 2011).These tests provide an
interesting opportunity to examine changes in empathy behavior
in animal models of ASD and SCZ.
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FIGURE 2 | Common behavioral paradigms for studying social cognition in rodents. (A) The three chamber test (Moy et al., 2004). In the first phase social
preference is assessed. A focal mouse chooses between a social target and an object and time spent investigating both is measured and compared. In the second
phase social novelty preference is assessed when a novel mouse is added and the focal mouse chooses to investigate a novel vs. familiar mouse. Graphs show
common findings demonstrating the natural wildtype (black bars) propensity to investigate a social target more than an object, and to investigate a novel mouse
more than a familiar mouse. Red bars demonstrate a hypothetical treated group showing no social preference and no novel social preference. (B) The Habituation –
Dishabituation paradigm (Thor and Holloway, 1982) in which a juvenile mouse is presented to a focal mouse, usually in the home cage, for four consecutive 1 min
trials with an intertrial interval of 10 min. A novel juvenile is presented on the fifth trial. The graph shows commonly reported wildtype social investigation time (black),
which decreases over the four trials and then increases with the presentation of the novel mouse on the fifth trial, demonstrating recognition of a novel animal.
Hypothetical red data shows floor levels of social investigation, similar to that seen when animals are treated with NMDAR antagonists (Zou et al., 2008; Jeevakumar
et al., 2015). Data indicated by the green line shows a ceiling level of social investigation showing hypothetical intact social motivation and decreased social
recognition. This effect is seen in animals lacking the oxytocin gene (Ferguson et al., 2000). (C) The tube test. Tests for dominance by placing two mice into a tube
and recording which mouse forces the other to back out of the tube (Lindzey et al., 1966). A fictitious experiment is shown in which the rank of the four control mice
(black) is compared over time. The top ranked mouse is treated (red) and drops rank within the hierarchy. This effect is similar to that seen when the synaptic efficacy
within the PFC is decreased (Wang et al., 2011a).

A third dimension of social behavior in rodents is social
hierarchy and dominance. In mice, social hierarchies develop
when mice live in high-density conditions, and this likely allows
for a decrease in aggressive behavior and an increase in social
tolerance (Anderson, 1961). These social hierarchies can be
assessed in several ways. A simple way is to observe behaviors
of animals in their home cage, or to observe aggressive behavior
interactions that typically happen when a group is placed into
a new cage. Measurements of biting, attacks, and submissive
postures can be used to infer dominance relationships in a
group. New automatic systems used to track social dynamics
of large groups of mice in complex environments have added
to this body of work (Shemesh et al., 2013; Weissbrod et al.,
2013). Another way to measure dominance is through a tube
test method (Lindzey et al., 1966) (Figure 2C). In this paradigm,
mice are placed in pairs, facing each other, into a tube that does
not allow enough space for mice to pass each other or for either
mouse to turn around. One mouse is forced to back out of the
tube (‘loser’) by the other mouse (‘winner’). This test allows for
the inference of dominance relationships between pairs of mice,
and is very highly correlated with other measures of dominance
including marking in a novel environment and vocalizations in a
mating context (Wang et al., 2011a, 2014).

In the following, we review evidence that rodent social
behavior including social motivation, recognition of conspecifics,
empathy behavior, and hierarchy are altered by activity within the
rodent PFC.

SOCIAL MOTIVATION AND PFC IN
RODENTS

PFC Regulation of Social Motivation in
Rodents
Social motivation describes the motivation of an animal to
approach, explore, and otherwise interact with a social target.
Social motivation is disrupted in ASD (Chevallier et al., 2012)
and SCZ (Fervaha et al., 2015). Research from animal models
supports the human literature implicating the contribution of
the PFC in social motivation, in conjunction with subcortical
areas that mediate rewarding aspects of social interaction like
the NAc and VTA (Gunaydin et al., 2014; Kas et al., 2014).
Lesions of regions within the rodent PFC have demonstrated its’
importance in social functioning. For example, lesioning the rat
OFC disrupts play behavior and increases aggressive behavior
(Pellis et al., 2006; Rudebeck et al., 2007). Lesions of the ACC
disrupt social memory and decrease social interest (Rudebeck
et al., 2007) and lesions of the PL region of the rodent PFC
actually increase social investigation, possibly due to an increase
in aggression (Avale et al., 2011). Therefore, lesion studies have
provided evidence for the necessary role of the PFC in social
motivation, however, lesions are a crude manipulation that often
damages adjacent regions and passing axons. A recent study
examined whole brain cfos activity in a social context and found
that the mouse PFC was activated in a social interaction (Kim
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et al., 2015), showing a correlative involvement of the PFC in
social behavior.

The microcircuitry of the PFC contains a complex
array of interneurons that inhibit circuit activity, as well
as neuromodulator inputs including acetylcholine (ACh),
dopamine (DA), and oxytocin (OT). The concept of
Excitatory/Inhibitory balance (E/I balance) is a broad term
that attempts to capture alterations within the circuit that
alter the ratio of excitatory:inhibitory neurotransmission.
The influence of changing E/I balance in the developing
cortex has been extensively linked to critical period plasticity
(Hensch, 2003, 2004, 2005). Interestingly, decreases in inhibitory
neurotransmission are a common finding in animal models
of ASD (Gogolla et al., 2009). Many human studies of ASD
(Rubenstein and Merzenich, 2003) and SCZ (Sun et al., 2013)
patients also show decreases in inhibitory neurotransmission
measured by decreased power of gamma oscillations, an
indication of decreased activity of fast-spiking inhibitory basket
cells (Bartos et al., 2007). Human post mortem studies of ASD
patients have shown increases in dendritic spines in cortical
regions, and overall increased within-region interconnectivity
and decreased long-range interconnectivity, particularly in the
frontal cortex (Wass, 2011). Post mortem studies of SCZ PFC
has shown decreased markers of inhibitory neurons (Akbarian
et al., 1995; Mitchell et al., 2015). Examining how alterations in
the balance of circuits within the PFC alters social motivation
is crucial to identifying underlying pathology of social deficits.
In the following we review evidence that alterations within
the microcircuitry of the PFC interfere with social motivation,
and provide a framework for understanding human psychiatric
diseases with social deficits (Figure 3).

Direct alterations of E/I balance within the PFC in adult mice
have a strong effect on social motivation. For example, Yizhar
et al. (2011) used optogenetics to independently manipulate
the activity of excitatory pyramidal neurons and inhibitory
parvalbumin (PV) interneurons within the PFC both during
a social exploration task, and in the three chamber sociability
test (Figure 3) (Yizhar et al., 2011). They found elevating the
excitatory balance by stimulating pyramidal neurons in the PFC
abolished social exploration and disrupted social preference in
the three chamber test. On the other hand, there was no effect on
social motivation when inhibition was increased by stimulating
PV interneurons. The effects of increased excitation were
ameliorated by simultaneously stimulating PV interneurons,
showing that an appropriate E/I ratio in the PFC is required
for social motivation in mice. These findings corroborate human
literature that shows a role for altered E/I balance within the
PFC in psychiatric disorders including SCZ and ASD (Toro et al.,
2010; Morishita et al., 2015).

Neuromodulators in the PFC Modulate
Social Motivation
In addition to direct alterations in glutamatergic and gabaergic
neurotransmission, many neuromodulators alter microcircuitry
activity. The neuromodulator acetylcholine (ACh) acting
within the cortex modulates social motivation, since selective
denervation of cholinergic input to the neocortex in rats

FIGURE 3 | Modulators of social cognition in the rodent PFC. Red text
represents nodes of the circuit that, when disrupted, decrease social
motivation. For example, synaptic scaffolding proteins on excitatory synapses
like Shank3 and IRSp53 have been associated with social motivation in the
PFC, as have cytoskeleton remodelers, actin and cofilin. NMDARs at
excitatory synapses are also a key node of the social motivation circuit. ACh
input to the PFC and nicotinic receptors have also been shown to modulate
social motivation, however, it is unclear which cell types are important for ACh
action or whether these effects are pre or post-synaptic. Blue text represents
nodes of the circuit that, when disrupted, decrease social recognition. For
example, disrupting gabaergic neurotransmission by removing the NR1
subunit on cortical gabaergic interneurons disrupts social recognition. Green
text represents nodes of the circuit that are involved in dominance behavior.
For example, bidirectional modulation of AMPARs and mutations in the fmr1
gene. ACh, acetylcholine; AMPAR, α-amino-3-hydroxy-5-methyl-4
-isoxazolepropionic acid receptor; dlgap2, disks large-associated protein 2,
fmr1, fragile X mental retardation 1; IRSp53, insulin receptor substrate protein
of 53 kDa, mAchR, muscarinic acetylcholine receptor, nAChR, nicotinic
acetylcholine receptor, NMDAR, N-Methyl-D-aspartate receptor, PV,
parvalbumin postitive interneuron, vAChT, vesicular acetylcholine transporter.
See text for references.

significantly reduces social motivation (Savage et al., 2011).
However, in mice lacking the ß2 nicotinic receptor there is
actually an increase in social contact, which is normalized with
virally mediated ß2 rescue within the PL region of the PFC.
This suggests that ACh signaling through nicotinic receptors
in the PL may actually attenuate social motivation, perhaps in
favor of novel context exploration (Avale et al., 2011) (Figure 3).
Other neuromodulators, like neuropeptides may alter social
motivation through signaling in the PFC. OT has been shown to
mediate many pair bonding and social affiliative mechanisms,
but much of this work has examined OT within subcortical
structures (Insel and Young, 2000). New research examining
the role of OT in the cortex has shown that OT mediates the
salience of pup calls through modulating E/I balance in the
auditory cortex of dams (Marlin et al., 2015), and modulates
cross modal experience-dependent plasticity between multiple
sensory cortices (Zheng et al., 2014). Additionally, there is a
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population of SST interneurons in the mPFC that express the
OT receptor and have differential responses to OT in male and
female mice (Nakajima et al., 2014). These OTR expressing
neurons in the mPFC specifically regulate the social motivation
of female mice to interact with male mice during estrus, without
affecting the motivation to interact with another female mouse.
Therefore OT acting in conjunction with steroid hormones could
play a key role in modulating other aspects of social cognition
through actions in the mPFC. More research delving into the
effects of neuropeptides in the cortex will elucidate mechanisms
by which these modulators may affect E/I balance within the PFC
and social motivation.

Cortical E/I Balance and Social
Motivation: Relevance to Genetic Animal
Models of ASD and SCZ
Other studies have examined E/I balance in the context of
genetic risk factors for ASD and SCZ, and found alterations
in E/I balance within the cortex in general, and in some cases
in the PFC specifically, in animal models showing decreased
social motivation (Figure 3). For example, transgenic mice
expressing only ∼10% of normal levels of the NR1 subunit of
the N-Methyl-D-Aspartate (NMDA) receptor show decreased
social motivation, decreased ultra sonic vocalizations (USVs),
and abnormal gamma synchrony (Gandal et al., 2012a). This
study also demonstrated that this model of hypofunction of
NMDARs increased E/I ratio, specifically pyramidal neuron
excitability (Gandal et al., 2012b). This model is relevant to
both ASD and SCZ, as it models overlapping symptoms of
the social motivation deficits and the abnormal cortical E/I
balance. Mice lacking the expression of PV, a calcium binding
protein that defines a population of interneurons, show a
constellation of ASD behavioral phenotypes, including decreased
social interaction (Wohr et al., 2015). The loss of this calcium
binding protein also increases inhibition within the cortex.
Therefore, decreasing E/I ratio in the cortex, as well as increasing
it, interferes with normal social motivation. These findings
can be interpreted in the context of SCZ as well as ASD,
since SCZ patients show PV interneuron dysfunction in post
mortem brain (Lewis et al., 2005). The phosphatase PTEN has
also been implicated in ASD (Butler et al., 2005), and in a
recent paper, Vogt et al. (2015) used a conditional knockout
strategy targeted to the medial ganglionic eminence to remove
PTEN in interneuron progenitors. Using this strategy, they
observed an overall loss of interneurons and a preferential loss
of somatostatin (SST) positive interneurons compared with PV
neurons in cortex, hippocampus, and striatum. Surprisingly,
the loss of these inhibitory interneurons actually resulted in
an increase in inhibition onto layer 2/3 neocortical pyramidal
neurons, decreased social motivation, and increased gamma
oscillations during social interaction compared with controls.
Genetic ablation of the NR1 subunit of NMDARs on PV
interneurons causes alterations in mouse electroencephalograph
(EEG) recordings in response to an auditory stimulus, a finding
seen in Autistic patients (Roberts et al., 2010). These mice
also show social motivation deficits and reduced USVs in a

mating context (Saunders et al., 2013). Many genetic models
of ASD and SCZ that result in social deficits are caused by
loss of function of synaptic adhesion molecules or scaffolding
proteins in the PSD. For example, mice with deletions or
mutations in the cell adhesion proteins Neuroligin-1 (NL-1)
(Blundell et al., 2010), Neuroligin-3 (NL-3) (Tabuchi et al.,
2007), and Neuroligin-4 (NL-4) (Jamain et al., 2008) show social
motivation deficits. Alterations in neuroligins have widespread
effects on excitatory/inhibitory balance throughout the brain
(Maćkowiak et al., 2014). Additionally, mice with mutations in
the ASD- associated post-synaptic density (PSD) protein Shank3
(Wang et al., 2011b; Betancur and Buxbaum, 2013) show social
motivation deficits and altered E/I balance (Lee et al., 2015).
Findings from these studies show that an altered E/I ratio, most
often caused by disruptions in inhibitory neurotransmission can
lead to social motivation deficits.

While many of the genetic contributions to social motivation
deficits alter global E/I balance, some of these deficits have
shown specific PFC related deficiencies. One study examining
Shank3 deficient mice, found that decreased social motivation
in this genetic model is specific to the PFC. Shank3 deficient
mice show decreased NMDA mediated excitatory post-synaptic
current (EPSC) amplitude in layer 5 pyramidal neurons as
well as a decrease in F-actin filaments within this region. The
social deficits, as well as the decreases in NMDAR expression
and function, can be rescued by inhibiting the main actin
depolymerizing factor, cofilin, either systemically or specifically
in the PFC (Duffney et al., 2015). Additionally, inhibiting
NMDARs in the PFC is sufficient to reproduce the loss of
social motivation. This study suggests that an intact actin
cytoskeleton is required for normal excitatory transmission
through NMDARs, and that these components are required
in the PFC for intact social motivation (Figure 3). Another
study examined the loss of a different excitatory PSD protein,
the insulin receptor substrate protein, (IRSp53) and found that
mice lacking this gene show decreased social motivation and
reduced excitatory neurotransmission in layer 2/3 of the mPFC
as well as decreases in dendritic spine number and maturity
in this region. The social deficits, as well as the decreased
excitatory neuronal firing rate in the mPFC, are rescued by
normalizing the altered E/I balance with an NMDAR antagonist
(Chung et al., 2015) (Figure 3). Mice lacking the methyl
CpG binding protein 2 (MeCP2) that is known to cause Rett
syndrome (Amir et al., 1999), show social avoidance (Moretti
et al., 2005) and a mPFC specific dysfunction of excitatory
neurotransmission (Sceniak et al., 2015). These findings taken
together suggest that altered social motivation in animal models
of ASD is linked to alterations in the E/I balance that is in
some cases specifically relates to the microcircuitry of the PFC.
In contradiction to this theory, causing NMDAR dysfunction
specifically in adulthood in the mPFC of mice with a cre-
mediated excision of the NR1 subunit did not decrease either
social preference or social novelty preference in the three
chamber test (Finlay et al., 2015). This finding points to the
importance of studying how circuits within the PFC develop,
as supposed to their functioning in adulthood (Ueda et al.,
2015).
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SOCIAL RECOGNITION AND PFC IN
RODENTS

Does the PFC regulate Social
Recognition in Rodents?
Social recognition and memory are key aspects of social
cognition and normal social functioning, and are considered
requirements for forming long-term attachments, hierarchies,
and other complex social strategies in animals. In humans,
social recognition is one component of knowledge of self and
others, and is an important prerequisite for other forms of social
cognition including empathy and moral decision-making. Early
social recognition is also disrupted in children with ASD, and
performance on a facial recognition task predicts future symptom
severity (Dawson et al., 2002a; Eussen et al., 2015).

Circuits involved in social recognition in rodents depend in
part on the hippocampus and medial amygdala (MeA), perhaps
not surprisingly given the importance of the hippocampus
for memory formation (Kogan et al., 2000), and the MeA in
processing volatile scent cues (Noack et al., 2015). In mice, the
volatile fraction of the scent cue is required for recognition
memory (Noack et al., 2010) and retrieval of these cues depends
on the MeA (Noack et al., 2015). The neuropeptides oxytocin
(OT) and vasopressin (AVP) are also part of a canonical social
recognition circuit and signaling of these peptides through the
MeA and Lateral Septum (LS), respectively, is required for social
recognition. (Ferguson et al., 2000, 2001; Bielsky et al., 2004,
2005a,b). There is some evidence that the PFC is involved in
social recognition. For example, one study showed that lesioning
the ACC, but not the OFC disrupts social recognition in rats
(Rudebeck et al., 2007). Fibroblast growth factor 17 (Fgf17)
is a secreted signaling molecule involved in patterning the
development of the rostral forebrain (Cholfin and Rubenstein,
2007). Fgf17 deficient mice show deficits in social recognition
and decreased activation of the immediate early gene, Fos,
in the frontal cortex after exploring a novel environment
with an opposite sex partner (Scearce-Levie et al., 2008). This
evidence points to the importance of the frontal cortex in social
recognition (Scearce-Levie et al., 2008) and the ACC specifically
in rats (Rudebeck et al., 2007), however, evidence for a role of the
PFC in social recognition in rodents is not yet conclusive.

E/I balance and Social Recognition:
Translational Relevance
An influential hypothesis links SCZ pathology, and in particular
the negative symptoms of this disease, including defects in social
cognition, to hypofunction of the NMDA receptors on inhibitory
interneurons (Kehrer et al., 2008). Non-competitive NMDA
receptor antagonists like MK801 or ketamine preferentially
decrease activity of inhibitory interneurons within the
cortex, thereby increasing glutamatergic tone and E/I ratio
through disinhibition (Moghaddam et al., 1997; Homayoun
and Moghaddam, 2007; Gordon, 2010). Pharmacologically
disrupting E/I ratio with these agents also produces a variety of
schizophrenia-like behaviors in animal models (Moghaddam
et al., 1997; Homayoun and Moghaddam, 2007). Tests of the

NMDAR hypothesis of SCZ have revealed the importance of
NMDAR functioning and intact E/I balance in social recognition,
yet no study has pointed to disrupted E/I balance specifically
within the PFC as causally disrupting social recognition. Acute
injections of MK801 decrease social exploration of a novel
juvenile and decrease social recognition (Zou et al., 2008) and
postnatal ablation of the NR1 subunit of the NMDA receptor in
40–50% of γ –Aminobutyric acid (gabaergic) interneurons in the
cortex and hippocampus abolishes short-term social memory,
without affecting overall levels of social investigation (Belforte
et al., 2010). Both of these studies suggest loss of inhibitory tone
decreases social recognition. When ketamine is given during the
second postnatal week of development it preferentially decreases
PV expression in the mPFC, decreases GABA release in layers
2/3, and increases spontaneous glutamatergic inputs onto PV
cells, consistent with an increase in the E/I balance within
the cortex (Jeevakumar and Kroener, 2014). This treatment
decreases social exploration and disrupts social recognition
(Jeevakumar et al., 2015). Collectively, these studies suggest
that increased E/I ratio in the cortex caused by NMDAR
hypofunction on inhibitory neurons leads to deficits in social
recognition (Figure 3). Retention of social memories is enhanced
by activating NMDARs (Hlinak and Krejci, 2002), showing
a bidirectional modulation of social recognition by NMDAR
activity. Taken together these findings demonstrate the robust
importance of NMDARs and intact E/I balance for social
memory. While most of these studies aim to investigate animal
models of the glutamate hypothesis of SCZ, these findings are
also likely to be relevant for ASD, since human studies have
shown disinhibition and decreased inhibitory functioning in
humans with both ASD (Rubenstein and Merzenich, 2003) and
SCZ (Uhlhaas and Singer, 2015). However, future studies are
required to determine which specific regions within the cortex
require NMDARmediated responses in order to perform normal
social recognition.

Neuromodulators in the PFC Modulate
Social Recognition
Some evidence for a PFC contribution to normal social
recognition comes from studies examining the pharmacology
of social recognition in rats. These studies have outlined
the importance of the neuromodulators acetylcholine (ACh)
and dopamine (DA) within the frontal cortex for normal
social memory (Figure 3). The muscarinic receptor antagonist,
scopolamine, decreases short-term social memory in the three
chamber test in mice without affecting social preference
(Riedel et al., 2009). In rats, a scopolamine-induced social
recognition deficit is attenuated by administering a nicotinic
receptor agonist (Van Kampen et al., 2004). Other findings
have suggested the reduced social recognition seen after
scopolamine injection may be mediated through the melanin-
concentrating hormone (MCH) receptor, since in a separate
study the effect of scopolamine was dose-dependently blocked
using an MCH receptor blocker (Millan et al., 2008). MCH
and ACh neurotransmission interact in the Frontal Cortex
to produce effective social recognition, since MCH receptor
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blocking elevates extracellular dialysates of ACh in the PFC
and enhances social recognition (Millan et al., 2008). Dopamine
signaling also modulates ACh levels in the PFC and social
recognition: Administration of a dopamine (D3) receptor
antagonist creates an elevation of ACh specifically in the PFC,
and attenuates the negative effects of scopolamine on social
memory in rats (Millan et al., 2007). Additionally, mice with a
heterozygous deletion of the acetylcholine transporter VAChT
show impaired object and social recognition (Prado et al., 2006).
This finding suggests that general habituation-related memory
may be impaired after decreasing vesicular trafficking of ACh
and not social recognition memory specifically. In fact, many
studies examining social recognition deficits see broad memory
effects and not social recognition deficits specifically. Therefore,
ACh neuromodulation in the PFC may affect social recognition
through ‘domain general’ mechanisms like attention or working
memory.

Does the PFC Regulate Empathy
Behaviors in Rodents?
Learning by observing conspecifics provides a strong
evolutionary advantage to social species. Observational learning
and emotional contagion have been put forth as the evolutionary
basis of empathy (Olsson et al., 2007). Interestingly, this type of
learning engages brain regions within the mPFC, including the
ACC in both humans (Singer et al., 2004; Olsson et al., 2007)
and rodents (Jeon et al., 2010; Jurado-Parras et al., 2012; Kim
et al., 2012). For example, mice acquire a conditioned contextual
fear by observing conspecifics, and this behavior is dependent
on the right ACC (Kim et al., 2012). Mice also learn more
quickly to lever press for food if they observe a well-trained
demonstrator, and this advantage is abolished if the mPFC is
electrically stimulated during the observational learning (Jurado-
Parras et al., 2012). Injection of the antipsychotic haloperidol or
serotonin into the ACC of mice in an observational fear-learning
task decreased the expression of conditioned fear (Kim et al.,
2014). Serotonin microinjection in this study reduced gamma-
band activity in this region, suggesting serotonin modulation
of ACC activity disrupts social learning. These results clearly
implicate the ACC in empathy related behaviors in mice.

PFC REGULATION OF SOCIAL
HIERARCHY IN RODENTS

Social hierarchies are common among mammals and likely
confer an important adaptation to living in groups (Cummins,
2000). In humans and non-human primates a dominance
hierarchy involves recognizing dominance relationships, learning
social norms, and reading intentions of others (Cummins, 2000).
For this reason, hierarchy represents a complex form of social
cognition that requires plasticity of behavior in the face of
changing social contexts. In mice, dominance also seems to be
linked to the microcircuitry in the PFC (Wang et al., 2014).
For example, altering the efficacy of synaptic transmission in the
PFC causes a bidirectional modulation of social hierarchy (Wang
et al., 2011a) (Figure 3). Specifically, increasing excitability using

TABLE 2 | Questions for future research.

This review presented evidence that the PFC is a common regulator across
social behaviors in rodents, and that E/I balance, specifically within the PFC
effects social cognition. However, many outstanding questions remain:

• How does the development of circuits within the PFC contribute to the
development of social cognition? In humans, social cognition has a clear
developmental trajectory, but the extent of this development is still unclear
in animal models. Answering questions about the ways in which
maturation of PFC circuits leads to appropriate development of social
cognition in animals will improve our understanding of
neurodevelopmental diseases like Autism and Schizophrenia.

• What are the properties of the regulation of E/I balance during
development and how does E/I balance over the course of development
contribute to normal social functioning in adulthood?

• How do different cell types and microcircuits within the rodent PFC
contribute to E/I balance development and social behavior?

• What are the circuits that connect the mPFC to other regions of the ‘social
brain’ and how are distinct social behaviors regulated by these circuits?

• What is the role of E/I balance within the PFC in social recognition? While
lots of evidence points to NMDAR functioning and E/I balance as
necessary for social recognition, no study has specifically tested the
causal relationship between E/I balance in the PFC and social memory.

• Are there sex differences in these behaviors? Most of the research on
social behavior comes from male mice, and so while we know female
mice also show social motivation, social recognition, and social hierarchy,
we don’t know whether there are sex differences in the neural
mechanisms underlying these behaviors.

a viral strategy that increases AMPA receptor trafficking to
the synapse increases the mouse’s rank within the hierarchy.
Conversely, dampening the efficacy of synaptic transmission
by decreasing AMPARs at the synapse decreases the rank.
This study also found an increase in the amplitude of EPSCs
in dominant compared with subordinate mice. Additionally,
dominance behavior studies in mice have been useful in animal
models of social cognition deficits in ASD. For example, knocking
out Dlgap2, an important PSD scaffolding protein associated with
ASD, increases dominance and aggressive behavior and decreases
AMPAR-mEPSCs and spine density in the mouse OFC (Jiang-
Xie et al., 2014). Optogenetically activating the mPFC (PL/IL)
in mice decreases aggressive behavior, while silencing this region
leads to an escalation of aggression (Takahashi et al., 2014). This
finding is interesting in light of the findings of Wang et al.,
because these studies together demonstrate opposing regulation
of aggression and dominance by activity of themouse PFC (Wang
et al., 2011a). In conclusion, social hierarchy is modulated by
excitatory neurotransmission in the PFC, and is a useful way to
investigate social cognition alterations in genetic animal models
of human disease.

CONCLUSION

Our knowledge and understanding of the neural mechanisms
governing social cognition is rapidly expanding, and a growing
body of evidence points to the PFC as a central regulator.
Social cognition involves integrating many behavioral domains
including motivation and reward, salience, attention, flexibility,
and a host of other processes. Not surprisingly, social cognition
is affected in a wide variety of psychiatric disorders. We have
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reviewed evidence that alterations in the microcircuitry of the
PFC are related to social motivation deficits in animal models
of ASD and SCZ. Models of social memory have pointed to the
importance of the neuromodulators acetylcholine and dopamine
within in the PFC. Additionally, the glutamate hypothesis of
SCZ has led to an understanding of the requirements of NMDA
receptor functioning and E/I balance in social recognition.
Studies of social hierarchy point to a causal role of synaptic
efficacy within the PFC in mediating dominance in mice (Wang
et al., 2011a). These studies are supported by human literature,
which implicates the PFC in studies of social cognition including
motivation, knowledge of self and others, and social structures.
Taken together, the evidence suggests that the PFC is a hub that
regulates multiple components of social cognition across species.
We predict that future exploration of prefrontal microcircuitry

in rodent models will provide novel insights into the deficits in
the social domain frequently associated with psychiatric disorders
(Table 2).
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