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1. Introduction 

The aim of this thesis is to investigate the role of the prefrontal cortex in the 

pathology of schizophrenia. The prefrontal cortex has an important regulating role 

in brain function and is connected to almost every part of the brain. These 

regulating brain functions include executive function, goal-directed behavior, 

memory processes, initiative, and social behavior. These higher order functions 

have been shown to be often disturbed in schizophrenia (Heinrichs 2001). Studies 

have shown that the prefrontal cortex is hypoactive in schizophrenia (Glahn et al. 

2005; Hill et al. 2004). Taken together, dysfunction of the prefrontal cortex and its 

connections to other brain regions may underlie the higher order deficits 

observed in schizophrenia. Different studies in this thesis have investigated the 

link between specific prefrontal functions and underlying prefrontal networks in 

schizophrenia. In addition, this thesis focuses on the treatment options of 

negative symptoms, which may also originate from prefrontal dysfunction. First, I 

will start with a general introduction on prefrontal function. 

The prefrontal cortex 

The prefrontal cortex (PFC) comprises the most anterior part of the brain. The 

anatomy of the PFC can be defined in different ways, but we will consider all the 

brain areas anterior to the motor cortex as prefrontal cortex (Fuster 2009). It has 

shown an extensive relative growth during the evolutionary development of 

mammals. In comparison to other mammals, humans have the largest prefrontal 

cortex relative to their body size (Fuster 2009). The prefrontal cortex has a role in 

complex social and cognitive processes and goal-directed behavior (Goldberg 

2009). It evaluates and plans actions as well as integrates and coordinates new 

information. In this sense, the prefrontal cortex could be seen as the “conductor 
of the orchestra” (Goldberg 2009).  

To perform its role, the PFC intimately interacts with all parts of the brain 

(Glahn et al. 2005; Minzenberg et al. 2009). A rough distinction in the prefrontal 

cortex and its connections can be made between the ventromedial prefrontal 

cortex and the dorsolateral prefrontal cortex, although both are heavily 
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interconnected (Fuster 2009; Goldberg 2009). The ventromedial PFC (VMPFC) is 

most strongly connected to medial thalamus, hypothalamus, amygdala, and limbic 

and medial temporal cortex and is thought to have functions in emotional, 

instinctive, and affect-modulated behavior (Fuster 2009). The dorsolateral 

prefrontal cortex (DLPFC) is more strongly connected to the lateral thalamus, the 

dorsal caudate nucleus, and the neocortex (Fuster 2009) and has an important 

role in executive cognitive functions (Fuster 2009). For an overview, see Figure 1 

and Figure 2. Both the lateral and medial PFC are connected to the anterior 

cingulate cortex (ACC) (Allman et al. 2001). The ACC has functions in self-control, 

focused problem solving, error recognition, and adaptive response to changing 

conditions (Allman et al. 2001). The next section will focus on interaction between 

the PFC and different brain systems. 

 

 

Figure 1 Main connections of the lateral prefrontal cortex to other brain regions (Fuster 2009) 
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Figure 2 Main connections of the medial prefrontal cortex to other brain regions (Fuster 2009) 

Default mode network 

In 1974, Ingvar and Franzen reported a study of the brain during rest and during 

task performance using Xenon 133 inhalation (Ingvar and Franzen 1974). They 

observed that the frontal brain had higher activity during the resting state than 

during some cognitive challenges. They concluded that this “hyperfrontal” pattern 
of brain activation corresponded “to undirected, spontaneous, conscious 
mentation, the ‘brain work,’ which we carry out when left alone undisturbed”. 
This research let to the first clue of increased activity during rest localized in 

specific brain regions that prominently include the prefrontal cortex. 

In 2001 Gusnard and Raichle wrote an influential paper about brain activity 

during rest (Gusnard and Raichle 2001). Until that moment, functional Magnetic 

Resonance Imaging (fMRI) research mainly focused on task-related increases in 

activation of brain areas (Buckner et al. 2008). Over a variety of these tasks, a 

consistent network of areas was deactivated during task performance compared 

to rest conditions. PET research on resting state - defined as lying down and doing 

nothing in particular - had shown a set of brain areas with high oxygen 

consumption and blood flow having much overlap with the brain areas showing 
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increased activation during rest. Gusnard and Raichle referred to this pattern of 

brain activity during rest as the “default mode of brain function” (Gusnard and 
Raichle 2001; Raichle et al. 2001). The network of areas showing this high 

activation during rest was from then on referred to as the “default mode 
network” (Buckner et al. 2008; Raichle et al. 2001), see Figure 3. 

 

 

Figure 3 Outline of default mode network as discovered by PET research (Gusnard and Raichle 

2001) 

This “default mode” activity during rest was hypothesized to be involved in 
information processing related to the self (Gusnard and Raichle 2001). Only when 

external stimuli require attention, activity within the network is attenuated 

(Wicker 2003). Areas in this network include the ventral and dorsal medial 

prefrontal cortex (vMPFC and dMPFC), anterior cingulate cortex (ACC), the 

posterior cingulate cortex (PCC)/retrosplenial cortex (RspC) and adjacent 

precuneus, inferior parietal lobule (IPL), medial temporal cortex (MTG), and 

hippocampal formation (Buckner et al. 2008; Raichle and Gusnard 2005). The 

default mode network (DMN) appears to encompass subnetworks consisting of an 

anterior part containing the ACC/MPC, a posterior part containing the PCC, 

precuneus and IPL, and a ventral part containing the temporal areas and ventral 

prefrontal regions (Buckner et al. 2008; Northoff et al. 2006). These subnetworks 
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were postulated to be involved in specific and distinguishable functions, which 

will be covered in more detail throughout the thesis (Buckner et al. 2008). 

Resting state connectivity 

Imaging studies during resting state may thus provide important information on 

brain function. Already in 1995, Biswal et al. started to study spontaneous 

fluctuations during rest in the Blood Oxygen Level Dependent (BOLD) signal 

measured by fMRI (Biswal et al. 1995). Since then, many studies have observed 

that networks of remote brain areas show synchronized slow fluctuations in the 

BOLD signal (Beckmann et al. 2005; Raichle and Gusnard 2005), that are relatively 

stable over time and conditions (Auer 2008). One of the networks that shows 

these synchronized fluctuations is the default mode network (Buckner et al. 2008; 

Fox and Raichle 2007), but more networks have been discovered since then, 

including networks involved in sensory and motor processing, memory, and 

executive functioning (Beckmann et al. 2005; Damoiseaux et al. 2006; Van de Ven 

et al. 2004). It appears that functionally linked brain areas show synchronized 

temporal fluctuations, while functionally distinct areas are anticorrelated 

(Buckner et al. 2008; Fox and Raichle 2007).  

Evidence exists that these BOLD fluctuations reflect spontaneous neural 

activity (Smith et al. 2009; Van den Heuvel and Hulshoff Pol 2010). Resting state 

fluctuations may even predict an individual’s task performance or behavior (Fox 
and Raichle 2007). For example, stronger fluctuations in the somatosensory cortex 

predict weaker finger presses in a subsequent task (Fox and Raichle 2007). 

Relations between cognitive function and resting state networks have also been 

shown (Smith et al. 2009). The default mode network has been related to self-

reflection, daydreaming, autobiographic memory, future planning, attention, and 

motivated behavior (Buckner et al. 2008; Raichle and Gusnard 2005; Raichle et al. 

2001; Spreng and Grady 2009). Some studies have even shown a more direct link 

between DMN activity and e.g. motivated behavior (Raichle and Gusnard 2005), 

or self-processing (Northoff and Bermpohl 2004; Qin and Northoff 2011; 

Whitfield-Gabrieli et al. 2011). 
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The medial prefrontal cortex shows the most consistent decrease in brain 

activation during task performance (Ingvar and Franzen 1974; Qin and Northoff 

2011; Wicker 2003) and may be a key region of the DMN (Northoff and Bermpohl 

2004; Northoff et al. 2006). The medial frontal cortex appears to have an 

important role in coordinating goal directed behavior based on self-evaluative 

processing, in the light of its connections with areas like hypothalamus, amygdala, 

and brainstem (Gusnard and Raichle 2001; Northoff and Bermpohl 2004; Raichle 

et al. 2001). 

Many cognitive processes of the lateral PFC, such as linguistic processing, 

require selection of self-relevant stimuli, and in this sense the lateral PFC could be 

considered as the link between self-referential and higher order processing 

(Northoff and Bermpohl 2004; Northoff et al. 2006; Qin and Northoff 2011). Self-

processing may be important for many brain functions, and may have an 

important role in schizophrenia, as will be shown throughout this thesis. But first, 

the next section will focus on ways to study resting state interactions between 

different brain networks. 

Activity and connectivity 

Studying interactions between brain regions in networks in fMRI research is called 

connectivity analysis. Connectivity analysis may further the understanding of 

neuronal systems in addition to traditional activation-based fMRI research (Fox 

and Raichle 2007; Van den Heuvel and Hulshoff Pol 2010). Whereas task-based 

activation can provide information about the anatomical function of specific brain 

areas, functional connectivity may provide information about the function of 

interaction between brain areas within a network (Van den Heuvel and Hulshoff 

Pol 2010). 

Studying resting state fluctuations may even have some advantages over 

task-based fMRI. Subjects don’t have to perform a task, so differences in 

performance between groups do not have to be controlled for and also relatively 

ill patients groups with limited capacities can be investigated (Fransson 2006; 

Smith et al. 2009). Cognitive capacities can then be predicted by studying resting 

state scans (Van den Heuvel and Hulshoff Pol 2010). 
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There are different methods to study connectivity (Van den Heuvel and 

Hulshoff Pol 2010). The simplest and most prevalent way is to extract time series 

from certain brain areas of interest, and correlate these to the rest of the brain as 

a measure of connectivity (Fox and Raichle 2007). The second most popular 

technique is independent component analysis (ICA) (Beckmann et al. 2005; 

Calhoun et al. 2001). This method decomposes the BOLD signal without a priori 

knowledge into components that are maximally independent. The temporal 

pattern within a component is then coherent. Some components reflect non-

neural signals such as heart beats, but others reflect neuronal signals 

(Damoiseaux et al. 2006; Fox and Raichle 2007). An advantage of ICA is that no a 

priori assumptions are needed about the outline of the connectivity patterns in 

brain networks (Van de Ven et al. 2004; Van den Heuvel and Hulshoff Pol 2010) 

and it can investigate complex paradigms (Calhoun et al. 2001). ICA produces 

outlines of brain networks that are highly consistent across subjects (Damoiseaux 

et al. 2006). 

Though ICA is a promising technique, there are some challenges. First, the 

number of components has to be chosen by the researcher, although methods 

have been suggested to objectively constrain the number of components 

(Calhoun et al. 2001). It may also be difficult to disentangle components that 

reflect neuronal networks from components that represent other effects (Fox and 

Raichle 2007; Van den Heuvel and Hulshoff Pol 2010). Finally, interpretation of a 

reduced magnitude of the spatial outline of a component, i.e. the extensiveness of 

the network, may be difficult compared to interpretation of more classic 

techniques (Calhoun et al. 2001; Fox and Raichle 2007; Van den Heuvel and 

Hulshoff Pol 2010). A large part of this thesis will be dedicated to altered 

connectivity in prefrontal brain networks in a complex mental illness: 

schizophrenia. 

Disturbed prefrontal function in schizophrenia 

As stated earlier, the prefrontal cortex has a role in a complex set of behaviors 

(Goldberg 2009; Goldman-Rakic 1994; Rissling et al. 2010; Wible et al. 2009) and 

because patients with schizophrenia show impairments in these cognitive 



 

 

Chapter 1  

14  

functions (Aleman et al. 1999; Heinrichs 2001), prefrontal dysfunction may be an 

important origin for their cognitive dysfunctions and other manifested symptoms 

(Goldberg 2009; Goldman-Rakic 1994). Hughlings-Jackson stated that negative 

symptoms involve loss of function through damage to some areas of the brain, 

whereas positive symptoms reflect disinhibition of function through damage to 

some specific, higher cortical area that inhibits that function (Jackson 1887). The 

prefrontal cortex may be an interesting candidate in this model, so that 

compromised prefrontal functioning leads to lack of initiative and other negative 

symptoms, and loss of control over other brain areas may lead to positive 

symptoms such as hallucinations and delusions (Frith et al. 2009; Goldberg 2009). 

Decreased prefrontal activation has indeed been observed in patients with 

schizophrenia, albeit not consistently (Hill et al. 2004). However, when 

summarizing multiple studies the majority suggests a decrease in frontal brain 

activity in patients with schizophrenia (Davidson and Heinrichs 2003; Hill et al. 

2004; Weinberger and Berman 1996), especially in the MPFC of the DMN during 

rest (Kuhn and Gallinat 2011). This decreased frontal activation is referred to as 

hypofrontality (Ingvar and Franzen 1974).  

Although the majority of studies suggest hypofrontality in patients with 

schizophrenia, some studies suggest hyperfrontality in specific conditions. One of 

the explanations for observed hypofrontality and hyperfrontality may be the 

effect of cognitive load. Whereas healthy subjects may be able to increase activity 

in prefrontal regions with increasing cognitive efforts, patients may fail to do so 

after a certain point when the tasks becomes too complex (Jansma et al. 2004; 

Liddle and Pantelis 2003; Mendrek et al. 2004; Mendrek et al. 2007). Before this 

point, equal task performance may be observed in patients and healthy controls, 

but schizophrenia patients may show increased activity to compensate for 

impaired function in task-relevant brain areas (Fusar-Poli et al. 2007). After this 

point, decreased performance and decreased activation of prefrontal and other 

brain areas may be observed in patients (Di Pietro and Seamans 2008; Glahn et al. 

2005). 

Thus, schizophrenia patients indeed exhibit decreased prefrontal function. 

However, because the PFC has a close interaction with many other brain areas 
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and feedback loops exist, the PFC should not be seen as a stand-alone operating 

brain system (Goldberg 2009). This will be discussed next. 

Prefrontal networks affected in schizophrenia 

According to the “cognitive dysmetria” model of schizophrenia, a disturbed 
cortical-subcortical-cerebellar feedback may be the major cause of schizophrenia 

(Fusar-Poli et al. 2007). Besides prefrontal regions, a circuit including cerebellar, 

thalamic, temporal, and striatal regions would have an important role. Disturbed 

feedback mechanisms in this circuit may be caused by disturbed interactions 

between brain regions, and this would fit the “dysconnectivity model” of Frith 

(Frith et al. 2009). 

Numerous studies have shown alterations in low-frequency fluctuations of 

the brain in schizophrenia, including in the DMN (Auer 2008; Buckner et al. 2008; 

Greicius 2008). Most studies showed a relation between symptoms of 

schizophrenia and dysconnectivity of mainly the frontal and temporal areas (Van 

den Heuvel and Hulshoff Pol 2010). Notably, whereas most studies reported lower 

connectivity between resting state networks, some studies reported higher 

connectivity compared to healthy controls (Greicius 2008). It has been suggested 

that schizophrenia patients show decreased connectivity of long-range 

connections, whereas they show increased local connectivity (Lynall et al. 2010; 

Van den Heuvel and Hulshoff Pol 2010). Schizophrenia may then indeed be seen 

as a dysconnectivity syndrome, where normally frontally dominated hierarchical 

networks are degraded and efficient signal transmission is hampered (Bassett et 

al. 2008). Disturbances of these frontal networks appear to be related to attention 

and memory deficits and negative symptoms (Bassett et al. 2011). 

In the light of the functions of the DMN, some symptoms of schizophrenia 

may specifically relate to DMN dysfunction, such as misattribution of thoughts to 

the external world (Buckner et al. 2008; Northoff and Bermpohl 2004) or impaired 

self-reflection (Kuhn and Gallinat 2011; Van der Meer et al. 2010). Moreover, the 

DMN appears to be in dynamic interplay with a network involved in external 

attention (Fransson 2006). An imbalance in this interplay may lead to overactive 

brain networks, and a blurring of perception of the external world and inner 
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states (Buckner et al. 2008). The prefrontal cortex may have a core role in 

disturbed interactions of brain networks (Goldberg 2009). Also other networks 

that are orchestrated by the prefrontal cortex appear also to be disturbed in 

schizophrenia (Fuster 2009), and these may also results in cognitive deficits and 

negative symptoms (Sanfilipo et al. 2002). The next sections will describe several 

symptoms and potential underlying disturbances of brain networks. 

Neural background of executive deficits 

Cognition is a very broad term that can be divided in a neurocognitive, or 

executive, and a social cognitive domain (Foussias and Remington 2010). 

Cognitive deficits in schizophrenia are often diagnosed but difficult to treat and 

have a large impact on daily activities and occupation. Specification of the 

neuroanatomical and neurophysiological background of those symptoms may 

help to develop new treatment strategies (Heinrichs and Zakzanis 1998; Palmer et 

al. 2009; Rissling et al. 2010). 

The lateral prefrontal cortex and the brain areas it is connected to may be 

involved in disturbances of executive functioning in schizophrenia (Fusar-Poli et al. 

2007; Minzenberg et al. 2009), working memory (Goldman-Rakic 1994), cognitive 

control (Minzenberg et al. 2009) and disorganization (Goghari et al. 2010). Medial 

prefrontal networks may be more involved in negative symptoms and emotion 

processing (Chemerinski et al. 2002; Goghari et al. 2010). The anterior cingulate 

cortex (ACC) is highly integrated with the DLPFC and has shown similar 

abnormalities, which may relate to a failure to monitor internal and external 

states (Fusar-Poli et al. 2007; Glahn et al. 2005; Minzenberg et al. 2009).  

Language may be important for executive functions in humans, which is all 

the more plausible given that it can be used to evaluate and plan action (Goldberg 

2009). Language problems may even have a prominent role in disturbed executive 

functions, attention, and working memory (DeLisi 2001; Goldberg 2009). 

Interestingly, different aspects of language disturbances have been observed in 

schizophrenia, including hallucinations, verbal learning problems, and memory 

deficits (Crow 2008; Stephane et al. 2001; Wible et al. 2009). 
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Language processing occurs in a network of brain areas encompassing 

temporal and parietal regions, inferior and middle frontal gyrus, and anterior 

cingulate cortex (Allen et al. 2007; Allen et al. 2008; Li et al. 2009; Stephane et al. 

2001; Wible et al. 2009). Problems in executive control and language may be 

caused by impaired control of prefrontal regions (ACC, premotor) (Li et al. 2009; 

Stephane et al. 2001) over posterior regions of the brain (Allen et al. 2008; 

Goldberg 2009; Wible et al. 2009). Resulting overactivation of these regions may 

then lead to positive symptoms, e.g. auditory verbal hallucinations by overly 

active language processing regions (Allen et al. 2008; Wible et al. 2009). 

As previously indicated, resting state studies are not biased by differences 

in performance between groups and can provide interesting insights into brain 

function in addition to task-based fMRI. Language networks are studied in this 

thesis both during performance of a language task (in Chapter 3) and during 

resting state (in Chapter 2). 

Language is a cognitive process at the border between executive functions 

and social cognition (Hashimoto et al. 2010; Li et al. 2009; Stephane et al. 2001; 

Wible et al. 2009). While the development of language obviously has increased 

cooperation between individuals, it may also have helped to gain higher levels of 

executive functioning through the acquired ability to formulate goals and also to 

the emergence of mental representations of the self (Goldberg 2009). 

Disturbances in overlapping brain regions may cause impairments in both self-

processing and language processing (Li et al. 2009; Stephane et al. 2001). 

Language regions even show considerable overlap with regions of the DMN (Li et 

al. 2009; Wible et al. 2009) suggesting that they also share functions. The next 

section will focus on another important function of the PFC that may be 

compromised in schizophrenia: the neural basis of social problems in 

schizophrenia. 

Neural background of social cognition and emotion 

It has been proposed that poor social functioning of schizophrenia patients may 

be caused by poor social cognition (Nelson et al. 2009). Social cognition can be 

described as cognitive and emotional functions required to understand and 
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predict people’s mental states and behavior (Mancuso et al. 2011; Nelson et al. 
2009). Deficits in social cognition may play a role in the development of symptoms 

of schizophrenia, including delusions, incoherent speech, and third-person 

hallucinations (Frith 1995; Sass and Parnas 2003). These deficits may be caused by 

a failure to correctly represent self and other awareness (Frith 1995; Sass and 

Parnas 2003), which may lead to problems to interpret daily social activities, and a 

reduced ability to connect to other persons (Nelson et al. 2009). Self-processing 

disturbances manifest themselves as both hyperreflexivity (excessive self-focused 

attention) and as diminished self-processing (Parnas and Handest 2003; Sass and 

Parnas 2003).  

Hyperreflexivity may lead to forming inappropriate associations between 

two stimuli (Parnas and Handest 2003; Sass and Parnas 2003). Creating 

associations between different emotional stimuli is called associative emotional 

learning. Patients with schizophrenia have shown impairments in associative 

emotional learning and concurrent abnormalities in brain activation (Murray et al. 

2010). The prefrontal cortex has an important role in the formation of emotional 

associations (Achim and Lepage 2005), especially connections of the PFC to 

emotional parts of the brain such as amygdala and hippocampus (Das et al. 2007). 

Chapter 4 discusses the relation between associative emotional learning and 

altered connections between the prefrontal and amygdala-hippocampal complex. 

Self-processing, but also other social cognitive functions, have been 

extensively related to prefrontal DMN regions (Buckner et al. 2008; Schilbach et 

al. 2008; Van der Meer et al. 2010). Patients with schizophrenia have shown 

consistent decreases in activation of DMN regions, which may accompany 

diminished self-related processing and social cognition (Kuhn and Gallinat 2011). 

Deficits in self-reflective processing may be a cause of poor insight into the 

symptoms of schizophrenia (David 1990; Northoff et al. 2006; Van der Meer et al. 

2010). Insight can be defined as a decreased awareness of having a disorder, 

recognizing symptoms of the disorder, and good compliance to treatment (David 

1990; Mintz et al. 2003). Impaired function of the self-reflection areas of the 

DMN, especially prefrontal dysfunction, may hamper proper recognitions of 

symptoms and awareness of being ill (David 1990; Van der Meer et al. 2010). 
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Chapter 5 reports on a study investigating the link between poor insight and 

default mode resting state connectivity. 

Neural background of negative symptoms 

Problems in self-processing may also relate to negative symptoms (Sass and 

Parnas 2003), which can be described as an absence of some behaviors, such as 

lack of motivation, lack of emotions, and lack of social interaction. Patients with 

schizophrenia appear to have a more analytic and conscious processing strategy 

of information, while processing strategies in healthy subjects may go 

automatically. This alternative strategy may develop as a result of a loss of 

awareness of the self and how to interact with the environment (Sass and Parnas 

2003). Resulting hyperawareness of cognitive processing may result in a loss of 

emotional awareness and motivation because actions or thought are experienced 

as “non-self” (Sass and Parnas 2003). 

Alexithymia is a trait characterized by a reduced ability to experience, 

imagine, identify, express, and describe emotions (Aleman 2005). These 

dysfunctions show resemblance to aspects of negative symptoms of schizophrenia 

(Van 't Wout et al. 2007; Yu et al. 2011). Patients with schizophrenia have indeed 

more difficulty with identifying, expressing, and describing feelings as measured 

with an alexithymia questionnaire (Cedro et al. 2001; Yu et al. 2011), which 

showed a correlation with negative symptoms (Van 't Wout et al. 2007). Negative 

symptoms may thus be partly reflected by the trait alexithymia (Van 't Wout et al. 

2007). 

The same brain areas that may underlie emotional deficits in schizophrenia, 

namely the amygdala, corpus callosum, and the prefrontal cortex, appear to be 

disturbed in alexithymia (Van 't Wout et al. 2007; Yu et al. 2011). Disturbed 

imagination of emotions as an aspect of alexithymia has been related to 

diminished activation of the prefrontal cortex (Mantani et al. 2005). Disturbed 

brain function in relation to emotional awareness and emotional experience has 

also been observed in other DMN brain regions (Berthoz et al. 2002; Kano et al. 

2003; Karlsson et al. 2008; Lane et al. 1998; Moriguchi et al. 2006).  
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To summarize, alterations in brain functioning underlying emotional 

processing in alexithymia may share some resemblance in negative symptoms in 

schizophrenia and associated alterations in brain functioning in schizophrenia. 

Understanding more about the neural background of a trait related to negative 

symptoms may gain more insight in the etiology of negative symptoms and 

emotional deficits in schizophrenia without confounding effects such as other 

symptoms or medication. Chapter 6 reports on altered DMN function in healthy 

subjects with alexithymia, and may provide some insight in the neural basis of 

negative symptoms in schizophrenia. 

The construct of negative symptoms 

Negative symptoms, which can be considered as the primary symptoms of 

schizophrenia (Andreasen and Flaum 1991; Foussias and Remington 2010), are 

now often seen as a group of symptoms within one entity (Foussias and 

Remington 2010). But already in 1982, an interview was developed categorizing 

negative symptoms into five sub-dimensions, namely affective flattening, alogia, 

avolition, anhedonia, and attentional impairment (Andreasen 1982). In the same 

period, different efforts were made to define negative symptom groups (Goghari 

et al. 2010; Kirkpatrick et al. 2001). 

An approach to study the relatedness of negative symptoms is through 

factor analysis (Blanchard and Cohen 2006; Peralta and Cuesta 1995). Different 

studies have shown that negative symptoms may have multiple sub-dimensions, 

with two sub-domains - expressive deficits and social amotivation - as the most 

consistent finding (Blanchard and Cohen 2006; Foussias and Remington 2010; 

Peralta and Cuesta 1995). Expressive deficits include flat affect and alogia, while 

social amotivation includes anhedonia, amotivation and asociality (Messinger et 

al. 2011). These two sub-domains (deficits in the expression of emotion and 

amotivation for social interactions) have now also been proposed for the DSM-V 

(Messinger et al. 2011).  

Most studies on the construct of negative symptoms are not from recent 

years. Moreover, they investigated relatively small samples (< 200) (Blanchard and 

Cohen 2006; Foussias and Remington 2010; Peralta and Cuesta 1995). Chapter 7 
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attempts to capture the structure of negative symptoms by more robust methods. 

Negative symptom structure is determined in a large cohort of patients, and then 

confirmed in an independent and also large sample. 

Neurotransmission in the prefrontal cortex 

Effective treatment of negative symptoms and cognitive deficits may be the 

strongest determinant of good functional outcome (Horan et al. 2010). 

Unfortunately, treatment of negative symptoms with antipsychotics is often 

unsatisfactory. Before we will discuss the effects of antipsychotics on brain 

function in schizophrenia, a general introduction to neurotransmitters is 

necessary. 

Neurotransmitters and neuromodulators are small molecules that make 

communication within the brain possible. Because of the orchestrating role of the 

PFC, different neurotransmitters play an important role in communication 

between the prefrontal cortex and other brain areas. 

Many neurons, and interneurons, use glutamate (Glu) or Gamma Amino 

Buteric Acid (GABA) as neurotransmitters. Interneurons are diffusely distributed 

throughout the cortex, and have a general regulating role. While glutamate is 

excitatory, GABA is inhibitory (Fuster 2009). Glutamatergic tracks run from the 

cortex to subcortical structures, and from the hippocampus to the striatum and 

cingulate cortex of the frontal lobes (Belsham 2001; Laruelle et al. 2003). 

Glutamate is involved in learning and memory, locomotion, and perception 

(Belsham 2001). GABA-ergic neurons are abundant in the whole brain, and play a 

general role in inhibition and rhythmicity, often within feedback loops in brain 

circuits (Fuster 2009; Goldberg 2009). 

Dopamine (DA) and noradrenaline (NE) are both neuromodulators that 

have a role in the prefrontal cortex and consequently they strongly influence 

executive functions (Goldberg 2009). The dopamine system runs from two regions 

in the brain stem to mainly prefrontal, striatal, and limbic regions. The striatal 

system has functions in cognitive integration, habituation, sensorimotor 

coordination, and initiation of movement, and the cortical and limbic networks 
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have functions in regulation of motivation, attention, and reward (Abi-Dargham 

and Laruelle 2005; Goldberg 2009). 

Noradrenaline pathways from the brain stem innervate several nuclei in the 

hypothalamus and upper brain stem, but also the whole cortex and cerebellum 

(Fuster 2009; Goldberg 2009). Intermediate levels of both DA and NE are related 

to good cognitive performance, while high or low levels of DA or NE, e.g. caused 

by stress, may impair cognitive capacities of the prefrontal cortex, hippocampus, 

and amygdala (Di Pietro and Seamans 2008; Fuster 2009). 

Serotonin (5-HT) is also synthesized in the brain stem, and shows strong 

projections to the limbic system and posterior brain regions, but also prefrontal 

brain regions (Busatto and Kerwin 1997; Fuster 2009; Goldberg 2009). 5-HT may 

have an important role in inhibitory control of the PFC on the rest of the brain, 

and in mental flexibility (Goldberg 2009). It has reciprocal interactions with other 

neurotransmitters (Lieberman 2004), e.g. with DA in the context of working 

memory (Fuster 2009; Meltzer et al. 2003) and with GABA in neuronal inhibition 

(Meltzer et al. 2003).  

Acetylcholine (ACh), again from the brainstem, is involved in cognitive 

function and ACh neurons project diffusely throughout the brain. This 

neurotransmitter appears to have a modulating effect on DA in striatal regions. 

Moreover, ACh increases spontaneous neuronal activity in the DLPFC, while the 

PFC itself regulates ACh release in posterior parietal regions (Fuster 2009; 

Goldberg 2009). 

With this basic knowledge about neurotransmitters, we can now move on 

to effects of antipsychotics on neurotransmitter systems. 

Treatment of negative symptoms and other  prefrontal 

dysfunctions 

Historically, the first symptomatic treatment of schizophrenia was done with so-

called typical antipsychotics that are potent blockers of the dopamine D2 receptor. 

The efficacy of these dopamine blockers was based on the dopamine hypothesis 

of schizophrenia (Jarskog et al. 2007). The dopamine hypothesis states that 

positive symptoms may be caused by a superabundance of dopamine in the 
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striatal regions, while negative symptoms are caused by depletion of dopamine in 

the prefrontal cortex (Di Pietro and Seamans 2008; Fuster 2009; Lieberman 2004). 

This assumption is based on the observed effects of DA blocking antipsychotics. 

However, dopamine is possibly not the primary cause for pathology in 

schizophrenia (Grace 2000). 

In fact, the pathophysiology of schizophrenia may involve disrupted 

synaptic connectivity that affects both inhibitory and excitatory brain circuits 

(Jarskog et al. 2007). It has been suggested that cortical glutamate may in fact be 

the primary factor in the pathology of schizophrenia. Decreased tonic activity of 

the cortical glutamate system may result in hypofrontality, as part of a larger 

network of brain regions that shows abnormalities (Belsham 2001; Grace 2000; 

Laruelle et al. 2003). On the other hand, the inhibitory effect of GABA-ergic 

interneurons in the DLPFC is also disrupted in schizophrenia (Belsham 2001; Di 

Pietro and Seamans 2008; Jarskog et al. 2007) and 5-HT receptor abnormalities 

have also been observed (Fuster 2009). Feedback loops via the dopamine system 

may lead to imbalance in the dopamine system with prefrontal hypodopaminergia 

a striatal hyperdopaminergia as a result (Belsham 2001; Di Pietro and Seamans 

2008; Fuster 2009; Grace 2000; Jarskog et al. 2007). 

Whereas the striatal overactivity may lead to positive symptoms, 

hypofrontality was postulated as the substrate for negative symptoms and 

cognitive impairments (Abi-Dargham and Laruelle 2005; Bishara and Taylor 2008; 

Jarskog et al. 2007). Moreover, deficits in glutamate and GABA transmission may 

cause interrupted associations in the cerebral cortex and disrupted integration in 

all domains, such as thinking, speech, emotion, and behavior (Fuster 2009). 

Because early antipsychotics quite specifically block the dopamine receptor, 

they have a good effect on positive symptoms, but little or even a deteriorating 

effect on negative symptoms and cognitive impairments (Bishara and Taylor 2008; 

Jarskog et al. 2007). Therefore, newer antipsychotics have been developed with a 

more diverse receptor profile that may have subtle effects on negative symptoms 

and cognition (Arnt and Skarsfeldt 1998; Bishara and Taylor 2008; Jarskog et al. 

2007). Two important pharmacological properties of this class of drugs may be a 

high affinity for the serotonin 5-HT2A receptor and a lower D2 affinity, which may 
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result in higher (medial) prefrontal dopamine levels (Busatto and Kerwin 1997; Di 

Pietro and Seamans 2008; Jarskog et al. 2007; Lieberman 2004; Meltzer et al. 

1999; Meltzer et al. 2003) and effective glutamate transmission (Abi-Dargham and 

Laruelle 2005; Di Pietro and Seamans 2008; Meltzer et al. 2003). Despite the 

hypothesized superiority of these newer antipsychotics, the observed clinical 

effects appear to be limited or is at least not replicable (Abi-Dargham and Laruelle 

2005; Arnt and Skarsfeldt 1998; Bishara and Taylor 2008; Davis et al. 2005; Leucht 

et al. 2009). 

Neuroimaging studies have been conducted to investigate the effect of 

antipsychotic treatment on brain activation, including studies that specifically 

focused on the prefrontal cortex (Da Silva Alves et al. 2008; Davis et al. 2005; 

Röder et al. 2010; Vita and De Peri 2007). However, these studies made no clear 

distinction between antipsychotics or brain areas, only focused on one imaging 

technique, or are not recently updated. In general they found that antipsychotics 

decrease prefrontal function. But in the light of the ongoing discussion about 

whether atypical antipsychotics indeed have a more favorable spectrum of 

behavioral effects relative to typical antipsychotics and recent imaging findings an 

update may add to the field. In chapter 8 an overview is given of neuroimaging 

findings on the effects of different types of antipsychotics on prefrontal function. 

One new approach to treat schizophrenia symptoms is the use of partial DA 

agonists. These work by binding to the dopamine receptor, and there mimicking 

the effect of dopamine but with a lower intrinsic activity (Jarskog et al. 2007; 

Lieberman 2004). In this way both hyper- and hypodopaminergia can be corrected 

without risk of overcompensation. Aripiprazole is the first partial dopamine 

agonist used in treating schizophrenia, and its extensive receptor interactions may 

help reducing anxiety, mood disturbances, cognitive deficits, and negative 

symptoms (Bishara and Taylor 2008; Jarskog et al. 2007; Lieberman 2004). Indeed, 

some evidence exists that the partial DA agonist aripiprazole may have some 

effect (Kane et al. 2008; Lieberman 2004). A study comparing the effectiveness of 

aripiprazole to a strong dopamine blocker on different aspects of negative 

symptoms is described in Chapter 9. 
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Outline of the thesis 

This thesis focuses on different prefrontal functions that may be disturbed in 

schizophrenia. First, the function of lateral prefrontal regions is covered. Chapter 

2 and 3 discuss language impairments as a key executive function, both during 

task performance in Chapter 3, and during resting state in Chapter 2. Chapter 4 

discusses a process with both emotional and language aspects, and it focuses on 

the relation between associative emotional learning and prefrontal connections. 

Emotion processing, such as self-reflection, is one of the functions of the default 

mode network. Chapter 5 investigates the link between poor insight in 

schizophrenia and DMN resting state connectivity, because impaired self-

reflective capacities may underlie poor insight. Further, chapter 6 reports on 

disturbed DMN function in healthy subjects with alexithymia. Alexithymia is a trait 

in which persons have problems to process feelings, and self-reflection could play 

an important role in emotional awareness. Studying alexithymia may also provide 

more insight into the neural basis of negative symptoms, because of the 

resemblance to alexithymia. However, before the neural basis of certain 

dysfunctions can be studied, good concepts of symptom dimensions are 

necessary. Chapter 7 shows that negative symptoms may consist of two sub-

domains, which may have relevance for research into the neural correlates and 

into treatment. Chapter 8 investigates whether antipsychotics with different 

receptor profiles may have a different effect on prefrontal activation by revising 

the published neuroimaging literature. Chapter 9 expands on the notion of 

negative symptoms with different sub-domains and frontal activation by 

antipsychotics by investigating effects of aripiprazole (a dopamine agonist) on 

different negative symptoms. 
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2. Abnormal connectivity between attentional, 

language and auditory networks in schizophrenia 
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Abstract 

Introduction: Brain circuits involved in language processing have been suggested 

to be compromised in patients with schizophrenia. This does not only include 

regions subserving language production and perception, but also auditory 

processing and attention. We investigated resting state network connectivity of 

auditory, language, and attention networks of patients with schizophrenia and 

hypothesized that patients would show reduced connectivity. Methods: Patients 

with schizophrenia (N = 45) and healthy controls (N = 30) underwent a resting 

state fMRI scan. Independent components analysis was used to identify networks 

of the auditory cortex, left inferior frontal language regions and the anterior 

cingulate region, associated with attention. The time courses of the components 

where correlated with each other, the correlations were transformed by a Fisher's 

Z transformation, and compared between groups. Results: In patients with 

schizophrenia, we observed decreased connectivity between the auditory and 

language networks. Conversely, patients showed increased connectivity between 
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the attention and language network compared to controls. There was no 

relationship with severity of symptoms such as auditory hallucinations. 

Discussion: The decreased connectivity between auditory and language 

processing areas observed in schizophrenia patients is consistent with earlier 

research and may underlie language processing difficulties. Altered anterior 

cingulate connectivity in patients may be a correlate of habitual suppression of 

unintended speech, or of excessive attention to internally generated speech. This 

altered connectivity pattern appears to be present independent of symptom 

severity, and may be suggestive of a trait, rather than a state characteristic. 

Introduction 

Problems in language processing have been consistently reported in individuals 

with schizophrenia (Crow 2008; DeLisi 2001), and also in healthy siblings 

(Docherty and Gordinier 2010), albeit to a lesser degree. These deficits cover a 

wide range of domains including language comprehension, production and 

attention, and specific processes such as semantics, verbal fluency and grammar 

(DeLisi 2001; Price 2010). Language problems have been related to auditory 

hallucinations (Crow 2008), formal thought disorder, disorganization and memory 

impairments (Docherty and Gordinier 2010). Neuroimaging studies in 

schizophrenia patients have shown abnormalities in brain areas related to 

language processing, including the auditory cortices (Li et al. 2009; Li et al. 2010), 

language areas such as Broca's (Li et al. 2010), as well as the anterior cingulate 

(ACC), which is involved in attention (Sabb et al. 2010) and speech monitoring 

(Allen et al. 2007). Several lines of research, including postmortem and brain 

imaging studies suggest that schizophrenia is characterized by abnormalities in 

concerted action between spatially distributed networks (Hubl et al. 2004; Kubicki 

et al. 2002; Shenton et al. 2001). Schizophrenia has therefore been described as a 

dysconnectivity disorder (Peled 1999). Aberrant connectivity between specific 

brain networks such as auditory, e.g. in the anterior superior temporal gyrus (STG) 

and language regions (Broca's and Wernicke's regions) may also underlie 

functional abnormalities observed in the disorder, i.e. language impairments (Li et 
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al. 2009; Li et al. 2010; Sabb et al. 2010). This study aims to study the connectivity 

between spatially distributed networks relevant for language processing. 

Auditory verbal hallucinations (AVH) are one of the key symptoms of 

schizophrenia, which have been hypothesized to be related to problems in 

language comprehension and generation (Crow 2008; Stephane et al. 2001; Wible 

et al. 2009). In this framework, Crow and Frith et al. hypothesized that 

dysfunctional connections between fronto-temporal language and auditory brain 

regions may lead to language processing impairments, such as the misattribution 

of one's own verbal thoughts as spoken words outside the head (Crow 2008; Frith 

et al. 2009). The fronto-temporal dysconnectivity idea is supported by 

electrophysiological studies showing reduced fronto-temporal connectivity during 

talking (Ford et al. 2010), and reduced synchrony during the prespeech phase 

(Ford et al. 2007) in people with schizophrenia, particularly in those with AVH. 

Diffusion tensor imaging (DTI) studies and functional magnetic resonance imaging 

(fMRI) studies also showed a decreased connectivity between lateral frontal and 

the temporal areas in people with schizophrenia (Hubl et al. 2004; Li et al. 2010; 

O`Daly et al. 2007), also related to verbal learning (Hashimoto et al. 2010; 

Karlsgodt et al. 2008), verbal fluency capacity (Jeong et al. 2009), and 

hallucinations (Lawrie et al. 2002). Finally, computer simulations, verified by 

patient studies, showed that fronto-temporal dysconnectivity may result in 

erroneous word detection and spontaneous word generation (Hoffman and 

McGlashan 1998; Hoffman 1999). 

In addition to abnormal fronto-temporal connectivity, decreased 

connectivity of auditory and language areas with the ACC may contribute to 

misattribution of speech, which may lead to AVH (Allen et al. 2007). DTI studies 

(Kubicki et al. 2002; Park et al. 2004) and functional imaging studies (Fletcher et 

al. 1999) support this idea by showing decreased left-sided connectivity between 

temporal and ventral prefrontal areas/ACC. Decreased connectivity of the ACC 

with other brain areas may also underlie a broad range of other language deficits, 

such as impairments in perception, comprehension, retrieval, and production 

(Price 2010). In conclusion, the literature suggest that impairments in language 
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processing in schizophrenia may be related to aberrant connectivity between 

brain areas implicated in language processing and attention. 

During resting state fMRI scans, the brain shows large fluctuations in the 

Blood Oxygen Level Dependent (BOLD) signal, which are relatively stable within 

brain networks consisting of functionally connected regions (Salvador et al. 2005). 

This coherence of BOLD fluctuations within networks is referred to as resting state 

functional connectivity, and may be a more natural measure of brain function 

than task-based fMRI (Raichle and Gusnard 2005) as it reflects intrinsic brain 

interactions (Van de Ven et al. 2004). Furthermore, it has been suggested that 

these interactions may reflect overall brain function (Fox and Raichle 2007) and 

predict task performance or behavior (Fox and Raichle 2007). Evaluating resting 

state functional connectivity may therefore be a valuable tool for the 

identification of dysfunctional networks in the brain associated with psychiatric 

disorders such as schizophrenia (Auer 2008; Fox and Raichle 2007). Independent 

component analysis (ICA) is the method of choice to study temporal fluctuations 

between brain networks in the resting state, i.e. in the absence of a specific 

cognitive task (Auer 2008; Calhoun et al. 2001). This data-driven method 

separates the BOLD signal into spatially independent networks (components) by 

maximizing the spatial independence between voxel time courses (Van de Ven et 

al. 2004; Van de Ven et al. 2005). Together with the time course, a spatial map is 

created per subject, which shows the contribution of every voxel in the brain to a 

certain network (component). Brain areas that show similar fluctuations, i.e., have 

a similar time course and thus belong to one network, can this way be identified 

(Jafri et al. 2008). Those networks show a close correspondence to networks 

identified by activation studies (Smith et al. 2009). Thus, ICA is a suitable tool to 

study the large scale connectivity between different networks. 

ROI-based analysis is a widely applied technique to study functional 

connectivity in fMRI research. It works by taking average time courses of the raw 

BOLD signal based on predefined regions, and correlating these. Our aim here is 

to study large scale connectivity between different networks. We considered ICA 

more suitable for our research question than seed-based ROI connectivity as we 

were interested in intrinsic networks that can be identified in a model-free, data-
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driven way. Most importantly, Rosazza et al. showed that the largest differences 

in results between ICA and ROI analysis were observed for long range 

connections, which are the focus of our study (Rosazza et al. 2011). Moreover, ICA 

tends to separate signal of no interest from signal of interest (brain activation) 

and may give a better representation of brain activation than the raw MRI signal 

and contain less noise (Fox and Raichle 2007; Van de Ven et al. 2004). Finally, it 

may be difficult with ROI analysis to clearly define a complete brain network, 

without missing certain brain areas or including areas that show different 

temporal patterns (Fox and Raichle 2007; Van de Ven et al. 2004). Therefore, ICA 

is the optimal choice to study alterations in concerted action between spatially 

distributed brain networks (Hubl et al. 2004; Kubicki et al. 2002; Shenton et al. 

2001) as we described earlier. 

Few studies have used ICA as yet to investigate brain networks in 

schizophrenia in auditory networks. Van de Ven et al. used ICA to investigate the 

cortical connectivity patterns during AVH, reporting a relationship between time 

courses in the auditory cortex (superior temporal gyrus; STG) and the onset of 

AVH's (Van de Ven et al. 2005). Jafri et al. used ICA to investigate the connectivity 

between spatially independent brain networks of schizophrenic patients 

compared to healthy controls but they did not specifically investigate language 

and auditory networks (Jafri et al. 2008). 

Given the relevance of these networks for the neurobiology of 

schizophrenia, we specifically focused on language and auditory processing 

networks in the present study. ICA is a very suitable analysis method given the 

data-drive nature of ICA. The first aim was to identify complete brain networks 

related to language processing in the data, by investigating whether predefined 

language-related brain regions could be identified as an ICA component. These 

regions included STG, Wernicke's and Broca's area, and the anterior cingulate 

cortex. The second aim was to study the difference in connectivity between 

networks comparing schizophrenia patients and healthy controls, by comparing 

the correlations of the time courses of different brain networks. 
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Methods 

Subjects 

This study was approved by the local medical ethical committee according to the 

Declaration of Helsinki. The study sample consisted of a mixed sample of in- and 

out-patients of local psychiatric clinics diagnosed with schizophrenia by their 

physician (SZ; N = 45) and a group of healthy controls (HC; N = 30). Patients were 

participants in an fMRI study on neural correlates of auditory hallucinations or a 

study on cognitive emotional processing; in both studies a resting state scan was 

part of the research protocol. In patients the diagnosis of schizophrenia based on 

the DSM IV was confirmed by a semi-structured interview (Schedules for Clinical 

Assessment in Neuropsychiatry; SCAN 2.1) - (Giel and Nienhuis 1996). Symptom 

severity was determined by the Positive and Negative Syndrome Scale (PANSS) - 

(Kay et al. 1987).  

Exclusion criteria for the study consisted of MRI incompatible implants, 

possible pregnancy, claustrophobia, and non-native Dutch speakers. All subjects 

gave oral and written informed consent after the study procedure had been fully 

explained. All subject data was handled anonymously. 

Healthy controls were recruited by advertisements in local newspapers, and 

matched for age, gender, handedness, and education level to the patient groups. 

See Table 1 for the demographical data. Difference in age between groups was 

tested with an independent samples t-test (α = 0.05). Educational level was 

determined using a six point scale of Verhage  which runs from primary school (1) 

to university level (6) and tested with a Mann–Whitney U test (α = 0.05) (Verhage 

1984). A Chi-square test (α = 0.05) was used to test for differences in gender and 
handedness. Handedness was confirmed with the Edinburgh handedness 

inventory (Oldfield 1971). For patients, medication status was also determined. 

Experimental procedure 

All subjects underwent a resting state fMRI scan. They were instructed to close 

their eyes, relax, think of nothing particular, and to stay awake. A 3 T Philips Intera 

MRI scanner (Best, The Netherlands) equipped with an eight-channel SENSE head 

coil was used to acquire 200 whole brain echoplanar functional images (EPI's), TR 
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2.3 s and TE 28 ms. The volumes contained 39 or 43 interleaved slices (3.8×3.8×3 

mm) with no gap and a 85° flip-angle (FOV = 220×117×220 mm). A high-

resolution, transverse T1 anatomical was also acquired for anatomical reference 

(160 slices; voxel size 1×1×1 mm; FOV 256×220×256mm). 

 

Table 1 Overview of the demographical data; mean values (standard deviations in parentheses) or 

ratios are indicated 

  Patients Controls p-value 

Age (years) 34.7 (11.4) 33.4 (10.5) 0.67 

Education (level) 3.5 (1.1) 4.1 (1.1) 0.053 

Males/females 28/17 15/15 0.42 

Handedness (left/right) 5/40 6/24 0.47 

PANSS P3 (AVH) 3.7 (1.9) - - 

PANSS Positive  15.5 (5.0) - - 

PANSS Negative 14.4 (4.4) - - 

PANSS General  29.1 (8.3) - - 

 

Participants also performed a language processing task in the same fMRI 

session as the resting state scan. Although the functional neuroimaging correlates 

of that task are beyond the scope of this paper, we present the behavioral data to 

provide an indication of language processing differences between groups, which 

may aid interpretation of our findings. The task (Aleman 2005) required subjects 

to evaluate bisyllabic Dutch words that were presented one at a time in the 

middle of the screen. In one condition a valence judgment was required, by 

indicating whether the presented word was positive or negative to the subject 

(semantic condition; e.g. stimulus: “summer”; answer e.g. “positive”). In the 
second condition, a metrical stress judgment was required, by indicating the 

syllable that carried the metrical stress (phonetic condition). The task consisted of 

24 trials for the semantic condition and 24 trials for the phonetic condition that 

were presented mixed in pseudorandom order. 
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Data analysis 

The raw images were converted to ANALYZE format and analyzed using Statistical 

Parametric Mapping (SPM5; FILWellcome Department of Imaging Neuroscience, 

London, UK) running in Matlab 7.1. Images were first corrected for slice-time 

differences and realigned to the first functional image. All motion parameters 

were checked for spurious motion and all subjects that moved more than 3 mm 

were excluded from further analysis. The mean image created during realignment 

was coregistered to the anatomy, together with the functional images, and the 

anatomy and functional images were normalized to the T1 template of SPM (voxel 

size 3×3×3 mm). Finally, images were smoothed with a 10mm FWHM isotropic 

Gaussian kernel. 

Following preprocessing, images were processed in the Group ICA FMRI 

Toolbox (GIFT) (http://icatb.sourceforge.net/gift/gift_startup.php) - (Calhoun et 

al. 2001). First, the mean number of independent components (IC's) was 

estimated using Maximum Description Length (MDL) and Akaike's criteria (Li et al. 

2006), to prevent splitting or merging of components (Smith et al. 2009). 

Estimation showed an estimate of 30 components. Intensity normalization, which 

implied scaling the time courses to a mean of 100, was applied to the images 

before running the ICA procedure. Then, images of all subjects were decomposed 

into a set of 30 spatially independent components by the Infomax algorithm. 

Stability of the components, i.e. investigating whether a component has the 

tendency to split or merge with another component (Rosazza et al. 2011), was 

validated by running the ICASSO toolbox implemented in GIFT using twenty 

iterations with both random iterations and bootstrapping (Himberg et al. 2004). 

In order to exclude components with artifacts, components maps of the ICA 

were sorted based on the white matter and gray matter masks of SPM using the 

automated spatial sorting facility of GIFT. Validity of the components was further 

verified by visually comparing the components with previously identified 

networks (Beckmann et al. 2005; Damoiseaux et al. 2006; Smith et al. 2009). 

Next, potential components of interests were identified by searching 

components that showed a substantial overlap with anatomical masks of 

predefined regions of key brain structures in language processing. The anatomical 
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masks used for sorting were created by WFU pickatlas 

(http://www.nitrc.org/projects/wfu_pickatlas). Masks provided by WFU pickatlas 

are based on brain regions defined by Talairach and Tournoux (Talairach and 

Tournoux 1998) that were implemented in this toolbox after conversion to MNI 

space (Lancaster et al. 1997; Lancaster et al. 2000). We tried to identify the 

auditory cortex network, language networks (Broca's and Wernicke’s area), and 
the anterior cingulate of the attention network. The characteristics of the key 

regions are summarized in Table 2.  

 

Table 2 Key areas of interest; Regions were derived from the WFU pickatlas; The second column 

indicated the name of the area as present in the atlas; The third column gives the size of the area 

in mm
3 

and the fourth column a few examples of references on which we based the areas involved 

in language processing 

Area of interest Anatomical region in 

WFU pickatlas 

Size of 

area 

(mm
3
) 

Reference from 

literature 

Auditory network Bilateral superior 

temporal gyrus 

21.0  Hashimoto et al. 2010; 

Karlsgodt et al. 2008; Li 

et al. 2009; Li et al. 2010; 

Price 2010; Shergill et al. 

2002; Simons et al. 2010 

Attention network Anterior cingulate 

gyrus 

6.2 Allen et al. 2007; Fletcher 

et al. 1999; Price 2010; 

Sabb et al. 2010 

Language network 

Broca’s area 

Brodmann area 

44/45 

2.1 Ford et al. 2010; Jeong et 

al. 2009; Li et al. 2010; 

Price 2010 

 Inferior frontal gyrus 19.0 Stephane et al. 2001 

Language network 

Wernicke’s area 

Brodmann area 22 3.4 Allen et al. 2007; Ford et 

al. 2010; Price 2010 

 Heschl’s gyrus 0.95 Stephane et al. 2001 
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Shortly, the auditory cortex was defined as STG and the anterior cingulate cortex 

as ACC. Because the language areas have different definitions, Wernicke's area 

was both defined as Brodmann area 22 and Heschl's gyrus, and Broca's area both 

as BA 44/45 and inferior frontal gyrus (IFG). 

Time courses of selected components were visually inspected and 

converted to power spectra to check for the presence of artifacts (Cordes et al. 

2000). Hereafter, correlations were calculated between the time courses of all 

selected networks (Jafri et al. 2008) and converted to z-scores by a Fischer's Z 

transformation, where z = 1/2 ln((1+r) /(1−r)) where r represents the correlation. 

These data were loaded in Statistical Package for Social Sciences (SPSS 16). 

Between group comparisons were conducted using Mann–Whitney U tests (α = 
0.05). 

In an additional analysis, the PANSS items P2 Conceptual disorganization, 

P3 Hallucinations (which mainly concerned AVH) were correlated - using a non-

parametric Spearman correlation (α = 0.05) - with the Z-scores, to investigate 

whether there was a link between symptom severity and connectivity between 

the auditory, language, and attention networks. 

With regard to the language processing task, for both groups the mean 

reaction times and accuracy for the phonetic and semantic condition were 

calculated. For the semantic condition there are no correct answers as they 

depend on subjective ratings. Still, the agreement of a subject's response with the 

opinion of independent raters (from a previous study: (Aleman 2005) could be 

judged. Finally, the percentage of positively rated words was determined, as 

patients may have a more negative bias toward words. These measures were 

compared between groups using a Mann–Whitney U test (α = 0.05) because the 

data were non-normally distributed. The measures were tested separately 

because both conditions measure a distinct concept. 

Results 

Patient characteristics and language processing task 

Eventually, 30 healthy controls and 45 patients with schizophrenia (after exclusion 

of two due to excessive movement) participated in the study. A group comparison 
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showed no significant differences in age, education level, gender or handedness 

(see Table 1). Most patients had a diagnosis of schizophrenia paranoid type (N = 

32), and a few patients had another diagnosis according to the interview: 

schizophrenia disorganized type (N = 1), schizophrenia undifferentiated type (N = 

4) psychotic disorder NOS (N = 4), and some missing diagnosis (N = 4). Possibly, 

the correct diagnosis was not given by the algorithm of the SCAN sometimes, 

because essential data were missing. The average duration of illness was 119 

months, but was variable (SD = 134, min = 1, max = 480 months). The patients 

reported to use the following medication; antipsychotics: aripiprazole (9×), 

chlorprotixene (1×), clozapine (15×), haloperidol (4×), olanzapine (9×), 

paliperidone (1×), penfluridole (1×), perphenazine (1×), pimozide (1×), 

pipamperone (1×), quetiapine (7×), risperidone (10×), sulpiride (1×), and 

zuclopentixole (2×); antidepressants: amytriptyline (1×), bupropione (1×), 

citalopram (3×), clomipramine (1×), fluoxetine (2×), fluvoxamine (1×), mirtazapine 

(1×), paroxetine (2×), nortriptylin (1×), trazodone (1×), and venlafaxine (2×); 

benzodiazepines: diazepam (3×), flurazepam (1×), lorazepam (3×), oxazepam (7×), 

temazepam (5×); other: atenolol (1×), biperiden (6×), carbamazepine (1×), 

lithiumcarbonate (6×), pantaprazol (2×), promethazine (1×), and valproic acid (1×). 

 

 

Figure 4 Reaction times (left graph) and performance (right graph) on the valence evaluation task, 

for both the semantic and phonetic condition; Patients have longer reaction times and a lower 

accuracy compared to healthy controls 

Performance on the valence evaluation task is shown in Figure 4. Reaction 

time in the semantic condition was significantly longer for patients (U = 307.5, z = 



 

 

Chapter 2  

38  

−2.55, p = 0.011), and showed a trend for the phonetic condition (U = 353.0, z = 

−1.93, p = 0.054). Moreover, patients performed slightly worse on the phonetic 

condition (U = 347.5, z = −2.01, p = 0.045), and in the semantic condition tended 

to show a lower agreement with the valence ratings of a separate control sample 

(U = 361.5, z = −1.82, p = 0.069). There was no difference however, in valence 

rating as expressed by the percentage positively rated (50.2% for controls and 

50.1% for patients). Thus, patients rated different words as positive compared to 

controls. 

 

 

Figure 5 The brain networks found with ICA: A) anterior cingulate network with some posterior 

cingulate, inferior parietal lobule and prefrontal cortex; B) language component with mainly 

Broca's area and its homologue, and also Wernicke's area and its homologue; C) auditory network 

with superior temporal gyrus and lingual gyrus, anterior cingulate, and medial frontal cortex 
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Table 3 Brain areas encompassed by the language areas identified by ICA (FWE, p < 0.05, k > 50) 

Network Cluster 

size 

Peak 

T 

x,y,z 

(mm) 

Area 

ACC network 6436 34.64 -6 42 15 anterior cingulate gyrus 

 346 9.27 0 -27 30 cingulate gyrus 

 67 7.11 54 -42 

54 

inferior parietal lobule 

STG network 3170 28.48 -51 -18 6 superior temporal gyrus 

 1045 13.52 60 -24 6 superior temporal gyrus 

 220 10.78 -9 24 0 anterior cingulate gyrus 

 191 8.17 12 -54 -9 lingual gyrus 

 72 7.57 3 51 -6 medial frontal gyrus 

Broca's 

network 

2135 27.18 -45 24 -6 inferior frontal gyrus (Broca's area) 

 1131 18.71 48 27 0 inferior frontal gyrus (Broca's 

homologue) 

 372 10.42 -6 57 27 posterior STG (Wernicke's area) 

 51 6.3 63 -36 0 posterior STG (Wernicke's 

homologue) 

ICA network results 

Estimation of the number of independent components yielded a mean of 30 

components. ICASSO showed good stability of the components with an inter-

cluster similarity of > 0.8 and no crosstalk with other components. After running 

the ICA, three different components of interest were identified (Allen et al. 2008; 

Hoffman and McGlashan 1998), namely: an auditory component that mainly 

included STG (46% overlap with STG mask), the attention network with mainly 

ACC (36% overlap with ACC mask), and a language network with mainly Broca's 

area and also Wernicke's. This network showed overlap with both masks for 

Broca's area (20% overlap with the BA 44/45 mask and 57% overlap with the IFG 

mask). There was no substantial overlap with the masks for Wernicke. We will 



 

 

Chapter 2  

40  

refer to these networks as STG network, Broca's network, and ACC network 

respectively. Information regarding peak voxels can be found in Table 3. 

 

 

Figure 6 Graph showing the average z-scores for all connections for the different subject groups; 

There was a significant difference in average Z-scores of the STG - Broca's network connection and 

the Broca's - ACC network connection 

A stringent threshold of FWE, p < 0.05, k > 50 was applied because of the 

robust nature of the component maps. The language network contained Broca's 

area, and to a lesser degree Broca's right-sided homologue as well as Wernicke's 

area and its right homologue. The auditory component was constituted of the 

bilateral STG, encompassing the primary and secondary auditory cortex, and 

additionally the lingual gyrus, anterior cingulate, and medial frontal gyrus. The 

ACC component contained additionally some cingulate cortex, and inferior 

parietal lobule. Interestingly, the components also weakly contained some brain 
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areas encompassed by another component, e.g. ACC in the language network, 

which may indicate a weak coherence between those networks. Visual inspection 

of time courses and power spectra showed no deviating pattern in one of the 

components. Most of the fluctuations were present in the 0.01–0.2 Hz frequency 

range consistent with default mode network fluctuations. Spatial maps of the 

components are presented in Figure 5. 

Mann Whitney U tests comparing patients and controls revealed significant 

differences in the Z-scores associated with the connection between ACC and 

Broca's networks (Mcontrols = 0.21, SD = 0.30, Mpatients = 0.49, SD = 0.32, p = 0.0005), 

which were higher in patients, and the Z-scores associated with the connection 

between STG and Broca's networks (Mcontrols = 0.52, SD = 0.25, Mpatients = 0.37, SD = 

0.26, p = 0.024), which were lower in patients (see Figure 6). There was no 

significant correlation between Z-scores and symptom severity as measured by 

PANSS items. 

Discussion 

In this study, we tested the hypothesis of reduced connectivity between the 

auditory and language networks in patients with schizophrenia. The ICA yielded 

three components of interest related to language processing, namely the auditory 

cortex (STG network), fronto-temporal language regions (Broca's network), and 

the attention network (ACC network). Decreased connectivity was observed in 

patients between the auditory and language networks. However, patients showed 

increased connectivity between the attention and language network compared to 

controls. Figure 7 depicts the observed connections in a model. Contrary to our 

expectations, we observed no relationship with severity of auditory 

hallucinations. 

As expected, decreased connectivity between the language areas (primarily 

language production areas in the IFG, i.e. Broca and its homologue) and the 

auditory areas (mainly STG) was observed in patients with schizophrenia. This is in 

correspondence with the concept of reduced fronto-temporal connectivity (Frith 

et al. 2009; Hubl et al. 2004; Kubicki et al. 2002; Shergill et al. 2002; Vercammen 

et al. 2010). A number of other functional MRI studies also found evidence of 
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reduced connectivity between these regions during different language processes, 

including talking, verbal learning, verbal fluency, and word detection, supporting 

our finding (Ford et al. 2010; Hashimoto et al. 2010; Jeong et al. 2009; Karlsgodt et 

al. 2008). Functional changes may also be linked to reduced anatomical 

connectivity, as revealed by DTI studies measuring white matter integrity (Hubl et 

al. 2004; Li et al. 2010; O`Daly et al. 2007). 

 

 

Figure 7 The connectivity model based on the ICA data; The bold arrow indicates increased 

connectivity for the schizophrenia patients compared to controls; The dashed arrow indicates 

decreased connectivity of patients compared to controls 

As our results concern the resting state, this is a significant extension of 

previous findings. That is, it suggests disconnection of language related regions 

also during the default mode resting state. This finding may imply reduced control 

from the frontal language areas over the more receptive processing areas. 

Alternatively, as these regions are not exclusively involved in language processing, 

they may concern a broader domain of executive and auditory perception and 

memory functions (Li et al. 2002; Stirling et al. 2001). 

More recent studies also focused on functional connectivity between brain 

networks in schizophrenia. Patients with schizophrenia showed a reduced global 

integration and functional organization of brain regions, specifically in for fronto-

temporal areas (Van et al. 2010), or in relation to a verbal fluency task (Lynall et 
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al. 2010). These findings show some support for our hypothesis that decreased 

fronto-temporal connectivity may be associated with language processing 

difficulties. These functional abnormalities may originate from degeneration of 

long range white matter tracts, including the fronto-temporal connections (Lynall 

et al. 2010; Van et al. 2010). Eventually these effects may result in reduced global 

integration of information and disturbances in cognitive processes such as 

language. 

Contrary to our hypothesis of overall reduced connectivity in schizophrenia, 

we observed increased functional connectivity between the attention and 

language network in patients compared to controls. Although schizophrenia has 

been conceptualized as a dysconnectivity disorder, other studies have also shown 

increased connectivity in patients with schizophrenia (Hoffman et al. 2011; Van et 

al. 2010). In our case, increased connectivity between speech production and 

attention areas may be related to exaggerated attention to self-generated (inner) 

speech (Vercammen and Aleman 2008), which may be related to hallucinatory 

predisposition often observed in schizophrenia (Evans et al. 2000). Other studies 

suggest that the ACC is involved in suppression of unintended (inner) speech 

(Price 2010). This process may be more habitually invoked by patients with 

schizophrenia, as the content of their inner speech is more frequently 

experienced as non-desired, leading to stronger connectivity. 

We did observe a difference in performance on a language task. Patients 

showed a lower performance on a phonetic task, and made different semantic 

judgments as compared to controls. This may imply that there is indeed a link 

between language impairments and altered resting state connectivity, though 

caution is needed as larger groups would be necessary to directly compute 

associations between differences in connectivity and language performance, and 

more comprehensive testing would be in place. On the other hand, resting state 

fluctuations have been shown to predict individual's task performance or behavior 

(Fox and Raichle 2007). Future studies could use multiple tasks measuring several 

language domains separately to be able to make more specific inferences. 

We observed no relationships between connectivity measures and current 

symptom severity. Consistent with prevalence figures (Nayani and David 1996), 
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most of the participants in the current study in fact had a lifetime history of 

hallucinations, and thus regardless of their current symptoms, may have had a 

general disposition toward hallucinations. As previously noted, the endogenous 

oscillations of brain networks measured with ICA may be more indicative of stable 

trait characteristics, rather than state dependent phenomena (Meyer-Lindenberg 

2009). Therefore, the absence of a relationship with current symptom severity 

may be due to the fact that our measurement lacked sensitivity for the more 

fleeting state characteristics of hallucinations. Other studies also failed to find 

differences between patients with and without AVH, e.g. in terms of collary 

discharge (Ford and Mathalon 2005), language imagery (Simons et al. 2010), and 

verbal fluency (Diederen et al. 2010). Ideally, future studies would compare those 

without a history of hallucinations to those with a history and those with active 

hallucinations, in order to establish the relationships between changes in neural 

connectivity and symptom presence. 

This is the first study that investigated regions relevant for language 

processing in schizophrenia using ICA in the resting state. Some previous studies 

have used correlation analysis (e.g. Vercammen et al. 2010). The data-driven 

nature of ICA has some advantages over ROI analysis, as identified brain networks 

may have higher biological validity than artificially defined ROI's (Van de Ven et al. 

2004). Furthermore, ICA tends to separate signal of no interest (Cordes et al. 

2000) into separate components (Fox and Raichle 2007), and the signal to noise 

ratio of ICA time courses is probably higher than time courses of the raw BOLD 

signal. 

Some limitations of our study should be mentioned. First of all, it is difficult 

to determine the correct number of components, and to prevent the splitting or 

merging of components (Fox and Raichle 2007; Smith et al. 2009). We tried to 

reduce this risk by estimating the optimal number of components (Li et al. 2006) 

and running the ICASSO toolbox (Himberg et al. 2004), which showed good 

stability. Moreover, we also ran ICA with more or less components (20, 25, 35 and 

40), and this did not change our findings (data not shown), which is in agreement 

with Rosazza et al. (Rosazza et al. 2011). 
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It should also be noted that ICA is an exploratory analysis method, and 

selection of components during resting state is based on criteria determined by 

the researcher. In addition, altered resting state connectivity analysis gives no 

direct evidence for disturbances in certain functions such as language. However, 

close inspection of the components showed that “the language network” clearly 
encompassed areas located in regions corresponding to Broca's and Wernicke's 

area (IFG and temporo-parietal junction, strongest presence on the left side) and 

the “STG network” (two areas, that converge with the primary and secondary 

auditory cortex). It has been shown that resting state networks may indeed show 

partial correspondence to task-related networks (Smith et al. 2009). Also, the 

power spectra showed that the components time courses mostly contained low-

frequencies, while signal of no interest (e.g. heart beat) also contains higher 

frequencies (Cordes et al. 2000). In conclusion, resting state analysis is a relevant 

addition method to study intrinsic connectivity of the brain besides task-induced 

connectivity, which may be more artificial (Van de Ven et al. 2004). 

Finally, almost all subjects took antipsychotic medication. Although a recent 

review showed that the effect of antipsychotics on the BOLD signal is possibly 

limited (Röder et al. 2010), we cannot rule out that medication affected our study 

results. 

In conclusion, patients with schizophrenia showed reduced connectivity 

between the auditory and language networks. Such reduced connectivity could 

contribute to impairments in language expression and comprehension. An 

abnormally increased connectivity between the attention and the language 

network could be related to habitual suppression of unintended speech, or to 

excessive attention to internally generated speech. 
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Abstract 

Introduction: Auditory-verbal hallucinations (AVH) are frequently associated with 

activation of left superior temporal gyrus (including Wernicke’s area), left inferior 
frontal gyrus (including Broca’s area), and the right hemisphere homologues of 
both areas. It has been hypothesized that disconnectivity of frontal and temporal 

areas on the one hand, and of interhemispheric transfer on the other, may 

underlie hallucinations in schizophrenia. We investigated reduced information 

flow in this circuit for the first time using dynamic causal modeling, which allows 

for directional inference. Methods: A group of healthy subjects and two groups of 

schizophrenia patients - with and without AVH - performed a task requiring inner 

speech processing during functional brain scanning. We employed dynamic causal 

modeling to create connectivity models between left hemispheric speech 

processing areas and their right hemispheric homologues. Bayesian model 
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averaging was used to estimate the connectivity strengths and evaluate group 

differences. Results: Patients with AVH showed significantly reduced connectivity 

from Wernicke’s to Broca’s area (97% certainty) and a trend toward a reduction in 
connectivity from homologues of Broca’s and Wernicke’s areas to Broca’s area 
(93% and 94% certainty). The connectivity magnitude in patients without 

hallucinations was found to be intermediate. Discussion: Our results point 

towards a reduced input from temporal to frontal language areas in schizophrenia 

patients with AVH, suggesting that Broca’s activity may be less constrained by 

perceptual information received from the temporal cortex. In addition, a lack of 

synchronization between Broca and its homologue may lead to the erroneous 

interpretation of emotional speech activity from the right hemisphere as coming 

from an external source. 

Introduction 

Disturbing auditory-verbal hallucinations (AVH`s) or “hearing voices” are a 
characteristic symptom of schizophrenia. Hallucinations have been defined as 

perceptual experiences in the absence of corresponding external stimuli (David 

2004b). AVH are the most prevalent type of hallucinations in schizophrenia 

(Aleman and Larøi 2008), ranging from hearing spoken words and sentences to 

having full conversations between multiple voices, and experiencing command 

hallucinations. AVH frequently interfere with everyday functioning and reduce the 

quality of life (Gaite et al. 2002). Research into brain anatomy and function 

related to AVH`s has been accumulating in recent years. Although some key brain 

regions have been identified, the specific underlying dysfunctions within these 

regions or abnormalities of interaction between these regions remain to be 

elucidated (Allen et al. 2008). 

Neuroimaging studies of auditory-verbal hallucinations have consistently 

revealed activation of the left superior temporal gyrus (STG; including the 

temporoparietal junction (TPJ), or Wernicke’s area) during hallucinations (Allen et 

al. 2008). Numerous studies have also demonstrated activation of the left inferior 

frontal gyrus (IFG; including Broca’s area) (Jardri et al. 2011; Kuhn and Gallinat 

2010) and its homologue, as well as the right temporal cortex (including 
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Wernicke’s homologue) (Sommer et al. 2008). Broca’s region, situated in the IFG 

and Brodmann areas 44/45, is involved in explicit speech production (Dronkers et 

al. 2007) and has also been shown to be activated during speech imagery, or 

covert speech production (Aleman et al. 2005). Wernicke’s area, which is situated 
in the posterior section of the STG at the junction with the occipital and parietal 

lobes, including the posterior part of Brodmann area 22 and parts of Brodmann 

areas 39/40, is involved in the comprehension of language (Damasio 1992). The 

right hemisphere homologues of Wernicke’s and Broca’s areas are involved in the 
emotional context of speech (Heilman et al. 1975; Wildgruber et al. 2006) and are 

strongly connected with their left counterparts (Karbe et al. 1998). 

Rather than dysfunction in a singular brain region, aberrant connectivity 

within this fronto-temporal bihemispheric network may underlie AVH in 

schizophrenia (Brown and Thompson 2010; Lawrie et al. 2002; Ribolsi et al. 2009). 

However, the few studies that have so far investigated connectivity between the 

two areas in relation to auditory verbal hallucinations were limited by small 

sample sizes (Lawrie et al. 2002), lack of a non-hallucinating comparison group 

(Vercammen et al. 2010), or lack of a task targeting language processing (Hoffman 

et al. 2011; Vercammen et al. 2010), and merely investigated correlations rather 

than effective connectivity. 

It has been hypothesized that a disconnection of the frontal and temporal 

areas may underlie hallucinations in schizophrenia (Lawrie et al. 2002). Here, we 

test this hypothesis for the first time using dynamic causal modeling (DCM), which 

allows for a comparison between groups of the strengths of intrinsic connectivity 

between neuronal populations, by incorporating the effects of measured 

hemodynamic responses. Because DCM incorporates hemodynamic responses for 

each region and each subject separately, the regional hemodynamic variations do 

not prevent the estimation of neuronal coupling parameters (Friston 2011), which 

could inhibit the causality inferences (Schippers et al. 2011; Smith et al. 2012). 

DCM is a specialized method for testing a specific hypothesis (Stephan et al. 

2010), thus it is a convenient technique to validate the hypothesis of disrupted 

connections between Broca’s area and Wernicke’s area. Of specific interest is also 
the role of the right IFG (Broca’s homologue), which was shown to be overactive 
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in the largest functional Magnetic Resonance Imaging (fMRI) study of 

hallucinations to date (Sommer et al. 2008). A lack of synchronization between 

both areas may lead to the erroneous interpretation of emotional speech activity 

from the right hemisphere as coming from an external source. 

Methods 

Subjects 

Data from 47 schizophrenia patients and 31 healthy subjects were included, who 

participated in one of 2 studies at our Neuroimaging Center over the past 5 years, 

in which the metrical stress evaluation task was used (Vercammen et al. 2010). 

The diagnosis of schizophrenia was confirmed by the Schedules for Clinical 

Assessment in Neuropsychiatry (SCAN 2.1) interview (Giel and Nienhuis 1996). 

The severity of the symptoms was determined by the Positive and Negative 

Syndrome Scale (PANSS) interview (Kay et al. 1987). The patients were divided 

into 2 groups according to the hallucination item (P3) of the PANSS, the first 

consisting of those with AVH (AVH group, N = 30) – scoring above 3 (a score 

corresponding to “mild” psychopathology) (Kay et al. 1987), and the second 

comprised of those without AVH (NoAVH group, N = 17) – scoring up to 2. These 

patients were hallucination free for at least 6 months prior to inclusion in the 

study. After a complete description of the study had been given to the subjects, 

written informed consent was obtained. 

Stimuli 

During an fMRI scan, the patients performed a metrical stress evaluation task as 

described previously (Aleman et al. 2005). The experiment also included another 

condition, involving semantic (emotion) decision making and a baseline condition 

(fixation cross). Two-syllable Dutch words appeared on a screen for 2 seconds, 

followed by the fixation cross for 3 seconds. The stimuli were presented in blocks 

consisting of 12 word-fixation-cross combinations. There were 4 alternating blocks 

of each condition lasting for 60 seconds each interspersed with a resting period of 

30 seconds. In the first condition, ‘inner speech’, which initiates phonological 

processing of imagined speech (Aleman et al. 2005), the subjects had to indicate 
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whether the metrical stress was located on the first or second syllable by pressing 

the appropriate response button. For half of the stimuli metrical stress fell on the 

first syllable and for the other half on the second syllable. The second condition 

involved making a semantic judgment, i.e., whether the word presented was 

positive or negative. Since here we were interested in “inner speech” and not in 

emotional processing, our analysis was restricted to this condition, compared to 

the baseline. 

Functional magnetic resonance imaging data acquisition 

The images were acquired using a 3T Philips Intera MRI scanner (Philips, Best, The 

Netherlands). The standard 8-channel SENSE head coil was used to acquire whole 

brain echo-planar functional images (EPIs). Thirty-nine axial slices were acquired 

with the following parameters: TR 2500 ms; TE 30 ms; flip angle 80°; SENSE factor 

2; field of view 224 mm; matrix 64x64; slice thickness 3.5 mm with no slice gap, 

yielding voxels of 3.5x3.5x3.5 mm in size. In addition, T1-weighted anatomical 

images were acquired: 3D/FFE/CLEAR to co-register and normalize functional data 

(TR = 25 ms, TE = 4.6 ms, flip angle = 30°, FOV = 256 mm, matrix 256x256 mm, 

slice thickness 1.0 mm). 

Preprocessing 

The collected magnetic resonance data in the form of 4-dimensional (4-D) 

volumes were first converted to ANALYZE format using the MRIcro software, then 

processed using the statistical parametric mapping program SPM8 

(www.fil.ion.ucl.ac.uk/spm). The interleaved EPI images were first corrected for 

slice timing acquisition as part of the pre-processing procedure and then realigned 

to the first functional image. The T1-weighted images were used as the template 

to co-register the mean EPI image. The co-registered data were subsequently 

normalized onto the MNI template and the resulting normalization parameters 

were applied to all the EPI images. The functional data were spatially smoothed 

using an 8 mm isotropic Gaussian Kernel before the statistical analysis. As a final 

step, motion correction was applied to remove the effect of spin history effects 

due to motion (Friston et al. 1996). 
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First-level data analysis 

Statistical analysis at the first level was performed using a general linear model 

(GLM), and a random effects analysis was conducted on the group level. The 

regressors for the experimental conditions were convolved by a canonical 

hemodynamic response function in order to estimate, voxel by voxel, the 

parameters denoting the unique (linear) contribution of each condition to the 

measured BOLD signal in each subject. Low-frequency signal drift was corrected 

for by applying a high-pass temporal filter with a cut-off of 250 s. 

In order to identify those areas involved in speech processing during the 

task, a contrast per subject was created of the ‘inner speech’ condition vs. fixation 
cross, which yielded reliable activation in the speech area. The contrast of the 

phonological vs. semantic condition did not show such activation and was 

therefore not considered suitable for the purpose of our analysis (i.e. to 

investigate the language network using dynamic causal modeling). The resulting 

beta-weighted images were used as input in the random effects analysis (RFX) for 

group inferences. The RFX maxima from the contrast served as the basis for time-

course extraction for the DCM analysis (so called guiding coordinates). Because 

language processing is lateralized for right-handed people, but not consistently for 

left-handed people (Knecht et al. 2000), only right-handed subjects were 

considered for DCM analysis. 

VOI Extraction 

The time courses were extracted for each subject in the proximity of the guiding 

coordinates (within a radius of < 16mm) and belonging to a given region of 

interest. In details, the brain activation above a certain threshold (set by p < 0.05) 

of each subject were overlaid with a priori created anatomical masks, using 

wfu_pickatlas (Maldjian et al. 2003), covering Broca, Wernicke and their 

homologues. The highest activated voxel within 16 mm of the guiding coordinate 

and within that overlapping anatomical mask was chosen as the center for a 

sphere with radius = 5 mm. Then, the time courses from voxels within this sphere 

were extracted. Subsequently, the first eigenvariate of all the extracted time 

courses was calculated. In this way the representative time courses for Broca’s 
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and Wernicke’s areas and their homologues were extracted for each subject that 
had sufficient activation in all 4 regions and used further in the DCM analysis. 

Effective connectivity 

Our aim was to test the hypothesis that disconnections between the frontal and 

temporal areas, and between the left and right hemispheric counterparts of these 

areas underlie the occurrence of hallucinations, as well as aiming to probe the 

strength of inter-hemispheric influence. Therefore, we investigated the effective 

connectivity strengths between 4 regions of interest: the Broca’s (B) region, the 
Wernicke’s (W) region, and their homologues in the right hemisphere (BH and 

WH). Our study was performed using three groups of participants: a control 

group, a NoAVH group (schizophrenia patients without AVH), and an AVH group 

(schizophrenia patients with AVH). The effective connectivity was investigated 

using the DCM technique introduced by Friston (Friston et al. 2003). Briefly, in 

DCM an initial model is created describing 1) the relation between the BOLD 

response and the 4 regions of interest (ROI), 2) the connectivity between these 

regions, and 3) the modulation of this connectivity induced by the task. In DCM a 

predicted BOLD response is created for each ROI using the balloon model (Buxton 

et al. 1998; Stephan et al. 2007), which forms a link between the neuronal state 

and the predicted BOLD signal. This predicted response is compared to the 

measured BOLD response, and the parameters of the DCM and balloon models 

are then adjusted iteratively using Bayesian estimation to obtain the best fit. This 

results in a set of estimated parameters that describe the connectivity strengths 

between the relevant brain regions, the modulatory influence of the inputs, the 

strengths of the inputs, and the hemodynamic coefficients per region, together 

with the free energy for the model. For our analysis it is important to mention 

that the outcomes are not single parameters but a normal distribution of these 

parameters consisting usually of 10000 samples. In most cases in the literature 

the mean values calculated from these distributions are used. 

We created 64 models for each subject involving the 4 abovementioned 

regions of interest: B, W, BH and WH. We assumed bilateral intra-hemispherical 

connections in all the models because these connections are usually very strong, 

and we varied all the inter-hemispherical connections. Four representative 
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models are depicted in Figure 8, illustrating the variation between homologue 

connectivities. For the parallel connections (those between homologues), we 

assumed that there is always a connection from left to right and studied the 

feedback from right to left (Figure 8; 4 different possibilities). Furthermore, we 

explored all possible diagonal connections (between B and WH or between W and 

BH, thus 16 possibilities). These combinations resulted in a total of 4×16 = 64 

models. 

The DCMs were then compared using Bayesian model selection (BMS) 

(Penny et al. 2004) for each group of subjects separately. As a result of BMS an 

exceedance probability is calculated for each model in a set of models. The 

exceedance probability is the probability of one model being more likely than any 

other model in the set (Penny et al. 2004; Stephan et al. 2009b). If the exceedance 

probability is distributed differently within the model set for different groups of 

subjects, this serves as an indication of distinctive functioning of brain networks 

between groups. 

To make inferences on connectivity parameters such as the connectivity 

strength between 2 brain regions, an average model can be computed by means 

of Bayesian model averaging (BMA). BMA computes averaged parameters within 

a chosen family of models and as such, summarizes group-specific coupling 

parameters (Penny et al. 2010). BMA was used to calculate the posterior 

distributions of the connectivity parameters (consisting of 10000 samples), which 

were then used to obtain the posterior means and exceedance probabilities (that 

the parameter is larger than zero). 

We also investigated whether the connectivity strengths between the brain 

regions differed, using a previously described method (Curcic-Blake et al. 2012) 

that combines BMA and a bootstrapping method. In short, the average model was 

calculated for each group of participants using BMA. The difference between 

groups was evaluated by comparing the connectivity strengths between brain 

regions. This comparison was performed by a bootstrapping procedure (10000 

random sample differences) between each pair of the posterior distributions of 

connectivity parameters from each group. Here we randomly chose a sample (out 

of 10000) from group 1 and a sample from group 2, then calculated the 
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difference, a procedure that was repeated 10000 times to obtain the distribution 

of differences. The percentage of sample pairs with a difference larger than zero 

was examined. A positive difference in connectivity in more than 95% of the pairs 

of samples was considered statistically significant. 

 

Table 4 Demographic data of subjects; The left column lists the demographic variables, the second 

to fourth columns from left show average values of the variables across the group and the 

standard deviation within brackets; Education level was rated according to a six point scale 

defined by Verhage (1984), which ranges from primary school (1) to university level (6); Non-

parametric tests were used to test the group difference for PANSS (Mann-Whitney test), the 

reaction time and accuracy of the performance (Kruskal-Wallis test), and gender (Chi-square test) 

 Mean (SD)  Significance  

 Healthy Schizophr.  

(no AVH) 

Schizophr. 

(AVH) 

  

 (N = 18) (N = 14) (N = 21) 3 groups no AVH vs. 

AVH 

Age (years) 31 (10) 30 (5) 4 (13) F(2,44) = 

0.51 (0.45) 

 

Gender     

(# males) 

11 13 11 Χ2
(2,44) = 

6.45 (0.04) 

 

Education 4.4 (0.7) 3.7 (1.2) 4.1 (1.0) F(2,43) = 

1.85 (0.17) 

 

PANSS Pos.  12.5 (4.9) 15.6 (4.1)  U = 73.5 

(0.08) 

PANSS Neg.  13.4 (4.8) 14.7 (5.1)  U = 95 

(0.39) 

PANSS Gen.  25.3 (6.2) 28.0 (7.7)  U = 95 

(0.39) 

Reaction 

times (s) 

1.6 (0.2) 1.6 (0.2) 1.6 (0.4) H(2) = 0.91 

(0.63) 

 

Accuracy 71.2 (16) 61.5 (12) 67.9 (25) H(2) = 2.01 

(0.37) 

 

 

As a final comparison, we created and averaged models for each subject 

individually using BMA. This step, in addition to the group-level BMA calculations 

described above, was aimed at investigating subject specificities in the language 

network. To further evaluate the effect of the hallucinations, we performed an 

ANOVA analysis of the connectivity strengths with respect to groups. This analysis 
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was repeated with respect to gender as a covariate to exclude the possible effect 

of gender. 

 

Table 5 Results of conventional analysis, Random Effects (RFX), phonetic > fixation cross; The 

columns list (from left to right) the anatomical regions that belong to the cluster, the Brodmann 

area, the MNI coordinates of the highest activated voxel within the cluster, the Z-score at that 

point and the number of voxels within the cluster, p < 0.001, k > 20, T > 3.2 

Control vs. Patient BA x y z Z k 

Culmen 3 -46 -23 3.8 27  3 -46 -23 3.8 27 

       

Patient vs. Control       

R Superior Frontal Gyrus/Medial 

Frontal Gyrus /Anterior 

Cingulate 

10/32 15 44 -2 4.4 116 

R Precentral Gyrus/Inferior 

Frontal Gyrus 

44 54 2 13 3.5 21 

L Middle Temporal gyrus 39 -45 -70 19 4.0 31 

L Superior Temporal 

Gyrus/Inferior Parietal Lobule 

40/42/13/2

2 

-57 -34 22 3.8 28 

Cingulate 

Gyrus/Precuneus/Paracentral 

Lobule 

24 0 -1 40 4.4 56 

Cingulate Gyrus 5/31/7 12 -25 37 3.6 77 

Paracentral Lobule/Postcentral 

Gyrus 

4/5 0 -43 64 3.7 24 

       

Hallucinating vs. Non-

hallucinating patients 

      

R Lingual Gyrus/Fusiform 

Gyrus/Cuneus 

17/19/18 24 -64 -8 3.5 61 

L Posterior Cingulate/ Lingual 

gyrus/Cuneus/Culmen 

30/19 -18 -67 4 3.5 42 

R Cuneus 18/19 6 -82 19 3.5 22 
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Results 

Subjects 

Among the initial number of subjects, 18 right-handed healthy subjects and 36 

right-handed schizophrenia patients showed significant activation in all 4 brain 

regions of interest. In this group of patients, 22 had a score on a PANSS item P3 of 

more than 3 and were thus placed in the AVH group. The three groups did not 

differ in age F(2,50) = 0.81, p = 0.45 (Table 4). However, the groups differed in 

gender χ2
(2,50) = 6.43, p = 0.04. Therefore, to exclude the possibility that gender 

differences produce a confounding effect, we performed the group DCM analysis 

on the full groups and we additionally controlled the results for the gender of the 

participants. The groups did not differ by performance, education level or PANSS 

symptom severity (Table 4). 

 

Table 6 Results of conventional analysis – the choice of VOIs, Random Effects (RFX), phonetic > 

fixation cross (p < 0.01, FWE); The columns list the chosen centers of the VOI sphere close to the 

highest activated voxel within the region of interest, the Brodmann area, the MNI coordinates, 

and the Z-score at that point 

 BA x y z Z k 

Wernicke's area 22/39/40 -45 -40 43 Inf 217 

Broca's area 45/44 -54 11 22 7.2 71 

Wernicke's homologue 44/45 57 14 10 6.2 50 

Broca's homologue 22/39/40 39 -49 46 Inf 166 

 

fMRI results and VOI guiding coordinates 

The metrical stress task evoked brain activation in all the groups in Broca’s and 
Wernicke’s regions and their homologues, besides other brain areas such as the 
anterior cingulate gyrus (ACC) (FWE corrected, Figure 8). The random effects GLM 

for group comparison among healthy participants and the patient groups revealed  
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Figure 8 Results of conventional analysis; a) The contrast indicates phonological > fixation cross 

(random effects one-sample t-test) for all subjects, revealing activation of the bilateral IFG and 

STG (p < 0.01, FWE, T > 3.1) b) Illustrations of the four families of DCM that were created; Family_1 

consisted of models having bidirectional connections between B and BH, and between W and WH, 

Family_2 had bidirectional connections between WH and W, and forward connections from B to 

BH but no feed-back from BH to B, Sixty-four DCM models were created by varying all the possible 

diagonal connections (e.g. from Wernicke’s homologue to Broca) 
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a number of group differences (Table 5). However, these differences did not 

survive the correction for multiple comparisons. Guiding coordinates for 

subsequent VOI extraction were chosen from the group RFX GLM analysis of all 

participants for the phonological versus fixation cross contrasts (Table 6). 

DCM BMS results 

BMS clearly revealed that the best family was that with bilateral connections 

between regions on the left hemisphere and their corresponding homologues 

(Family_1; see Figure 8, Effective Connectivity subsection of Methods) for all 3 

groups (Figure 9). The same result was obtained when the procedure was 

repeated only for male subjects. However, the BMS for all the models was not 

fully consistent in all the groups. The best model among all those tested for the 

healthy group was clearly the full model (belonging to Family_1 and having all the 

diagonal connections) with an exceedance probability of 96%. For the 2 patient 

groups the BMS was less clear. The full model had an exceedance probability of 

only 62% for the NoAVH group and 80% for the AVH group. This implies that the 

full model cannot be considered exclusive for the 2 patient groups, even though it 

is the most probable model among the set that was tested. We may conclude that 

there are some differences in the BMS between healthy controls and 

schizophrenia patients for the given set of models. 

 

Figure 9 Results of BMS, showing the exceedance probabilities for healthy controls (black), 

schizophrenia patients with no auditory-verbal hallucinations (dark gray) and schizophrenia 

patients with auditory-verbal hallucinations (light gray) 
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Table 7 Differences between posterior parameters for the effective connectivity calculated by 

bootstrapping between the three groups of subjects; The upper columns show the percentage of 

sample differences for which one group had a higher connectivity than the other; A significant 

difference is considered to be above 95%; Differences with certainty from 90-95% are considered 

to have a trend toward significance; The middle columns show the difference of the means of the 

posterior parameters between groups; The lower columns show the mean posterior parameters 

for each group 
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For the comparison of parameters, the BMA connectivity strengths were 

randomly sampled from each group and then compared between groups. The 

distribution of parameter differences between the groups was calculated. A 

significant reduction (Table 7) in connectivity strengths was observed in the AVH 

patients (N = 22) compared to the healthy subjects (N = 18) for the connectivity 

from W to B (97% of differences were negative), from BH to B (93%), and from 

WH to B (94%), with reduced connectivity in the hallucinating patients. All the 

connectivity strengths in the healthy subjects were positive, whereas some of the 

connection strengths of the AVH group had negative mean values (such as from W 

to B; see Table 7). The connectivity strengths in the NoAVH patients (N = 14) for 

the same connections were intermediate compared to the other 2 groups, but 

were not significantly different (respective differences of 82%, 75%, and 79% from 

the healthy group and 75%, 75%, and 74% from the AVH group). 

 

Table 8 Results of ANOVA analysis of group effect 

 F Sig. 

W to B 3.3 0.045 

BH to B 2.3 0.12 

WH to B 2.9 0.067 

 

Next, BMA was calculated for each subject separately, and these values 

were used for ANOVA analysis. We found an effect of the group on the average 

connectivities per subject for the connection strengths for W to B (F(2,51) = 3.300, 

p = 0.045) and a trend towards significance for the connection WH to B (F(2,51) = 

2.856, p = 0.067). Post hoc Bonferroni tests revealed a difference between the 

connectivity strengths of healthy controls and the AVH group for the W to B 

connection (p = 0.04). 

The results are summarized in Table 8. The same analysis was repeated including 

the gender of the participants as a covariate, yielding similar results (See Table 9). 
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Table 9 Results of the regression analysis with group and gender as independent variables and 

strength of connection as dependent variable 

 Full model Group Gender 

 F(2,51) Sig. T Sig. T Sig. 

W to B 3.4 0.04 2.5 0.015 -0.47 0.64 

WH to B 3.1 0.056 2.3 0.023 -0.60 0.55 

BH to B 2.4 0.10 2.1 0.042 -0.51 0.61 

 

 

 

Figure 10 Upper panel: illustration of the main differences in language network for the three 

groups of subjects; The healthy controls have the strongest positive connectivity from Wernicke’s 
area to Broca’s area, the schizophrenia patients without hallucinations exhibit a weaker 
interaction, and this connection strength is negative or strongly diminished in schizophrenia 

patients with hallucinations, Negative connection strength suggests that activity in one region is 

proportional to the decrease of activity in another region; Lower panel: distributions of posterior 

probabilities for the connectivity parameters as calculated by BMA; It is evident that the 

distributions of connectivity strengths for healthy controls (red) and schizophrenia patients with 

hallucinations (blue) differ from Wernicke’s area to Broca’s area, The distribution of these 
parameters for non-hallucinating patients (green) is between that of healthy controls and AVH 

patients 
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Discussion 

Our results point toward a reduced connectivity in the fronto-temporal language 

processing network in schizophrenia patients with auditory-verbal hallucinations. 

More specifically, during inner speech, Broca’s area receives reduced input both 

from Wernicke ’s area and from its contralateral homologue in patients with AVH. 
Our findings thus lend further support to the fronto-temporal dysconnectivity 

hypothesis of AVH, and go beyond that by suggesting directionality. The findings 

also show that the presence of AVH may be linked to an increased deficit that is 

present to a lesser degree in those with psychosis, but without current AVH. For 

an overview, see Figure 10 and Figure 11. 

 

 

Figure 11 Results of BMA per subject; Each panel is a boxplot (25-75%) of connectivity strengths 

for particular connection (indicated on the panel); Maximal and minimal value are indicted by a  

stripe 

Reduced information flow from other nodes in the speech processing 

network may, in everyday life, increase the spontaneous activity of Broca’s area in 
attempts to “search for relevant information” or “fill in the information gaps” as it 

were. This may ultimately lead to overt action of Broca’s and Wernicke’s areas, 
which is consistent with the overactivation that has been observed in studies that 

measured changes in the BOLD signal during hallucinations (Jardri et al. 2011). 
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Thus, a lack of perceptual input may lead to increased top-down efforts from 

Broca’s area (top = Broca’s region – higher cognitive processes, down = sensory 

regions) that are less constrained by perceptual information, as has been 

hypothesized for hallucinations (Behrendt 1998; Grossberg 2000). According to 

these theories, top-down connections modulate or sensitize sensory regions 

through a balance between top-down excitation and inhibition, but they cannot 

activate the sensory regions under normal conditions. If these top-down signals 

become tonically hyperactive during a mental disorder, the top-down 

expectations can give rise to conscious experiences in the absence of bottom-up 

inputs. In our study of language processing we did not explicitly investigate ‘state’ 
characteristics of brain activity during hallucinations but instead invoked the 

language areas within a language network. It is possible that during the resting 

state, AVH patients have spontaneous fluctuations within the language network in 

association with AVH, which may be suppressed by controlled task-related activity 

during an experimental inner speech paradigm. Therefore, we did not expect 

overactivation of Broca’s area in AVH patients during the task. This is in 
agreement with the results of a recent meta-analysis (Kuhn and Gallinat 2010) 

that compared the findings of so-called ‘trait’ studies, which investigate group 
differences, with studies investigating the brain activation of AVH patients in 

different ‘states’ (during the hallucination period vs. the non-hallucination 

period). Consistent overactivation of Broca’s region was found during 
hallucinations, a feature that was not observed in ‘trait’ studies. 

Furthermore, patients without hallucinations were in between patients 

with hallucinations, who had the lowest connectivity coefficients, and the healthy 

controls. It should be noted, however, that the "non-hallucinating" group 

contained people that did not have current hallucinations at the time of scanning, 

but who may have had AVH in the past. Therefore, it is a reasonable assumption 

that rather than representing dichotomous categories, our patient groups are 

actually on a continuum, where the AVH group may display a stronger or more 

acute deficit compared to the non-AVH group. 

Our finding of impaired effective connectivity from Wernicke’s region to 
Broca’s region also yields information that may complement another hypothesis 
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that aims at explaining the occurrence of hallucinations in schizophrenia, namely 

the corollary discharge hypothesis. This hypothesis states that insufficient top-

down feedback and control from higher cognitive areas (such as Broca’s region) 
towards the primary and secondary auditory areas (such as Wernicke’s region) in 

patients with hallucinations contributes to the improper source attribution of 

voices. Recent experimental studies point towards a delay in this feedback rather 

than to genuinely diminished connectivity (Hoffman et al. 2011; Whitford et al. 

2011). The DCM method is based on the dynamics of the system and as such is 

not suitable to investigate delays in activation directly. However, our finding that 

a change in activation of Broca’s region is less associated with the activation of 
Wernicke’s region in patients with verbal hallucinations helps to explain the delay 
in corollary discharge found in patients with auditory hallucinations. Thus, besides 

a diminished connectivity from frontal to temporal areas, a putative underlying 

mechanism of reduced corollary discharge, our findings do suggest that a reduced 

reverse signal (from Wernicke’s to Broca’s area) may also play a role. A reduced 
information flow from the speech perception area in the left TPJ implies a loss of 

feed-back to Broca’s area. It has been shown that reduced perceptual input 
triggers top-down influences in perception, i.e. active search for percepts guided 

by stored knowledge (Baskent 2012; Hannemann et al. 2007). With regard to 

speech processing, an fMRI study showed that only Broca's area (BA 44) activated 

to unintelligible speech presented at low signal-to-noise ratios, whereas an 

extended fronto-temporal network (including Broca’s and Wernicke’s areas) was 

active during intelligible speech at high signal-to-noise ratios (Hannemann et al. 

2007). This supports an active role of Broca in trying to make sense of possible 

speech stimuli in the environment. Therefore, reduced information flow to 

Broca’s are could prime increased top-down efforts from Broca’s area that are less 
constrained by perceptual information, as has been hypothesized for 

hallucinations (Aleman and Larøi 2008; Behrendt 2003; Grossberg 2000). This 

hypothesis dovetails with the early suggestion of an overly “active listening 
attitude” in patients with AVH, when anticipating meaningful speech (Hoffman 

2010). On the other hand, recent evidence from time-resolved sparse fMRI shows 

that the “top-down” influences of prior knowledge and semantic expectations in 
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speech processing is not necessary from frontal areas to temporal areas but can 

also be based on feed-forward processing in which results of lower-level 

perceptual processing are passed to inferior frontal regions. This would be 

consistent with the route observed in our study and needs further investigation. 

A second finding of our study concerned the reduced connectivity between 

Broca’s area and its homologue which should be interpreted with caution as it 

was only marginally significant. This may be associated with the emotional 

content of hallucinations, as the right IFG has been implied in emotional aspects 

of speech (Allen et al. 2008; Wildgruber et al. 2006). Indeed, our task employed 

words with emotional connotations. It has been suggested that a lack of 

synchronization between both areas may lead to the erroneous interpretation of 

emotional speech activity from the right hemisphere as coming from an external 

source (Jaynes 1979; Olin 1999). Interestingly, for both areas that show reduced 

information flow to the left IFG (left TPJ and right IFG), reduced gray matter 

volumes have been reported in relationship to hallucinations (Barta et al. 1990; 

Gaser et al. 2004). Allen et al. (2008; overview) suggested that Broca’s homologue 
may show reduced connectivity with Broca’s area, thereby hampering adequate 
speech monitoring (Allen et al. 2008). 

We are aware of only 1 previous study that investigated effective 

connectivity in relationship to hallucinations in schizophrenia (Mechelli et al. 

2007), using a verbal self-monitoring task involving distorted speech. The authors 

found reduced connectivity from the left STG to the anterior cingulate (an area 

consistently involved in self-monitoring). Although the task used was clearly 

different, using external speech, and engaged a different brain circuit, the results 

are consistent with our findings regarding a reduced information flow from 

posterior temporal to frontal regions in patients with hallucinations. Our study 

has the advantage that the subjects had to engage their own inner speech to 

perform the task, which may be a more appropriate proxy to the processes 

involved in AVH. 

Other studies of functional connectivity and hallucinations have mainly 

focused on the resting state, and did not investigate directionality. Nevertheless, 

most findings implicate language-related areas. For example, Vercammen et al. 
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reported reduced connectivity of the left TPJ with the ACC and amygdala in 

association with AVH severity in schizophrenia using resting state fMRI 

(Vercammen et al. 2010). No patients without hallucinations were included. When 

patients were compared to healthy control subjects, reduced connectivity 

between the left TPJ and right IFG was observed, 2 nodes that were also 

implicated in our current analyses. Another recent study (Hoffman et al. 2011) of 

functional connectivity in the resting state reported elevated connectivity 

between Wernicke’s region, its homologue, and the left IFG in schizophrenia 

patients with hallucinations as compared to patients without hallucinations, but 

not in comparison to healthy control subjects. These variable results may be 

explained by the absence of a specific task, where it remains unclear which 

cognitive processes are reflected in the interaction between language network 

nodes. Furthermore, these studies did not clarify whether the connectivity 

changes reflected “down-stream” effects from Broca or “up-stream” effects from 

Wernicke to Broca. A clear advantage of the current study is the task-based 

theoretical framework of a priori regions and directional influences in addition to 

taking into account the nature of the hemodynamic response, which might 

account for different findings. 

Our results are consistent with anatomical connectivity studies investigating 

both the inter-hemispheric pathways between language areas (Hubl et al. 2004; 

Mulert et al. 2012) involving the anterior corpus callosum, and the pathways 

connecting the frontal areas and the superior temporal areas such as the arcuate 

fasciculus (Hubl et al. 2004), which is part of the superior longitudinal fasciculus 

(Shergill et al. 2007). These studies found an association of auditory hallucinations 

with abnormalities in fractional anisotropy in these pathways. 

Our findings also point towards more generalized changes in language 

circuitry, i.e. differences that may be attributable to schizophrenia rather than the 

presence and/or severity of hallucinations. That is, the full model had much lower 

exceedance probability in both groups of schizophrenia patients as compared to 

controls. As we mentioned earlier, this is indicative of differences between the 

healthy controls and schizophrenia patients in the brain network that was tested. 

This leads us to suggest that there are differences in the language processing 
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pathways of healthy controls and schizophrenia patients. In particular, the model 

with the next best fit lacked a connection from Wernicke’s homologue to Broca’s 
area, indicating that the connection from Wernicke’s homologue to Broca’s area 
might be diminished in both groups of schizophrenia patients. 

Some limitations of our study should be noted. We used DCM, which is a 

modeling technique based on a preexisting hypothesis. The main limitation of this 

technique is that the number of regions has to be predefined by the hypothesis, 

thus it is not used to explore all possible nodes of the putative network. 

Furthermore, the causality in a modeling technique such as DCM has to be 

understood in terms of the model used. In our particular case of bilinear 

interaction, activation in one brain area is thought to cause a change in activation 

in another brain area. This is one plausible biological model, and represents a first 

step in disentangling the complicated brain functioning. Because it is applied 

equally in all three groups, the model provides a suitable framework to make 

comparisons between groups. Furthermore, the application of DCM is favorable 

for so called fMRI “sub-sampling” (involving a slow sampling rate, such as TR of 
2.5 s, and slow hemodynamic response to a neuronal activation, which fMRI 

measures) because it incorporates an explicit forward model of neuronal hidden 

states (neuronal dynamics) and is not confounded by sub-sampling or low-pass 

filtering of the hemodynamics (Valdes-Sosa et al. 2011). As we mentioned in the 

introduction, DCM incorporates hemodynamic responses for each region and 

each subject separately, such that regional hemodynamic variations do not 

prevent the estimation of neuronal coupling parameters (Friston 2011). This is 

especially useful when comparing different groups, as in our study, where some 

subjects can display a different hemodynamic response due to factors such as 

medication intake. Another limitation is that our conclusions are limited to 

processing differences associated with having recently experienced hallucinations 

(in the week prior to scanning). Patients in the non-hallucinating group did not 

experience hallucinations in the six months prior to scanning. However, they may 

have experienced hallucinations earlier in their illness, and thus may still have 

trait characteristics associated with hallucinations. Future research should further 
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disentangle state and trait characteristics by including patients who have never 

experienced hallucinations, even though such patients may be difficult to find. 

In summary, our results point towards a reduced connectivity between 

frontal and temporal language areas in schizophrenia patients with auditory-

verbal hallucinations. A reduced information flow from the speech perception 

area in the left TPJ may lead to a loss of feed-back and increased top-down efforts 

that are less constrained by perceptual information from Broca’s area, as has 

been hypothesized for hallucinations. Finally, the reduced information flow from 

Broca’s right hemispheric homologue, which engages during emotional and non-

literal speech processing, may isolate emotional language activity in the right 

hemisphere. It may thus eventually acquire an “independent” nature, due to a 
failure of integration into normal language processing, reflecting the emotional 

non-self-content of hallucinations. 
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Abstract 

Background: Emotional deficits are one of the core features of schizophrenia. 

Problems in associative emotional learning and the related ability to verbalize 

emotions have both been implicated in schizophrenia. We investigated whether 

schizophrenia patients demonstrated impaired function of limbic and prefrontal 

areas during associative emotional learning. Methods: Eighteen schizophrenia 

patients and eighteen controls filled out an alexithymia questionnaire and 

performed an associative emotional learning task during fMRI scanning. 

Participants had to remember positive, negative, and neutral picture-word pairs 

and had to indicate whether they felt the pair was associated. We conducted 

standard GLM analysis and independent component analysis (ICA) on the fMRI-

data. Both the GLM results and an identified task-related ICA component were 

compared between groups with a random effects analysis. Results: GLM analysis 

showed significant activation of visual areas, temporal areas, 
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amygdala/hippocampus, and prefrontal cortex (PFC) during associative emotional 

learning, but no difference in activation between schizophrenia patients and 

controls. ICA analysis identified a network of similar brain areas, with additionally 

the cingulate cortex (ACC), mainly responding to negative stimuli. Schizophrenia 

patients showed a trend for decreased connectivity of PFC and ACC regions to the 

rest of this network. Compared to controls, patients reported more difficulties in 

identifying, analyzing, and verbalizing their emotions, but equal levels of 

subjective emotional arousal. Conclusions: The trend for decreased ACC/PFC 

functional connectivity in patients might be associated with their reported 

cognitive-emotional processing difficulties. The absence of differences in areas 

related to emotional arousal (amygdala and hippocampus) might indicate intact 

subjective-emotional experience. 

Introduction 

Emotional deficits are one of the core features of schizophrenia (Bleuler 1911). 

Patients show abnormalities in emotion perception, emotion regulation, and 

emotion expression (Phillips et al. 2003b). However, the experience of emotions 

seems to be intact or even heightened (Kring and Neale 1996). These disturbances 

in emotion processing along with other social cognitive abilities affect functional 

outcomes such as independent living skills and social functioning (Pinkham et al. 

2003). Structural and functional brain abnormalities have been demonstrated in 

areas related to these emotional processes in patients with schizophrenia (Phillips 

et al. 2003b). To increase our understanding about emotional disturbances in 

schizophrenia, it is critical to study their underlying neural mechanisms. 

The formation of inappropriate associations is regarded to be a possible 

factor underlying certain symptoms of schizophrenia, specifically positive 

symptoms (Bleuler 1911). Associative emotional learning refers to creating a link 

between emotional stimuli and other stimuli, for instance, one’s emotional state 
and a word to describe it. When someone in a later occasion gets in the same 

emotional state, the associated word will be recalled. Impairments in associative 

emotional learning might be associated with difficulties in describing one’s 
feelings with words (emotional verbalizing) (Aleman 2005). Individuals with 
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difficulties in emotional verbalizing may perform worse on emotional processing 

tasks (Lane et al. 1996) and use less healthy emotion regulation strategies (Swart 

et al. 2009) which might result in increased stress and a lower level of well-being. 

Deficits both in emotional verbalizing (Van 't Wout et al. 2007) and associative 

emotional learning (Exner et al. 2004) have been demonstrated in schizophrenia, 

though some studies showed normal associative leaning (Murray et al. 2010). 

Activation of prefrontal cortex (PFC) and amygdala has been associated 

with learning of emotional stimuli (LaBar and Cabeza 2006). Furthermore, the 

formation and retrieval of associations between items may rely upon the 

prefrontal cortex (PFC) and medial temporal lobe (specifically the hippocampus) 

(Achim and Lepage 2005). During emotional processing, altered brain activation in 

hippocampus, amygdala, and PFC has been demonstrated in schizophrenia 

patients (Phillips et al. 2003b). Moreover, connections between amygdala and 

ACC may be impaired in these patients during fear processing, suggesting that 

these pathways may contribute to a schism between emotion and thought in 

schizophrenia (Das et al. 2007).  

Abnormal functional integration of brain regions has been suggested to be 

an important pathophysiological mechanism of schizophrenia, also referred to as 

the dysconnection hypothesis (Stephan et al. 2009a). Most prominently, the 

prefrontal cortex has been implicated in dysconnectivity in schizophrenia (Friston 

1998). Because associative emotional learning involves multiple underlying 

processes, recruitment of different task-specific brain regions is essential. We 

hypothesized that schizophrenia patients would demonstrate different activation 

and functional connectivity between aforementioned brain regions during 

associative emotional learning. 

Differences in functional connectivity can be analyzed using independent 

component analysis (ICA) (Calhoun et al. 2004). This is a data-driven approach in 

which spatially independent networks (components) with similar time courses can 

be detected based on their shared temporal characteristics (Calhoun et al. 2001). 

Connectivity analysis with ICA may further the understanding of neural systems 

beyond the standard analysis on task-related brain activation (Fox and Raichle 
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2007; Van den Heuvel and Hulshoff Pol 2010), as complete brain networks can be 

studied with ICA (Van den Heuvel and Hulshoff Pol 2010). Previous studies using 

ICA have already demonstrated abnormal connectivity in schizophrenia patients 

(Calhoun et al. 2009). 

The aim of this study was to investigate differences in activity and 

connectivity underlying associative emotional learning in schizophrenia patients 

compared to controls. We were specifically interested in the neural background of 

the encoding phase of associative emotional learning, as other studies focused on 

the retrieval phase (Murray et al. 2010). We expected to identify the amygdala, 

hippocampus, and PFC as task-involved brain areas. We hypothesized that both 

activity and connectivity would be decreased in patients with schizophrenia (Fakra 

et al. 2008; Phillips et al. 2003b). 

Methods 

Participants 

All participants were native Dutch speakers. Exclusion criteria included substance 

abuse within the past three months, neurologic history or contraindications to 

MR. All participants provided written informed consent. The study was approved 

by the medical ethical committee of the University Medical Center Groningen. 

Twenty patients (four females) meeting DSM-IV criteria (American 

Psychiatric Association 2000) for schizophrenia were recruited from the University 

Center for Psychiatry at the University Medical Center Groningen. Both inpatients 

and outpatients were included. Diagnosis was confirmed by a trained rater, using 

the Schedules for Clinical Assessment in Neuropsychiatry (SCAN-2.1) - (Giel and 

Nienhuis 1996). In the week prior to the fMRI experiment clinical symptoms were 

assessed with the Dutch version of the Positive and Negative Syndrome Scale 

(PANSS) - (Kay et al. 1987). Eighteen patients used antipsychotic medication and 

two patients were unmedicated. All patients were clinically stable at the time of 

assessment. 
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Table 10 Demographical, questionnaire and behavioral data for controls and patients; Mean 

scores (M), standard deviations (SD) and p-values are presented 

 Controls (N = 18)  Patients (N = 18)   

 M SD M SD p 

Gender 

(male/female) 

12/6   15/3   0.25 

age 28.4 8.1 29.4 5.8 0.67 

Education 

(low/middle/high) 

6/4/8   7/3/8   0.90 

BVAQ subscales      

BVAQ cognitive 

component 

52.9 14.3 66.1 15.2 .011 

BVAQ emotional 

component 

45.8 7.9 42.5 8.7 0.24 

Verbalizing 20.7 7.3 25.0 5.3  

Analyzing 16.5 4.7 20.0 6.0  

Identifying 15.8 5.0 21.1 7.1  

Fantasizing 24.9 8.6 21.5 6.3  

Emotionalizing 20.9 5.9 21.0 4.2  

PANSS      

PANSS Positive n/a   13.0 5.0 n/a 

PANSS Negative n/a   13.7 4.6 n/a 

PANSS General n/a   25.6 5.3 n/a 

PANAS      

PANAS Positive 33.4 4.6 27.2 6.8 0.003 

PANAS Negative 13.2 2.3 18.6 6.6 0.003 

Picture-word pairs 

recognition task  

% correct 

     

Overall 81   68  0.003 

Negative pairs 81 10 69 16  

Positive pairs 82 11 67 13  

Neutral pairs 80 13 68 14  

 

Twenty controls (six females), matched for age, education level, 

handedness and gender, participated in this study. Additionally, controls were 

excluded if they had any history of psychiatric disorders or a first-degree family 

member with a psychotic disorder. Data from two patients (one male, one female) 
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and two controls (two males) were excluded due to inhomogeneity of the fMRI-

data or technical problems with data acquisition. Detailed demographical and 

clinical data are presented in Table 10. De patients used the following 

antipsychotics (N): aripiprazole (3), clozapine (2), olanzapine (2), paliperidone (1), 

penfluridole (1), perphenazine (1), quetiapine (1), quetiapine & haloperidol (1), 

risperidone (3), and zyclopentixol (1). 

Bermond-Vorst Alexithymia Questionnaire (BVAQ) 

The BVAQ (Vorst and Bermond 2001) is a 40-item self-report scale, which is 

subdivided into five subscales (eight items per scale), comprising the alexithymia 

features as defined by Nemiah and Sifneos (Nemiah and Sifneos 1970), namely 

Verbalizing, Analyzing, Identifying, Emotionalizing and Fantasizing. Previous 

studies have repeatedly shown that the BVAQ has good psychometric 

characteristics and the five factor structure is supported by factor analyses (Vorst 

and Bermond 2001). Bermond and colleagues have made a second order 

distinction in which they group the Identifying, Verbalizing, and Analyzing scales 

into a Cognitive component and the Emotionalizing and Fantasizing scales into an 

Emotional component (Bermond et al. 2007). Higher scores on these subscales 

indicate more pronounced alexithymic characteristics. The items in the Cognitive 

component of the BVAQ are highly correlated (r = 0.80) with the Toronto 

Alexithymia Scale (Vorst and Bermond 2001; Zech et al. 1999). Answers are rated 

on a 5-point scale (1=certainly does not apply to me, up to 5= certainly applies to 

me). Examples of questions in the BVAQ are: 1) “When I am upset, I know 
whether I am scared, sad or angry” (Identifying); 2) “I hardly reflect on my 
emotions” (Analyzing); 3) “I find it difficult to verbally express my feelings” 
Verbalizing); 4) “I hardly daydream or fantasize” (Fantasizing); 5) “When 
something completely unexpected occurs, I remain calm and unmoved: 

(Emotionalizing). 

Positive Affect and Negative Affect Schedule (PANAS) 

Positive and negative affect were measured with the Positive and Negative Affect 

Schedule (PANAS) - (Watson et al. 1988) in Dutch. The PANAS measures the 

current affective state. Positive affect reflects the extent to which a person feels 
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enthusiastic, active, and alert (examples: “interested” and “excited”). Negative 
affect is a general dimension of distress (examples: “nervous” and “upset”). This 
scale consists of ten Positive affect items and ten Negative affect items (Watson 

et al. 1988). Answers are scored on a 5-point scale (1=certainly does not apply to 

me, up to 5= certainly applies to me). Higher scores indicate stronger affect 

(either positive or negative). The PANAS has been shown to be a reliable and valid 

measure of positive and negative affect. It has Cronbach’s alpha coefficients for 
Positive affect = 0.89 and Negative affect = 0.85 (Watson et al. 1988). 

Associative Emotional Learning Task 

This task concerned associative learning of pictures and words during fMRI using 

an event-related design. Negative, positive, and neutral pictures from the 

International Affective Picture System (IAPS) were presented together with words 

(Hermans and De Houwer 1994). In each trial a picture and a word were 

presented on a screen. The valence of the word and picture was congruent. An 

example would be a picture of a car crash and the Dutch word for ‘worries’.  
The subjects were instructed to judge whether they felt that the picture 

and word were associated and to remember the combination. The goal of this 

instruction was to assure that participants were attending both the picture and 

the word as well as their relationship. No directions were given on how to 

associate the picture and the word. In this way we aimed to stimulate the subjects 

to engage cognitive-emotional processing while learning new material. 

Participants indicated whether the picture-word pair was associated by pressing a 

button on a response box during stimulus presentation or during the following 

fixation cross.  

The task comprised 180 picture-word pairs (60 for each category). Each pair was 

displayed for 3 s, followed by fixation cross with a jittered duration 

(pseudorandomly selected between 2 and 20 seconds from: f(x) = 18 exp(-x) + 2 , 

where x = [0, 18]). The total duration of the fixation periods was identical to the 

total duration of the stimuli (540 s) to ensure a proper implicit baseline. The 

duration of the task was about 20 minutes. 
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Immediately after scanning, participants performed a recognition test. The 

same pictures as displayed in the scanner were presented randomly, but below 

the picture, three words were given (in random order): (1) the word that was 

paired with the picture (the correct answer); (2) a word semantically related to 

the paired word in the scanner; (3) an unrelated word. The subject had to choose 

the correct answer by pressing 1, 2 or 3 (on a keyboard). 

Image acquisition 

Scanning was performed using a 3 T Intera Philips scanner equipped with a SENSE 

head coil, Best, the Netherlands. For functional magnetic imaging of the 

Associative Emotional Learning Task, an EPI sequence with the following 

parameters was used: 39 slices, repetition time (TR) = 2000 ms; echo time (TE) = 

28 ms; flip angle (α) = 70o
, in-plane resolution = 64x64 pixels, field of view (FOV) = 

224 mm, isotropic voxels of 3.5 mm, 560 functional volumes in total.  

For anatomical reference, a T1-weighted image (160 slices; isotropic voxels 

of 1 mm; TR 25 = ms; TE 4.6 ms; α = 30o
; FOV = 256 mm) covering the whole brain 

was acquired. 

Data analysis of questionnaires 

For the BVAQ, we calculated the score on the Cognitive component (sum of the 

Verbalizing, Identifying, and Analyzing subscales) and the Emotional component 

(sum of the Emotionalizing and Fantasizing subscales). To compare patients and 

controls on the BVAQ, the two components were entered as dependent variables 

and Group as independent variable into two analyses of variance (ANOVA). For 

the PANAS, the Positive and Negative components were entered as dependent 

variables and Group as independent variable into two ANOVAs.  

Data analysis of behavioral data 

Performance on the recognition task was compared between groups with a GLM 

repeated measures analysis with Valence (negative, positive, and neutral) as 

within-subject variable and Group as between-subject factor.  
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Data analysis of fMRI data 

Data were analyzed with Statistical Parametric Mapping (SPM8; FIL Wellcome 

Department of Imaging Neuroscience, London, UK). Images were first slice-time 

corrected. After realignment, the functional images were coregistered to the T1-

weighted image. This image was normalized to the standard T1-MNI (Montreal 

Neurological Image) brain (voxelsize 3x3x3 mm) and the same transformation was 

applied to the functional images. The latter were then smoothed with a Gaussian 

kernel of 10 mm FWHM. 

We performed a standard GLM analysis. At a first level, three regressors 

were modeled for negative, positive, and neutral trials with a boxcar function 

convolved with a hemodynamic response function. A trial was modeled for the 

duration of stimulus presentation (3 s). For each participant, two contrasts were 

defined: positive valence versus neutral valence and negative versus neutral. 

Group effects were tested in a random effects analysis with the factors Subject, 

Group and Valence. Task effects and main effects of Group and Valence were 

determined in an analysis modeling the interaction between Group and Valence. 

The interaction between Valence and Group was tested in a model including the 

main effect of Subject and interaction between Group and Valence, but only 

contrasting the Group by Valence interaction. All test were performed at (p < 

0.001, k > 20, FWE cluster correction at p < 0.05). 

In the ICA, the functional data were decomposed into a set of independent 

components (neuronal networks and other signal sources) by the Group ICA FMRI 

Toolbox (GIFT) using the Infomax algorithm 

(http://icatb.sourceforge.net/gift/gift_startup.php) - (Calhoun et al. 2004; 

Calhoun et al. 2001). The mean number of independent components (IC`s) was 

estimated using Maximum Description Length (MDL) and Akaike’s criteria (Li et al. 

2006), to prevent splitting or merging of components (Smith et al. 2009). Images 

were intensity normalized before ICA estimation, which implied scaling the time 

courses to a mean of 100. The intensity normalized images were decomposed into 

a set of spatially independent components (for every subject) by the Infomax 

algorithm. A component consists of a time course showing the temporal 
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fluctuations of that component, and a spatial map that shows the contribution of 

every voxel to that component. Stability of the components, i.e. whether a 

component has the tendency to split or merge with another component, was 

validated by running the ICASSO toolbox implemented in GIFT using twenty 

iterations with both random iterations and bootstrapping (Himberg et al. 2004). 

To select task-related component(s), the correlation of the time courses 

with all components and task regressors for positive, negative, and neutral stimuli 

was determined. The correlation between the task regressors and time courses 

was performed separately for the three valence conditions (positive, negative, 

neutral), because different brain networks (components) could be related to 

different valences. Components were selected if they had a moderate correlation 

(r ~ 0.3) with the task regressor and contained brain areas of interest (PFC, ACC, 

limbic regions). 

GIFT separates the imaging data into components based on independence 

in space (Calhoun et al. 2004; Calhoun et al. 2001). Because this separation is 

executed on group level, subtle differences in ICA spatial maps of different 

individuals may disappear in group ICA, e.g. differences between patients and 

healthy controls (Calhoun et al. 2001). To partly overcome this effect, the time 

courses of all individual subjects were voxel-wise regressed against functional 

image time series of that subject. Maps with a beta-value indicating the fit of the 

time course with each voxel time series were compared between groups (p < 

0.001, k > 20, FWE cluster correction of p < 0.05). 

Results 

Demographical data 

Table 10 presents demographical data, questionnaire scores and task 

performance for patients and controls, and PANSS scores for patients. Patients 

and controls did not differ on level of education (χ2
 = 0.220, df = 1, p = 0 .90), age 

(F(1,34) = 0.18, p = 0 .67) or gender (χ2
 = 1.33, df = 1, p = 0.25). 
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BVAQ 

Patients had a higher score on the Cognitive component (i.e. worse in verbalizing, 

identifying, and analyzing their feelings) than controls (F(1,34) = 7.2, p = 0.01) but 

groups did not differ on the Emotional component (i.e. same emotional arousal 

and degree of fantasizing) (F(1,34) = 1.5, p = 0.24; See Table 10).  

PANAS 

Patients had lower Positive affect scores (F(1,34) = 10.39, p = 0.003) and higher 

scores on Negative affect (F(1,34) = 10.61, p = 0.003) than controls. 

Behavioral data 

Patients recognized less picture-word pairs after scanning than controls (F(1,32) = 

10.0, p = 0.003). There was no main effect of valence (F(2,31) = 0.18 ; p = 0.84) nor 

an interaction effect between valence and group (F(2,31) = 1.0; p = 0.38). 

 

Table 11 Brain areas significantly activated in the associative emotional learning task in both 

groups during both positive and negative emotional stimuli versus neutral stimuli (p < 0.001, k > 

20, FWE cluster corrected p < 0.05) 

Cluster size T Z x y z  Brain area 

17931  14.07  Inf 52 -66 4  R middle temporal gyrus (BA 37) 

1739   7.09  6.12 -10 56 34  L superior frontal gyrus 

2097   6.68  5.84 -56 -2 -16  L middle temporal gyrus 

309   5.92  5.30 54 -4 -18  R middle temporal gyrus 

649   5.42  4.92 22 -4 -14  R parahippocampal gyrus/amygdala 

357   5.28  4.82 44 16 24  R inferior frontal gyrus 

165   4.99  4.59 54 30 12  R inferior frontal gyrus 

Brain activation with GLM analysis 

The task activated prefrontal and limbic areas across both groups: L & R middle 

temporal gyrus (MiTG), L superior frontal gyrus (SFG), R inferior frontal gyrus (IFG) 

and R amygdala/hippocampus. The left IFG, hippocampus, and amygdala were 

also active, but these clusters did not survive cluster-correction (Table 11 and 

Figure 12). 
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Figure 12 A) Main effect of the task for both groups and both valence conditions (positive & 

negative - neutral); B) Post-hoc test on valence for positive > negative; C) Post-hoc test on valence 

for negative > positive; All tests at p < 0.001, k > 20, cluster correction at p < 0.05 

There was no main effect of group, i.e. the groups did not differ in brain 

activation in response to the task. There was a main effect of valence, but no 

interaction between valence and group. Post-hoc tests were used to investigate 

the effect of valence (pos > neg and neg > pos), see Table 12 and Figure 12. The 

positive emotional stimuli evoked more brain activation in L & R inferior parietal 

lobule (IPL), rostral cingulate gyrus, and R SFG. Negative stimuli resulted in more 

activation in the L & R MiTG, R IFG, and another, more extensive part of the R 

medial/superior PFC. 

Connectivity with independent component analysis 

The regressor for negative stimuli showed a correlation of r = 0.30 with a 

component containing the hypothesized emotional brain areas (ACC, PFC and 

limbic regions) amongst others (“negative emotion component”). The second 
component (r = 0.23) only contained visual areas. Both the positive and neutral 

task regressor showed the highest correlation with this same visual component (r 
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= 0.21 and r = 0.15 resp.). For these task regressors, the components with the 

second-highest correlation only contained other visual areas. For both the positive 

and neutral task regressor, the correlation with the time course of the “negative 
emotion component” was r < 0.1. 

 

Table 12 Brain areas showing a stronger response to positive compared to negative stimuli and 

vice versa (p < 0.001, k > 20, FWE cluster corrected p < 0.05) 

Cluster size T Z x y z  Brain area 

Positive > negative        

13645 7.25 6.22 52 -50 50  R inferior parietal lobule (BA 40) 

3693 5.64 5.09 -32 -64 38  L inferior parietal lobule (BA 39) 

408 4.69 4.35 8 -34 36  cingulate gyrus (BA 31) 

254 4.63 4.30 28 18 56  R superior frontal gyrus 

Negative > positive        

2813 7.64 6.47 54 -64 0  R middle temporal gyrus 

2015 7.29 6.25 -50 -66 14  L middle temporal gyrus 

1545 6.95 6.02 -52 -6 -14  L middle temporal gyrus (BA 20) 

838 6.31 5.58 56 30 8  R inferior frontal gyrus 

1163 6.22 5.51 6 54 30  R superior frontal gyrus (BA 9) 

577 5.93 5.31 50 -8 -16  R middle temporal gyrus (BA 21) 

2813 7.64 6.47 54 -64 0  R middle temporal gyrus 

 

The “negative emotion component” was selected for further analysis. Its 

time course was voxel-wise regressed against the functional data of every subject. 

The maps with the resulting beta-weights were used in the random-effects 

analysis. The contrast of the main effect of the component contained occipital 

areas (BA 18), L & R MiTG, L & R IFG, thalamus, posterior cingulate cortex (PCC), 

precuneus, L & R amygdala, L & R hippocampus, and precentral and postcentral 

gyrus (See Table 13 and Figure 13; FWE, p < 0.05, k > 20; a more stringent 

threshold was used because of the high t-values in this contrast).  

With regard to group differences, a two sample t-test comparing the 

negative emotion component between patients and controls demonstrated that 

patients showed lower connectivity in the ACC and medial frontal regions to other 

areas of the component (Table 14 and Figure 13), but these effects did not survive 
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cluster-correction. Patients did not show higher connectivity in regions of this 

component. 

 

Table 13 Brain areas in the network identified after voxel-wise regression of the ICA time courses 

of every subject with their own functional image series (FWE, p < 0.05, k > 20) 

Cluster size T Z x y z  Brain area 

12701  22.41   Inf -36 -87 6  occipital areas (BA 18) 

       

R temporal 

pole/parahippocampal 

gyrus/amygdala 

       

R precentral (BA 6)/postcentral 

gyrus (BA 3) 

       posterior cingulate/precuneus 

113   8.78  6.30 -45 6 27  R inferior frontal gyrus 

102   8.06  5.99 45 12 27  L inferior frontal gyrus 

40   8.01  5.97 -3 -15 6  thalamus 

87   7.93  5.93 -57 -3 18  L middle temporal gyrus 

43   7.35  5.65 -42 -3 45  L precentral gyrus 

68   7.35  5.65 -42 21 -27  

L temporal 

pole/parahippocampal 

gyrus/amygdala 

22   6.34  5.12 -42 -27 63  L postcentral gyrus (BA 3) 

 

 

 

Figure 13 A) Voxels showing a significant contribution to the time course of the negative emotion 

component (FWE, p < 0.05); B) Brain areas showing lower connectivity in schizophrenia patients 

compared to healthy controls (p < 0.001, k > 20, uncorrected) 
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Table 14 Clusters that showed decreased connectivity in schizophrenia patients compared to 

healthy controls (p < 0.001, k > 20, uncorrected) 

Cluster size T Z x y z  Brain area 

50 5.40 4.56 -15 27 3  L anterior cingulate cortex 

24 4.66 4.07 -30 42 6  L middle frontal gyrus 

27 4.19 3.73 12 18 51  R medial frontal gyrus 

20 4.06 3.64 -21 30 36  L medial frontal gyrus 

 

Discussion 

The aim of this study was to investigate differences in activation and connectivity 

underlying associative emotional learning in schizophrenia patients compared to 

healthy comparison subjects. Patients with schizophrenia showed a trend for less 

connectivity of medial prefrontal areas to other brain regions within a network 

involved in negative emotional processing. Moreover, altered connectivity in the 

amygdala, and hippocampus was not observed. GLM did not yield any group 

differences. After scanning, patients remembered less words, but there was no 

effect of valence on the remembered words. Patients showed higher levels of 

alexithymia on the cognitive-emotional level, but not on the subjective-emotional 

level. 

The absence of an effect of valence on the amount of remembered words 

may be partly caused by the low task difficulty. We aimed to have reasonable 

performance for all subjects, including relatively ill patients. The consequence 

may be that the task was to easy to detect behavioral changes on the level of 

emotion processing and significant changes in brain function in patients with 

schizophrenia. Future studies could use more challenging tasks to investigate the 

encoding stage of associative emotional learning. 

GLM analysis showed activation in brain areas that have been related to 

associative and/or emotional learning (amygdala, hippocampus, IFG, and MeTG) 

(Murty et al. 2010). In addition, other activated areas in response to the task have 

been associated with emotional experience (MPFC), and autobiographical 

memory (PCC and precuneus) (Van der Meer et al. 2010). 
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In contrast to our hypothesis, patients and healthy controls did not differ in 

brain activation during the associative emotional learning task. Because the brain 

may not respond in a linear way to the task, task-related effects might not be 

captured by GLM analysis. Moreover, separate brain regions may respond normal 

to a task in patients, but there may be aberrant cooperation between different 

brain areas (Das et al. 2007; Friston 1998; Stephan et al. 2009a). Therefore, also 

an analysis sensitive for differences in network connectivity was executed, as 

discussed later in this section. 

With regard to valence, the evaluation of positive compared to negative 

stimuli activated different brain regions in our study. In line with our findings, a 

previous study (Berthoz et al. 2002) has shown increased rostral medial prefrontal 

activation in response to positive stimuli and decreased dorsal ACC activation by 

negative stimuli in persons with impaired emotional processing (alexithymia) 

(Lane et al. 1996; Swart et al. 2009). Moreover, healthy controls have shown 

different patterns of prefrontal brain activation in response to negative stimuli 

during emotion inhibition (Vercammen et al. 2012) or affective processing 

(Diwadkar et al. 2012), while persons with schizophrenia or at risk for the disorder 

did not show these effects. We showed similar distinct effects of positive versus 

negative valence on brain activation, but failed to show altered activation in 

schizophrenia patients. 

The ICA analysis identified a network of brain areas that responded 

specifically to the negative emotional stimuli of the task. We termed this 

component the negative emotion component. The component consisted of the 

same areas that were detected with the GLM analysis, and additionally contained 

ACC. Inspecting the task activation, it appeared that negative stimuli activated the 

task related areas more strongly, while positive stimuli showed a more 

widespread, but less intense activation of brain areas. Consistent with our results, 

other studies also reported the strongest modulating effects of negative stimuli 

on brain function (Diwadkar et al. 2012). Negative stimuli might provoke stronger 

coherent brain activation across a network that may be detected with ICA, while 

positive and neutral stimuli result in weaker, less coherent responses (not 

resulting in a specific brain network).  
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Schizophrenia patients demonstrated a trend for lower connectivity of 

prefrontal and cingulate areas to other areas within the negative emotion 

component compared to controls. Though not significant, we consider the results 

still worth of reporting, as they agree with our hypothesis and earlier findings 

(Anticevic et al. 2011; Das et al. 2007; Phillips et al. 2003b). Decreased 

connectivity of prefrontal regions has also been observed in schizophrenia 

patients during letter encoding (Meda et al. 2009) and in the default mode 

network (Camchong et al. 2011). Impaired connectivity of these areas within the 

emotional network could be related to the difficulties that patients had with 

recognition of the associations (Achim and Lepage 2005), although we showed no 

effect of valence on the remembered words as was hypothesized. Moreover, the 

ACC has shown altered activation during emotion processing in alexithymia 

(Berthoz et al. 2002; Lane et al. 1998). As patients reported more difficulties in 

cognitive-emotion processing (BVAQ) and a more negative affect state (PANAS), 

this might be related to the observed trend for reduced connectivity. 

Schizophrenia patients showed no differences in activity and connectivity of 

hippocampus and amygdala, while fMRI studies on emotion processing in 

schizophrenia often show abnormalities in these limbic areas (Gur et al. 2007), 

though others failed to do so (Dowd and Barch 2010). Concerning connectivity, 

patients have shown higher connectivity in amygdala and parahippocampal gyrus 

during listening to emotional words (Escarti et al. 2010). The inconsistent findings 

may be due to differences in task requirements and in clinical presentation of 

patients (Aleman and Kahn 2005; Fahim et al. 2005). Intact amygdala activation 

has been observed in patients during an emotionally loaded working memory task 

(Anticevic et al. 2011; Becerril and Barch 2011) and during viewing of emotional 

pictures (Dowd and Barch 2010), but not in patients with severe anhedonia. As 

our patient group had no high levels of flat affect or anhedonia and showed 

similar self-reported emotional arousal as healthy controls, amygdalar and 

hippocampal function might be intact in our sample (Phillips et al. 2003a; Van der 

Meer et al. 2009). 



 

 

Chapter 4  

88  

A limitation of this study was that patients were taking antipsychotic 

medication, which may interact with brain activation and task performance. 

However, a review of Röder et al. (Röder et al. 2010) showed that the effects of 

antipsychotics on the BOLD response may be limited. Furthermore, there was no 

effect of valence on remembered words or an interaction with group, while there 

was effect of valence on brain function, which complicates interpretation of the 

results. Future studies should probably increase task difficulty and use 

neuroimaging both during the encoding and retrieval phase of learned 

associations. 

Taken together, the trend for decreased ACC/PFC functional connectivity in 

patients might be associated cognitive-emotional processing difficulties or affect 

state. The absence of differences in areas related to emotional arousal (amygdala 

and hippocampus) might indicate intact subjective-emotional experience. 

Acknowledgements 

The authors acknowledge Anita Sibeijn-Kuiper and Judith Streurman for their 

assistance with fMRI scanning.  



 

 

 

 

 
 Resting state connectivity and insight 

 89 

5. Reduced connectivity in the self-processing 

network of schizophrenia patients with poor 

insight  

PloS ONE, 2012;7(8):e42707. 

 

Edith Liemburg
a,b

, Lisette van der Meer
a,c

, Marte Swart
a,c

, Branislava Curcic-Blake
a
, 

Richard Bruggeman
b
, Henderikus Knegtering

a,b,c
, André Aleman

a,d
 

 

a
Department of Neuroscience, University Medical Center Groningen, & BCN 

NeuroImaging Center, University of Groningen, The Netherlands 

b
Rob Giel Research Center, University Medical Center Groningen, Groningen, The 

Netherlands 

c
Lentis, Center for Mental Healthcare, Groningen, The Netherlands 

d
Department of Psychology, University of Groningen, Groningen, The Netherlands 

Abstract 

Introduction: Lack of insight (unawareness of illness) is a common and clinically 

relevant feature of schizophrenia. Reduced levels of self-referential processing 

have been proposed as a mechanism underlying poor insight. The default mode 

network (DMN) has been implicated as a key node in the circuit for self-referential 

processing. We hypothesized that during resting state the DMN network would 

show decreased connectivity in schizophrenia patients with poor insight 

compared to patients with good insight. Methods: Patients with schizophrenia 

were recruited from mental health care centers in the north of the Netherlands 

and categorized in groups having good insight (N = 25) or poor insight (N = 19). All 

subjects underwent a resting state fMRI scan. A healthy control group (N = 30) 

was used as a reference. Functional connectivity of the anterior and posterior part 

of the DMN, identified using Independent Component Analysis, was compared 

between groups. Results: Patients with poor insight showed lower connectivity of 
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the ACC within the anterior DMN component and precuneus within the posterior 

DMN component compared to patients with good insight. Connectivity between 

the anterior and posterior part of the DMN was lower in patients than controls, 

and qualitatively different between the good and poor insight patient groups. 

Discussion: As predicted, subjects with poor insight in psychosis showed 

decreased connectivity in DMN regions implicated in self-referential processing, 

although this concerned only part of the network. This finding is compatible with 

theories implying a role of reduced self-referential processing as a mechanism 

contributing to poor insight. 

Introduction 

Patients with schizophrenia often have difficulties with social and emotional 

cognitive processing (Atkinson and Robinson 1961; Pinkham et al. 2008), including 

self-reflective processes (Amador and David 2004). Such impairments may have 

important consequences for successful functioning in a social community 

(Pinkham et al. 2003; Pinkham et al. 2008). Self-referential processing deficits, 

which may already be present before the onset of the disorder, have been 

proposed to underlie these social and emotional deficits as well as first rank 

schizophrenic symptoms ( e.g. Frith 1995; Frith and Corcoran 1996; Nelson et al. 

2009; Parnas and Handest 2003; Raballo et al. 2011; Sass and Parnas 2003). Such 

self-related processing deficits may include the formation and maintenance of an 

accurate representation of one's traits, abilities and attitudes, or self-reflection 

(Northoff et al. 2006; Van der Meer et al. 2010). This self-reflective processing is 

essential in the evaluation of one's personal behavior as well as in interpersonal 

communication (Atkinson and Robinson 1961). More specifically, it has been 

proposed that self-reflective processing may underlie poor illness insight in 

patients with schizophrenia (Flashman and Roth 2004; Lysaker et al. 2005; Van der 

Meer et al. 2010).  

Impaired insight has been considered to be a core feature of schizophrenia 

(David 2004a). Poor insight in schizophrenia has been associated with poorer 

global functioning (Dickerson et al. 1997; Pyne et al. 2001; Stefanopoulou et al. 

2009), greater severity of psychopathology (Mintz et al. 2003), increased relapses 
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and hospitalizations, poorer long term prognosis (Schwartz 1998) and reduced 

treatment compliance (Kemp and David 1996; Yen et al. 2005). Interestingly, lack 

of insight in schizophrenia appears to be self-specific, as most patients recognize 

symptoms in other patients, but fail to do so in themselves (Ries et al. 2007; 

Startup 1997). This implies that lack of insight may be caused by disturbed abilities 

of self-referential processing (Van der Meer et al. 2010). Thus, studying the neural 

link between insight and self-referential processing may reveal important clues 

with regard to the underlying deficit in patients lacking insight. If patients with 

schizophrenia have attenuated capacities to reflect on their situation and on other 

self-relevant information, this could be a barrier for obtaining insight that one 

suffers from a severe psychiatric disorder. 

In terms of brain regions that underlie self-referential processing, research 

points towards a set of medial brain areas comprising the posterior cingulate 

cortex (PCC), anterior cingulate cortex (ACC), and the dorsomedial and 

ventromedial prefrontal cortex (d & vMPFC) (Johnson et al. 2002; Kelley et al. 

2002), together referred to as the cortical midline structures (CMS) (Northoff and 

Bermpohl 2004; Northoff et al. 2006; Van der Meer et al. 2010). In patients with 

traumatic brain injury in the CMS (Schmitz et al. 2006), patients with mild 

cognitive impairment (Ries et al. 2007) and schizophrenia patients (Brüne et al. 

2008; Carter et al. 2001; Cooke et al. 2008; Holt et al. 2011), an association 

between impaired insight and decreased activation of medial frontal and other 

CMS regions has been demonstrated.  

The CMS show a large overlap with the so-called default mode network 

(DMN). This is a network of brain areas that are active during rest (Buckner et al. 

2008; Raichle et al. 2001) and involved in processing related to the self (Gusnard 

and Raichle 2001; Raichle et al. 2001). The brain areas in the network show 

synchronized slow fluctuations (< 0.1 Hz) in the BOLD signal (Beckmann et al. 

2005; Raichle and Gusnard 2005). Areas in this network include the ventral and 

dorsal medial prefrontal cortex (vMPFC and dMPFC), anterior cingulate (ACC), the 

posterior cingulate (PCC)/retrosplenial cortex (RspC) and adjacent precuneus, 

inferior parietal lobule (IPL), medial temporal cortex (MTG), and hippocampal 
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formation (Buckner et al. 2008; Raichle and Gusnard 2005). The default mode 

network appears to encompass subnetworks with distinct functions (Buckner et 

al. 2008), consisting of an anterior part ) ACC/MPFC), a posterior (PCC, precuneus 

and IPL), and possibly a ventral part with temporal ventral prefrontal regions 

(Buckner et al. 2008; Northoff et al. 2006). Studies in schizophrenia patients have 

found disturbances in DMN structures, with mainly lower medial PFC compared to 

healthy controls (Bassett et al. 2008; Cole et al. 2011; Liu et al. 2008; Zhang et al. 

2011), but also altered connectivity within posterior DMN areas, disturbed 

prefrontal-parietal communication (Holt et al. 2011; Jang et al. 2011; Lui et al. 

2010; Lynall et al. 2010; Mannell et al. 2010; Skudlarski et al. 2010; Wolf et al. 

2011; Woodward et al. 2011; Zhang et al. 2011), or reduced connectivity between 

other DMN regions (Jang et al. 2011; Lui et al. 2010; Lynall et al. 2010; Mannell et 

al. 2010; Ongur et al. 2010; Rotarska-Jagiela et al. 2010; Woodward et al. 2011). 

Of note, some studies showed increased frontal connectivity (Salomon et al. 2011; 

Salvador et al. 2010; Shen et al. 2010).  

Structural MRI studies have related poor insight in schizophrenia patients to 

decreased volume of prefrontal and other DMN regions (Parellada et al. 2011; 

Shad et al. 2004), which may be related to poor self-monitoring (Cooke et al. 

2008; Morgan et al. 2010; Orfei et al. 2012; Shad et al. 2006). Patients or people 

at risk for psychosis indeed show altered brain activation during self-reflection 

and theory of mind (Brüne et al. 2008; Carter et al. 2001; Holt et al. 2011; 

Modinos et al. 2011). Moreover, review studies have shown that schizophrenia 

patients have a decreased prefrontal and posterior DMN activation in resting 

state studies (Hill et al. 2004; Kuhn and Gallinat 2011). Finally, decreased white 

matter integrity between DMN areas was also related to poor insight (Antonius et 

al. 2011). No studies have as yet investigated resting state connectivity in 

relationship to poor insight in psychosis. 

Connectivity analysis may further the understanding of neural systems 

beyond the task-activation fMRI designs (Fox and Raichle 2007; Van den Heuvel 

and Hulshoff Pol 2010). Resting state BOLD fluctuations may reflect spontaneous 

neural activity as most resting state patterns overlap with known brain networks 

(Smith et al. 2009; Van den Heuvel and Hulshoff Pol 2010), and they may even 
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predict individual’s task performance or behavior (Fox and Raichle 2007). 

Moreover, their functional connectivity follows the anatomical outline of white 

matter bundles (Van den Heuvel and Hulshoff Pol 2010). Whereas task-based 

activation can provide information about the function of separate brain areas, 

functional connectivity may thus provide information about interaction of brain 

areas (Van den Heuvel and Hulshoff Pol 2010). Resting state research of the DMN 

is especially interesting with regard to the issue of insight, because we expect a 

relation between the key function of the DMN, namely self-referential processing, 

and insight. 

Studying resting state fluctuations may have some advantages over task-

based fMRI. Experimental control of differences in task performance between 

groups is not necessary and relatively ill patients groups with limited capacities 

can be investigated (Fransson 2006; Smith et al. 2009). Only intrinsic differences 

of the brain, and not differences in cognitive abilities, will explain differences in 

connectivity. Moreover, resting state functional connectivity may be a more 

natural, ecologically relevant, measure of brain activation than task-based fMRI 

(Raichle et al. 2001) as it reflects intrinsic brain interactions (Van de Ven et al. 

2004).  

Independent component analysis (ICA) can separate the fMRI signal into 

spatially independent networks that show shared temporal fluctuations (Calhoun 

et al. 2001; Van de Ven et al. 2004). Independent components (i.e. networks) 

contain brain areas that show similar fluctuations and are assumed to be 

functionally linked. The size and strength of the identified networks (components) 

may differ between individuals and groups sharing a specific trait (Calhoun et al. 

2001; Van de Ven et al. 2004), as may cooperation between different networks 

(Jafri et al. 2008). In this study, we will focus on the DMN because this has been 

related to self-related processing (Gusnard and Raichle 2001). We expect to 

identify an anterior and posterior DMN subnetwork as described earlier, as these 

have been identified previously using ICA (Garrity et al. 2007; Jafri et al. 2008). 

We hypothesize that schizophrenia patients with poor insight may show 

impaired connectivity of the DMN during rest, which may reflect attenuated self-
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related processing associated with decreased awareness of symptoms (Northoff 

and Bermpohl 2004). We therefore compared connectivity of brain areas within 

anterior and posterior DMN components to the other parts of that component 

between patients with good and with poor insight. A healthy control group was 

used as a reference. Moreover, we conducted a group comparison of connectivity 

strength between the anterior and posterior DMN components, as we 

hypothesize that impaired connectivity between the anterior and posterior DMN 

may also contribute to impaired insight. 

Methods 

Ethics statement 

The study was approved by the local medical ethical committee (Medische 

Ethische Toetsingscommissie van het Universitair Medisch Centrum Groningen) 

according to the declaration of Helsinki. All subjects gave oral and written 

informed consent after the study procedure had been fully explained. All subjects 

were capable of signing the informed consent as they were able to live 

independent, no permanent inpatients, had no care givers taking over 

responsibilities from them, and all allowed to sign informed consent themselves. 

All subject data was handled anonymously. 

Study population 

The study sample included 44 patients with schizophrenia. Patients were 

recruited from mental health care centers in the north of the Netherlands, three 

or four patients came from western parts of the Netherlands. Patients were 

participants in an fMRI study on neural correlates of auditory hallucinations or a 

study on cognitive emotional processing; in both studies a resting state scan was 

part of the research protocol. Diagnosis of schizophrenia according to DSM-IV 

criteria was confirmed with the SCAN 2.1 diagnostic interview (Giel and Nienhuis 

1996). A healthy control group matched to the patients on age, gender, 

handedness, and education level was included. This group was included to deduce 

whether patients showed similar DMN properties as healthy subjects. Healthy 

controls were excluded in case of psychiatric history, which was confirmed with 
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the screenings questions of the SCAN 2.1 interview. For subject characteristics, 

see Table 15. Patients were asked to give an overview of the medication they 

were taking at the moment.  

 

Table 15 Overview of demographical data of the good insight and poor insight groups and the 

control group; The PANSS General subscale is shown without item G12; The fifth column shows 

the Z (Mann-Whitney) or Chi-square (Kruskal-Wallis and Chi-square test for independence) values 

of the statistical comparisons and the sixth the p-values 

 Good 

insight 

(N = 25) 

Poor insight 

(N = 19) 

Controls 

(N = 30) 

Statistical 

test score 

(Z or χ2
) 

p-value 

Mean age (SD) 33.4 (11.2) 35.9  (11.9) 33.4 (10.5) 0.69 0.71 

Mean education 

(SD) 

3.52 (1.3) 3.53 (1.2) 4.1 (1.1) 1.1 0.59 

Gender (M/F) 9/16  7/12  15/15  0.0 0.51 

Handedness (L/R) 3/22  2/17  6/24  0.0 1.0 

PANSS G12 (SD) 1.3 (0.5) 3.7 (0.8)   5.9 < 0.005 

PANSS Positive 

(SD) 

14.3 (4.8) 17.1 (4.8)   1.96 0.050 

PANSS Negative 

(SD) 

14.3 (4.3) 14.4 (4.8)   0.21 0.83 

PANSS General -12 

(SD) 

25.8 (8.3) 28.1 (7.4)   1.34 0.18 

Illness duration 

years (SD) 

10.5 (9.6) 8.9 (8.2)   0.46 0.67 

No antipsychotic 

(%) 

0  21.1    6.1 0.11 

Typical (%) 8.0  10.5      

Atypical (%) 68.0  47.4      

Typical + atypical 

(%) 

2.0  10.5      
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The patients reported to use the following medication; antipsychotics: 

aripiprazole (9x), chlorprotixene (1x), clozapine (15x), haloperidol (4x), olanzapine 

(9x), paliperidone (1x), penfluridole (1x), perphenazine (1x), pimozide (1x), 

pipamperone (1x), quetiapine (7x), risperidone (10x), sulpiride (1x), and 

zuclopentixole (2x); antidepressants: amytriptyline (1x), bupropione (1x), 

citalopram (3x), clomipramine (1x), fluoxetine (2x), fluvoxamine (1x), mirtazapine 

(1x), paroxetine (2x), nortriptylin (1x), trazodone (1x), and venlafaxine (2x); 

benzodiazepines: diazepam (3x), flurazepam (1x), lorazepam (3x), oxazepam (7x), 

temazepam (5x); other: atenolol (1x), biperiden (6x), carbamazepine (1x), 

lithiumcarbonate (6x), pantaprazol (2x), promethazine (1x), valproic acid (1x). 

Measures 

The most important measure of the study was connectivity of brain areas within 

the anterior and posterior DMN component to the rest of that component. 

Differences in connectivity within a component were compared between groups 

by doing a voxel-wise group comparison of the spatial maps of individual subjects. 

Connectivity between components was also determined by correlating the time 

courses of the anterior and posterior DMN component. These were converted to 

Z-scores and compared between groups. 

Design 

The primary goal was to compare connectivity measures between patients with 

good and poor insight. A matched healthy control group was used as a reference. 

If possible, differences were statistically compared, but as described below, in 

some cases only qualitative comparison was possible. 

Behavioral data 

All schizophrenia patients were interviewed with the Positive and Negative 

Syndrome Scale (PANSS) - (Kay et al. 1987). The PANSS interview measures three 

domains of symptoms, namely Positive and Negative symptoms and General 

pathology. Each item can be rated from 1 (not present) – 7 (extreme). The 

interviews were performed by experienced and trained raters. Based on the rating 

of the interview item that measures illness insight (G12), patients were 
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categorized into two groups with good insight (score 1 – 2, which are in the 

normal range) or poor insight (> 2). Even though this is only one single item, 

strong correlations with more thorough measures of insight such as the Scale to 

Assess Insight (SAI; r = 0.88), Scale to Assess Insight – Expanded (SAI-E; r = 0.90) , 

or the Insight and Treatment Attitudes Questionnaire (ITAQ; r = 0.90) have been 

demonstrated (Drake and Lewis 2003; Sanz et al. 2011), confirming that the 

PANSS G12 item reliably rating insight. 

Education level was rated according to a six point scale defined by Verhage 

(Verhage 1984), which ranges from primary school (1) to university level (6). 

Handedness was confirmed by the Edinburgh handedness inventory (Oldfield 

1971). Age and education level were compared between controls and the two 

patients groups with a Kruskal-Wallis H test (α = 0.05). Between patient group 

differences in PANSS subscales were tested with a Mann-Whitney U test. For the 

PANSS General pathology subscale the Insight item G12 was subtracted from the 

total score, because this item was a selection criterion for both groups. A Chi-

square test for independence (α = 0.05) was used to test for differences in gender 

and handedness. All statistical tests were performed with Statistical Package for 

Social Sciences (SPSS) 16. Exclusion criteria for the study consisted of MRI 

incompatible implants, possible pregnancy, claustrophobia, and non-native Dutch 

speakers.  

MRI procedure 

All subjects underwent a resting state fMRI scan. They were instructed to close 

their eyes, relax, and to stay awake. Subjects were reminded of this just before 

the scan started. A 3 T Philips Intera MRI scanner (Best, The Netherlands) 

equipped with a 8-channel SENSE head coil was used to acquire 200 whole brain 

echo-planar functional images (EPI`s), TR 2.3 s, and TE 28 ms. The volumes 

contained 39 (old sequence) or 43 (after scanner upgrade) interleaved slices 

(3.8x3.8x3 mm) with a 0 mm slice gap and a 85° flip-angle (FOV = 220x117x220 

mm). The duration of the scan was 460 seconds. A high-resolution, transverse T1 
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anatomical was also acquired for overlay of statistic images (160 slices; voxel size 

1x1x1 mm; FOV 256x220x256 mm). 

Analysis 

The raw images were converted to ANALYZE format and analyzed using Statistical 

Parametric Mapping (SPM8; FIL Wellcome Department of Imaging Neuroscience, 

London, UK) running on Matlab 7.1. Images were first corrected for slice-time 

differences and realigned to the first functional image. The mean image created 

during realignment was co-registered to the anatomy, together with the 

functional images, and the anatomy and functional images were normalized 

(voxel size 3x3x3 mm) to the T1 template of SPM. Finally, images were smoothed 

with a 10 mm FWHM isotropic Gaussian kernel. Additional filtering was not 

necessary, because artifacts will generally represented by separate components in 

ICA (Calhoun et al. 2001; Van de Ven et al. 2004). 

After the preprocessing, images were processed in Group ICA FMRI Toolbox 

(GIFT; http://icatb.sourceforge.net/gift/gift_startup.php) (Calhoun et al. 2001). 

For referential purposes, a separate ICA was conducted on the group of healthy 

control subjects. Healthy subjects were not included in the ICA of patients but 

treated separately, because subtle differences in spatial maps of patients, only 

distinguished based on insight score, may disappear due to inclusion of a group 

with different network properties, such as healthy controls (Calhoun et al. 2001).  

The mean number of independent components (IC`s) was estimated using 

Maximum Description Length (MDL) and Akaike’s criteria (Li et al. 2006), to 

prevent splitting or merging of components (Smith et al. 2009). Images were 

intensity normalized before ICA estimation, which implied scaling the time 

courses to a mean of 100. The intensity normalized images (patients and controls 

separately) were decomposed into a set of spatially independent components (for 

every subject) by the Infomax algorithm. A component consists of a time course 

showing the temporal fluctuations of that component, and a spatial map that 

shows the contribution of every voxel to that component. Stability of the 

components, i.e. whether a component has the tendency to split or merge with 

another component, was validated by running the ICASSO toolbox implemented 
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in GIFT using twenty iterations with both random iterations and bootstrapping 

(Himberg et al. 2004). 

Selection of the components of interest for both healthy controls and 

patients, namely the anterior DMN (including the ACC/MPFC) and posterior DMN 

(PCC/precuneus/IPL), was done by selecting components showing a large spatial 

overlap with a priori defined anatomical masks. Thus, the component could also 

involve other brain areas, but involvement of the areas defined by the masks was 

crucial. These anatomical masks of the ACC/MPFC (to select the anterior DMN 

component) and of the PCC/precuneus (for posterior DMN component selection) 

were created with WFU–pickatlas (http://www.nitrc.org/projects/wfu_pickatlas). 

Masks provided by WFU pickatlas are based on brain regions defined by Talairach 

and Tournoux (Talairach and Tournoux 1998) that were implemented in this 

toolbox after conversion to MNI space (Lancaster et al. 1997; Lancaster et al. 

2000).  

Spatial maps of selected anterior and posterior DMN components were 

visually compared between patients and controls to establish whether similar 

networks were present in both groups. Statistical comparison of image maps of 

two different ICA`s is unjustified, because the outline of image maps may differ 

between groups due to the separate ICA unmixing procedure of the image time 

courses in both groups.  

After that, for the patients the reconstructed individual spatial maps of the 

anterior and posterior DMN component were entered in a two sample t-test 

random-effects analysis comparing the good versus poor insight group. This 

analysis shows brain areas that are differently connected to the rest of the 

anterior or posterior DMN component. A statistical threshold was applied of p < 

0.001, as has been done previously (Tie et al. 2008). The analysis was restricted to 

areas that significantly contributed to the ICA component, as previously described 

by (Garrity et al. 2007). This was done because ICA components maps have values 

close to zero in areas where the time course of that component is not 

represented. Voxel intensities in these areas are mainly determined by noise 

properties and may in group comparison lead to false-positive clusters. Since we 
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formulated a specific hypothesis comprising specific brain areas and used a mask 

to restrict the search volume, and because a comparison between two groups of 

patients was performed, cluster correction was not applied to avoid type II errors 

(Tie et al. 2008).  

In an additional analysis, a voxel-wise linear regression was performed with 

the time courses of each voxel in the component maps of the DMN against the 

PANSS G12 Insight scores. Furthermore, a correlation was calculated between the 

anterior and posterior DMN component time courses of all subjects. The 

correlations were converted to Z-scores by a Fischer`s Z transformation with Z = 

½*ln((1+r)/(1-r)),where r represents the correlation. These data were loaded in 

SPSS. The correlations between the time courses of the anterior and posterior 

DMN of all patients were compared to those of controls and the correlations of 

patients with poor insight to those of patients with good insight using Mann-

Whitney U tests (α = 0.05). 

Two additional analyses were performed. First, because there was a 

significant difference in the PANSS Positive subscale between groups, this 

subscale was added as a covariate to the group comparison. Second, as DMN 

regions have been shown to deactivate during task-performance, we also 

investigated whether the regions that we identified in the ICA group comparison 

overlapped with regions that showed task-related deactivation. For this, we 

analyzed the language task involving valence evaluation (positive, negative) of 

visually presented words that was performed by subjects during scanning. 

Deactivation of the DMN during task performance was shown by contrasting the 

fixation cross of the task with task blocks. The clusters showing a difference in 

DMN connectivity between the good and poor group were then overlayed on the 

task-related deactivation (Figure 16). 

Results 

Twenty five patients were classified as having good insight and nineteen patients 

were classified as having poor insight. The demographical characteristics of these 

two groups were compared, also with respect to the controls (Table 15). The 

PANSS Positive subscale was significantly different between groups, but there was 
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a significant correlation between PANSS G12 and the Positive symptom subscale (r 

= 0.36; p = 0.015), implying that patients with more positive symptoms had poorer 

insight. Therefore, the Positive symptom subscale was added as a covariate in the 

group comparisons, but this did not change the results. There was no significant 

difference in age, gender, handedness, education level and most PANSS scores, 

though the PANSS Positive subscale was significant.  

 

 

Figure 14 Components map of the DMN of healthy controls showing the anterior DMN on the left 

and the posterior part on the right (p < 0.001, k > 10) 

This resulted in an estimate of 32 components for the patients and 30 for 

the healthy controls. The anterior default mode component encompassing the 

ACC/MPFC showed a spatial overlap correlation with the anatomical mask created 

by WFU Pickatlas of 21% for healthy controls (left side Figure 14) and of 56% for 

patients (left side Figure 15).  

 

 

Figure 15 Components map of the DMN of schizophrenia patients showing the anterior DMN on 

the left and the posterior part on the right (p < 0.001, k > 10) 
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Overlap of other components was < 10%, indicating that the components of 

interest (anterior and posterior DMN) could be identified with high specificity. 

Visual inspection showed that the component map of the healthy controls had a 

more extended and stronger network contribution than the patients. The 

posterior component showed an overlap of 31% for healthy controls (right side 

Figure 14) and of 57% for patients (right side Figure 15).  

 

 

Figure 16 Group comparison of good vs. poor insight patients with the anterior component on the 

left showing the ACC, and the posterior component on the right showing the precuneus (p < 0.001, 

k > 10, masked with component image map), overlayed on the task-related deactivation, created 

by contrasting the fixation cross of a language task with task blocks 

The anterior and posterior components were compared with a two-sample 

t-test. Patients with good insight showed stronger connectivity of the ACC to the 

rest of the anterior DMN component compared to patients with poor insight: T = 

4.37, Z = 3.94, cluster size = 18, p < 0.001, xyz = -12 39 3 (Figure 16, left side). 

Subsequently, a voxel-wise regression between the image maps and the insight 

score was calculated. This revealed a cluster in the same location. In the two 

sample t-test of the posterior DMN component, a significant cluster was identified 

in the precuneus (T = 3.94, Z = 3.62, cluster size = 20, p < 0.001, xyz = 24 -72 24, 

see Figure 16, right side). The linear regression with insight score resulted in the 

same cluster. There was no significant cluster in the poor vs. good insight t-test 

comparison for both components. 

A correlation between the time courses of the anterior and posterior DMN 

component was calculated and converted to Z-scores. These Z-scores were 

compared between healthy controls and all patients, and between patients with 
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good and poor insight. Z-scores are plotted per group in Figure 17. Whereas the Z-

scores for the healthy controls were all above zero (with the exception for one 

subject), part of the patients showed a negative Z-scores with an overall mean 

around zero and a larger variation (SDcontrols = 0.20, SDpatients = 0.66). This difference 

was significant (U = 388, z = -3.0, p = 0.003). Patients with poor insight showed the 

largest variation in Z-scores (SDgood insight = 0.56, SDpoor insight = 0.79), but did not 

differ significantly from the patients with good insight (U = 214, z = -0.56, p = 

0.58). 

 

 

Figure 17 Z-scores of connectivity between the anterior and posterior DMN for healthy controls 

and schizophrenia patients with good and poor insight 

Finally, adding the PANSS Positive symptoms subscale as a covariate to the 

group comparison between good and poor insight did not change the results. In 

addition, during the valence evaluation task deactivation of DMN regions was 

observed. The clusters that differed significantly between good and poor insight 

groups overlapped with the DMN regions showing significant deactivation during 

the task (Figure 16). 
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Discussion 

In this study, the relationship between insight (awareness of illness) in 

schizophrenia and functional connectivity of regions in the default mode network 

(DMN) was investigated in patients with schizophrenia. The DMN connectivity 

pattern of patients clearly overlapped with the network in healthy control 

subjects, though the network was less extended (in accordance with e.g. Hill et al. 

2004; Jang et al. 2011; Kuhn and Gallinat 2011; Ongur et al. 2010; Rotarska-Jagiela 

et al. 2010). Importantly, patients with poor insight showed a lower connectivity 

within the anterior cingulate and precuneus compared to patients with good 

insight. Group differences were found in DMN regions that indeed deactivated 

during task performance, supporting our interpretation. Moreover, although the 

poor insight group showed significantly more positive symptoms, these did not 

explain the group differences Connectivity between anterior and posterior DMN 

was lower in all patients compared to controls, but there was no significant 

difference between patients with good and poor insight. 

The result of reduced connectivity in the precuneus and ACC/vMPFC of the 

DMN in poor insight patients was in accordance with our expectations that poor 

insight would be related to decreased DMN connectivity (Gusnard and Raichle 

2001; Kuhn and Gallinat 2011; Schmitz et al. 2006; Van der Meer et al. 2010), 

although it may only concern part of the network. Studies assessing the overlap 

between self-referential processing and DMN activation demonstrated that the 

ACC/vMPFC was consistently activated (Qin and Northoff 2011; Whitfield-Gabrieli 

et al. 2011), and thus seems to be particularly important for self-referential 

thought. Lesion studies demonstrated that lesions in/around this area can result 

in a diminished self-referential processing (Philippi et al. 2012) and in a 

dysfunction of emotional self-control (Allman et al. 2001). This suggests that 

reduced connectivity in this region may indeed result in abnormal self-referential 

processing. Whereas the ACC/vMPFC may be specifically involved in self-related 

processing, research has shown that precuneus activation is less self-specific and 

also activates during thinking about other persons (Qin and Northoff 2011; Van 

der Meer et al. 2010; Whitfield-Gabrieli et al. 2011). Instead, the precuneus has 

been hypothesized to be involved autobiographical and episodic memory retrieval 
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and mentalizing, which has been confirmed by several studies (Cavanna 2006; 

Cavanna 2007; Gusnard and Raichle 2001; Kuhn and Gallinat 2011; Van der Meer 

et al. 2010). Consistent with this, structural neuroimaging results point towards a 

relationship between impaired insight and reduced grey (Cooke et al. 2008; 

Morgan et al. 2010) and white matter (Antonius et al. 2011) in this region among 

others. Taken together, this suggests that hampered self-processing through a 

lack of integration of self-related information may underlie impaired insight in 

schizophrenia (Van der Meer et al. 2010). 

Schizophrenia patients had a lower, i.e. more negative, correlation between 

time courses of the anterior and posterior DMN. Though the mean connectivity 

was not significantly lower in patients with poor insight compared to good insight, 

the variation appeared to be higher in patients with poor insight. Disturbed 

connectivity between the frontal and posterior DMN could possibly have a 

modulating effect on insight. Patients with schizophrenia have shown decreased 

connectivity between the medial frontal cortex and other brain regions during 

self-reflective processing (Holt et al. 2011; Wang et al. 2011). Reduced 

communication between self-reflection areas may result in less transfer of self-

related information (i.e. autobiographical or interoceptive information) of 

posterior areas to the anterior self-reflective areas. 

One limitation of the study may be that insight was rated based on one 

item of a standardized interview. However, as we discussed above, this G12 item 

correlates highly with other more thorough measures of insight, suggesting that it 

can adequately index insight. Furthermore, it can be argued that subjects were 

not involved in self-reflective processing during resting state conditions. However, 

other studies have shown that self-referential processing is one of the major 

processes taking place during resting state (Buckner et al. 2008; Gusnard and 

Raichle 2001; Spreng and Grady 2009; Wicker 2003). And as this is spontaneous 

self-referential processing, it was exactly the type of processing we were 

interested in. More research is needed to elucidate the contribution of different 

cortical midline structures in more detail. 
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In conclusion, schizophrenia patients with relatively preserved insight 

showed stronger connectivity than patients with poor insight in the anterior 

cingulate cortex and precuneus, both key regions in self-reflective processing. 

These findings tentatively support the hypothesis that poor insight may be related 

to impaired self-related processing.  
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Abstract 

Introduction: Alexithymia is a trait characterized by a diminished capacity to 

describe and distinguish emotions and to fantasize; it is associated with reduced 

introspection and problems in emotion processing. The default mode network 

(DMN) is a network of brain areas that is normally active during rest and involved 

in emotion processing and self-referential mental activity, including introspection. 

We hypothesized that connectivity of the DMN might be altered in alexithymia. 

Methods: Twenty alexithymic and eighteen non-alexithymic healthy volunteers 

underwent a resting state fMRI scan. Independent component analysis was used 

to identify the DMN. Differences in connectivity strength were compared between 

groups. Results: Within the DMN, alexithymic participants showed lower 

connectivity within areas of the DMN (medial frontal and medial temporal areas) 

as compared to non-alexithymic participants. In contrast, connectivity in the high-

alexithymic participants was higher for the sensorimotor cortex, occipital areas, 

and right lateral frontal cortex than in the low-alexithymic participants. 
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Discussion: These results suggest a diminished connectivity within the DMN of 

alexithymic participants, in brain areas that may also be involved in emotional 

awareness and self-referential processing. On the other hand, alexithymia was 

associated with stronger functional connections of the DMN with brain areas 

involved in sensory input and control of emotion. 

Introduction  

Alexithymia has been conceptualized as a personality trait that is associated with 

difficulties in emotion processing (Taylor et al. 1997). More specifically, 

alexithymia is characterized by difficulties in verbalizing one’s emotions, 
diminished affect-related fantasy and imagery, difficulty to distinguish emotions 

from bodily sensations, and a tendency to focus on external events rather than 

internal experiences (Sifneos 1973; Taylor et al. 1991). The prevalence was around 

10% in a Finnish sample (Salminen et al. 2007). Alexithymia has been associated 

with increased risk for psychosomatic complaints, anxiety disorders, and 

depression (Taylor et al. 1997), and the emotion regulation difficulties 

characteristic of alexithymia have been hypothesized to play a mediating role in 

these (Taylor 2000; Waller and Scheidt 2006). Unraveling the neurocognitive 

mechanisms underlying alexithymia may improve our understanding of this trait 

with possible clinical and societal implications. 

In this study, we started from the observation that alexithymia is associated 

with difficulties in emotion processing, e.g. recognizing emotional facial 

expressions and deducing emotions of others from narratives (Meltzer and 

Nielson 2010; Swart et al. 2009), which may reflect a more general reduction of 

emotional awareness (Lane et al. 1997).The ability to recognize and experience 

emotions allows an individual to form a representation of his own emotions 

(Damasio 2003; Northoff et al. 2006). Such self-referential emotional processing 

and imagery have been suggested to take place in a network of brain areas called 

the ‘Cortical Midline Structures’ (CMS) (Northoff et al. 2006), which is a key part of 

the default mode network (DMN) (Gusnard and Raichle 2001). Indeed, parts of 

the DMN have been associated with emotion processing in general (Kober et al. 

2008). The main regions within the DMN are the precuneus, posterior cingulate 
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cortex (PCC), anterior cingulate cortex (ACC), inferior parietal lobule (IPL), and 

medial prefrontal cortex (MPFC) (Gusnard and Raichle 2001). In a broader 

definition of the network, middle temporal gyrus (MTG), middle, superior, and 

inferior frontal gyrus (MiFG, SFG, and IFG), hippocampal formation, and cerebellar 

regions are also included (Buckner et al. 2008; He et al. 2004). The default mode 

network is also highly active during rest when self-referential processing 

apparently takes place (Gusnard and Raichle 2001) and shows synchronized slow 

fluctuations across its brain areas (Fransson 2006; Gusnard and Raichle 2001). 

Schilbach et al. proposed in their review that brain activation of DMN regions 

during the resting state is related to self-consciousness and self-processing and 

may thus be relevant for introspection (Schilbach et al. 2008). Indeed, 

D’Argembeau et al. showed that activation in the anterior part of the DMN is 
correlated to self-referential thoughts (D'Argembeau et al. 2005). 

Several studies have shown a relation between emotional awareness, which 

may be impaired in alexithymia, and DMN brain areas (Gusnard and Raichle 2001; 

Northoff et al. 2006). Lower activation of the anterior cingulate cortex (ACC) and 

its connectivity to other brain areas have been related to lower emotional 

awareness and alexithymia (Lane et al. 1997; Lane et al. 1998). In alexithymic 

participants, the ACC and functionally related areas were less activated whereas 

the somatosensory cortex was more activated by emotionally valenced videos, 

emotional pictures, or imagery (Berthoz et al. 2002; Kano et al. 2003; Karlsson et 

al. 2008; Mantani et al. 2005; Moriguchi et al. 2006). Likewise, a structural MRI 

study found lower ACC and precuneus volumes in alexithymic participants (Borsci 

et al. 2008). Therefore, we hypothesized that alexithymic participants would show 

lower brain connectivity in areas implicated in emotional processing such as the 

ACC and higher somatosensory connectivity during rest, which may be related to 

less emotional awareness and a more action-oriented emotional coping style. 

Because the DMN is highly active during rest and related to self-awareness, 

resting state analysis might, provide relevant information about the neural 

background of alexithymia. Resting state functional connectivity is considered as a 

more natural measure of brain function than task-based fMRI (Raichle and 
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Gusnard 2005), because it reflects intrinsic brain interactions (Van de Ven et al. 

2004). These interactions may provide knowledge about overall brain function 

(Fox and Lancaster 1994) and predict task performance or behavior (Fox and 

Raichle 2007), without being biased by differences in task performance during the 

scanning (Calhoun et al. 2001; Van de Ven et al. 2004). If people with alexithymia 

in general devote less time to thinking about their feelings, this may have 

consequences for connectivity of relevant resting state areas, resulting in lower 

DMN connectivity. 

Finally, alexithymia has been conceptualized as a disorder of emotion 

regulation, which warrants special interest for prefrontal areas known to be 

involved in emotion regulation (Ochsner et al. 2002; Taylor et al. 1997). 

Participants with alexithymia tend more to suppression of emotions than to use 

emotion reappraisal strategies (Swart et al. 2009). In reappraisal, participants use 

cognitive-linguistic strategies to downregulate emotional responses to arousing 

stimuli (Goldin et al. 2008; Reker et al. 2009; Silani et al. 2009). Effective control of 

emotions by reappraisal strategies has been related to activation of the medial 

and lateral prefrontal areas (Kim and Hamann 2007; Ochsner et al. 2002; Phan et 

al. 2005; Wager et al. 2008), which prevent excessive experience of negative 

emotions (Abler et al. 2010; Urry et al. 2009). Emotion regulation strategies such 

as suppression may involve right sided lateral frontal areas, but for a longer time 

period because suppression works on later stages of emotion processing than 

reappraisal (Abler et al. 2010; Goldin et al. 2008; Ochsner et al. 2002). We 

hypothesize that participants with alexithymia may show higher connectivity in 

the right lateral frontal and lower connectivity in the ventromedial prefrontal 

cortex, related to hampered emotion regulation. 

In this study, the resting state DMN connectivity of high- vs. low-alexithymic 

participants was investigated. Because no such study has been conducted before, 

this study has an exploratory nature. We hypothesized that alexithymic 

participants would show diminished connectivity in areas implicated in awareness 

(DMN areas) and verbalizing of emotions (left frontal areas). In addition, we 

explored whether there might be higher connectivity in alexithymic participants of 
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areas implicated in emotion control (lateral prefrontal areas) and action-oriented 

processing (sensory and motor areas). 

Methods 

Participants 

The study was approved by the local medical ethical committee and carried out in 

accordance with the latest version of the Declaration of Helsinki. 493 right-handed 

students of different disciplines from the local university filled out the Verbalizing 

subscale of the Bermond-Vorst Alexithymia Questionnaire (BVAQ). This sub-scale 

was chosen because reduced ability to verbalize emotions has been considered a 

central deficit of alexithymia (Aleman 2005). Further details of the questionnaire 

are given in the next section. Subjects scoring at the upper and lower extremes 

(25%) of the Verbalizing subscale of the BVAQ, i.e. showing high or low levels of 

alexithymia based on this measure, participated in the study. 

All participants were normally functioning and showed no signs of 

psychiatric illness. Persons with a history of psychiatric or neurologic disorder for 

which they had received treatment were excluded from the study. Further 

exclusion criteria consisted of MRI incompatible implants, age above 50 years, 

pregnancy, claustrophobia, left-handedness and being a non-native Dutch 

speaker. 

Twenty participants with a high and eighteen participants with a low 

Verbalizing score that fulfilled the inclusion criteria participated. All participants 

gave oral and written informed consent prior to testing after the procedure had 

been fully explained. An overview of the participant characteristics is given in 

Table 16. Groups did not differ in age (t-test; T = -0.28; p = 0.78). Because female 

participants may have stronger verbalizing skills, dissimilarity in general language 

skills due to different male/female ratios between groups might confound 

interpretation of findings and therefore our groups were matched on gender 

distribution (Chi-square test; χ2
 = 1.03; p = 0.16). 

On the day of the MRI-session participants filled out the complete BVAQ 

and the Positive And Negative Affect Schedule (PANAS) - (Watson et al. 1988). 
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Table 16 Mean and standard deviation of the demographic data of both subject groups, and the p-

values of the t-test. The mean score on the BVAQ components and the two PANAS subscales are 

also shown; Subjects did differ significantly on the cognitive component of the BVAQ, but not on 

other subscales or demographic characteristics 

 

Low alexithymia 

mean (SD) 

High alexithymia 

mean (SD) 

 

p-value 

Age (y) 22.3 (8.1) 21.6 (6.7) 0.77 

Males/females 11/9 6/12 0.16 

Cognitive component 42.9 (8.1) 63.2 (9.7) < 0.0005 

Emotional component 36.1 (8.1) 40.0 (9.7) 0.19 

PANAS Positive affect 33.8 (5.5) 30.5 (6.3) 0.059 

PANAS Negative affect 15.1 (3.5) 14.7 (4.1) 0.77 

 

Questionnaires 

For assessment of alexithymia, we used the Bermond-Vorst Alexithymia 

Questionnaire (BVAQ). Several studies have supported the criterion validity of the 

BVAQ in clinical samples, e.g. for eating disorders (Deborde et al. 2008), 

alcoholism (Sauvage and Loas 2006), autism spectrum disorders (Berthoz and Hill 

2005), schizophrenia (Van 't Wout et al. 2007), and high risk for schizophrenia 

(Van Rijn et al. 2011). However, because the BVAQ includes self-assessment, 

which may be compromised in certain clinical samples, its validity may be 

attenuated in clinical groups characterized by reduced insight in their 

psychological functioning. This is not a problem in the present study, because we 

investigated nonclinical participants. 

The BVAQ is a validated 40-item self-report scale that consists of five 

subscales: Verbalizing, Fantasizing, Identifying (Cognitive component), 

Emotionalizing, and Analyzing (Emotional component) (Bermond and Vorst 1993). 

Higher scores indicate a stronger degree of alexithymic characteristics. The scale 

measures alexithymic features as defined by Nemiah and Sifneos (Nemiah and 

Sifneos 1970; Sifneos 1973). Previous studies have shown that the BVAQ has good 
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psychometric properties (Berthoz et al. 2000; Berthoz et al. 2007; Zech et al. 

1999). 

The PANAS measures current affective positive and negative state (Watson 

et al. 1988). Positive affect refers to the extent to which a person feels 

enthusiastic, active, and alert, Negative affect addresses distress. The scale 

consists of ten Positive and ten Negative items, which can be scored on a 5-point 

scale (1 = certainly does not apply to me, up to 5 = certainly applies to me). The 

PANAS has shown good reliability and validity to measure positive (Cronbach’s α = 

0.89) and negative (α = 0.85) current mood states (Watson et al. 1988). 

Groups were tested on differences in the Cognitive and Emotional 

component of the BVAQ and the Positive and Negative subscale of the PANAS 

with a two sample t-test (α < 0.05). 

Behavioral data 

Participants also performed a language processing task in the same fMRI session. 

We report the performance on this task to provide an indication of language 

processing differences between groups. The task (Aleman et al. 2005) required 

participants to evaluate bisyllabic Dutch words for metrical stress followed by 

indicating the syllable that carried the metrical stress. In a second condition, 

participants rated the valence of a word (positive or negative). 

Data acquisition 

A resting state scan of 460 seconds was acquired at the end of an MRI-session 

that additionally consisted of three tasks and an anatomical scan. During the 

resting state scan, participants were asked to close their eyes, relax, and try to not 

fall asleep. There were no constraints on the content of their thoughts. 

A 3 T Philips Intera MRI scanner (Best, The Netherlands) equipped with an 

eight-channel SENSE head coil was used to acquire 200 whole brain echo-planar 

functional images (EPIs) with a TR of 2.3 s and TE 28 ms. The volumes contained 

39 (N = 3 participants), 41 (N = 29) or 43 slices (N = 4); 3.8x3.8x3 mm), interleaved, 

with a 0 mm slice gap and a 85
o
 flip-angle (FOV = 220x117x220 mm). The reason 

for a different number of slices is unspecified, but this is not expected to influence 
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study outcome. A high-resolution, transverse T1 anatomical was also acquired for 

overlay of statistic images (160 slices; voxel size 1x1x1 mm; FOV 256x220 x256 

mm). 

Preprocessing 

The raw images were converted to ANALYZE format and analyzed using Statistical 

Parametric Mapping (SPM5; Wellcome Department of Imaging Neuroscience, 

London, UK) running on Matlab 7.1. Images were first corrected for slice-time 

differences and realigned to the first functional image. The mean image created 

during realignment was co-registered to the anatomy, together with the 

functional images, and the anatomy and functional images were normalized to 

the T1 template of SPM (voxel size 3x3x3 mm). Finally, images were smoothed 

with a 10 mm FWHM isotropic Gaussian kernel. 

ICA procedure 

Independent Component Analysis (ICA) is a data-driven method that can separate 

the fMRI signal into spatially independent networks (independent component; IC) 

that show shared temporal fluctuations (Calhoun et al. 2001; Jafri et al. 2008). An 

independent component consists of a time series and a spatial map per 

participant, which shows the contribution of every voxel in the brain to that time 

series, i.e. to that network (component). Those networks show a close 

correspondence to networks identified by activation studies (Smith et al. 2009). 

The size and strength of the identified networks may differ between individuals 

and groups sharing a specific trait (Calhoun et al. 2001; Van de Ven et al. 2005), 

i.e. a smaller network could represent altered connectivity of (the brain areas 

within) the network. 

Images of all participants were decomposed into a set of independent 

components by the Group ICA FMRI Toolbox (GIFT) using the Infomax algorithm 

(Calhoun et al. 2001). We estimated the number of components by using the 

Maximum Likelihood and Akaike’s criteria (Li et al. 2006), to prevent splitting or 

merging of components (Smith et al. 2009). The Infomax algorithm is a commonly 

used method to unmix the signal (Calhoun et al. 2001). To perform group ICA, 

dimensionality of the data was first reduced using Principle Component Analysis 
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(PCA), and afterwards the reduced subject data were concatenated over the time 

domain. Afterwards, individual image maps were reconstructed from the 

aggregated data based on matrices stored during PCA. Resulting image maps and 

time courses were converted into Z-scores to normalize the signal. Though the 

overall architecture of the networks generated by spatial ICA is similar due to the 

separation based on spatial location, subtle differences between individuals may 

be present. These can be investigated in a voxel-wise group comparison (Calhoun 

et al. 2001).  

 

 

Figure 18 Mask of the DMN used for component selection 

Independent components were first sorted based on the white matter and 

gray matter masks of SPM for exclusion of components with artifacts. Artifacts 

will generally represented be by separate components, which give the additional 

advantage of noise reduction in the data (Calhoun et al. 2001; Van de Ven et al. 

2004). Selection of the component(s) of the DMN was based on spatial overlap 

with an anatomical mask of the DMN created with the WFU pickatlas 

(http://www.nitrc.org/projects/wfu_pickatlas/) - (Maldjian et al. 2003). The mask 

consisted of the PCC, precuneus, IPL, ACC, MPFC, and MTG. See Figure 18 for the 

outline of the mask. Components with a substantial overlap were visually 
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inspected for DMN brain areas also described in the introduction. Stability of the 

components of interest, i.e. whether components had the tendency to split or 

merge with another component, was confirmed by running the ICASSO toolbox 

(Himberg et al. 2004), which ran twenty iterations of the ICA. If the same 

component was identified during all iterations, this indicates the stable presence 

of that component in the data. 

Group differences on questionnaires 

Statistical analyses on questionnaires were performed using Statistical Package for 

Social Sciences (SPSS 16) and all tests were two-tailed. The Cognitive component: 

the sum of the Verbalizing, Identifying, and Analyzing subscale, and Emotional 

component: the sum of the Emotionalizing and Fantasizing subscales, of the BVAQ 

were calculated. A two-sample t-test was applied to test for significant differences 

between groups. 

The Positive and Negative affect subscales of the PANAS were also 

calculated and compared between groups. 

Group differences on behavioral data 

Reaction time and accuracy on the language task were compared between 

groups. A two-way ANOVA was conducted separately on reaction times and 

accuracy, and separately for both task conditions. The analyses had reaction time 

or accuracy on the metrical stress or valence condition as independent variable, 

and group and gender as independent variables (α < 0.05). 

Statistical analysis of functional imaging data 

The individual image maps of the identified components (networks) were entered 

into a separate second level analysis of SPM5, with a two sample t-test. First, a 

contrast was made of the main effect of interest, independent of group (FWE, p < 

0.05, k > 15). Second, contrasts between both groups were made with a threshold 

of p < 0.001 uncorrected and a cluster-size threshold of 15 voxels. A mask of the 

contrast of the main effect of interest was used to restrict the analysis to DMN 

areas and to prevent false positive findings outside this area (inclusive mask, p < 

0.05), as previously described (Garrity et al. 2007). 
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In an additional analysis, Positive and Negative affect (PANAS), and gender 

were entered as a covariate into the group analysis. The affect states were 

investigated to check for an effect of mood state on the group differences. 

Gender was controlled for because this might also have an effect on default mode 

connectivity (Bluhm et al. 2008). 

Results 

Questionnaire results 

The scores on the two components of the BVAQ subscales and the Positive and 

Negative affect subscales of the PANAS are shown in Table 16. A two-sample t-

test showed that groups differed significantly on the Cognitive component (t(36) = 

4.7, p < 0.0005), but not on the Emotional component (t(36) = 1.3, p = 0.19). 

Further, there was a strong association between the Cognitive component and the 

Verbalizing scale used for selection (r = 0.76, p < 0.0005). Groups did not differ 

significantly on Positive (t(36) = 1.9, p = 0.059) nor on Negative affect (t(36) = 0.3, 

p = 0.78) as measured with the PANAS, although high alexithymic participants had 

a higher Negative and lower Positive affect than the low alexithymic participants. 

 

Table 17 Mean and standard deviation of the reaction times and accuracy on the metrical stress 

task; Results are shown separately for males and females in both groups 

 High alexithymia 

mean (SD) 

Low alexithymia 

mean (SD) 

 Males Females Males Females 

Reaction time (s) 

metrical stress  

1.53 (0.46) 1.45 (0.36) 1.44 (0.27) 1.46 (0.51) 

Accuracy (%) 

metrical stress 

78.1 (19) 76.4 (24) 75.3 (22) 80.8 (19) 

Reaction time (s) 

valence evaluation  

1.07 (0.43) 1.11 (0.47) 1.20 (0.16) 1.18 (0.42) 

Accuracy (%) 

valence evaluation 

78.1 (32.6) 68.4 (37.6) 87.4 (19.4) 80.0 (34.5) 
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Behavioral results 

Reaction times and accuracy of the language task are presented in Table 17, 

separated for males and females. For the metrical stress condition, there was no 

significant effect of group (F(1,34) = 0.11, p = 0.75) or gender (F(1,34) = 0.053, p = 

0.82) on reaction times, and also no interaction (F(1, 34) = 0.18, p = 0.68). There 

was also no significant effect on accuracy of group (F(1,34) = 0.013, p = 0.91), 

gender (F(1,34) = 0.076, p = 0.79) or interaction (F(1,34) = 0.28, p = 0.60). 

For the valence evaluation condition, there was no significant effect or 

interaction of neither group nor gender on either reaction times or accuracy. The 

main effect of group on reaction times was F(1,34) = 0.56, p = 0.46, the effect of 

gender was F(1,34) = 0.003, p = 0.95, and their interaction was F(1,34) = 0.057, p = 

0.81. The effect of group on accuracy was F(1, 34) = 0.10, p = 0.96, of gender 

F(1,34) = 0.63, p = 0.43, and their interaction F(1,34) = 0.012, p = 0.93. 

Imaging results 

After running the ICA, the DMN was unexpectedly represented in three separate 

components. The DMN was split in (1) an anterior part with ACC, medial frontal 

gyri, and lateral frontal areas, (2) a mainly middle/lateral part containing MTG, 

cingulate, insula, and hippocampal formation, and (3) a posterior part containing 

mainly PCC, precuneus, and IPL. We will refer to these subnetworks as (1) 

“anterior” component (2) “middle” component and (3) “posterior” component. 
See Figure 19. The anterior component had a spatial overlap of 21% with the DMN 

template while it contained mostly frontal areas but also some PCC, the middle 

component of 25%, and the posterior component 27%. One additional component 

showed an overlap of 23% but this component contained blood vessel artifacts. 

These components of interest were entered in the group comparison. 

The contrast of alexithymic vs. non-alexithymic participants showed lower 

connectivity within the DMN for the following areas in alexithymic individuals; 

anterior component: cingulate gyrus, superior frontal gyri, and right medial 

temporal gyrus (MTG); middle component: right MiFG; posterior component: left 

medial frontal gyrus (MeFG) and right SFG (Table 18 ; Figure 20). 
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Figure 19 The three networks identified, the whole network is shown irrespective of group; All 

main areas of the default mode network are visible, including the anterior cingulate, posterior 

cingulate, medial middle/medial temporal gyrus, prefrontal cortex, precuneus and inferior 

parietal lobule; The anterior component is indicated in red, the middle DMN component in blue 

and the posterior component in green 

 

Figure 20 Left: Brain regions that show decreased connectivity in subjects with high alexithymia 

compared to low alexithymic subjects; Different components are indicated in different colors, 

green: anterior part, red: middle part; blue: posterior part; Right: Brain regions that show 

increased connectivity in subjects with alexithymia compared to control subjects; Different 

components are in different colors, green: anterior part; red: middle part; blue: posterior part 
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Table 18 Overview of clusters showing connectivity differences between groups (p < 0.001, k > 15, 

inclusive mask at p < 0.05); The first part of the table shows areas that are more connected in 

alexithymia, and the second half areas of decreased connectivity; Anterior, middle, and posterior 

refer to the different components of the DMN (L = left, R = right) 

 Voxels T Z x y z  Area 

High 

alexithymia 

vs. low 

alexithymia  

        

Anterior 36 5.23 4.48 -33 -84 24  L superior 

occipital gyrus 

 87 5.22 4.47 39 -81 27  R superior 

occipital gyrus 

 22 4.08 3.67 -27 -75 -27  L declive 

Middle 44 5.66 4.75 -36 -15 36  L precentral gyrus 

 37 4.83 4.21 -6 -9 60  L precentral gyrus 

 27 4.55 4.02 33 0 30  R IFG 

Posterior 30 3.93 3.56 -6 -9 60  L precentral gyrus 

 20 3.83 3.48 57 0 45  R MiFG 

Low 

alexithymia 

vs. high 

alexithymia 

        

Anterior 47 4.93 4.28 0 24 39  cingulate gyrus 

 23 4.59 4.05 27 36 24  R SFG 

 16 4.33 3.86 -30 63 3  L SFG 

 33 4.21 3.77 39 -3 -36  R MTG 

Middle 42 4.61 4.06 30 27 27  R MiFG 

Posterior 16 4.34 3.87 -9 66 18  L MeFG 

 15 4.04 3.65 15 66 -6  R SFG 
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In contrast, higher connectivity with the DMN was observed for the 

following areas in alexithymic individuals; anterior component: occipital gyri and 

declive; middle component: precentral gyrus and right inferior frontal gyrus (IFG); 

posterior component: precentral gyrus and right middle frontal gyrus (MiFG) (p < 

0.001, k > 15; Table 18, Figure 20). 

Adding gender, Positive or Negative affect as a covariate did not influence 

the outcome of the study. Thus group differences could not be explained by these 

variables. 

Discussion 

The aim of this study was to investigate differences between alexithymic and non-

alexithymic participants in default mode connectivity. Participants with high levels 

of alexithymia showed lower connectivity of DMN areas, including the cingulate 

gyrus, medial frontal gyrus, and medial temporal gyrus. In contrast, they showed 

higher connectivity to sensory areas and right lateral frontal areas. These group 

differences were not caused by differences in affect or gender distribution. 

Moreover, participants showed no difference in performance on a language task 

involving semantic emotional evaluation and stress placement, indicating that 

differences in such skills were not confounding interpretation of group 

differences. Networks identified with a resting state analysis have been shown to 

converge with networks resulting from task-induced activation (Fox and Raichle 

2007; Fox and Lancaster 1994; Smith et al. 2009). However, analysis of resting 

state networks is not biased by differences in task performance between groups 

(Van de Ven et al. 2004). 

The high and low alexithymic group showed no effect of Positive or 

Negative affect on imaging results. The TAS-20, measuring a trait, often shows a 

relation with Negative affect, which is a state characteristic (Lane et al. 1997). 

Because the TAS-20 may also tap aspects of affective state, the use of the BVAQ 

and the absence of an effect of the PANAS on our results may indicate that this 

study specifically measured trait alexithymia. 
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The two groups were initially selected based on the verbalizing subscale of 

the BVAQ. However, the high and low alexithymic group differed strongly on the 

Cognitive component at the day of scanning. Thus, selection based on the 

Verbalizing scale of the BVAQ was considered adequate for creating two rather 

extreme groups. Interestingly, the Cognitive component has shown a high 

correlation with the TAS-20 (Berthoz et al. 2000; Berthoz et al. 2007; Zech et al. 

1999), thus this selection may be comparable to selection with the TAS-20. 

The DMN was split into three subnetworks, while a test for component 

stability (ICASSO) showed a good stability of selected components. We did not 

expect the DMN to split into separate components. However, different 

components containing part of the DMN have been described by other studies as 

well (e.g. Damoiseaux et al. 2006; Garrity et al. 2007; Jafri et al. 2008). Indeed, our 

identified networks may fit the DMN model of Laird et al. (Laird et al. 2009) and 

three sub-domains described by Kim et al. (Kim 2010). The part containing MTG 

quite closely resembles the “action subnetwork” defined by Laird et al. and is 
involved in salience according to Kim et al. The anterior component (Laird: 

“emotion subnetwork”) could be the core domain of the DMN involved in 
cognitive emotional processing, and the posterior component (Laird: “perception 
subnetwork”) could be involved in monitoring of external cues and top-down 

memory (Kim 2010; Laird et al. 2009). 

A key finding in the group comparison was that the alexithymic participants 

showed lower connectivity in anterior parts of the DMN, including cingulate gyrus, 

medial frontal regions, and MTG (Buckner et al. 2008; Gusnard and Raichle 2001). 

This finding is in accordance with our hypothesis of decreased emotional 

awareness in (Lane et al. 1997; Lane et al. 1998), and is consistent with earlier 

approaches (Lane et al. 1998). 

The DMN is believed to reflect the baseline “idling” state of the brain that 
diminishes during specific goal-directed behaviors (Raichle et al. 2001). It has 

functions related to attending internal versus external state and consciousness 

(Raichle et al. 2001; Spreng and Grady 2009). Slow-wave fluctuations of the brain 

have shown to be related to short gaps of inattentiveness during task 

performance, which could be interpreted as a transient more internally oriented 
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focus (Singh and Fawcett 2008). Resting state fluctuations of the DMN may thus 

be related to the degree to which persons engage in introspective thinking (Singh 

and Fawcett 2008), which may be less pronounced in alexithymia. In a similar 

vein, research on subjects with meditation experience showed increased 

connectivity within attentional networks, as well as between attentional regions 

and medial frontal regions (Hasenkamp and Barsalou 2012). The authors 

suggested that these neural relationships may be involved in the development of 

cognitive skills, such as maintaining attention and disengaging from distraction, 

that are often reported with meditation practice. Thus, prolonged mental training 

or habits may have lasting influences on resting state networks. 

Interestingly, lower DMN connectivity has also been shown in ASD (Assaf et 

al. 2010), implying that it may reflect a trait-characteristic associated with socio-

emotional difficulties. Furthermore, lower connectivity of the MTG may relate to 

impaired ability to link external events to self-referential mental activity (Laird et 

al. 2009). Like the anterior cingulate, prefrontal regions, and temporal areas have 

also been implicated in language aspects of emotions (Anderson et al. 2010; 

Hesling et al. 2010), disturbances in these areas may also reflect more specific 

difficulties to put feelings into words (Aleman 2005). 

In addition, the alexithymic group showed stronger connectivity to areas 

implicated in sensory input, namely the precentral gyrus and occipital areas. One 

could speculate that higher connectivity with sensory areas is consistent with the 

action-oriented tendencies of alexithymic people and a tendency towards strong 

bodily expressions of emotions (Sifneos 1973; Taylor et al. 1991; Taylor et al. 

1997). Supporting our findings, alexithymic participants showed higher activation 

in sensory and motor areas (Karlsson et al. 2008), and altered activation of visual 

areas (Karlsson et al. 2008; Mantani et al. 2005) during viewing of emotional 

pictures. Participants with lower emotional complexity showed higher activation 

in action-oriented brain areas, such as the precentral gyrus, during animated 

‘social’ interactions (Tavares et al. 2011).  

The alexithymia group also showed higher connectivity in right-sided 

prefrontal regions. These areas have been implicated in emotional control 
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including suppression (Goldin et al. 2008; Reker et al. 2009; Silani et al. 2009). 

Ochsner hypothesized that cognitive reappraisal may involve verbalizing 

strategies resulting in more left sided activation whereas other emotion 

regulation strategies such as suppression - more often used by alexithymic 

persons (Swart et al. 2009) - may lead to right sided frontal involvement (Ochsner 

et al. 2002). Of note, it has been shown that reduction of emotional arousal by 

affect labeling is mediated by the right vLPFC (Lieberman et al. 2005; Lieberman et 

al. 2007), which does not fit our hypothesis. However, this topic should need 

further investigation in relation to alexithymia.  

On a final note, some brain areas that showed altered connectivity in our 

study were not core parts of the DMN. Supporting our results, He et al. reported 

that these areas, such as precentral gyrus and lateral frontal areas, show a 

synchronized activation with the DMN (He et al. 2004). 

In conclusion, the alexithymic group demonstrated a higher connectivity 

with right-sided prefrontal regions and sensory areas. These areas have been 

associated with emotion suppression and a more action-oriented focus. However, 

the high alexithymic group showed less connectivity with frontal areas of the 

DMN. We suggest that such distinct patterns of connectivity may be related to the 

diminished emotional awareness of alexithymic people. 
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Abstract 

Introduction: Negative symptoms of schizophrenia are normally grouped into a 

single category. However, the diversity of such symptoms suggests that they are 

actually made up of more than one dimension. The DSM-V proposes two negative 

symptom domains, namely expressive deficits and avolition/asociality. We 

investigated whether the negative symptoms do indeed have two dimensions. 

Methods: An exploratory factor analysis was carried out based on interviews with 

the PANSS (664 patients). We restricted our analysis to items that had been 

described as negative symptoms in previous factor analyses. The symptom 

structure was then tested for stability by performing a confirmatory factor 

analysis on PANSS interviews from a separate cohort (2,172 patients). Results: 

Exploratory factor analysis yielded a two-factor structure of negative symptoms. 

The first factor consisted of PANSS items Flat affect, Poor rapport, Lack of 

spontaneity, Mannerisms and posturing, Motor retardation, and Avolition. The 

second factor consisted of Emotional withdrawal, Passive/apathetic social 

withdrawal, and Active social avoidance. Discussion: The first factor could be 

related to expressive deficits, reflecting a loss of initiative, and the second factor 

to social amotivation, related to community interaction. This factor structure 

supports the DSM-V classification, and may be relevant for pathophysiology and 

treatment of schizophrenia and other psychotic disorders. 

Introduction 

The symptoms of schizophrenia and other psychotic disorders are often 

categorized into three main domains: positive symptoms, negative symptoms, and 

cognitive impairments (American Psychiatric Association 2000; Mueser and 

McGurk 2004). Negative symptoms have been defined as an absence of normal 

behaviors, including flattened emotional response, poverty of speech, lack of 

initiative, lack of pleasure, and social withdrawal (Andreasen and Flaum 1991). 

They are difficult to treat and are an important predictor for poor social outcome 

in schizophrenia (Pinkham et al. 2003). 

The current DSM-IV considers negative symptoms as one dimension. 

However, instruments like the Scale for Assessment of Negative Symptoms (SANS) 



 

 

 

 

 
 Construct of negative symptoms 

 127 

or the Positive and Negative Syndrome Scale (PANSS) show considerable 

heterogeneity in items measuring negative symptoms (Andreasen 1983; Kay et al. 

1987). This wide range of symptoms, hitherto classified as one group, may in fact 

reflect different subgroups, with each a different neural, social, or psychological 

etiology (Keefe et al. 1992). The new DSM-V proposes a two-subdomain model of 

negative symptoms, with one domain related to expressive deficits including 

affective, linguistic and paralinguistic expressions, and the second domain related 

to avolition for social activities (Kirkpatrick and Fischer 2006; Messinger et al. 

2011). Such a classification with two subgroups could have important implications 

for research, diagnostics, and treatment (Blanchard and Cohen 2006; Messinger 

et al. 2011). 

Negative symptoms have always been the ‘pièce de résistance’ in 
treatment. Recently some evidence is emerging that treatment with modafinil 

may have beneficial effects on negative symptoms (Arbabi et al. 2011), mainly 

restricted to the anhedonia-asociality item of the SANS (Bobo et al. 2011). 

Cognitive behavioral therapy is reported to be effective in improving motivation, 

apathy, and social participation (Grant et al. 2011). Thus, these treatments may 

address different biological and psychological issues of the group of negative 

symptoms. Instruments that reliably distinguish these two distinct subgroups of 

symptoms could be supportive for the research into treatment strategies aimed at 

negative symptoms. 

One way to investigate whether negative symptoms comprise more than 

one symptom domain is to assess the correlational structure of the measures by 

factor analysis (Blanchard and Cohen 2006; Stevens 1996; Tabachnik and Fidell 

2007). Factor analyses have already established that negative symptoms comprise 

a separate domain within the full symptom range seen in schizophrenia and 

related psychotic disorders (Blanchard and Cohen 2006; Van der Gaag et al. 

2006a; Van der Gaag et al. 2006b). However, the concept of negative symptoms is 

still heterogeneous, and previous studies with factor analysis have shown that 

there may be two (or three) subdomains (Blanchard and Cohen 2006; Kirkpatrick 

and Fischer 2006; Kirkpatrick et al. 2006; Peralta and Cuesta 1995). 
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So far, most studies on the structure of negative symptoms have used the 

Scale for Assessment of Negative Symptoms (SANS) - (Andreasen 1983). Since 

inferences based on one symptom scale are limited (Blanchard and Cohen 2006), 

replication with the Positive and Negative Syndrome Scale (PANSS) – a widely 

used instrument (Foussias and Remington 2010) – could increase the construct 

validity. The PANSS and the SANS have a considerable overlap in how they 

measure symptoms, but the specific set of symptoms they measure differs (Lyne 

et al. 2012; Rabany et al. 2011), which makes the PANSS an interesting addition to 

factor analysis findings on the SANS. In addition, most previous factor analyses 

were performed on relatively small samples (n < 200) and only on patients with 

substantial evident negative symptoms. 

Although negative symptoms often constitute one factor in factor analysis 

of the whole PANSS (Van der Gaag et al. 2006a; Van der Gaag et al. 2006b), this 

negative symptom factor appears to be unstable or sometimes even split 

(Blanchard and Cohen 2006; Lindström and Von Knorring 1993; Van den Oord et 

al. 2006). In factor analysis the number of factors is often predefined or based on 

variance measures. When the number of factors is set to low, this could force all 

negative symptoms in one factor, while they should actually constitute multiple 

factors {{244 Blanchard,J.J. 2006}}. 

The aim of this study is to examine the negative symptom structure and its 

resemblance to the model proposed by the DSM-V in large, unselected groups of 

patients with a psychotic disorder. We focus on PANSS items already related to 

negative symptoms. Exploratory factor analysis (EFA) will be applied to reveal the 

underlying structure of the symptoms, and confirmatory factor analysis (CFA) will 

be performed in a separate, large sample to determine the robustness of the 

factor structure (Blanchard and Cohen 2006). 

Methods 

Study Samples 

All data used in this study were handled anonymously, and all subjects gave oral 

and written informed consent. Research was approved by the local ethical 

committee. Most patients in the study samples were outpatient, recently 



 

 

 

 

 
 Construct of negative symptoms 

 129 

diagnosed with a psychotic disorder (American Psychiatric Association 2000). A 

diagnosis of schizophrenia could not always been given at this point, because of 

the often short duration of illness. 

For the EFA, a cohort of 664 cases from the province of Groningen (Early 

Psychosis Outcome Groningen, EPOG), the Netherlands, was used. These patients 

followed a clinical assessment for diagnostic purposes at the department of 

psychotic disorder in the University Center Psychiatry in Groningen. 

For the CFA, we used an independent sample of 2,172 cases, comprising 

three subsamples. The first group comprised a nationwide, longitudinal study: 

Genetic Risk and Outcome of Psychosis (GROUP) of persons aged 18 – 50 years, 

Dutch speaking, and on stable antipsychotic treatment (> 1 month). They all had a 

diagnosis of non-affective psychotic disorder (schizophrenia, schizophreniform 

disorder, schizoaffective disorder, delusional disorder, psychotic disorder NOS; 

DSM-IV). The second group consisted of subjects with a first episode of psychosis 

and treated at the Academic Medical Centre, Amsterdam. The third group was a 

cohort from the University Medical Center Utrecht, the Netherlands, who 

undertook a PANSS interview for clinical or research purposes. 

The demographic variables are presented per cohort to provide a general 

overview of the samples (Table 19). Given that the data was collected for 

diagnostic purposes in the first place, not all demographic information was fully 

available. Age and PANSS scores (not normally distributed) were tested with a 

Mann-Whitney U test between the EFA and CFA cohorts Gender and primary 

diagnosis were tested with a Chi-squared test for independence. 

Study Design 

The PANSS is a diagnostic interview with three parts: Positive symptoms (7 

items), Negative symptoms (7 items) and General pathology (16 items) (Kay et al. 

1987). The interviews were administered by experienced raters who had, at 

minimum, participated in an annual consensus training (inter-rater reliability > 

0.8). 
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Table 19 Overview of the cohorts’ demographic data; The EPOG cohort was used for the 

exploratory factor analysis, the GROUP cohort and the Utrecht (UTR) and Amsterdam (AMS) 

cohorts were combined for the confirmatory factor analysis; ‘-’ indicates data was not available, 
some percentages do not reach 100% because only part of the data was available for these 

categories; ‘X’ indicates that a category was not present for that particular dataset 

    EPOG   GROUP AMS UTR 

    N = 664   N = 1288 N = 375 N = 658 

Age   mean (SD) 27.7 (8.9)   27.7 (8.1) 21.7 (5.5) 32.0 (9.8) 

Gender  (% male) 73   76 78 60 

Highest education level primary school 18   12 2 1 

  special education x   12 2 7 

  secondary school (low levels) 28   19 31 7 

  high school 20   24 20 10 

  vocational education 18   17 21 19 

  vocational education (high) 8   9 8 17 

  university 5   4 11 1 

  none 1   1 x 2 

Maritial status (%) not married 90   82 - 42 

  married 5   9 - 14 

  divorced 4   3 - 1 

Household (%) independent alone 38   31 - x 

  with parent(s) 34   36 - 39 

  with partner/family 12   9 - 79 

  mental health institute 3   9 - 40 

  other 12  6 - x 

Primary diagnosis (%) schizophrenia 42   65 52 24 

  schizoaffective 5   11 10 2 

  schizophreniform 8   6 10 2 

  psychotic disorder 20   14 16 4 

  substance abuse 6   1 4 1 

  depression/bipolar 9   2 5 9 

  other 7   2 3 34 

Employment (%) employed 45   53 58 31 

  unemployed 30   24 28 7 

  student 16   37 x 16 

  other 7   x x 1 

Antipsychotic (%) none / not applicable 19   11 - x 

  risperidone 29   18 - 4 

  olanzapine 28   22 - 10 

  quetiapine 4   5 - 3 

  clozapine 1   8 - 5 

  aripiprazol 2   6 - 2 

  strong DA-antagonist 16   10 - 3 

PANSS total mean (SD) 56.7 (12.6)   56.7 (16.1) 65.5 (20.3) 48.0 (18.9) 

PANSS Positive mean (SD) 12.6 (4.8)  12.6 (4.8) 16.2 (6.7) 11.8 (5.7) 

PANSS Negative mean (SD) 14.3 (6.0)  14.3 (6.0) 16.0 (6.7) 12.1 (6.1) 

PANSS General mean (SD) 29.7 (8.1)   30.0 (8.1) 33.3 (10.5) 24.3 (8.9) 
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We choose to do a data-driven, non-biased selection of items that reflect 

negative symptoms in the PANSS. To accomplish this, we selected items that had 

been identified as negative symptoms in factor analysis of the whole PANSS, and 

that also showed a moderate correlation with other negative symptoms. To 

identify items of previous factor analyses, a literature search was conducted in 

PubMed using the search terms: “factor analysis OR factor structure AND PANSS”. 
All retrieved studies were searched for cross-references: 33 studies that reported 

on a negative symptom factor in the PANSS were identified (Bell et al. 1992; Bell 

et al. 1994; Davis and Chen 2001; Dollfus and Petit 1995a; Dollfus and Petit 1995b; 

Drake et al. 2003; Emsley et al. 2003; Fitzgerald et al. 2003; Fredrikson et al. 1997; 

Fresan et al. 2005; Higashima et al. 1998; Kawasaki et al. 1994; Kay and Sevy 1990; 

Lancon et al. 1998; Lancon et al. 1999; Lancon et al. 2000; Lancon et al. 2000; Lee 

et al. 2003; Lindenmayer et al. 1994a; Lindenmayer et al. 1994b; Lindenmayer et 

al. 2004; Lindström and Von Knorring 1993; Loas et al. 1997; Lykouras et al. 2000; 

Lépine et al. 1989; Mass et al. 2000; Rapado-Castro et al. 2010; Reichenberg et al. 

2005; Van der Gaag et al. 2006a; Vilaplana et al. 2007; White et al. 1997; 

Wolthaus et al. 2000). PANSS items N5 Abstract thinking and N7 Stereotyped 

thinking from the original Negative subscale of the PANSS, were seldom (both 3 

times) reported as a negative symptom by these factor analyses and showed a 

correlation of < 0.3 to the other negative symptoms, and were therefore not 

considered further in our analysis. 

Further selection was based on correlations of N1, N2, N3, N4 or N6 with 

other PANSS items. A factor analysis requires items to have a moderate, positive 

inter-correlation (Stevens 1996; Tabachnik and Fidell 2007). A correlation matrix 

with Spearman’s correlations of all items from the EPOG-database was created. 

Items showing a correlation of > 0.3 for at least three times with N1, N2, N3, N4 or 

N6 were selected for further analysis. Based on the above criteria, the following 

were selected for factor analysis: N1 Flat affect, N2 Emotional withdrawal, N3 

Poor rapport, N4 Passive/apathetic social withdrawal, N6 Lack of spontaneity, G5 

Mannerisms and posturing, G7 Motor retardation, G13 Avolition, and G16 Active 

social avoidance. 
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Exploratory factor analysis 

Items selected according to the above criteria were entered into an EFA (Principal 

Axis Factoring) using Statistical Package for Social Sciences (SPSS 16). The factor 

analysis was based on the correlation matrix of the items. The Kaiser-Meyer-Oklin 

(KMO) and Bartlett`s test for sphericity were calculated. The number of factors 

was not fixed beforehand, but factors were only retained when they showed an 

eigenvalue of > 1. Items within a factor were only retained with a factor loading of 

> 0.3. After factor estimation, both Direct Oblimin rotation with Kaiser 

Normalization and Varimax was applied. The Oblimin solution was reported 

because we expected the factors to be correlated (Tabachnik and Fidell 2007). 

Confirmatory factor analysis 

We then performed a CFA in LISREL 8 (Jöreskog and Sörbom 2011) to investigate 

the fit of the model identified by EFA. Because of non-normality, an asymptotic 

covariance matrix was used for estimation and comparative fit indices were used 

instead of the traditional Chi-square values (Hu and Bentler 1998; Lei and Lomax 

2005; Powel and Schafer 2001; Yuan and Bentler 1998). The factors identified by 

EFA were entered as latent variables in the CFA and the PANSS items were 

entered as observed variables. The maximum likelihood method was used for 

estimation (Van der Gaag et al. 2006a). We used multiple indices to measure 

goodness-of-fit: the Comparative Fit Index (CFI > 0.9), the Goodness-of-Fit index 

(GFI > 0.9), the Root Mean Square of Approximation (RMSEA < 0.06), the Root 

Mean Square of Residuals (RMR < 0.05), and an unstandardized factor loading > 2 

* standardized factor loading (Albright and Park 2009; Hu and Bentler 1998; 

Marsch et al. 2004). Correlated measurement errors were introduced into the 

model based on significant correlated residuals indicated by modification indices. 

Improvement of the model and the impact of correlated measurement errors 

were assessed in this way. 

Many factor analyses on the PANSS focused on schizophrenia, while our 

focus was on psychotic disorders. To investigate whether this broader diagnostic 

inclusion affected the structure of symptoms, the CFA was repeated with patients 

with a DSM-IV diagnosis of schizophrenia from the GROUP database. Correlated 

residuals were also introduced in the resulting CFA model, but similar to the 
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model with all diagnoses included. The goodness-of-fit measures both CFA models 

on schizophrenia were compared to the original models without and with 

correlated residuals respectively. 

Results 

First, socio-demographic data of the cohorts were inspected and the EFA and CFA 

groups were compared (Table 19). The age of the subjects ranged mostly between 

20 and 30 years, and 60 - 78% were male. Most subjects had a primary diagnosis 

of schizophrenia or a psychotic disorder. Subjects from the Amsterdam cohort 

were generally younger and subjects from the Utrecht cohort had lower PANSS 

scores. The cohorts for EFA and CFA showed no significant difference in age (p = 

0.20), gender (p = 1), or diagnosis (p = 0.23). PANSS original subscales (Positive 

symptoms, Negative symptoms and General Pathology, defined by Kay et al. (Kay 

et al. 1987) were significantly different between the various samples (all p < 

0.005), but the differences were not regarded as clinically relevant. 

 

Table 20 Factor Structure of Factor Analysis on Items N1, N2, N3, N4, N6, G5, G7, G13, and G16 of 

the PANSS after Varimax Rotation; Bold values indicate that the item loaded strongest on this 

factor 

 Factor 1  Factor 2  

 Unrotated 

loading 

Rotated 

loading 

Unrotated 

loading 

Rotated 

loading 

N6 Lack of spontaneity 0.756 0.807 0.357 0.202 

N3 Poor rapport 0.744 0.759 0.297 0.257 

N1 Flat affect 0.713 0.594 0.080 0.403 

G7 Motor retardation 0.645 0.571 0.124 0.325 

G5 Mannerisms and 

posturing 

0.443 0.460 0.189 0.144 

G13 Avolition 0.435 0.406 0.117 0.194 

N4 Passive/apathetic 

social withdrawal 

0.807 0.287 -0.503 0.906 

N2 Emotional withdrawal 0.777 0.386 -0.315 0.744 

G16 Active social 

avoidance 

0.431 0.158 -0.261 0.478 
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Exploratory factor analysis 

Inspection of a histogram of the data and a Q-Q plot showed a non-normal, left-

skewed distribution. Factor analysis on EPOG (n = 644) resulted in a Kaiser-Meyer-

Oklin (KMO) of 0.85 (excellent) and a significant result for the Bartlett`s test for 

sphericity (Chi = 2598.9; p < 0.005), indicating that the correlation matrix was 

suitable for factor analysis. A two-factor solution indicated an eigenvalue > 1 (60% 

of the variance explained) with all factor loadings above 0.3. Communalities were 

all above 0.3, indicating that all items explained a substantial amount of variance. 

The two factors had a strong, negative correlation of –0.64, indicating the Oblimin 

solution should also be reported. The Varimax solution (Table 20) showed that, 

after rotation, items loaded preferably either on Factor 1 or Factor 2. The Oblimin 

rotation (Table 21) resulted in one factor with items loading the strongest in the 

positive direction, while Factor 2 items loaded the strongest in the negative 

direction. 

 

Table 21 Factor Structure of Factor Analysis on Items N1, N2, N3, N4, N6, G5, G7, G13 and G16 of 

the PANSS after Oblimin Rotation; The unrotated solutions are identical to the unrotated Varimax 

solution; Bold values indicate that the item loaded strongest on this factor 

 Factor 1  Factor 2  

 Pattern 

coefficient 

Structure 

coefficient 

Pattern 

coefficient 

Structure 

coefficient 

N6 Lack of spontaneity 0.896 0.833 0.099 -0.472 

N3 Poor rapport 0.822 0.801 0.033 -0.491 

N1 Flat affect 0.577 0.697 -0.219 -0.575 

G7 Motor retardation 0.563 0.649 -0.135 -0.494 

G5 Mannerisms and 

posturing 

0.503 0.481 0.034 -0.286 

G13 Avolition 0.416 0.449 -0.510 -0.316 

N4 Passive/apathetic 

social withdrawal 

-0.033 0.586 -0.971 -0.950 

N2 Emotional 

withdrawal 

0.158 0.623 -0.729 -0.830 

G16 Active social 

avoidance 

-0.10 0.315 -0.510 -0.504 
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Confirmatory factor analysis 

The CFA was based on a merged sample of three databases (GROUP, Amsterdam, 

Utrecht) of 2,172 cases. A model was created based on the results of the EFA 

(Figure 21). The CFA by LISREL indicated a moderate fit if correlated residuals 

were not introduced into the model. The following goodness-of-fit indices were 

obtained (with criteria for a good fit given in brackets): CFI = 0.99 (> 0.9), GFI = 

0.99 (> 0.9), RMSEA = 0.063 (< 0.06), RMR = 0.071 (< 0.05), and unstandardized 

factor loading/standardized factor loading > 2 (> 2). Next, significantly correlated 

residuals (measurement errors) were introduced into the model to improve the fit 

(Cole et al. 2011; Gerbing and Anderson 1984), see Table 22 for factor loadings 

and Figure 21. This model resulted in the following fit: CFI = 1.0 (> 0.9), GFI = 1.0 (> 

0.9), RMSEA = 0.015 (< 0.06), RMR = 0.015 (< 0.05), and unstandardized factor 

loading/standardized factor loading > 2 (> 2). These indices indicate a good fit of 

the model when correlated residuals were introduced. 

 

Table 22 Factor Loadings of the CFA with the included correlated measurement errors; Bold values 

indicate that the item loaded strongest on this factor 

 Factor 1 loading Factor 2 loading 

N6 Lack of spontaneity 0.83 - 

N3 Poor rapport 0.85 - 

N1 Flat affect 0.87 - 

G7 Motor retardation 0.75 - 

G5 Mannerisms and posturing 0.57 - 

G13 Avolition 0.75 - 

N4 Passive/apathetic social withdrawal - 0.96 

N2 Emotional withdrawal - 1.02 

G16 Active social avoidance - 0.76 

 

The CFA was repeated in a sample of 845 cases with a DSM-IV diagnosis of 

schizophrenia from the GROUP database. The following goodness-of-fit indices 

were obtained in the model without introduced correlated residuals: CFI = 0.98, 

GFI = 0.99, RMSEA = 0.070, RMR = 0.079. In the model with correlated residuals 

the following values were obtained: CFI = 1.0, GFI = 1.0, RMSEA = 0.0082, RMR = 
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0.019. The CFA analyses with the schizophrenia group showed similar results to 

the analyses on the whole sample, both with and without correlated residuals. 

Discussion 

We found that a two-factor model represents negative symptoms better than a 

single factor, albeit that the two factors are correlated. We confirmed this two-

factor model by CFA in a separate cohort and demonstrated that the model is not 

restricted to a diagnosis of schizophrenia, but also fits for psychotic disorders. The 

first factor of the model comprises items that show similarity to the “expressive 
deficits” domain of DSM-V, with the highest factor loadings on Flat affect (N1), 

Poor rapport (N3), and Lack of spontaneity (N6). In the second factor, the items 

resembled aspects of the “social amotivation” domain of DSM-V, with the highest 

loadings on Emotional withdrawal (N2) and Passive/apathetic social withdrawal 

(N4). 

 

 

Figure 21 The factor model created for the confirmatory factor analysis (CFA) based on the results 

of the exploratory factor analysis (EFA); The two boxes on the left indicate our factors, the boxes 

on the right indicate the PANSS items connected to their corresponding factor by arrows, and the 

arrows connecting the right-hand boxes indicate the correlated residuals introduced into the 

model; Each item also has its own error term, but these are not shown for simplicity 

Our two-dimension structure of negative symptoms provided good support 

for the two negative symptom domains proposed in the DSM-V (Messinger et al. 

2011) and agrees with earlier proposed symptom models (Keefe et al. 1992; 

Kirkpatrick et al. 2001). Moreover, the two-factor division determined by PANSS 
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robustly extends the results of other studies suggesting two negative symptom 

domains that were mainly based on SANS (Bell et al. 2011; Blanchard and Cohen 

2006; Foussias and Remington 2010; Keefe et al. 1992; Kimhy et al. 2006; 

Kirkpatrick et al. 2006; Lindström and Von Knorring 1993; Messinger et al. 2011; 

Peralta and Cuesta 1995; Van den Oord et al. 2006).  

Of note, Avolition (G13) would conceptually also fit Factor 2, social 

avolition/amotivation. Indeed, Avolition loaded relatively high on Factor 2 of our 

EFA. Factor analysis is a data-driven method, and multiple aspects may influence 

the factor loading of items. In this case, the rating of PANSS item G13 Avolition is 

merely based on observed behavior during the interview, and the item may be 

rated as disturbance in willful initiation of behavior and thereby load the 

“expressive behavior factor”. 
For the negative symptom model as identified in our study, the CFA showed 

a low loading or poor fit of PANSS item Mannerisms and posturing (G5). But as 

excluding it did not improve the CFA fit and the item showed a loading of > 0.4 in 

the EFA, we retained the item in the model. In the DSM-V, this item would 

probably fit better in the abnormal psychomotor behavior. In addition, the Motor 

retardation (G7) and Avolition (G13) items also loaded lower on Factor 1, possibly 

because they originate from the General Pathology subscale of the PANSS.  

The fit of the CFA improved when we added a correction for measurement 

errors to the model. An explanation could be that, although the interviewers were 

well-trained, some PANSS items may have a common origin that is difficult to 

disentangle and thus rated in multiple items (Cole et al. 2007; Gerbing and 

Anderson 1984), e.g. reduced movement could be rated as Flat affect (N1), 

Mannerism and posturing (G5), or Motor retardation (G7). 

Some authors have speculated that the “expressive deficits” factor may 
reflect directly apparent symptoms that change quickly over time, while the 

“social amotivation” factor reflects the status of social relationships that may 

change more slowly (Blanchard and Cohen 2006; Foussias and Remington 2010; 

Keefe et al. 1992). Moreover, the first group of symptoms is rated as directly 

observed behavior, while the social items are based on reports from family 
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members and nursing staff (Messinger et al. 2011). Indeed, directly observed 

behavior – Poor rapport and Lack of spontaneity – show the highest loading on 

Factor 1 and thus have the strongest impact in this factor. 

“Social amotivation” may be due to a diminished capacity of patients to 
anticipate pleasurable events, despite intact hedonic consumption (Foussias and 

Remington 2010; Oorschot et al. 2011). This explanation finds support in the 

strong loading of Emotional and apathetic withdrawal. Moreover, the “social 

amotivation factor” could, besides interest, also include aspects of social 
performance, based on engagement in social situations (Keefe et al. 1992; 

Oorschot et al. 2011). This factor was first discerned during treatment with 

atypical antipsychotics, whereas (high dosage) classic antipsychotics may have 

obscured the two subdomains (Van den Oord et al. 2006).  

Negative symptoms and depressive symptoms are often considered to be 

associated (Fitzgerald et al. 2002; Lako et al. 2011). Additional analysis in this 

study showed no association between depression and negative symptoms (results 

not shown), while previous factor analyses also showed no loading of Depression 

(G6) on the negative symptom factors. Thus, the “expressive deficits” factor may 
be more a reflection of apathy than of depression. Research using scales 

specifically designed for assessing apathy (Clarke et al. 2011) or depression (Lako 

et al. 2011) could further corroborate this. 

A unique strength of our study is its large sample size and its replication in 

large, independent cohorts. CFA is a complicated procedure and depends strongly 

on the underlying data structure (Van der Gaag et al. 2006a), thus our 

confirmation of the negative symptom structure can be considered quite robust. 

In addition, this study is the first to replicate findings of studies on the SANS by 

using the PANSS. This is a useful addition, as the PANSS is more frequently used in 

research settings and clinical practice, and it also covers a broader range of 

symptoms (Fitzgerald et al. 2001; Van den Oord et al. 2006). 

However, some limitations should be mentioned. The two-factor structure 

may be an artifact, because the first factor includes symptoms rated by the 

interviewer during the interview, while the second factor includes social activities 

outside the interview room (Blanchard and Cohen 2006). In this study, patients 
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were relatively young and often in the early stages of their illness, with only 25% 

suffering from more severe negative symptoms (PANSS items > 3). This limits our 

ability to draw conclusions about symptom dimensions in, for example, 

chronically ill samples. Lastly, the two factors show a considerable association 

with each other and may partly overlap. But because of the extensive support 

from earlier findings, the two factors have good construct validity. 

In conclusion, our results support the two subdomains proposed in the 

DSM-V. The first subdomain is related to the “expressive deficits”, while the 
second could be described as a “social amotivation” factor. Negative symptoms 
are difficult to treat and the pathophysiology remains poorly understood. By 

acknowledging the two dimensions that have now emerged robustly from the 

factor structure of systematic assessments, the effects of interventions may be 

assessed with greater precision (Blanchard and Cohen 2006; Kirkpatrick et al. 

2006). Research into their differential pathophysiology, e.g. using neuroimaging, 

could advance our understanding of these debilitating symptoms further (Bell et 

al. 2011). 
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Abstract 

Introduction: Decreased prefrontal activation (hypofrontality) in schizophrenia is 

thought to underlie negative symptoms and cognitive impairments, and may 

contribute to poor social outcome. Hypofrontality does not always improve during 

treatment with antipsychotics. We hypothesized that antipsychotics, which share 

antagonism at dopamine receptors, with a relatively low dopamine receptor 

affinity and high serotonin receptor affinity may have a sparing effect on 

prefrontal function compared to strong dopamine receptor antagonists. Methods: 

We systematically investigated the relation between serotonin and dopamine 

antagonism of antipsychotics and prefrontal functioning by reviewing 

neuroimaging studies. Results: The weight of the evidence was consistent with 

our hypothesis that antipsychotics with low dopaminergic receptor affinity and 
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moderate to high serotonergic affinity were associated with higher activation of 

the prefrontal cortex. However, clozapine, a weak dopamine and strong serotonin 

antagonist, was associated with decrease in prefrontal activation. Discussion: 

Future studies should further elucidate the link between prefrontal activation and 

negative symptoms using prospective designs and advanced neuroimaging 

techniques, which may ultimately benefit the development of treatments for 

disabling negative symptoms. 

Introduction 

Schizophrenia is a severe and complex psychiatric disorder that causes pervasive 

impairments in social and occupational functioning. The disorder is characterized 

by positive symptoms, negative symptoms, and cognitive impairments (Mueser 

and McGurk 2004). Positive symptoms include hallucinations and delusions. 

Negative symptoms can be described as the absence of normal behavior, such as 

a flattened emotional response, poverty of speech, lack of initiative, lack of 

pleasure, and social withdrawal (Andreasen 1982). Cognitive impairments pertain 

to memory, attention, verbal fluency, executive function, and social-emotional 

function (Aleman et al. 1999; Aleman 2005; Heinrichs and Zakzanis 1998; Pinkham 

et al. 2003). 

Although positive symptoms generally respond well to pharmacological 

interventions, negative and cognitive symptoms do not: they show minimal 

improvement, no change or even a worsening due to treatment with 

antipsychotic drugs. Importantly, negative symptoms and cognitive impairments 

predict persistent difficulties in social interactions, vocational functioning, and 

independent living (Barch et al. 1998; Gold et al. 1997). 

Brain imaging techniques like functional magnetic resonance imaging 

(fMRI), positron emission tomography (PET), and single photon emission 

computed tomography (SPECT) are valuable tools to deduce abnormal activity of 

large cerebral areas such as the frontal lobe. Using these techniques, negative 

symptoms and cognitive impairments have both been associated with 

hypoactivation of the prefrontal cortex (PFC) (Wang et al. 2008; Weinberger and 

Berman 1996). This review focuses specifically on hypofrontality because it 
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appears to be the basis of the often treatment resilient negative and cognitive 

symptoms. Frontal hypoactivation is defined as an impaired increase in blood flow 

during cognitive tests that require frontal function in fMRI, HMPAO-SPECT or H2O-

PET studies, or as a decrease of glucose metabolism in 
18

F-FDG PET imaging 

studies. 

Early studies imaging blood flow have shown that both medication free and 

chronically medicated patients with schizophrenia had less activation in the 

dorsolateral prefrontal cortex (Ingvar and Franzen 1974; Weinberger et al. 1986). 

This so-called hypofrontality was confirmed in a number of subsequent studies 

(Hazlett and Buchsbaum 2001; Molina et al. 2005; Rieheman et al. 2001), but 

others failed to find it or even reported hyperfrontality (e.g. Parellada et al. 2003; 

Schneider et al. 2005; Soyka et al. 2005). Three meta-analyses (Davidson and 

Heinrichs 2003; Glahn et al. 2005; Hill et al. 2004) concluded that hypofrontality is 

a feature of schizophrenia, both during rest and during task performance. 

Differences between individual studies have been related to difficulty of tasks 

used, because hypofrontality is often shown for moderately difficult tasks, but less 

frequently for simple or difficult tasks (Carter et al. 1998; Liddle and Pantelis 2003; 

Perlstein et al. 2001). 

The prefrontal cortex is very rich in dopaminergic receptors and they are 

thought to play a crucial role in the action of antipsychotics, which all have 

antagonistic action at dopamine (DA) receptors. Weinberger et al. showed that 

higher DA levels in the cortex of patients were related to higher prefrontal 

activation (Weinberger et al. 1988). Moreover, the DA releaser D-amphetamine 

improves task performance and PFC function in patients (Daniel et al. 1991). 

Likewise, subjects with a certain gene polymorphism, resulting in less efficient DA 

metabolism, showed more efficient prefrontal activation (Egan et al. 2001). 

Overall, these findings are consistent with the notion that impaired prefrontal DA 

transmission may be related to hypofrontality (Chen et al. 1997). 

So-called first generation or classical antipsychotics such as chlorpromazine 

and haloperidol are potent blockers of DA receptors, especially postsynaptic D2 

receptors, but the prefrontal cortex also contains a high concentration of D1 
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receptors, blockade of which may also hamper prefrontal activation (Tausscher et 

al. 2004). Antipsychotic reduction of DA signaling in the brain affecting D2 

receptors is thought to underlie reduction of positive symptoms, and have no 

influence or detrimental effect on negative symptoms. These effects inspired 

dopamine hypotheses of schizophrenia: a hyperdopaminergic state in mesolimbic 

pathways (projecting to the striatum), combined with a hypodopaminergic state 

mesocortical pathways (projecting to the prefrontal cortex). Because the 

prefrontal cortex possibly already has low dopamine levels, additional D2 receptor 

blockade may contribute to negative symptoms and cognitive impairments (Abi-

Dargham and Laruelle 2005). 

Clozapine, a weak dopamine antagonists but potent 5-HT2A antagonist that 

targets many other receptors, was the first antipsychotic demonstrating 

appreciable efficacy against negative symptoms and possibly cognitive 

impairments (Bishara and Taylor 2008; Sharafi 2009). Clozapine's receptor profile 

presumably holds the key to its special effectiveness, but the exact mechanisms 

have remained elusive. All antipsychotics developed since clozapine are often 

grouped as ‘atypical’ or second-generation antipsychotics, though the receptor 

profiles within this group are very diverse. Some mimic the low D2 receptor 

affinity of clozapine (quetiapine), others are stronger postsynaptic DA antagonists 

(risperidone, olanzapine). The primary uniting property of this generation of 

‘atypical’ drugs is strong antagonism at serotonin (5-HT) receptors (Kapur et al. 

1999; Meltzer et al. 2003). 5-HT2A antagonism may directly (Amargós-Bosch et al. 

2006; Goldman-Rakic and Selemon 1997) or indirectly via dopamine (Busatto and 

Kerwin 1997; Lee et al. 1994; Weinberger et al. 1986) enhance prefrontal 

activation. 

Three alternative neuropharmacological hypotheses for efficacy against 

hypofrontality and ultimately negative symptoms have been proposed. First, the 

antipsychotics should have a low dopamine receptor affinity (Abi-Dargham and 

Laruelle 2005; Jarskog et al. 2007) or show rapid dissociation from the D2 receptor 

(Kapur and Seeman 2001). A second hypothesis was that high 5-HT receptor 

affinity relative to dopamine receptor affinity was sufficient (Sipes and Geyer 

1995). However, this effect was only tenable in animal studies (Gozzi et al. 2010) 
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but not in human studies (Nyberg and Farde 1997). Thirdly, an interaction of weak 

D2 and stronger 5-HT2A receptor antagonism was thought to relieve both positive 

and negative symptoms (Abi-Dargham and Laruelle 2005; Da Silva Alves et al. 

2008). Blockade of serotonin leads to increased dopamine levels in especially the 

mesocortical dopamine system (Busatto and Kerwin 1997) and induces prefrontal 

DA release and prefrontal activity in animal studies (Pehek 1996). 

We conducted a literature review of imaging studies in frontal functioning. 

We expected that antipsychotics with high D2 receptor affinity would decrease 

activation of the prefrontal cortex while antipsychotics with low D2 affinity would 

increase it. Secondly, we expected that high 5-HT2A receptor affinity in addition to 

lower dopamine receptor affinity would also help to preserve prefrontal 

activation. In sight in mechanisms underlying pharmacological influence on 

hypofrontality may ultimately facilitate improvement of negative symptoms and 

cognition. 

Methods 

The scientific literature was searched for studies on the effects of antipsychotics 

on prefrontal activity, using fMRI measuring blood oxygen level dependent (BOLD) 

effects, or with PET and SPECT measuring regional cerebral blood flow (rCBF) or 

fluorodeoxyglucose (FDG) uptake. PET with [
18

F]-FDG measures glucose 

consumption, while BOLD fMRI, [
15

O]-H2O PET and HMPAO SPECT measure blood 

flow. Blood flow is a more indirect measure of metabolism than glucose 

consumption, and may therefore give different results. Time resolution is also 

different. fMRI can measure effects in seconds, while rCBF PET may take minutes, 

and [
18

F]-FDG PET and SPECT only give static pictures of a whole acquisition. 

Differences in imaging result due to imaging modality were evaluated. 

The main topic of the studies had to be the effect of antipsychotics on brain 

activation and cover information regarding activation of the prefrontal cortex, or 

regarding cognitive functions that have been implicated in frontal cortex 

functioning (working memory, learning, emotion processing, attention, verbal 

fluency, and executive functioning). The study population had to include patients 
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with schizophrenia or related disorders (e.g. schizophreniform disorder, 

schizoaffective disorder) that were treated with antipsychotics. Single dose 

studies and depot treatment were excluded, as were studies that included 

subjects taking both strong and weak DA antagonists in one group, or studies that 

did not report antipsychotic drug dosage. PubMed and Web of Science (ISI, 

Thomson Reuters) were searched until May 2010 with the following search terms: 

antipsychotic* AND (*MRI OR PET OR SPE*T) AND schizophren*. Studies that met 

the criteria were scanned for cross-references and eventually 31 studies fulfilled 

the criteria (See Table 23). 

To characterize the binding profile of antipsychotics for our purposes, D2 

and 5-HT2A receptor affinity were considered. Affinity was considered a useful 

measure of receptor effects because all antipsychotics except aripiprazole lack 

intrinsic activity at D2 and 5-HT2A receptors: i.e. they are antagonists. Receptor 

affinity was defined as the dopamine dissociation constant Ki measured as the 

equilibrium concentration at which dissociation of the antipsychotic is equal to a 

dopamine antagonist, in most cases the specific D2 ligand raclopride. A lower Ki 

thus value means a stronger binding of the antipsychotic to the receptor.  

 

Table 23 Overview of study characteristics included in this review; Articles are sorted based on 

cognitive function, and within this order on imaging modality (Technique and Measure); A 

clarification of abbreviations is listed below; Patients: AP = acute psychosis, CS = chronic 

schizophrenia, FE = first episode, S = schizophrenia, SF schizophreniform psychosis, TRS = 

treatment resistant schizophrenia, DF = drug free, DN = drug naive, M = medicated, PT = 

pretreatment, W = washout; Group/Study design: HC = healthy control, MP = medicated patient, 

NP = non-medicated patient, P = placebo; Study design: B = baseline, F = follow-up, S = single scan, 

W = wash-out; Antipsychotics: AMI = amisulpride, ARI = aripiprazole, CHLOR = chlorpromazine, 

CLOZ = clozapine, FLUP = flupentixol, FLUPH = fluphenazine, HAL = haloperidol, OLA = olanzapine, 

QUE = quetiapine, RISP = risperidone, SER = sertindole, SULP = sulpiride, THIO = thiothixene; 

Results: APFC = anterior prefrontal cortex, DLPFC = dorsolateral prefrontal cortex, IFG = inferior 

frontal gyrus, IPFC = inferior prefrontal cortex, MPFC = medial prefrontal cortex, LPFC = lateral 

prefrontal cortex, OPFC = orbito-prefrontal cortex, PFC = prefrontal cortex, SPFC = superior 

prefrontal cortex, VLPFC = ventrolateral prefrontal cortex, arrow up = higher activation, arrow 

down = lower activation  

See next pages for table 
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Affinities were determined in receptor binding studies (Allison et al. 1999; Arnt 

and Skarsfeldt 1998; Burstein et al. 2005; Bymaster 1996; Kapur and Seeman 

2006; Kapur and Seeman 2001; Reimold 2007; Schotte 1996; Seeman 1993). 

When different Ki values were reported, an average of these values was used. 

The studies included in the review showed a large heterogeneity in study 

population, treatment design, and imaging protocol. For this reason, it was 

deemed impossible to conduct a quantitative comparison with effect sizes of 

studies. We therefore used a Chi-square test to investigate whether D2 and 5-HT2A 

binding strength had an effect on prefrontal activation (Baas et al. 2004). 

Antipsychotics were categorized in strong D2 antagonists, strong D2/strong 5-HT 

antagonists, and strong D2/weak 5-HT antagonists. Prefrontal effect was 

categorized in increased, equal or decreased prefrontal activation. If there would 

be no effect of antipsychotic on prefrontal actuation, the frequency of different 

prefrontal effects should be equal across categories of antipsychotics. 

Summary of studies 

An overview of all studies can be found in Table 24 and Figure 22. The graph in 

Figure 22. shows the percentages of studies that found decreased, equal, or 

increased prefrontal activation during treatment per antipsychotic category. It 

shows that strong D2 antagonists mostly caused decreased activation, weak D2 

and 5-HT2A antagonists show mostly lower activation. The special effects of 

clozapine are shown separately. 

A Chi-square test showed that there was no effect of antipsychotic category 

on prefrontal activation (χ2
 = 5.61, p = 0.23). However, clozapine decreased 

activation in most studies and has an idiosyncratic receptor profile. Therefore, an 

additional Chi-square test was performed with clozapine as a separate category. 

This test showed a significant effect of antipsychotic on prefrontal activation (χ2
 = 

13.8, p = 0.032), with strong D2 antagonists and clozapine showing mostly 

decreased activation, and weak D2 antagonists showing mostly increased 

activation. 
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Table 24 Overview of the receptor affinities of the antipsychotics used in the studies and their 

effect on prefrontal activation; The column “frontal activation” indicates the effect on activation, 
being increased (+), unchanged ( = ) or decreased (-); Results are ordered according their expected 

frontal activation (decreased for strong D2 antagonists, equal for strong D2/strong 5-HT2A 

antagonists, increased for weak D2/strong 5-HT2A antagonists) showing that most studies show 

results according to the expectations, except for clozapine 

 Medication D2 affinity 5-HT2A affinity Frontal activation 

Cohen e.a., 1988 fluphenazine + - - 

Cohen e.a., 1997 fluphenazine + - - 

Barlett e.a., 1991 haloperidol + - - 

Holcomb e.a. 1996 haloperidol + - - 

Lahti e.a., 2003 haloperidol + - - 

Lahti e.a., 2004 haloperidol + - - 

Miller e.a., 2001 haloperidol + - - 

Buchsbaum e.a. 2007 haloperidol + - =  

Yildiz e.a., 2000 haloperidol + - =  

Barlett e.a., 1992 thiothixene + - =  

Buchsbaum e.a., 2009 haloperidol + - + 

Wik e.a., 1990 chlorpromazine + + =  

Bertolino e.a., 2004 olanzapine + + =  

Gonul e.a., 2003 olanzapine + + =  

Miller e.a., 2002 risperidone + + =  

Wik e.a., 1989 sulpiride + + =  

Vaiva e.a., 2002 amisulpride + + + 

Buchsbaum e.a. 2008 olanzapine + + + 

Honey e.a., 1999 risperidone + + + 

Buchsbaum e.a., 2010 sertindole + + + 

Ngan e.a., 2002 risperidone + + - 

Slagenhauf e.a., 2008 olanzapine + + - 

Blasi e.a., 2009 olanzapine + + - 

Fahim e.a., 2005 quetiapine - + + 

Jones e.a., 2004 quetiapine - + + 

Meisenzahl e.a., 2006 quetiapine - + + 

Stip e.a., 2005 quetiapine - + + 

Lahti e.a., 2005 clozapine - + + 

Sharafi e.a., 2006 clozapine - + + 

Cohen e.a., 1998 clozapine - + - 

Potkin e.a., 1994 clozapine - + - 

Zhao e.a.,  clozapine - + =  

Molina e.a., 1997(6) clozapine - + - 

Molina e.a., 2003 clozapine - + - 

Molina e.a., 2005/7 clozapine - + - 

Molina e.a., 2008 clozapine - + - 

Lahti e.a., 2004 clozapine - + =  

Slagenhauf e.a., 2010 aripiprazole - + = 
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Thus, according to our results antipsychotics with a strong D2 antagonism 

do not increase or even decrease activation of the prefrontal cortex. In contrast, 

weaker D2 and strong 5-HT2A antagonists preserve or increase activation of the 

prefrontal cortex in the majority of the studies. Clozapine, not in line with other 

antipsychotics, decreased activation in most studies.  

Below, studies are ordered according to the cognitive functions evaluated. 

This classification was chosen because most studies investigated a particular 

cognitive function, rather than a specific brain area. Within this order, studies are 

ordered according to imaging method, because this could have a large influence 

on study outcome. Detailed information about the study characteristics is shown 

in Table 23. 

 

 

Figure 22 Graph showing the percentage of studies that showed an decreased, equal or increased 

prefrontal activation after treatment with antipsychotics with different DA and 5-HT binding 

properties, clozapine is shown separately 

Resting state 

In resting state studies, brain activation is measured during rest, i.e. the subject is 

not required to do a particular task. An early PET study compared the effect of 

sulpiride (N = 11) and chlorpromazine (N = 6) in patients with healthy controls (N = 
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7). There were no effects of either treatment on frontal rCBF (Wik et al. 1989). 

Similarly, in fifteen patients treated for four months with haloperidol there were 

no SPECT measured changes in frontal activation compared to ten healthy 

controls (Yildiz et al. 2000). A PET study compared the effects of 4-6 weeks 

treatment with haloperidol or thiothixene (Barlett et al. 1999). Haloperidol 

decreased prefrontal metabolism while thiothixene had no effects. In another PET 

study (N = 19) haloperidol decreased perfusion in the left DLPFC, after treatment 

for three weeks (Miller et al. 2001). In a similar vein, withdrawal from haloperidol 

increased glucose metabolism in the dorsolateral prefrontal cortex (DLPFC) and 

superior frontal cortex (SFC), as shown with PET in twelve medicated subjects 

(Holcomb et al. 1996). Finally one PET study reported increased DLPFC perfusion 

but decreased ventrolateral prefrontal (VLPFC) perfusion, when patients were first 

scanned non-medicated (N = 6) and then after twelve weeks of haloperidol 

treatment (N = 5) (Lahti et al. 2003). 

Antipsychotics with additional high affinity antagonist action at 5-HT 

receptors have less influence on resting state brain activity than first generation 

drugs. A PET study on risperidone treatment (three weeks, N = 13) found no 

prefrontal perfusion changes (Miller et al. 2001). Similarly, a SPECT study found no 

differences in (prefrontal) rCBF between pre and post-olanzapine treatment (six 

weeks, N = 24) (Gonul et al. 2003). 

Clozapine has been extensively studied, both with and without 

pretreatment with antipsychotics with dopamine receptor antagonism. An 

aforementioned PET study (Lahti et al. 2003) showed increased perfusion in 

DLPFC, and a decreased VLPFC and superior frontal (SFC) perfusion after clozapine 

treatment for five weeks. An early article on treatment resistant patients (N = 24) 

found no effects of clozapine on prefrontal rCBF (Molina et al. 1996). In a 

subsequent analysis on the same data, it was shown that responders to clozapine 

had high prefrontal rCBF at baseline, which decreased after treatment (Molina et 

al. 1997). Molina et al. 2003 showed in 25 patients that activity of the prefrontal 

cortex decreased after treatment with clozapine (Molina et al. 2003). Patients 

with a high baseline metabolism of the DLPFC were more likely to improve on 

negative symptoms during treatment with clozapine. This finding of decreased 
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prefrontal activation after treatment with clozapine was replicated in a more 

recent study in the medial prefrontal (MPFC) and left DLPFC (Molina et al. 2005; 

Molina et al. 2007). Contrary to the aforementioned studies, a cross-over study (N 

= 20) reported that prefrontal perfusion increased after several months of 

treatment (N = 10 at follow-up) with clozapine in comparison to strong DA 

antagonists (Sharafi 2009). 

Taken together, the above studies suggest that haloperidol may decrease 

resting activity of the prefrontal cortex. Likewise, clozapine showed a decreased 

metabolism of prefrontal regions in treatment-resistant patients, although all 

studies were of the group of Molina et al. Other strong 5-HT antagonists, although 

underrepresented in this section, appear to have little effect. 

Resting state studies have the disadvantage that brain activity is undirected 

and may be highly variable between persons. This might be even more 

pronounced in patients, as resting state activity may reflect abnormal self-

generated activity related to their symptoms (Liddle and Pantelis 2003). Such 

confounds may be less pronounced in studies that measure task related 

activations. 

Working memory 

Only studies on more recent antipsychotics that used working memory tasks to 

measure prefrontal activation were available to include in this review. When 

risperidone was substituted for first generation antipsychotics (types not 

specified, N = 10) and taken for ten weeks, activation during an N-back task 

increased in the right dorsolateral prefrontal cortex, but task performance did not 

change (Honey et al. 1999). 

Another fMRI study found decreased prefrontal activation after successful 

treatment with olanzapine (Bertolino et al. 2004). They created three patient 

groups (total N = 20), based on alleles of the COMT gene. One homozygous group 

(Met/Met) showed a better task performance with decreased PFC activation, 

while the other homozygous group (Val/Val) showed an opposite pattern, 

comparing eight with four weeks of treatment (no baseline). This may imply that 

frontal activation effects of antipsychotics are partially dependent on genotype. 
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In contrast, after a switch from strong DA antagonists to olanzapine (4 

weeks), 25 patients showed hypofrontality during the 0-back baseline condition 

(strong DA antagonists) and increased activation of the DLPFC after treatment 

with olanzapine (Slagenhauf et al. 2010). The 2-back condition resulted in 

deactivation, possibly because of high task load (see General discussion). 

In an fMRI study (12 weeks, N = 25) with the N-back task, frontal cortex 

activation of patients increased after quetiapine in the VLPFC and DLPFC 

(Meisenzahl et al. 2006). Activation in the VLPFC reached levels comparable to 

healthy controls. 

Aripiprazole is partial agonist of the dopamine D2 receptor, and is 

hypothesized to stabilize dopamine transmission and increase prefrontal 

activation (Lieberman 2004; Slagenhauf et al. 2010). However, eleven patients 

switched from strong DA antagonists to aripiprazole showed no increased 

prefrontal fMRI activation during the N-back task after 3-4 weeks of treatment 

(Slagenhauf et al. 2010). 

To conclude, most studies show a consistent pattern of increased PFC 

activity induced by working memory tasks after treatment with strong serotonin 

antagonists, partially such effect might be dependent on genotype however 

(Bertolino et al. 2004). 

Learning 

An [
18

F]-FDG-PET study showed in a randomized trial that haloperidol decreased 

activation of the frontal cortex compared to baseline (N = 22 at follow-up) 

(Buchsbaum et al. 2007) . This is in contrast to another study (Buchsbaum et al. 

2009), in which haloperidol (N = 15) increased metabolism in the MPFC and 

orbitofrontal cortex after six weeks. 

Both aforementioned studies investigated besides haloperidol also a weak 

dopamine and strong serotonin antagonist. The first (Buchsbaum et al. 2007) 

found that olanzapine increased activation of the frontal cortex compared to 

baseline. In the other study (Buchsbaum et al. 2009), sertindole increased 

metabolism in the DLPFC and anterior PFC together with performance on the 

learning task. Again, it appears that serotonin antagonists increase PFC activation 

relative to haloperidol. 
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Emotional processing 

Emotional processing has also been related to prefrontal functioning (Berthoz et 

al. 2002). A PET study (N = 12) showed that olanzapine treatment lowered VLPFC 

activation during implicit face processing after four weeks. Activation was higher 

after eight weeks, but it was lower during explicit processing of emotional faces 

(Blasi et al. 2009). Since no baseline scan was included, it is difficult to draw 

conclusions from this complicated pattern. Walter et al. also studied the effect of 

olanzapine, but their study focused on reward mechanisms, using a monetary 

reward task (Walter et al. 2009). After two weeks of treatment (N = 16; fMRI), 

activation in the VLPFC was increased. 

A PET study with quetiapine (N = 12) showed that 22 weeks treatment 

increased activation in the DLPFC during viewing of emotional pictures (Fahim et 

al. 2005). This finding was replicated in another PET study after 5.5 months of 

treatment (N = 12) (Stip et al. 2005) using a sad movie, which is according to our 

expectations. 

To conclude, weak dopamine antagonists increase DLPFC activation. 

Activity changes of the ventral frontal areas by olanzapine are less clear, as one 

study showed a complicated picture of activation and deactivation (Blasi et al. 

2009). However, in the other study it increased frontal activation as expected 

based on olanzapine's high affinity 5-HT receptor antagonism (Walter et al. 2009). 

Attention and executive function 

In an early SPECT study, subjects (N = 8) had to perform an auditory discrimination 

task after treatment with fluphenazine (Cohen et al. 1988). They showed a lower 

rCBF in the SFC. While task performance was related to higher MFC rCBF values in 

medicated patients, this was not the case in unmedicated patients (N = 16). A 

more recent glucose-PET study also showed that fluphenazine (N = 22) lowered 

glucose metabolic rates in the SFC (Cohen et al. 1997). 

Risperidone (6 weeks; N = 8) decreased activation in the left lateral frontal 

cortex and the MFC during a letter recognition task. Reduction in MFC activity was 

related to a decrease of positive symptoms (Ngan et al. 2002). 
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A more recent SPECT study investigated the effect of clozapine on frontal 

activation during performance on the Wisconsin Card Sorting task. After eight 

weeks of treatment in 21 subjects, there was no change in frontal activation (Zhao 

et al. 2006). In contrast, in another PET study clozapine lowered the metabolic 

rate in the frontal cortex during a Stroop task (N = 9; 10 weeks) (Potkin et al. 

1994). Clozapine (N = 12) also decreased activation of the SFC and IFG during an 

auditory discrimination task (Cohen et al. 1988). A SPECT study (Molina et al. 

2008) with ten subjects treated for six months showed that substituting clozapine 

for risperidone extended hypoactivation of the MFC during the Stroop task. 

Concluding, clozapine appears to decrease frontal activation during tasks of 

attention and executive functioning. 

Verbal fluency 

During a verbal fluency test, subjects have to name as many words of a certain 

category as possible. This test activates selectively the frontal and temporal lobes 

(Baldo et al. 2006). After four weeks of treatment with amisulpride, prefrontal 

rCBF increased with concurrently increased performance on a verbal fluency task 

(Vaiva et al. 2002). In a similar vein, eight patients receiving quetiapine (three 

months) showed increased activation of the left inferior frontal cortex compared 

to medication-free patients (Jones et al. 2004). 

General discussion 

After reviewing the neuroimaging studies concerning antipsychotics and 

prefrontal activation in schizophrenia, the weight of evidence indicated that 

antipsychotics with relatively weak D2 antagonism combined with strong 5-HT2A 

antagonism are overall associated with increased prefrontal activation, in contrast 

to strong DA antagonists. Clozapine showed an unexpected effect on prefrontal 

activation, as it appeared to cause a decrease in prefrontal activation in most 

studies, despite an improvement in negative symptoms and task performance. 

Our finding of mostly decreased or unaltered brain activation with strong 

DA antagonists and increased activation by weak DA antagonists supports our 

theory that strong D2, and possibly D1, blockade decreases prefrontal activation. 

Moreover, treatment with strong 5-HT2A receptor antagonists combined with 
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strong D2 antagonism was also associated with increased or preserved frontal 

activation in the majority of the studies. This effect of strong 5-HT2A antagonism 

on prefrontal activation is possibly mediated by indirect effects of the serotonin 

system on DA levels (Abi-Dargham and Laruelle 2005; Lee et al. 1994). 

The unique effect of clozapine on prefrontal activation is one of the most 

notable findings of this review. Strikingly, most studies on clozapine that showed 

decreased PFC activation used higher doses of clozapine (400-600 mg) and used 

PET or SPECT imaging. However, these studies also reported concurrent 

improvement in PANSS subscales and task performance, thus the effect seems 

desirable for the patient. Potentially, clozapine does not increase task related 

activation. Instead it could have a positive effect by selectively decreasing 

aberrant activity observed during rest periods (Molina et al. 2003; Molina et al. 

2005; Molina et al. 2007). Similarly, clozapine may help to selectively increase 

activation in task relevant areas (Lahti et al. 2003), such as ACC activation during 

the Stroop task (Molina et al. 2008). 

The effect of clozapine on PFC activation is possibly associated with its 

unique high D1/D2 affinity ratio compared to other antipsychotics (Kapur et al. 

2002; Tausscher et al. 2004). Another explanation may be that clozapine’s broad 
receptor profile is hypothesized to enhance NMDA receptor transmission (Abi-

Dargham and Laruelle 2005; Advocat 2005; Davies et al. 2005; Onali and Olianas 

2007; Tausscher et al. 2004) and PFC activation (Wittmann et al. 2005). Ultimately 

both mechanisms could contribute to ameliorating negative symptoms and 

cognitive impairments (Abi-Dargham and Laruelle 2005). 

The current review has a number of caveats that limit applicability of our 

conclusions to the clinic. One is that decreases in brain activation can be the result 

of decreased activation during task performance or increased activation during 

resting conditions (Davis et al. 2005). It has been reported that, during task 

performance, patients with schizophrenia fail to deactivate the prefrontal cortex, 

which is part of the so called default mode network (Kim et al. 2009; Polli et al. 

2005; Pomarol-Clotet et al. 2008). This network, which is involved in 

introspection, is highly active during rest, and deactivation facilitates effective 
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task performance (Kim et al. 2009; Pomarol-Clotet et al. 2008). Moreover, 

treatment with antipsychotics has shown to affect activation of the default mode 

network (Abbott et al. 2011) even specifically the prefrontal regions (Sambataro 

et al. 2010). Also the relation between task load and PFC activation could not be 

linear and not the same in patients and controls. Patients may activate their 

prefrontal cortex maximally at a lower task load than controls, and show 

decreased activation at higher task loads (Jansma et al. 2004; Liddle and Pantelis 

2003; Mendrek et al. 2004; Mendrek et al. 2007). 

Although increased PFC activity may be an indicator of a favorable 

antipsychotic effect, it does not reliably predict symptom improvement (Da Silva 

Alves et al. 2008) and our results tend to confirm this. Although behavioral studies 

show that cognitive performance can be improved with antipsychotic treatment 

(Abi-Dargham and Laruelle 2005; Lee et al. 1994; Meltzer et al. 1994), studies that 

show a direct link with brain activation are relatively scarce. 

Except for the receptor profile of the administered antipsychotic, other 

factors could also confound conclusions about prefrontal activation. Study 

outcome can depend on the paradigm, task difficulty, dose of the antipsychotic, 

and the patient characteristics (e.g. age, duration of illness, diagnosis, symptom 

severity, and previous medication) (Chung and Remington 2005; Davidson and 

Heinrichs 2003). 

We were unable to find evidence for a systematic influence on frontal 

activation of the aforementioned factors, but a number of factors will be 

considered in some more detail because they may contribute to study outcome. 

First, studies on strong DA antagonists often used relatively high doses 

compared to studies on strong 5-HT (and weak DA) antagonists, as shown by their 

haloperidol equivalents (Table 23 ; before-last column). This could thus be a 

confound that exaggerated the conclusions. However, we found no evidence that 

the dose of the antipsychotic was a dominant factor in determining the effect on 

prefrontal activation: typical antipsychotics and clozapine induced hypofrontality 

across their dose range while atypical drugs, irrespective of dose, generally did 

not. 
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Similarly, treatment with antipsychotics at baseline versus medication free 

status may have a substantial contribution to study outcome, as is shown by other 

studies (Davidson and Heinrichs 2003; Hill et al. 2004). We did not observe an 

effect of medication status. Part of the studies did not report medication status at 

baseline, and other studies used in most cases medication free patients or 

switched from typical to atypical medication, which is expected to have a positive 

effect on the prefrontal cortex. 

Moreover, the severity of negative symptoms may have an effect on the 

choice of antipsychotic treatment. Clozapine is often prescribed to patients with 

more severe negative symptoms. Indeed, most studies on clozapine performed by 

Molina et al., studied treatment resistant patients which may have more severe 

negative symptoms. Additionally, diagnosis and duration of illness could have 

their effect (Glahn et al. 2005) showed indeed that chronicity influences 

prefrontal activation. Patients with a longer duration of illness or who were older 

had a lower prefrontal activation. Besides, males with schizophrenia have shown 

stronger prefrontal responses than females (Davidson and Heinrichs 2003). 

Patients with bipolar disorder also show different brain activation than patients 

with schizophrenia (McIntosh et al. 2008). However, the effect of diagnosis on 

prefrontal activation has not been investigated in psychotic disorders specifically. 

Of a different note, task was linked to study outcome: While there was no 

systematic difference in study outcome between different cognitive tasks, half of 

the studies that showed results not supporting our hypothesis were resting state 

studies. Resting state is characterized by undirected brain activation (Davis et al. 

2005), and we postulate that this may result in a very low intrinsic sensitivity of 

this technique to detect hypofrontality in psychiatric patients. 

Imaging modality may also have had its influence. As indicated, [
18

F]-FDG 

PET is based on metabolism, while fMRI, HMPAO SPECT, and H2-
15

O PET methods 

are based on perfusion. Also the time resolution is different. However, imaging 

modality had no apparent effect on study outcome in our study, as was previously 

found (Hill et al. 2004). 
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Of a final note is the direct effect that antipsychotics can exert on blood 

vessels (Da Silva Alves et al. 2008). Abler et al. showed that a single dose of 

olanzapine in healthy controls decreases activation of the IFC, ACC, and ventral 

striatum during a monetary reward task, but that these effects were partially 

mediated by general effects of olanzapine on blood flow (Abler et al. 2007). On 

the other hand, a recent review showed that the effect of antipsychotics on the 

BOLD signal is possibly limited (Röder et al. 2010). 

Summarizing the results of this review, antipsychotics with a weak D2 

antagonism and strong 5-HT2A antagonism seem to increase or preserve 

prefrontal activation more than strong DA antagonists do. Clozapine shows an 

opposite picture of decreased activation associated with clinical improvement. 

Future studies should address the question whether increased prefrontal capacity 

by antipsychotics is beneficial for treatment of negative symptoms and cognitive 

impairments. Improvement of these negative symptoms would implicate a large 

gain in quality of life for patients with schizophrenia. 
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Abstract  

Introduction: Negative symptoms of schizophrenia often predict an unfavorable 

clinical outcome. Disturbed dopamine transmission in different brain parts may 

underlie different aspects of negative symptoms, and the effect of antipsychotics 

on them may also differ. This pilot study investigated the potentially therapeutic 

effects of the partial dopamine agonist aripiprazole on different negative 

symptoms. Methods: This pilot study randomly assigned patients with 

schizophrenia (N = 40) to either aripiprazole or risperidone. After 6 weeks of 

treatment, the severity of negative symptoms was determined by the PANSS. 

Subscales of self-report questionnaires were used to assess differences in 
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initiative, anhedonia, social functioning and subjective well-being. Results: 

Patients treated with aripiprazole showed a significant improvement on measures 

for anhedonia and subjective well-being. Negative symptoms in general, lack of 

initiative, and social inhibition were also lower in the aripiprazole treated group, 

but without reaching statistical significance. Discussion: According to this pilot 

study, aripiprazole appears to specifically improve anhedonia and subjective well-

being compared to risperidone. This may be caused by a specific effect of 

aripiprazole on the limbic branch of the dopamine system. Future studies should 

replicate this finding with a larger sample size.  

Introduction 

Schizophrenia is a disabling psychiatric illness, which strikes about 1 % of the 

population, often in early adulthood. The disorder is characterized by positive and 

negative symptoms, and cognitive impairments (Mueser and McGurk 2004). 

Positive symptoms include hallucinations and delusions. Negative symptoms 

include emotional flatness, speech impairments, lack of initiative, anhedonia, and 

social inhibition (Andreasen 1982). Negative symptoms have a large impact on 

social functioning and a satisfactory integration in the community (Gold et al. 

1997). 

Dopamine (DA) pathways are thought to play a major role in the 

symptomatology of schizophrenia (Grace 2000). According to the dopamine 

hypothesis, positive symptoms are caused by a hyperdopaminergic state in the 

striatal and mesolimbic dopamine pathways, whereas negative symptoms may 

reflect a hypodopaminergic state in the mesocortical pathways, which include the 

prefrontal cortex (Abi-Dargham and Moore 2003; Abi-Dargham and Laruelle 2005; 

Jarskog et al. 2007). 

In this model, the origin of all negative symptoms is attributed to prefrontal 

functioning, while the functions underlying the symptoms (e. g., emotion, 

initiative, speech) are very diverse. Some studies indicate that, for example, lack 

of initiative and lack of social dysfunction may indeed originate from prefrontal 

dysfunction (Goldman-Rakic 1994), while emotional flatness (anhedonia) may 
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originate from disturbances in the limbic dopaminergic branch and the nucleus 

accumbens (Gur et al. 2007; Juckel et al. 2006). 

Antipsychotic drugs have shown to be effective in reducing positive 

symptoms by blocking DA receptors. However, their effects on negative 

symptoms are controversial. Because negative symptoms possibly have different 

neuroanatomical and neurochemical backgrounds, effects of anti-psychotics on 

e.g., lack of initiative (Chan et al. 2007) or anhedonia (Lambert et al. 2003), and 

other negative symptoms may also be differential.  

The primary mechanism of action of the earliest, first-generation, 

antipsychotics concerns strong blockade of dopamine receptors (Bortolozzi et al. 

2007; Jordan et al. 2004). By blocking the prefrontal and limbic dopamine system, 

dopaminergic output may decrease, and result in exacerbation of negative 

symptoms (Brown et al. 2003; De Haan et al. 2006). 

More recent antipsychotics share a high serotonin (5-HT) antagonism, 

sometimes with a low dopamine antagonism, and are referred to as atypical or 

second-generation antipsychotics. 5-HT receptor antagonism (and low DA 

antagonism) may help to preserve endogenous dopamine transmission (Abi-

Dargham and Moore 2003; Da Silva Alves et al. 2008; Jarskog et al. 2007; Kapur et 

al. 2000; Lee et al. 1994). According to some authors, this receptor profile may 

result in a limited improvement of negative symptoms and subjective well-being 

(Green et al. 1999; Lambert et al. 2003; Van Nimwegen et al. 2008).  

In 2001 aripiprazole, a partial dopamine receptor agonist, became available 

for clinical use (McGavin and Goa 2002). Aripiprazole acts either as a functional 

dopamine agonist or a functional antagonist, depending on the surrounding levels 

of dopamine (Lieberman 2004). Thus given its putative working mechanism, 

aripiprazole may stabilize dopaminergic transmission in different brain regions 

(Bortolozzi et al. 2007; Jordan et al. 2004; Semba et al. 1995) and in this way 

improve negative symptoms. Previous studies showed that aripiprazole has a 

beneficial effect on negative symptoms (Janicak et al. 2009; Kane et al. 2007; 

Riedel et al. 2010a), cognitive functioning (Riedel et al. 2010a; Riedel et al. 2010b), 

and quality of life (Kane et al. 2007; Kane et al. 2009), but that these effects are 
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not superior to those of other atypical antipsychotics (Janicak et al. 2009; Kane et 

al. 2007; Riedel et al. 2010a). These studies addressed a broad domain of 

symptoms while the effects of aripiprazole may be more specific.  

It would be of interest to study the clinical effects of aripiprazole on 

different symptom domains (e.g. initiative, social functioning, or hedonia) 

compared to a strong DA and 5-HT antagonist (risperidone).  

This could give some insight in whether negative symptoms indeed consist 

of different domains and whether antipsychotics affect them differently. It was 

hypothesized that aripiprazole in comparison to risperidone will have a more 

beneficial effect on domains of negative symptoms, but that the strength of this 

effect may differ between domains.  

Patients and Methods  

This pilot study included inpatients and outpatients diagnosed for schizophrenia 

(DSM-IV) or related psychotic disorders. They had to start or switch to a new 

antipsychotic for clinical reasons, e. g. side effects like weight gain or exacerbation 

of symptoms, without a preference for aripiprazole or risperidone. Participants 

gave written and oral consent in accordance with the local ethical committee for 

research. Patients could take any antipsychotic before entering the study except 

depot antipsychotics, aripiprazole or risperidone. Patients were randomly 

assigned to either open-label aripiprazole (starting dose 15 mg) or risperidone 

(starting dose 3 mg). Dosage could be adjusted weekly, as deemed necessary by 

the clinician (aripiprazole, 7.5-30 mg/day; risperidone, 1-6 mg/day). The patients 

were informed that effects of the switch would be assessed but they were blinded 

with regard to any hypothesis.  

Part of the study investigated the effects of antipsychotics on sexual 

functioning (De Boer et al. 2011), while other questionnaires addressed the 

effects of antipsychotics and subjective well-being of the patient. In the current 

study, an interview and two questionnaires were used as a measure for different 

domains of negative symptoms (initiative, social functioning, hedonia). The 

Positive and Negative Syndrome Scale (PANSS) - (Kay et al. 1987) measures three 

domains of symptoms, namely Positive and Negative symptoms and General 
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pathology. Patients received the interview at baseline and after six weeks of 

treatment. The interview was performed by an experienced rater who followed a 

course for the interview and yearly did a consensus training. After six weeks, 

patients also filled out the Subjective Well-being on Neuroleptics (SWN) - (Naber 

et al. 2001), which measures subtle subjective changes, such as restrictions in 

emotionality, clarity of thinking, and spontaneity. The questionnaire correlates 

with quality of life and other self-ratings of mood (Wolters et al. 2009). Scores per 

item range from 1-6 (strongly disagree - strongly agree). Furthermore, patients 

received the Subject ’s Response to Antipsychotics (SRA) at week 6, which consists 

of 10 subscales (Wolters et al. 2003). This questionnaire measures both desired 

and undesired effects of antipsychotics. Scores per item range from 0 – 2 (no, yes 

to some extent, yes to a great extent). A Negative symptom factor of the PANSS 

(N1, N2, N3, N4, G7, and G16) - (Van der Gaag et al. 2006b) acted as a general 

measure of negative symptoms, and the SWN total score as a measure for 

subjective well-being. The SRA and SWN were scanned for subscales that could 

act as a measure for specific negative symptoms. When at least 2/3 of the 

questions within a subscale addressed one of the symptom domains (emotional 

flatness, speech impairments, lack of initiative, anhedonia, and social inhibition) 

this subscale was used as a measure. We used existing subscales, because they 

have shown a good internal consistency (Naber et al. 2001). When subscales of 

two questionnaires evaluate one symptom domain, they could be used as a 

control of each other in a group comparison. Largely different p-values of 

subscales measuring one domain would indicate that they mea sure different 

aspects. We included the SWN subscale Emotion regulation (e. g. “My emotions 

and sensations are dull. Nothing matters to me”; “I am interested in what is 
happening around me, and it is important to me.”) and the SRA subscale Flat 

affect (e. g. “My emotions are flat”; “I have less feeling”) as measures for 
anhedonia/subjective well-being. The SWN subscale Social integration and the 

SRA subscale Social inhibition were taken as a measure for social functioning. The 

SWN subscale Functioning of thinking (“My thoughts stay unrealized.”) and the 
Sedation subscale of the SRA (“I react more slowly.”) were used as measures of 
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initiative. Other symptoms could not be assessed with these questionnaires. No 

PANSS subscale or factor from a factor analysis was found to measure negative 

symptom domains. 

Groups were first tested for significant differences in demographic 

characteristics. Age and baseline PANSS scores (Positive, Negative, General) were 

compared with a t-test and gender with a Chi-square test for independence. DSM-

diagnosis previous medication (none, classical antipsychotic, clozapine, 

olanzapine, quetiapine, classical + olanzapine) duration previous treatment (none, 

< 1 week, 1-2 weeks, 2-6 weeks, 6 weeks-3 months, > 3 months), reason for 

switch of medication (new psychosis, insufficient effect, side effects, scientific 

research, other reasons), and co-medication (antidepressants, benzodiazepines, 

lithium and anticholinergics, antidepressant + benzodiazepine, antidepressant + 

lithium and lithium + benzodiazepine) were considered as categorical variables 

and tested with Chi-square test for independence. Average dose and dose range 

of aripiprazole and risperidone at week 6 were also reported, but were not 

statistically compared because their effect on the dopamine receptor is so 

different. Group comparison of the symptom domains consisted of a Mann-

Whitney U-test for the different subscales separately (α = 0.05).  

Results  

40 patients (20 in each group) participated in the study. 3 patients (1 woman) 

treated with risperidone and 5 patients treated with aripiprazole did not complete 

the study but discontinued the study before the second week. Subjects 

discontinued because of subjective restlessness (reported by 5 patients), 

sometimes combined with akathisia (N = 1), sleeplessness (N = 2), suicidal 

behavior (N = 1). Two other patients stopped because of non-compliance of 

medication, and one for unknown reasons. 

Patients characteristics are listed in Table 25. Groups did not differ 

significantly in age, baseline PANSS scores, gender, DSM-diagnosis previous 

medication, duration previous treatment, reason for switch of medication, and co-

medication during the study. At week 6 the risperidone group was using an 

average of 3.2 mg risperidone (SD 1.2; range 1-5 mg). The average dose of  
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Table 25 Demographical data of the aripiprazole and risperidone groups, which showed no 

significant differences 

  Aripiprazole Risperidone   

Variable  Mean SD/% Mean SD/% Test p-value 

Age (SD)  29.2 8.8 29.0 6.0 t-test 0.95 

Gender (m/f)  16/4 - 13/5 - Chi-

square 

0.86 

diagnosis 

(freq.): 

297.1 1 33.3 2 66.7 Chi-

square 

0.53 

 295.10 0 0 2 100   

 295.20 0 0 1 100   

 295.30 10 52.6 9 47.4   

 295.40 2 66.7 1 33.3   

 295.60 0 0 1 100   

 295.70 2 100 0 0   

 295.90 2 66.7 1 33.3   

 298.90 1 50 1 50   

PANSS (SD) Positive symptoms 12.6 4.3 11.3 4.5 t-test 0.41 

 Negative symptoms 13.6 4.8 15.5 4.4 t-test 0.26 

 General pathology  26.7 6.0 27.0 6.3 t-test 0.90 

Antipsychotic 

(freq.): 

Strong DA 

antagonist 

2 50 2 50 Chi-

square 

0.97 

 Olanzapine 11 57.9 8 42.1   

 Quetiapine 2 66.7 1 33.3   

 Strong DA + 

Olanzapine 

1 50 1 50   

Duration 

previous 

treatment 

(freq.): 

Not applicable 3 33.3 6 66.7 Chi-

square 

0.41 

 2-6 weeks 2 50 2 50   

 6 weeks - 3 months 1 25 3 75   

 > 3 months 11 61.1 7 39.9   

Reason 

switch 

(freq.): 

Treatment 

unsatisfactory 

7 58.3 5 41.7 Chi-

square 

0.59 

 Side effects 1 33.3 2 66.7   

 Scientific research 0 0 1 100   

 Other 6 60 4 40   

Coeducation 

(freq.): 

None 11 45.8 13 54.2 Chi-

square 

0.310.3

4 

 Antidepressant 5 83.3 1 16.7   

 Benzodiazepine 2 40 3 60   

 Lithium 1 100 0 0   

 Anticholinergic 1 100 0 0   

 Antidepressant + 

lithium 

0 0 1 100   
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aripiprazole was 12.6 mg (SD = 5.8, range 5-30 mg). After treatment with 

aripiprazole or risperidone, subjects failed to show a difference in negative 

symptoms measured by the PANSS, but patients on aripiprazole reported a 

significant better subjective well-being as shown by the SWN total score (Md = 

143, N = 15; Md = 129, N = 16), U = 64.5, z = 2.2, p = 0.027, d = 0.87.  

Furthermore there was a significant difference in the SWN measure for 

anhedonia between risperidone (Md = 24, N = 17) and aripiprazole (Md = 29.5, N 

= 16), U = 71, z = 2.35, p = 0.019, d = 0.86, and trend for significance for the SRA 

Flat affect subscale (Md = 2.0, N = 17; Md = 1.0, N = 15 resp.), U = 83.5, z = 1.70, p 

= 0.090, d = 0.62. The aripiprazole group also showed a lower incidence of other 

symptom domains measured by the subscales, but these differences were not 

significant. The p-value levels for the two different questionnaires within one 

symptom domain showed a fairly consistent pattern. For a complete overview, 

see Table 26. 

Discussion  

The aim of this pilot study was to compare the effects of a partial dopamine 

agonist and an antagonist on different domains of negative symptoms. Symptoms 

domains were assessed by sub-scales of validated questionnaires and compared 

between groups. We expected that aripiprazole would have a superior effect on 

different domains of negative symptoms.  

In line with the hypothesis, a differential effect of aripiprazole on subjective 

well-being and anhedonia was observed compared to risperidone. Concurrently, 

aripiprazole also showed a subtle better improvement of other symptom domains 

and the PANSS Negative symptom factor, although not reaching statistical 

significance. This implies that aripiprazole may have a preferential effect on 

anhedonia (and well-being).  

Aripiprazole has been shown to increase dopamine release in medial 

prefrontal regions (Bortolozzi et al. 2007; Li et al. 2004). An increased dopamine 

release is suggested to improve negative symptoms. However, in line with earlier 

studies, this study did not show a superior effect of aripiprazole on negative 

symptoms (Janicak et al. 2009; Kane et al. 2007; Riedel et al. 2010a). It might be 
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effects of aripiprazole are only apparent at certain sub-domains, as is suggested 

by our study. 

 

Table 26 Comparison between aripiprazole and risperidone on the measures for hedonia, 

initiative, and social interaction, a significant effect was found for the SWN emotion regulation 

subscale; N = number of subjects, Md = median, U = Mann-Whitney U-value, d = effect size 

Subscale Aripiprazole Risperidone     

 N Md N Md U Z p d 

Negative 

symptoms 

        

PANSS Negative 

scale  

14 12.5 16 14.5 82 1.25 0.21 0.39 

Subjective well-

being 

        

SWN total score 15 143 16 129 64.5 2.2 0.027 0.87 

Hedonia         

SWN Emotion 

regulation 

16 29,5 17 24 71 2.34 0.019 0.86 

SRA Flat effect 15 1.0 17 2 83.5 1.70 0.090 0.62 

Initiative         

SWN Functioning 

of thinking 

16 29.0 17 27 110 0.94 0.35 0.43 

SRA Sedation 16 4.5 18 3.5 133 0.38 0.72 0.14 

Social interaction         

SWN Social 

integration 

16 31.0 16 29 95.5 1.20 0.22 0.52 

SRA Social 

inhibition 

12 1.0 18 2 87.5 0.89 0.40 0.38 

 

In line with Mizrahi et al. (Mizrahi et al. 2009), this study showed that 

aripiprazole increased subjective well-being and hedonia more than a strong DA 

antagonist (Naber et al. 2001). Moreover, aripiprazole has also shown good 

treatment effects on depression and bipolar disorder (McIntyre 2010; Pae et al. 

2008), and the same receptor effects may alleviate or stabilize (an)hedonic mood 

(Pae et al. 2008). DA receptor occupancy of aripiprazole appears to be 

uncorrelated with subjective well-being, while this is the case for strong DA 
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antagonists (Naber et al. 2001). This may be an indication that aripiprazole acts in 

a different way on the dopamine system than other antipsychotics.  

These specific effects of aripiprazole may be related to the partial agonistic 

properties on the dopamine receptor. Experiments in rats showed that atypical 

antipsychotics selectively block DA receptors and decrease DA output of the 

mesolimbic system and the shell of the nucleus accumbens (involved in reward) 

(Han et al. 2009).In contrast, aripiprazole does not influence or even augments DA 

output, decreases DA reuptake, and increases DA receptor expression in the 

mesolimbic system and decreases nigrostriatal output (Han et al. 2009; Pae et al. 

2008). Moreover, 5-HT2C antagonism (stronger in aripiprazole than in risperidone) 

may result in increased serotonin induced dopamine release in the nucleus 

accumbens (Pae et al. 2008). Possibly, absence of limbic down-regulation during 

treatment with aripiprazole causes increased or preserved experience of 

emotions. 

This study was designed as a pilot and therefore suffers from some 

limitations. The number of subjects was low and the study did not include 

baseline measurements of SRA and SWN. However, since both groups showed 

equal baseline characteristics and were randomized, comparable baseline 

conditions may be assumed. Additionally, the SWN and SRA showed a consistent 

picture, as both p-values for anhedonia were (almost) significant, but the other 

results were not. This study may therefore be considered a first step in 

disentangling different domains (initiative, hedonia) of negative symptoms and 

the effects of antipsychotic treatment on these symptoms. 

In conclusion, this pilot study shows that aripiprazole in comparison to 

risperidone may have a differential and for patients a preferable effect on 

anhedonia and subjective well-being. This effect may be related to a specific 

effect on the dopaminergic output of the limbic system. Future studies using 

larger study populations and repeated measurements are needed to confirm 

these findings and to focus on details. 
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10. Discussion 

In this thesis different brain networks were investigated in relation to network 

function in patients with schizophrenia. Schizophrenia patients show symptoms 

and behavioral impairments that may be caused by disturbances in networks that 

include the prefrontal cortex. Chapter 2 and 3 show that schizophrenia patients 

indeed have altered connectivity between prefrontal regions and more posterior 

language and auditory regions, both during rest and performance of a task. 

Chapter 4 shows that decreased abilities of patients to make associations 

between words and emotions, i.e. linking language and emotion, may also relate 

to altered prefrontal network connectivity. Self-reflection problems may cause 

multiple symptoms of schizophrenia. As an example of one of these symptoms, 

Chapter 5 shows that patients with poor insight in their illness have decreased 

connectivity in default mode network (DMN) regions involved in self-reflection. 

Healthy subjects with relatively low capacity to evaluate and describe emotions 

also show altered DMN connectivity, as can be read in Chapter 6. This impaired 

ability to evaluate and describe emotions is called alexithymia, which overlays to 

certain extent with negative symptoms of schizophrenia (e.g. both involve 

reduced emotional expression). Negative symptoms may originate from impaired 

prefrontal function, and it has been hypothesized that newer antipsychotics may 

be superior to older ones in that they stimulate prefrontal activation. According to 

Chapter 8, prefrontal activation indeed increases after treatment with weaker DA 

antagonists, however symptoms did not improve. Interestingly, Chapter 7 showed 

that negative symptoms may consist of different subgroups, and Chapter 9 that 

only specific symptoms may improve due to treatment with a new antipsychotic. 

These findings could encourage research on improved symptom definitions, which 

in turn could act as a starting point for neuroimaging research and development 

of novel treatment options. For now, I will start with general conclusion 

concerning the findings in this thesis, before I discuss the findings in more detail. 
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Prefrontal networks 

The prefrontal cortex is a highly complex brain region with intimate connections 

to all other brain regions. Because of its high complexity, changes in prefrontal 

function may lead to complex changes in behavior (Goldberg 2009). As is shown in 

this thesis, schizophrenia is indeed a disorder with complex manifestations of 

symptoms that in multiple facets relate to prefrontal network functioning. 

Current fMRI investigations often report on dysfunctions of separate brain 

regions and their implications (Fletcher et al. 1999; Glahn et al. 2005). However, 

brain regions do not function as isolated entities, thus the effect of disturbances 

in one brain region should preferably be considered within the network of brain 

regions it is part of (Fuster 2009; Goldberg 2009). In this framework, brain 

connectivity studies may add to our current knowledge of brain functioning as 

well as pathology in certain psychiatric conditions. 

The brain network that receives most attention in this thesis is the DMN, 

although multiple brain networks are important for brain function (Damoiseaux et 

al. 2006; Jafri et al. 2008). However, some researchers have proposed that the 

DMN may be the key hub of interactions with other networks and “facilitate the 
retrieval and integration of relevant informational components, stored in their 

modality-specific cortical areas, the product of which has a coherent spatial 

context, and can then later be manipulated and visualized” (Hassabis and Maguire 

2007; Kim 2010). The DMN may in this respect have a key role in anticipating on 

future events based on input from other networks (Buckner et al. 2008). On the 

other hand, the DMN deactivates during cognitive performance and a “task-

positive network”, which contains the dorsolateral prefrontal cortex (DLPFC), 
becomes increasingly active (Fransson 2006), see Figure 23. Possibly, an interplay 

between both networks with the PFC as a prominent player orchestrates brain 

function across different mental states (Fransson 2006). It may be interesting to 

incorporate this task-positive network in future analyses of brain function. 

Besides focusing on the implications of observed slow-wave fluctuations, 

the exact meaning of slow-wave fluctuations and brain connectivity should 

receive more attention (Auer 2008). In their influential paper, Raichle and 
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Gusnard consider a network of brain areas that shows coherent BOLD-signal 

changes as neuronal network with specific functions (Raichle et al. 2001). 

  

 

Figure 23 Default mode network identified as task-negative network in red and task-positive 

network in blue, based on N-back task (Fransson 2006) 

However, some authors have concluded that default mode fluctuations may 

represent non-neuronal, e.g. vascular, signals, or neural signals that may not be 

informative concerning cognitive function (Boly et al. 2008; Morcom and Fletcher 

2007). Other authors concluded that the DMN indeed has a neuronal origin and 

supports cognitive functions, and thus can provide important information about 
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brain physiology and disease states (Auer 2008; Broyd et al. 2009; Buckner et al. 

2008; Spreng and Grady 2009). However, the exact meaning of the fluctuations 

remains to be elucidated, and non-neural sources may still confound the observed 

signal (Auer 2008). Although not everything is known about the measured fMRI 

signal, it can provide important information about brain function in certain 

disorders. 

Prefrontal networks in schizophrenia 

The DMN may be an important network to understand the pathology behind 

schizophrenia (Kuhn and Gallinat 2011; Schilbach et al. 2008). It has been shown 

that patients with schizophrenia have a stronger local connectivity of the DMN 

both within the network and to other brain regions (Jafri et al. 2008). On the other 

hand, they have decreased long-range connectivity (Lynall et al. 2010; Van den 

Heuvel and Hulshoff Pol 2010). This may result in a decreased ability to switch 

states and to coordinate the activation of specific networks, including successful 

deactivation of the DMN during task performance (Garrity et al. 2007; Jafri et al. 

2008; Kim et al. 2009; Sambataro et al. 2010). Degraded prefrontal connectivity 

may be an important cause for a disturbed controlling function of the DMN on the 

level of awareness (Van et al. 2010). This supports the hypothesized role of the 

DMN as a conductor of brain networks, with the PFC at the top of the hierarchy, 

and may explain symptoms patients experience in schizophrenia like disorganized 

thinking, impaired attention, negative symptoms and lack of insight into their 

illness. 

Other interesting aspects of brain development and function also point to 

an important role for the DMN and specifically the PFC in schizophrenia. For 

example, healthy children show connectivity between posterior DMN regions, but 

not with the PFC (Bluhm et al. 2008). These prefrontal connections develop in 

early adulthood, which typically is also the life phase when full-blown 

schizophrenia may develop. Moreover, while schizophrenia is more prominent in 

males, frontal connections appear to be stronger in females (Bluhm et al. 2008). 

This could imply that their more robust prefrontal connections may protect 

women to some extent against schizophrenia. On a neurotransmitter level, it has 
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been suggested that decreased dopaminergic input to the PFC may cause a 

disturbed modulation and synchronization of the DMN (Sambataro et al. 2010) or 

fronto-temporal connectivity (Fletcher et al. 1999), which would fit the most often 

reported brain dysfunctions in schizophrenia. These aspects could be interesting 

starting points for future research. 

 

 

Figure 24 The prefrontal cortex provides multiple motor plans by which it drives goal-directed 

behavior and the most effective plan is then selected within the nucleus accumbens via the 

facilitatory effects of hippocampal and amygdalar influences; Under normal conditions, the 

hippocampus selects behavioral output based on the current context of the situation or past 

experiences with the stimulus; However, should a stimulus with a high affective valence - e.g. a 

threatening object - come into play, the amygdala can over-ride the hippocampal influence, and 

instead direct behavior in a manner that can effectively deal with the threatening stimulus (Grace 

2000) 

Apart from DMN dysconnectivity being related to symptomatology in 

schizophrenia, additional imbalance in activity of other brain networks may exist. 

Dysfunction of one region, such as the prefrontal cortex may cause relative 

hyperactivity or impaired function of other regions (Glahn et al. 2005; Goldberg 

2009; Minzenberg et al. 2009). It has been hypothesized that schizophrenia is 

caused by a dysfunctional cerebellar-thalamic-temporal-striatal-prefrontal-

network (Frith et al. 2009). The cerebellum shows interactions with the PFC 

(Goldberg 2009) and is part of the DMN in its broader definitions (Buckner et al. 
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2008; He et al. 2004). In this context the cerebellum is involved in complex 

planning and working memory (Goldberg 2009; Kim et al. 2009; Rieheman et al. 

2001). Unfortunately, the cerebellum is often neglected in the interpretation of 

MRI data and also not covered in this thesis. This brain area should be an 

important candidate for future fMRI studies of schizophrenia. 

Grace proposed another interesting model of brain network dysfunction in 

schizophrenia, involving the amygdala (Grace 2000). See Figure 24 and Figure 25. 

In this model, emotional drive from the amygdala competes with the normal goal-

directed behavior of the PFC and in this way disturbs normal executive functioning 

(Grace 2000). Based on the discussed literature and our own findings, I would 

propose that not only the amygdala may be overactive, but that PFC dysfunction 

may lead to a relatively submissive state of the PFC to other brain areas and 

functions, including the amygdala. 

 

 

Figure 25 In schizophrenia, the amygdala not only fails to facilitate prefrontal cortical throughput, 

but in this condition actually competes with it for driving accumbens cell activity; Therefore, 

instead of selecting response strategies based on the goal-directed motor plan by the prefrontal 

cortex, the system is biased to react exclusively based on the affective valence of the stimulus; As 

a result, the planned behavior is replaced by impulsive responses based solely on the emotional 

state of the subject (Grace 2000) 

In conclusion, a general model for the pathology of schizophrenia is slowly 

gaining shape. The prefrontal cortex and the DMN may have an important role in 
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this model, in close association with other brain areas. However, to gain more 

insight into the pathology, a more specific focus on the neural background of 

certain symptoms is important. 

Networks abnormalities in relation to different symptoms of 

schizophrenia 

Language is important for executive and social functioning (Fuster 2009; Goldberg 

2009). Disturbances in brain networks involved in language processing could have 

widespread consequences for patients with schizophrenia (Crow 2008). In Chapter 

2 and 3, the function of language networks in schizophrenia is covered. Both 

studies report decreased connectivity between temporal and frontal language 

areas, consistent with other studies (Ford et al. 2010; Hashimoto et al. 2010; 

Jeong et al. 2009; Karlsgodt et al. 2008). But whereas, the resting state analysis in 

Chapter 2 failed to show a difference in connectivity between hallucinating and 

non-hallucinating patients, Chapter 3 on task fMRI using Dynamic Causal Modeling 

(DCM) did report differences between these two groups. Possibly, resting state 

analysis with ICA taps more into trait characteristics, whereas DCM is more 

sensitive to trait aspects of functioning (Meyer-Lindenberg 2009). These findings 

show that different approaches to study a certain phenomenon may have additive 

value. 

Another interesting finding in Chapter 2 was an increased connectivity 

between language areas and the ACC, which is also part of the DMN. Earlier 

studies have related disturbed ACC function to impaired source monitoring in 

schizophrenia (Allen et al. 2007; Allen et al. 2008). In patients, self-generated 

speech is often tagged as coming from a non-self source (Allen et al. 2007), 

possibly caused by defective self-monitoring (Simons et al. 2010; Stephane et al. 

2001; Wang et al. 2011) related to ACC and MPFC dysfunction (Brüne et al. 2008). 

Another cognitive process that may be related to disturbed self-processing 

is associative emotional learning (Parnas and Handest 2003; Sass and Parnas 

2003). This process is used to make associations between emotional stimuli and 

other stimuli, for instance, one’s emotional state and a word to describe it. 
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Generation of inappropriate associations has been regarded as a risk-factor for 

developing certain symptoms of schizophrenia (Bleuler 1911). Chapter 4 shows 

that schizophrenia patients may show impaired prefrontal connectivity in a 

network of brain areas activated during associative emotional learning. 

Unexpectedly, the results were weak and no differences between schizophrenia 

patients and healthy controls were observed in connectivity of amygdala and 

hippocampus to PFC. Earlier studies also report controversial findings, so the role 

of these areas in emotional learning needs further investigation. 

Associating and verbalizing of emotions are language processes important 

for adequate social and psychological functioning (Swart et al. 2009). Alexithymia 

is a trait that is characterized by problems to interpret and verbalize emotions 

(Sifneos 1973; Taylor et al. 1991) and results in a higher risk to develop psychiatric 

symptoms (Taylor et al. 1997). Emotional awareness may also be dependent on 

good self-reflective capacities (Lane et al. 1997) and thus DMN capacities (Qin and 

Northoff 2011). Chapter 6 describes that students scoring high on alexithymia (but 

without psychiatric history) indeed show decreased DMN connectivity, and 

instead show higher connectivity to non-DMN brain areas during resting state. 

Other studies showed that when subjects with alexithymia are explicitly asked to 

rate emotions, they give similar ratings as non-alexithymic participants (Berthoz et 

al. 2002). It is suggested that alexithymia may occur as a result of being 

hyporesponsive to automatically self-processed emotions (Reker et al. 2009). In a 

similar way, decreased self-processing, i.e. evaluating information relevant for the 

self, may lead to higher levels of alexithymia in schizophrenia patients. 

Self-reflective problems are also widely observed in schizophrenia (Amador 

and David 2004). Impaired self-awareness may lead to a diminished awareness of 

symptoms, and eventually to impaired insight in schizophrenia and also in other 

psychiatric disorders (Flashman and Roth 2004; Lysaker et al. 2005; Van der Meer 

et al. 2010). Chapter 5 shows a link between poor insight and reduced 

connectivity of the ACC and de precuneus within the DMN. In the literature, 

specific attention is often given to self-awareness and insight in relation to 

prefrontal function (Johnson et al. 2002; Van der Meer et al. 2010). However, an 

association between insight or self-referential processing and the precuneus, 
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which can be found in the posterior brain, has also been reported (Carter et al. 

2001; Kuhn and Gallinat 2011; Morgan et al. 2010). Thus, also posterior DMN 

functions such as autobiographical memory may be important for insight in 

schizophrenia (Cooke et al. 2008; Whitfield-Gabrieli et al. 2011). 

In general, the findings reported in this thesis show that brain networks 

involved in self-processing and language processing may be important in 

understanding aspects of dysfunction in schizophrenia, both in executive and 

social cognitive domains (Crow 2008; Nelson et al. 2009; Parnas and Handest 

2003; Sass and Parnas 2003; Stirling et al. 2001). It has even been suggested that 

self-processing and language disturbances may even have diagnostic validity for 

schizophrenia (Raballo et al. 2011). Integrating the findings in this thesis and 

earlier findings, we could conclude that disturbances of the DMN may relate to a 

broad spectrum of deficits observed in schizophrenia (Brüne et al. 2008; Cooke et 

al. 2008; Schilbach et al. 2008). 

Thus far this thesis focused on brain function and connections. With regard 

to schizophrenia symptoms, the negative symptoms may be most strongly caused 

by prefrontal dysfunction. Symptoms that often occur together may even have a 

shared (neural) background. The next part of the discussion focuses on the nature 

of the construct of negative symptoms. 

Symptom dimension approach 

Negative symptoms may be the most disabling symptoms in schizophrenia, but 

often receive less attention than positive symptoms. It has often been debated 

whether negative symptoms constitute one domain (Kirkpatrick and Fischer 2006; 

Messinger et al. 2011; Sass and Parnas 2003). Chapter 7 shows with factor 

analysis and subsequent confirmation in a separate cohort that negative 

symptoms may consist of two sub-domains, namely emotional deficits and social 

amotivation. Emotional deficits and social amotivation could thus be seen as two 

separate though related problems within the negative symptoms domain. A 

revised view on certain symptoms could have important implications for 

diagnostics and treatment, as discussed below. 
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A more fundamental question would be if these two sub-domains actually 

represent problems recognized by patients and whether they would relate to 

different aspects of functioning and therapeutic interventions. Based on the 

expressive deficit factor, one could conclude that patients encounter emotional 

problems in their daily life situations. However, patients with schizophrenia may 

in fact have intact experience of emotion, while only expression of emotion is 

impaired (Kirkpatrick and Fischer 2006; Messinger et al. 2011; Sass and Parnas 

2003). Other studies suggested that patients may show deficits in anticipatory 

experience of pleasant emotions, while consumatory experience, thus at the 

moment itself, may be intact (Messinger et al. 2011). A first step in a better 

definition of symptoms would be to start with more accurate monitoring of what 

patients are really able to achieve, or what problems they encounter from their 

own perspective (Foussias and Remington 2010). 

Better definitions and criteria are also needed for research using cognitive 

tasks. Some studies on schizophrenia do not show impaired performance on 

cognitive tasks, but meanwhile patients fail to run a household or work in a job 

setting (Goldberg 2009). There may be a large gap between experimental 

conditions used to measure symptoms, not biased by motivation or 

environmental distracters, and daily life settings. Moreover, there may be little 

overlap between objectively rated life circumstances and subjective quality of life 

experience of patients (Fitzgerald et al. 2001). Better and more realistic measures 

of daily functioning may be required (Messinger et al. 2011). For example, in 

current working memory tasks used in clinical research the participant is asked to 

remember specific stimuli, but in real life, an important aspect of executive 

function is the autonomous selection of relevant stimuli and omission of 

irrelevant ones (Goldberg 2009).  

A better mapping of actual dysfunctions related to schizophrenia may also 

help to answer the question whether schizophrenia is a uniform disorder, or a 

syndrome with different clinical representations (Glahn et al. 2005; Keefe et al. 

1992; Nelson et al. 2009). The current understanding of certain symptom domains 

may be constrained by instrumental limitations to measure symptoms (Blanchard 

and Cohen 2006).  



 

 

 

 

 
 Discussion 

 183 

A more general discussion point would be the strict distinction between 

diagnoses such as depression, schizophrenia and anxiety disorder. It has been 

observed by some clinicians (personal communications) that diagnosis may even 

partly depend on which symptoms patients report as most invalidating, on 

behavior most apparent during observation, or even on the psychiatric 

department a patient is admitted to. Moreover, symptoms belonging to different 

psychiatric diagnoses as classified in the DSM-IV strongly overlap (Borsboom et al. 

2011). A more symptom-cluster based approach of symptoms may help to find 

shared origins for certain groups of symptoms. 

It would be interesting to not only investigate domains of related 

symptoms, but also incorporate causation of one symptom to the other. For 

example, in this thesis disturbances in language processing and self-reflection are 

seen as symptoms that may contribute to various other symptoms. An interesting 

model that explains relations between symptoms has been proposed by Green: 

perceptual impairments > social cognitive dysfunction > defeats beliefs > 

experience of negative symptoms > decreased functional outcome (SIRS 

Conference 2012, Florence). Ultimately, more complex models could be 

formulated where disturbances in one function may lead to a cascade of other 

dysfunctions (Cramer et al. 2010). These cascades may then even interact with the 

personality of an individual, and help to unravel the question why some persons 

develop a psychiatric disorder, and others do not (Cramer et al. 2010). 

Well defined domains of symptoms may be a good starting point for further 

investigation of their neuroanatomical background (Glahn et al. 2005; Kirkpatrick 

and Fischer 2006). Symptoms that cluster together on a phenotypical level may 

also have a shared neural background (Bell et al. 2010; Goghari et al. 2010). E.g. 

concerning our two factor model of negative symptoms, social amotivation may 

be an important core cause for negative symptoms (Foussias and Remington 

2010) and may be caused by DLPFC dysfunction (Goldberg 2009; Kimhy et al. 

2006). On the other hand, expressive deficits may be linked to the inferior parietal 

lobule (Kimhy et al. 2006). More studies are now on their way linking data-
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determined symptom dimensions to their neural background, and they may be an 

important step forward for the field. 

Schizophrenia may well be a multidimensional disorder, with different 

neuroanatomical substrates per subtype (Davidson and Heinrichs 2003; Pinkham 

et al. 2003). Some disease-linked brain abnormalities may be present in one 

subgroup of patients, while other abnormalities are present in others (Kirkpatrick 

et al. 2001). While some patients with schizophrenia do not shows cognitive 

dysfunctions (Keefe 2007), and may not show prefrontal abnormalities, others do 

show prefrontal abnormalities (Davidson and Heinrichs 2003). Or, patients with 

paranoid symptoms have shown abnormalities in their social cognitive brain 

network and a related social cognitive dysfunction, but non-paranoid patients do 

not (Pinkham et al. 2008). 

Treatment of negative symptoms and other prefrontal 

dysfunctions 

Better characterization of symptoms has important implications for adequate 

diagnostics and treatment, and this is also the case for negative symptoms 

(Kirkpatrick et al. 2006; Messinger et al. 2011). When drugs always affect two 

symptoms similarly, measuring both symptoms has no additive value (Laughren 

and Levin 2011). On the other hand, negative symptoms of schizophrenia are now 

often used as one entity to evaluate treatment effects (Bell et al. 2011). But as 

Chapter 9 shows, only specific symptoms improve after treatment with a 

antipsychotic with a specific receptor profile, while the total negative symptom 

cluster does not. In this case, aripiprazole (a partial DA agonist) led to a specific 

improvement of feelings as measured by different questionnaires, while no 

effects were found for initiative or social interactions. 

Illness outcome should be the primary variable of interest in clinical 

research. An interesting approach to investigate antipsychotic effects is to focus 

on brain activation. Chapter 8 shows that dopamine and serotonin binding 

strength of antipsychotics influence prefrontal activation. A high dopamine 

receptor affinity caused in general a decrease in prefrontal activation, which has 

been linked to negative symptoms and cognitive impairments. Weaker dopamine 
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binding and serotonin antagonism more often increased or preserved prefrontal 

activation. However, most reviewed studies overlooked or failed to show 

concurring clinical and behavioral effects of treatment, (e.g. Bishara and Taylor 

2008; Honey et al. 1999). This controversy should receive more attention in the 

future. Whereas Chapter 8 only focused on activity in the PFC, future studies 

should focus on other brain areas and focus on different measure of brain 

function. For example, other studies have shown that the DMN and motor 

network show decreased fluctuations in response to antipsychotics (Abbott et al. 

2011). 

Furthermore, antipsychotics with different receptor profiles (Arnt and 

Skarsfeldt 1998) are often classified as one group of ‘atypicals’ (Bell et al. 2011). 

Besides dopamine, serotonin has important effects on prefrontal brain circuits 

(Bishara and Taylor 2008; Gozzi et al. 2010; Meltzer et al. 2003), as have 

glutamate (Belsham 2001; Laruelle et al. 2003), acetylcholine (Jarskog et al. 2007; 

Meltzer et al. 1999), and noradrenaline (Di Pietro and Seamans 2008; Goldman-

Rakic and Selemon 1997). Targeting these neurotransmitters has already shown 

to influence cognitive performance, e.g. glutamate (Yurgelun-Todd et al. 2005), 

serotonin (Meltzer et al. 2003; Yurgelun-Todd et al. 2005) or acetylcholine (Nahas 

et al. 2003) may provide potential targets. Moreover, noradrenaline appears to be 

equally important for cognitive function as dopamine (Fuster 2009). By focusing 

on these neurotransmitters systems, and possibly others as well, treatment 

resistant symptoms, such as negative symptoms and cognitive impairments, may 

be amenable to treatment (Vita and De Peri 2007). 

Besides pharmacological interventions, other, non-pharmacological ways to 

treat negative symptoms deserve further investigation. At the University Medical 

Center Groningen an ongoing study is investigating whether applying magnetic 

pulses to the prefrontal cortex by Transcranial Magnetic Stimulation (TMS) may 

ameliorate negative symptoms (Dlabac-De Lange et al. 2011). Other effective 

treatment strategies of negative symptoms may be psychological interventions, 

such as Behavioral Activation Therapy (Mairs et al. 2011). These methods may be 

as effective as medication, but cause less side effects. Most probably, in view of 
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the complex nature of negative symptoms in schizophrenia, an integrated 

treatment program should include combination of pharmacological, psychological, 

social, and vocational interventions. 

Thus, because multiple neurotransmitter systems are implicated in 

schizophrenia, individually tailored and integrated treatment strategies could be a 

large step forward in treatment. As the majority of clinical trials evaluates only 

one intervention to prove a treatment principle, integrated and individualized 

treatment strategies imply a challenging rethinking of clinical trial design and 

evaluation. 
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12. Summary 

The prefrontal cortex has an important leading role in brain functions. These 

regulating brain functions include executive function, goal-directed behavior, 

memory processes, initiative, and social behavior.  To regulate all its brain 

functions, the prefrontal cortex operates within brain networks, as information is 

collected from all parts of the brain, and newly planned behavior is redirected to 

all parts of the brain. Different brain networks exist, which show slow fluctuations 

in the BOLD signal. These fluctuations possibly represent intrinsic neural activity 

and are related to cognitive function.  

Dysfunction of the prefrontal networks may lead to disorders in which its 

higher order brain functions are impaired, such as schizophrenia.  This thesis 

discusses different cognitive functions in relation to prefrontal network 

connectivity in patients with schizophrenia. In addition, the thesis focuses on the 

treatment options of negative symptoms, which may also originate from 

prefrontal dysfunction. 

Language impairments and lateral prefrontal connectivity  are disussed 

during resting state in Chapter 2 and during task performance in Chapter 3. These 

chapters show that schizophrenia patients indeed have altered connectivity 

between prefrontal regions and more posterior language and auditory regions, 

both during rest and performance of a task. In resting state, additional increased 

connectivity was observed between the anterior cingulate cortex, involved in 

source monitoring, and language regions. 

Chapter 4 discusses a process with both emotional and language aspects; it 

focuses on the relation between associative emotional learning and prefrontal 

connections. The results of  the study indicate that decreased abilities of patients 

to make associations between words and emotions, i.e. linking language and 

emotion, may relate to altered prefrontal network connectivity. However, the 

observed effects were weak. 
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Emotion processing such as self-reflection is one of the functions of the 

default mode network. Self-reflection problems may cause multiple symptoms of 

schizophrenia. Chapter 5 reports on the link between poor insight in 

schizophrenia and default mode network (DMN) resting state connectivity, 

because impaired self-reflective capacities may underlie poor insight. Patients 

with poor insight indeed have decreased connectivity in DMN regions involved in 

self-reflection and auto-biographical memory, namely the anterior cingulate 

cortex and precuneus. 

Self-reflection may also be important for a good awareness of emotional 

state. An impaired ability to evaluate and describe emotions is called alexithymia. 

Chapter 6 reports on disturbed DMN function in healthy subjects with 

alexithymia. Persons with alexithymia show decreased connectivity of DMN areas 

within the network, and instead increased connectivity to other brain areas such 

as sensory and motor areas.  

Alexithymia overlaps to certain extent with negative symptoms of 

schizophrenia, e.g. both involve reduced emotional expression. The construct of 

negative symptoms as one group has been debated. Chapter 7 indeed shows that 

negative symptoms may consist of two sub-domains, expressive deficits and social 

amotivation, which may have relevance for research into the neural correlates 

and into treatment. 

Negative symptoms may originate from impaired prefrontal function, and it 

has been hypothesized that newer antipsychotics may be superior to older ones in 

that they stimulate prefrontal activation. Chapter 8 investigates whether 

antipsychotics with different receptor profiles may have a different effect on 

prefrontal activation by reviewing the published neuroimaging literature. 

Prefrontal activation indeed increases after treatment with weaker DA 

antagonists, however symptoms do not improve concurrently. 

Chapter 9 expands on the construct of negative symptoms and 

antipsychotic treatment by investigating effects of aripiprazole (a partial 

dopamine agonist) on different negative symptoms. The chapter shows that only 

specific symptoms may improve due to treatment with this new antipsychotic. 

These findings may act as a good starting point for future research.



 

 

 

 

 
Nederlandse samenvatting 

 215 

13. Nederlandse samenvatting 

Achtergrond 

De prefrontale cortex (het voorste gedeelte van de hersenen) speelt een 

belangrijke rol in dit proefschrift. De prefrontale cortex (PFC) heeft een rol in 

complex gedrag, zoals sociale interactie, geheugen, aandacht, het starten en 

stoppen van activiteiten en het wisselen van activiteiten (Fuster 2009; Goldberg 

2009). Deze functies van de PFC hebben allen te maken met het evalueren van 

gedrag uit het verleden, en het creëren of aanpassen van doelen en gedrag op 

basis van deze evaluaties. De prefrontale cortex zorgt er voor dat mensen kunnen 

leven in complexe, sociale situaties, en geavanceerde vaardigheden beheersen 

om te overleven (Goldberg 2009). 

Om zijn complexe functies te kunnen uitvoeren, heeft de prefrontale cortex 

verbindingen met het hele brein (Fuster 2009) en vervult hij een rol als een soort 

dirigent van een orkest (Goldberg 2009). De PFC is geen uniform geheel, maar 

bestaat uit verschillende sub-gebieden met elk een andere functie. Deze sub-

gebieden hebben in die functie ook andere verbindingen met specifieke delen van 

het brein. De onderste en middelste delen van de PFC (ventromediale PFC) zijn 

vooral betrokken bij de emotionele regulatie van gedrag. Ze zijn het sterkst 

verbonden met een emotioneel systeem midden in de hersenen, het limbisch 

systeem (Fuster 2009; Goldberg 2009). De zijkanten van de PFC (dorsolaterale 

prefrontale cortex) zijn meer betrokken bij planning en werkgeheugen, en hebben 

verbindingen met hersengebieden die daar meer mee te maken hebben, zoals de 

pariëtaalkwab (Fuster 2009; Goldberg 2009). Zowel de ventromediale als de 

dorsolaterale prefrontale gebieden zijn verbonden met de anterieure cingulate 

cortex (ACC). Deze bevindt zich in het midden van de hersenen achter de 

ventromediale PFC, en is betrokken bij zelfevaluatie en het aanpassen van gedrag 

bij veranderende situaties (Allman et al. 2001). 

Al in 1974 bleek uit onderzoek dat de prefrontale cortex tijdens rust 

actiever is dan de rest van het brein (Ingvar and Franzen 1974). Hersenonderzoek 
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met functional Magnetic Resonance Imaging (fMRI) richtte zich tot dat moment 

vooral op veranderingen van hersenactiviteit tijdens het uitvoeren van een 

bepaalde taak (Wicker 2003). Echter, het lijkt er op dat de PFC een belangrijk 

onderdeel van een netwerk van hersengebieden is dat juist heel actief is tijdens 

rust (Gusnard and Raichle 2001), en minder actief wordt tijdens een taak. Dit 

netwerk is betrokken bij het verwerken van informatie die te maken heeft met 

een persoon zelf (Gusnard and Raichle 2001) en wordt het “default mode 

netwerk” (DMN), vrijvertaald het “rustbrein” genoemd.  
Het default mode network is een netwerk van hersengebieden die samen 

een gelijktijdige toe- en afname van activiteit laten zien (Beckmann et al. 2005; 

Buckner et al. 2008; Raichle and Gusnard 2005). Naast het DMN zijn meer van 

deze netwerken, bijvoorbeeld voor zintuiglijke waarneming (zien, horen), 

motorisch gedrag (bewegen) of geheugen (Beckmann et al. 2005; Damoiseaux et 

al. 2006; Van de Ven et al. 2004). Ze overlappen met al bekende groepen 

hersengebieden die tijdens een bepaalde fMRI taak actief worden (Smith et al. 

2009; Van den Heuvel and Hulshoff Pol 2010).  

De prefrontale cortex lijkt een coördinerende rol te hebben in het 

functioneren van de netwerken. Dit is met name het geval bij het DMN, maar ook 

voor andere netwerken lijkt dit te gelden (Northoff and Bermpohl 2004; Northoff 

et al. 2006). Zo heeft de mediale prefrontale cortex een regulerende rol bij 

zelfevaluatie (Gusnard and Raichle 2001; Northoff and Bermpohl 2004; Raichle et 

al. 2001). Bij andere cognitieve processen, zoals taal en geheugen, lijkt de vooral 

laterale PFC een belangrijke rol te spelen als schakel tussen zelfevaluatie en het 

verwerken van informatie uit de buitenwereld (Northoff and Bermpohl 2004; 

Northoff et al. 2006; Qin and Northoff 2011).  

Waar de prefrontale cortex binnen het DMN een regulerende functie 

vervult, lijkt het DMN op zijn beurt weer de rol te hebben andere netwerken te 

reguleren (Hassabis and Maguire 2007; Kim 2010). Het DMN werkt hierbij samen 

met een ander netwerk dat juist actiever wordt tijdens cognitieve uitdaging 

(uitvoeren van taken), met de dorsolaterale prefrontale cortex (DLPFC) als 

belangrijk onderdeel (Fransson 2006). Beide netwerken wisselen elkaar 

waarschijnlijk af in het reguleren van hersenactiviteit. 
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Het bestuderen van de samenwerking (interacties) tussen hersengebieden 

in een netwerk wordt connectiviteit analyse genoemd. Deze analyse vormt een 

belangrijke aanvulling op huidig fMRI onderzoek naar activatie van 

hersengebieden met cognitieve taken (Fox and Raichle 2007; Van den Heuvel and 

Hulshoff Pol 2010). Vaak wordt nu in MRI analyses naar afwijkende activiteit van 

losse hersengebieden gekeken (Fletcher et al. 1999; Glahn et al. 2005), maar 

bestudering van netwerken met connectiviteit analyses lijkt biologisch ook 

waardevol (Fuster 2009; Goldberg 2009). Bovendien heeft het ook een aantal 

voordelen om connectiviteit tijdens rust, oftewel resting state, te bestuderen. Zo 

worden resultaten niet beïnvloed door verschil in cognitieve capaciteiten tussen 

groepen, bijvoorbeeld in onderzoek met patiënten (Fransson 2006; Smith et al. 

2009). 

Een populaire techniek om te kijken naar samenwerking tussen 

hersengebieden is Independent Component Analysis (ICA) (Beckmann et al. 2005; 

Calhoun et al. 2001). Deze techniek probeert ‘originele’ signalen te filteren uit het 

gemeten signaal dat bestaat uit een mix van verschillende signalen. Een simpel 

voorbeeld is een microfoon die een signaal opvangt van twee pratende mensen. 

In dat geval stelt ICA in staat om uit het samengestelde opgevangen geluid, de 

twee oorspronkelijke stemmen te reconstrueren. Op dezelfde manier kan ICA het 

signaal van verschillende netwerken in de hersenen herleiden uit een gemeten 

MRI signaal tijdens rust, en kan er verder onderzoek naar deze netwerken worden 

gedaan (Damoiseaux et al. 2006; Fox and Raichle 2007). 

Een groot voordeel van deze ICA techniek is dat iemand niet van te voren 

hoeft te voorspellen hoe de netwerken er uit zien (Van de Ven et al. 2004; Van 

den Heuvel and Hulshoff Pol 2010). De techniek is daarom heel geschikt om naar 

netwerken te kijken bij psychiatrische aandoeningen zoals schizofrenie, waarbij 

niet van te voren bekend is welke veranderingen er in het brein te verwachten 

zijn. 
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Prefrontale netwerken in schizofrenie 

Schizofrenie is een psychiatrische aandoening met een verscheidenheid aan 

symptomen, zoals het horen van stemmen, het hebben van overtuigingen die 

moeilijk te begrijpen zijn en verwardheid in het denken. Daarbij hebben veel 

mensen met schizofrenie problemen met het richten van de aandacht, het 

geheugen (o.a. werkgeheugen) en het oplossen van problemen. Deze problemen 

worden samen cognitieve functieproblemen genoemd. Zoals hiervoor beschreven, 

speelt de prefrontale cortex een belangrijke rol bij de uitvoering van verschillende 

cognitieve functies (Aleman et al. 1999; Goldberg 2009; Goldman-Rakic 1994; 

Rissling et al. 2010; Wible et al. 2009). Mogelijk speelt een verstoring in de PFC 

een belangrijke rol bij de cognitieve beperkingen en veranderingen in gedrag die 

optreden bij mensen met schizofrenie (Goldberg 2009; Goldman-Rakic 1994; 

Weinberger and Berman 1996). Ook zou een verminderde regulerende rol van de 

prefrontale cortex kunnen leiden tot ontremming van andere hersengebieden en 

het ontstaan van bepaalde symptomen (Frith et al. 2009; Goldberg 2009). 

Mensen met schizofrenie laten verminderde activiteit zien van de 

prefrontale cortex (Davidson and Heinrichs 2003; Hill et al. 2004; Weinberger and 

Berman 1996), dit wordt ook wel ook wel hypofrontaliteit genoemd (Ingvar and 

Franzen 1974). Preciezer geformuleerd, bij eenvoudige taken laten patiënten 

meer activiteit zien in de PFC dan mensen zonder schizofrenie (controles), terwijl 

ze vergelijkbaar presteren. Maar wordt de opdracht te moeilijk, dan laat de PFC bij 

mensen met schizofrenie juist minder activiteit zien en zijn ook de prestaties 

slechter vergeleken met mensen zonder schizofrenie (Jansma et al. 2004; Liddle 

and Pantelis 2003; Mendrek et al. 2004; Mendrek et al. 2007). 

Er lijkt bij schizofrenie sprake te zijn van een verstoring in de 

feedbackmechanismen tussen de PFC en andere hersengebieden (Fusar-Poli et al. 

2007). Anders gezegd, er is een verstoorde connectiviteit van de PFC met andere 

hersengebieden, waarbij ook de verbindingen van het DMN zijn aangedaan (Auer 

2008; Buckner et al. 2008; Greicius 2008). Vooral de de verbindingen tussen ver 

uit elkaar gelegen hersengebieden zijn aangedaan (Lynall et al. 2010; Van den 

Heuvel and Hulshoff Pol 2010). Het DMN speelt bovendien een rol in functies die 

vaak verstoord zijn bij schizofrenie, zoals zelfreflectie (Kuhn and Gallinat 2011; 
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Van der Meer et al. 2010) en het niet weten waar de eigen gedachten of 

waarnemingen vandaan komen (misattributie) (Buckner et al. 2008; Northoff and 

Bermpohl 2004). Ook heeft het DMN een belangrijke rol in de regulatie van 

activiteit van andere hersennetwerken (Fransson 2006). Een verstoorde 

(prefrontale) DMN activiteit kan leiden tot overactiviteit in andere netwerken 

(Buckner et al. 2008; Van et al. 2010), wat weer kan samenhangen met sommige 

symptomen van schizofrenie. 

Ook het functioneren van die andere hersennetwerken en hun onderlinge 

interactie spelen een rol bij schizofrenie (Glahn et al. 2005; Goldberg 2009; 

Minzenberg et al. 2009). Mogelijk is een sprake van veranderde functie van een 

zogenaamd cerebellair-thalamisch-temporaal-striataal-prefrontaal–netwerk (Frith 

et al. 2009). Een ander interessant model gaat er van uit dat de amygdala, of 

amandelkern, mogelijk overactief is, en de functie van de PFC overschaduwt 

(Grace 2000). Dit hersengebied geeft relevantie aan belangrijke, vaak bedreigende 

stimuli uit de omgeving. Het zou ook zo kunnen zijn dat de PFC te weinig actief is, 

waardoor de amygdala te weinig wordt geremd, waardoor te sterke ervaring van 

emoties als angst zouden kunnen ontstaan. 

Belangrijk om te vermelden is dat in dit proefschrift het cerebellum (kleine 

hersenen) en ook de amygdala (amandelkern) weinig aandacht krijgen, terwijl de 

eerste betrokken is bij planning en werkgeheugen en de tweede bij 

emotieverwerking, en beiden een onderdeel van het DMN zijn in ruimere 

definities. In vervolgonderzoek zou dit deel van de hersenen meer aandacht 

moeten krijgen. 

Naast een algemene benadering van afwijkingen in netwerkinteracties in 

schizofrenie, is het ook interessant om te kijken naar de relatie tussen specifieke 

symptomen en verstoorde hersengebieden. Dit is het onderwerp van de volgende 

sectie.  
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Prefrontale netwerken en hun relatie met symptomen van 

schizofrenie 

Een beter inzicht in de neurale achtergrond van cognitieve symptomen zou 

kunnen leiden tot betere behandelopties (Heinrichs and Zakzanis 1998; Palmer et 

al. 2009; Rissling et al. 2010). Cognitie is een brede term, en kan worden verdeeld 

in neurocognitie en sociale cognitie (Foussias and Remington 2010). 

Schizofreniepatiënten laten afwijkingen in verschillende neurocognitieve 

processen zien (Fusar-Poli et al. 2007; Glahn et al. 2005). Een verstoring in de 

dorsolaterale PFC (DLPFC) is mogelijk verantwoordelijk voor deze problematiek 

(Fusar-Poli et al. 2007; Goghari et al. 2010; Goldman-Rakic 1994; Minzenberg et 

al. 2009; Minzenberg et al. 2009). De mediale prefrontale cortex is mogelijk juist 

meer betrokken bij emotionele en sociale cognitieve problemen (Chemerinski et 

al. 2002; Goghari et al. 2010), die verderop zullen worden besproken. 

Taal is waarschijnlijk een belangrijk aspect van executief of neurocognitief 

functioneren (DeLisi 2001; Goldberg 2009). In veel onderzoek is aangetoond dat 

schizofreniepatiënten taalproblemen hebben (Crow 2008; Stephane et al. 2001; 

Wible et al. 2009). Mogelijk worden deze veroorzaakt door een verminderde 

controle van de prefrontale cortex over meer naar achter gelegen hersengebieden 

(Allen et al. 2008; Goldberg 2009; Wible et al. 2009). 

Hoofdstuk 2 en 3 onderzoeken connectiviteit in taalnetwerken tijdens 

respectievelijk een taal taak en resting state. Beide studies tonen aan dat er een 

verminderde connectiviteit is tussen temporale en prefrontale hersengebieden, 

consistent met andere studies (Ford et al. 2010; Hashimoto et al. 2010; Jeong et 

al. 2009; Karlsgodt et al. 2008). Hoewel hoofdstuk 3 een verschil aantoont tussen 

schizofrenie patiënten met en zonder (auditieve) hallucinaties, doet hoofdstuk 2 

dit niet. Dit kan komen doordat in het laatste geval een techniek gebruikt wordt 

die stabiele kenmerken van het brein meet, en in het eerste geval de gebruikte 

techniek meer gevoelig is voor veranderlijke kenmerken. Ook toont hoofdstuk 2 

een verminderde connectiviteit tussen taalgebieden en de anterieure cingulate 

cortex aan. Een verstoorde evaluatie van zelfgegenereerde taal, bijvoorbeeld als 

iemand in zichzelf denkt, is hier een mogelijk gevolg van (Brüne et al. 2008; 

Simons et al. 2010; Stephane et al. 2001; Wang et al. 2011). 
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Taal is een cognitief proces met zowel neurocognitieve als sociaal 

cognitieve aspecten (Hashimoto et al. 2010; Li et al. 2009; Stephane et al. 2001; 

Wible et al. 2009), en waarschijnlijk spelen de prefrontale en DMN gebieden hier 

een belangrijke rol in (Li et al. 2009; Stephane et al. 2001; Wible et al. 2009). Een 

verstoorde representatie van de ‘zelf’, kan leiden tot problemen in de 
interpretatie van dagelijkse sociale situaties en activiteiten (Nelson et al. 2009), 

hetgeen kan zorgen voor een verstoorde sociale cognitie (Frith 1995; Sass and 

Parnas 2003). Problemen met zelf-evaluatie kunnen leiden tot zowel een 

excessieve focus op de zelf (hyperreflexiteit), als tot een verminderde zelf-

evaluatie (Parnas and Handest 2003; Sass and Parnas 2003). Beiden kunnen 

onderstaande problemen tot gevolg hebben. 

Hyperreflexiteit in schizofrenie kan leiden tot het vormen van niet correcte 

associaties (Parnas and Handest 2003; Sass and Parnas 2003), bijvoorbeeld tussen 

gevoel en daarbij passende woorden (Murray et al. 2010). Dit wordt associatief 

emotioneel leren genoemd. Een prefrontaal netwerk dat ook andere emotionele 

hersengebieden bevat, speelt hier een belangrijke rol bij (Achim and Lepage 

2005). Hoofdstuk 4 laat zien dat een verstoorde connectiviteit van een prefrontaal 

netwerk met de emotionele hersengebieden mogelijk te maken heeft met een 

verstoord associatief emotioneel leren. 

Een verminderde zelfreflectie kan ten grondslag liggen aan een verminderd 

bewustzijn van bepaalde symptomen en dus een verminderd ziekte-inzicht (David 

1990; Northoff et al. 2006; Van der Meer et al. 2010). Dit is een veel voorkomend 

probleem bij schizofrenie (Amador and David 2004). Zelfevaluatie is één van de 

belangrijkste functies van het DMN (Buckner et al. 2008; Van der Meer et al. 

2010). Aangezien patiënten met schizofrenie een verstoorde functie van DMN 

gebieden laten zien, zou dit ook kunnen leiden tot verminderd ziekte-inzicht. 

Hoofdstuk 5 beschrijft dat patiënten met slecht ziekte-inzicht inderdaad 

verminderde connectiviteit in bepaalde DMN gebieden hebben. Vaak wordt 

gezegd dat vooral prefrontale gebieden te maken hebben met inzicht in 

zelfreflectie (Johnson et al. 2002; Van der Meer et al. 2010), maar deze studie lijkt 
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aan te tonen dat ook posterieure gebieden zoals de precuneus betrokken kunnen 

zijn (Carter et al. 2001; Kuhn and Gallinat 2011; Morgan et al. 2010). 

Een verstoord zelfbewustzijn vertoont ook samenhang met negatieve 

symptomen van schizofrenie en een verstoorde ervaring van emoties (Sass and 

Parnas 2003). Het vermogen om te kunnen reflecteren is van belang voor goed 

emotioneel besef (Lane et al. 1997) en het goed kunnen beschrijven van emoties 

(Swart et al. 2009). Indien iemand verminderd is staat is om gevoelens te ervaren, 

herkennen en beschrijven, wordt er gesproken van alexithymie (Aleman 2005). Dit 

persoonskenmerk kan leiden tot psychiatrische problematiek (Taylor et al. 1997). 

Er is een sterke relatie aangetoond tussen alexithymie en negatieve symptomen 

van schizofrenie gemeten met vragenlijsten (Cedro et al. 2001; Van 't Wout et al. 

2007; Yu et al. 2011). Ook op neuraal niveau lijkt deze relatie er te zijn, aangezien 

er hersengebieden zijn die zowel bij alexithymie als bij negatieve symptomen een 

rol spelen (Van 't Wout et al. 2007; Yu et al. 2011). Het DMN zou hierbij van 

belang kunnen zijn, vanwege zijn betrokkenheid bij zelfreflectieve processen (Qin 

and Northoff 2011). 

Hoofdstuk 6 beschrijft de betrokkenheid van het DMN bij alexithymie in 

gezonde studenten. Dit is een interessante onderzoekspopulatie om kennis over 

schizofrenie en negatieve symptomen op te doen, zonder een bias van andere 

psychopathologie of medicatie. Personen met alexithymie hebben inderdaad een 

verminderde connectiviteit van DMN gebieden binnen het netwerk, en juist een 

versterkte connectiviteit naar andere gebieden. Interessant om te vermelden is 

dat personen met alexithymie mogelijk wel in staat zijn om emoties te beoordelen 

als ze hier expliciet om gevraagd worden (Berthoz et al. 2002), maar niet wanneer 

ze automatisch, zelfbewust emoties te moesten beoordelen (Reker et al. 2009). 

In het algemeen laten bovenstaande resultaten zien dat zelfevaluatie en 

taal belangrijk zijn voor veel dysfuncties bij schizofrenie (Crow 2008; Nelson et al. 

2009; Parnas and Handest 2003; Sass and Parnas 2003; Stirling et al. 2001). Ook 

kan geconcludeerd worden dat het DMN en prefrontale gebieden hierin een 

belangrijke rol hebben (Brüne et al. 2008; Cooke et al. 2008; Schilbach et al. 

2008).  
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Negatieve symptomen en hun behandeling 

Hoewel er tot dusver is gekeken naar hersenfunctie, is ook een goede definitie 

van symptomen van belang als uitgangspunt voor verder onderzoek. Het volgende 

gedeelte focust op het construct negatieve symptomen, en behandeling daarvan. 

Negatieve symptomen, mogelijk de meest belangrijke symptomen van 

schizofrenie (Andreasen and Flaum 1991; Foussias and Remington 2010), worden 

nu vaak gezien als een coherente groep symptomen. Al in de jaren 80 werd 

gesuggereerd dat er mogelijk meerdere subgroepen negatieve symptomen 

bestaan (Goghari et al. 2010; Kirkpatrick et al. 2001). Een manier om de 

samenhang tussen symptomen te bestuderen is factoranalyse (Blanchard and 

Cohen 2006; Peralta and Cuesta 1995). Met deze techniek is al aangetoond dat er 

waarschijnlijk twee subgroepen negatieve symptomen bestaan, namelijk 

‘expressieve afwijkingen’ en ‘sociale demotivatie’ (Blanchard and Cohen 2006; 

Foussias and Remington 2010; Peralta and Cuesta 1995). Een vergelijkbaar 

concept wordt nu zelfs voorgesteld voor de nieuwe versie van het diagnostisch 

handboek DSM-V (Messinger et al. 2011). 

De meeste studies die het construct negatieve symptomen onderzochten 

zijn niet recent en bovendien werd er gebruik gemaakt van kleine steekproeven 

(Blanchard and Cohen 2006; Foussias and Remington 2010; Peralta and Cuesta 

1995). Hoofdstuk 7 laat zien hoe de structuur van negatieve symptomen wordt 

onderzocht in een grote steekproef, en hoe deze structuur wordt bevestigd in een 

onafhankelijke steekproef.  

Een herziende visie op het construct van negatieve symptomen zou 

belangrijke implicaties voor diagnostiek en behandeling kunnen hebben. In een 

breder kader zou kunnen worden onderzocht of schizofrenie een uniforme of 

multidimensionale aandoening is (Glahn et al. 2005; Keefe et al. 1992; Nelson et 

al. 2009). Wellicht kan zelfs het onderscheid tussen verschillende diagnoses 

worden bekeken. Het lijkt er op dat symptomen van verschillende aandoeningen 

sterk overlappen (Borsboom et al. 2011), wat zou pleiten voor een betere 

categorisering van symptomen. Daarvoor zouden misschien wel betere 

meetinstrumenten ontwikkeld moeten worden (Blanchard and Cohen 2006). 
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Een vraag van nog fundamentelere aard is of gevonden 

symptoomconstructen daadwerkelijk problemen zijn die door patiënten worden 

ondervonden. Zo heeft onderzoek aangetoond dat patiënten wel gevoelens op 

het moment zelf kunnen ervaren, maar geen voorpret ervaren of niet kunnen 

nagenieten van mooie momenten (Kirkpatrick and Fischer 2006; Messinger et al. 

2011; Sass and Parnas 2003). Het perspectief van de patiënt zou een belangrijke 

rol moeten spelen bij het in kaart brengen van hun problemen (Foussias and 

Remington 2010). Een ander voorbeeld van een betere omkadering van 

problematiek is het presteren op cognitieve taken. Vaak tonen patiënten goede 

prestaties, maar zijn er toch problemen met functioneren in het dagelijks leven 

(Goldberg 2009). Aandacht, motivatie, afleiding door stressoren, een verkeerd 

beeld van functioneren, en problemen met selectie van relevante informatie 

zouden hierin een rol kunnen spelen, en moeten beter onderzocht worden 

(Fitzgerald et al. 2001; Goldberg 2009; Horan et al. 2006; Messinger et al. 2011). 

Nieuwe constructen van symptomen kunnen een goede basis vormen voor 

onderzoek naar hun neuroanatomische achtergrond (Glahn et al. 2005; 

Kirkpatrick and Fischer 2006). Symptomen die vaak samen voorkomen delen 

mogelijk hun oorsprong (Bell et al. 2010; Goghari et al. 2010). Zo zou de factor 

“expressive deficits” uit hoofdstuk 7 kunnen samenhangen met dysfunctie van 
pariëtale hersengebieden, en de "social amotivation" factor meer met de DLPFC 

(Goldberg 2009; Kimhy et al. 2006). 

Een verbeterde karakterisering van negatieve symptomen en andere 

klachten kan ook belangrijke consequenties hebben voor diagnostiek en 

behandeling (Kirkpatrick et al. 2006; Messinger et al. 2011). Als medicatie altijd 

een vergelijkbaar effect op symptomen heeft, hoeven niet beiden gemeten te 

worden in een experiment, omdat de uitkomst voor beiden gelijk is (Laughren and 

Levin 2011). Anderzijds, verschillende constructen zoals gevonden in dit 

proefschrift zouden niet samengenomen moeten worden (Bell et al. 2011).  

Een adequate behandeling van negatieve symptomen en cognitieve 

beperkingen bij schizofrenie zou wel eens de sterkste uitkomstmaat kunnen zijn 

(Horan et al. 2010). Medicamenteuze behandeling bij schizofrenie bestaat meestal 

uit behandeling met antipsychotica. De eerste generatie antipsychotica die op de 
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markt kwamen, blokkeerden de receptor van de neurotransmitter dopamine 

(Jarskog et al. 2007). Een neurotransmitter is een stofje dat signalen doorgeeft 

tussen verschillende hersencellen. Uit de gunstige effecten die deze middelen 

hadden op positieve symptomen, zoals het horen van stemmen, ontstond de 

dopamine hypothese. Volgens deze hypothese over schizofrenie is er te weinig 

dopamine in de prefrontale cortex, wat kan leiden tot negatieve symptomen (Di 

Pietro and Seamans 2008; Fuster 2009; Lieberman 2004). Anderzijds veroorzaakt 

dit een overschot aan dopamine in gebieden waar het PFC een controlerende 

werking over heeft, hetgeen leidt tot positieve symptomen. 

De eerste antipsychotica, die vrij specifiek de dopaminereceptor 

blokkeerden, hadden een redelijk goed effect op positieve symptomen, maar 

geen bevredigend effect op negatieve symptomen en prefrontale functioneren 

(Bishara and Taylor 2008; Jarskog et al. 2007). Het lijkt er echter op, dat ook vele 

andere neurotransmitters betrokken zijn bij het ontstaan van schizofrenie (Grace 

2000). Waarschijnlijk is er een verstoorde signaaloverdracht van verschillende 

neurotransmitters, die leidt tot een verstoorde stimulatie en remming van 

verschillende hersencircuits (Belsham 2001; Grace 2000; Jarskog et al. 2007; 

Laruelle et al. 2003). Om deze reden werden nieuwe types antipsychotica 

ontwikkeld, die ook aangrepen op receptoren van andere neurotransmitters, en 

mogelijk een beter effect op negatieve en cognitieve symptomen hebben (Arnt 

and Skarsfeldt 1998; Bishara and Taylor 2008; Jarskog et al. 2007). 

Neuroimaging studies hebben onderzocht of er sprake is van een 

genormaliseerde hersenactiviteit na behandeling met verschillende 

antipsychotica, onder andere het effect op de PFC (Da Silva Alves et al. 2008; 

Davis et al. 2005; Röder et al. 2010; Vita and De Peri 2007). Een volledig overzicht 

van de effecten van antipsychotica op prefrontale functie was echter niet 

aanwezig. Dit overzicht wordt gegeven in hoofdstuk 8. Dit hoofdstuk laat zien dat 

een beperkte remming van dopamine, en daarnaast het aangrijpen op een andere 

neurotransmitter serotonine, prefrontale functie kan verbeteren. Er zijn ook 

verscheidene studies die een positief effect laten zien op cognitie of negatieve 

symptomen of prefrontaal functioneren door aan te grijpen op andere 
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neurotransmitters (Belsham 2001; Bishara and Taylor 2008; Gozzi et al. 2010; 

Jarskog et al. 2007; Laruelle et al. 2003; Meltzer et al. 2003; Nahas et al. 2003; 

Yurgelun-Todd et al. 2005). Kortom, toekomstig onderzoek zal ook zeker moeten 

kijken naar andere neurotransmitter systemen (Vita and De Peri 2007). 

Veel studies richten zich op hersenactiviteit, terwijl klinische en 

gedragsmatige maten over het hoofd worden gezien of niet lijken te verbeteren. 

Dit zouden juist de primaire uitkomstmaten moeten zijn. Dit beeld was ook te zien 

in de studies die worden behandeld in hoofdstuk 8, zoals bij (Bishara and Taylor 

2008; Honey et al. 1999). In te toekomst zouden zowel de effecten op symptomen 

als het functioneren van de hersenen breder in kaart moeten worden gebracht. 

Een nieuwe methode om symptomen van schizofrenie te behandelen zijn 

zogenaamde partiële antagonisten. Zij blokkeren de dopaminereceptor niet, maar 

bootsen een stabiele activiteit van dopamine na (Jarskog et al. 2007; Lieberman 

2004). Op deze manier zou dopamine-activiteit kunnen normaliseren in zowel de 

PFC als de ontremde gebieden, en zouden zowel positieve als negatieve 

symptomen verminderd kunnen worden (Bishara and Taylor 2008; Jarskog et al. 

2007; Lieberman 2004). Hoofdstuk 9 laat zien dat bepaalde negatieve symptomen 

verbeteren na behandeling met een dergelijk antipsychoticum, voornamelijk op 

het gebied van gevoelsleven. Interessant om te zien is dat dus niet alle negatieve 

symptomen gelijktijdig veranderen. 

Concluderend, aangezien verschillende neurotransmitter systemen 

betrokken zijn bij schizofrenie, en schizofrenie waarschijnlijk een multi-

dimensionaal concept is, zou costum-made medicatie een grote sprong 

voorwaarts kunnen zijn in behandeling. Maar ook andere manieren van 

behandelen zouden een belangrijke rol kunnen spelen. Zo is er een onderzoek 

gaande in het Universitair Medisch Centrum Groningen naar het effect van het 

stimuleren van de prefrontale cortex (met Transcraniële Magnetische Stimulatie). 

Ook Behavioral Activation Therapy als een voorbeeld van psychologische 

behandelmethoden lijkt een interessant optie te zijn (Mairs et al. 2011). Het 

uiteindelijke doel zou een persoonlijke behandelaanpak kunnen zijn, waar 

symptoomprofielen een belangrijk uitgangspunt vormen.
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14. Dankwoord 

Ik zou willen beginnen met zeggen dat volgorde in dit dankwoord niet belangrijk 

is, en ook lengte van de alinea niet. Iedereen die heeft meegeholpen aan mijn 

proefschrift wil ik sowieso heel erg bedanken. Ik hoop ook dat personen die ik 

vergeten heb te noemen begrijpen dat een promotie een project met een groot 

aantal betrokkenen is, en dat iemand vergeten daarom snel gebeurt. 

Beste André, toch zou ik graag beginnen om jou als promotor te bedanken. 

Immers, zonder jou was ik nooit aan deze promotie begonnen. Al weer een aantal 

jaar geleden kwam ik als schuchtere biologie student informeren of ik “ook iets 
met onderzoek naar mensen kon doen”. Een week later zat ik met je in de trein 
om een psychiatrisch interview te leren, het kan snel gaan. Ik wil je hartelijk 

danken voor de kans om mij te laten promoveren, je vertrouwen in mijn kunnen, 

je enthousiasme, de vrijheid om dingen te onderzoek die ik leuk vond en de 

kansen om op congres te gaan en mijn onderzoek te presenteren. 

Rikus, ik weet nog goed hoe ik je leerde kennen. Je belde op omdat ik onze 

allereerste afspraak direct was vergeten, en sprak me streng toe. Gelukkig bleek 

later dat dit beeld niet je echte karakter was en dat je een hele gave copromotor 

was. Ik heb je als een hele warme en betrokken man leren kennen en heb onze 

afspraken als erg prettig ervaren. Ik kon je input als clinicus zeker gebruiken en wil 

je bedanken voor je aanmoedigingen om vooral in nauw contact met de afdeling 

psychosen te komen en te blijven. Daardoor liep mijn onderzoek vlotter, en heb ik 

ook nog eens een aantal gave collega`s leren kennen. En tot slot bedankt voor het 

kunnen meerijden in je auto en voor de biertjes op congres. 

I would also like to thank the members of the reading committee: Dr. Vince 

Calhoun, Prof. Dr. Dick Veltman and Prof. Dr. Lieuwe de Haan. I would like to give 

an extra thanx to Vince Calhoun for answering all my questions concerning ICA. I 

still wonder how a person can respond so quickly to e-mail as you do. 

Brani, jij ook bedankt voor je input als begeleidster. Bedankt voor je 

kritische methodologische oog en je trots die je uitstraalde als mijn begeleidster. 

We hadden niet regelmatig afspraken en ik weet dat je dat soms lastig vond. Maar 
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het gaat ook met begeleiden niet om de kwantiteit, maar om de kwaliteit. En de 

adviezen die ik van je kreeg, waren zeker zeer waardevol. 

Het MRI onderzoek dat ik de afgelopen vier jaar heb mogen doen was zeker 

niet mogelijk geweest zonder proefpersonen. Dankjulliewel allemaal! Wat 

ontzettend dapper om aan een totaal onbekend onderzoek mee te doen in zo`n 

groot maar nauw apparaat. Zonder een keer een onderzoek meegemaakt te 

hebben, is de ervaring niet te omschrijven. Ook bedankt dat ik zomaar een zeer 

persoonlijke inkijk in zowel jullie situatie als jullie brein kon krijgen. Ik heb ook 

veel geleerd over niet-werk-gerelateerde zaken en soms hoe ingrijpend het is om 

een psychiatrische diagnose te krijgen. 

Richard. Ik had nooit zoveel met je te maken, tot ik me begon te oriënteren 

op een nieuwe baan voor na mijn promotie. In plaats van ideeën voor over een 

jaar, bood je me direct een baan aan voor 2 jaar en nog wel een hele gave ook. 

Dankzij die baan kon ik naast mijn promotie, en kan ik nog steeds, dingen doen die 

ik heel leuk vind. Bezig zijn met methodologie, mensen begeleiden en toch dicht 

bij het onderzoek blijven dat ik heel interessant vind. Richard, bedankt voor je 

enthousiasme, je humorvolle mailtjes, alle klusjes die je me overdraagt  en de 

leuke samenwerking. 

Frank, jij nam tijdens mijn promotie de rol van Rikus over in het UCP. Ik heb 

me nog nooit zo snel welkom gevoeld op een afdeling met een nieuw hoofd als bij 

jou. Door je open houding om onderzoek in de kliniek toe te laten heb ik heel veel 

mensen voor mijn onderzoek kunnen includeren en daarnaast ook ontzettend 

veel over de kliniek en mensen in het algemeen geleerd. Bedankt daarvoor! 

Bedankt ook voor je enthousiaste gesprekken, het mogen bijwonen van poli-

afspraken en de leuke uitstapjes die we op congressen maakten naar hoge bergen 

of leuke museumpjes. Ik vind het heel gaaf om nu met je samen te werken aan 

EPOG en hoop dat we die samenwerking nog even kunnen voortzetten. 

Cees en Lex. Ik heb met jullie kunnen samenwerken voor MRI studies waar 

ik bij betrokken was en jullie daarnaast gesproken op congressen en symposia. 

Bedankt voor de samenwerking op onderzoeksgebied en voor de mooie verhalen 

die jullie konden vertellen. 
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Mark van der Gaag, pas later in mijn promotie kwamen we in contact voor 

een onderzoek en op een bijscholing in Zwartsluis. Je hebt veel waardevolle input 

gegeven aan mijn onderzoek en wist zaken altijd op een kritische maar 

relativerende manier te benaderen. Ook bedankt voor je leuke praatjes en je 

humor tijdens gesprekken. 

Stynke, leuk om met je samen te werken aan een artikel. Je leerde me 

zonder dat je het wist om een goede agenda van onderzoek bij te houden en ik 

vind het nog steeds verbazingwekkend hoe gestroomlijnd de samenwerking altijd 

gaat. Anderzijds verbaas ik me ook nog steeds hoe je mijn hele voicemail kan 

volpraten. Dank voor het samenwerken, de lol tijdens onze afspraken en het 

bijbrengen van structuur in ons onderzoek. 

Erna, altijd enthousiast en behulpzaam in het onderzoek. Altijd bereid om 

dingen voor je uit te zoeken of contact te leggen met de geschikte personen. Door 

jou liep mijn promotie en het contact met het UCP vaak zeer gestroomlijnd. Knap 

hoe je alle mensen altijd wist te betrekken, en altijd tot vlotte oplossingen komt. 

Irene, ook voor jou zou ik een belangrijke plaats in dit proefschrift willen 

inruimen. Ik zie je als een leuke collega en ook als een goede vriendin. Heerlijk om 

(niet-) onderzoek gerelateerde zaken met je te kunnen reflecteren. Dank voor je 

kritische blik, die ik als medebioloog graag met je deel. Ik vond het ontzettend 

gaaf dat je met me kon samenwerken. Maar nog leuker vond ik het om samen af 

te spreken en na een beruchte ovenschotel en gevaarlijk toetje (rum-rozijnen van 

de Appie!) bij een goede filmhuisfilm op de bank te kunnen zakken. Ik hoop nog 

lang met je contact te houden, ver weg of dichtbij (grapje, Groningen is niet het 

einde van de wereld). 

Jelle en Agna, samen met Irene trokken we er regelmatig op uit in Florence. 

De Italiaanse sfeer pikken we nu af en toe nog op met een etentje in de pizzeria. 

Bedankt voor de leuke uitstapjes in Florence. En Jelle en Irene, bedankt voor jullie 

ondersteuning tijdens de terugreis. Het is fijn om mensen om je heen te hebben 

die je steunen, als je eeuwig in de trein moet zitten zonder persoonlijke 

bezittingen en er donkere (as)wolken boven je hoofd hangen. Agna, leuk dat we 
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nu als collega’s nog even kunnen samenwerken. Laten we PHAMOUS samen met 

de andere collega’s tot iets moois maken. 

Ik zou durven beweren dat een wetenschappelijke instelling niets is zonder 

secretaresse. Kijk maar eens wat er in een vakantie gebeurt. Door mijn promotie 

heb ik een boel toffe secretaresses leren kennen, maar Hedwig, jij staat op 

nummer 1! Bedankt voor je ongezouten mening over zaken in het NiC en 

daarbuiten, voor de gezamenlijke kopjes koffie (met/zonder sigaret), de 

gezamenlijke glaasjes rosé (na werktijd!) en ook voor het uitvoeren van de hele 

reeks stomme klusjes die ik je vroeg. Als er een prijs zou zijn voor nummer 1 

secretaresse, zou ik hem aan jou toekennen. 

Daarnaast zijn er een heleboel secretaresses die ik een nauw opvolgende, 

gedeelde tweede plaats zou willen geven. Tiny, die ook in het NiC gewerkt heeft, 

en Evelyn. Leontien, Denise en Judith van het UCP, heel erg bedankt voor jullie 

geduld, als ik weer eens iets kwam vragen over de agenda van een behandelaar. 

Margot en Martha, jullie bedankt voor de samenwerking in het RGOC, en Margot 

omdat je met naar de eerste hulp bracht toen ik op mijn eerste werkdag een 

vinger tussen een bureaustoel wist te vernielen (het is helemaal goed gekomen). 

Tot slot wilde ik ook Eliane bedanken van GGZ Drenthe, en Ellen van Lentis. Ik heb 

jullie beiden niet vaak persoonlijk ontmoet, maar jullie maakten een vlotte 

communicatie met Rikus en Cees mogelijk. Hartelijk dank daarvoor. 

Ik wil ook alle verpleegkundigen van PSP-1, PSP-2 en acute opname 3 en 4, 

in het bijzonder Han en andere mensen uit het behandelteam van de afdeling 

psychosen hartelijk bedanken. Voor mijn onderzoek was goede communicatie en 

flexibiliteit in jullie behandelschema vaak nodig. Ik heb me altijd welkom gevoeld 

en weer jullie zeer bedanken voor de flexibele opstelling om mijn onderzoek te 

kunnen laten plaatsvinden. 

Daarnaast natuurlijk ook alle proefpersonen die aan het onderzoek 

meegedaan hebben bedankt. Het is best spannend om aan een onbekend 

onderzoek mee te doen, met een groot apparaat waar je in moet liggen. Zeker als 

je je ondertussen ook niet optimaal voelt. Ik heb bewondering voor jullie 

dapperheid, en de onvoorwaardelijkheid waarmee jullie aan het onderzoek 
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deelnamen. En laten we eerlijk zijn, zonder proefpersonen is een onderzoek niet 

mogelijk. 

Een promotie is naar mijn mening bovendien een echte 

groepsaangelegenheid. In je eentje lijkt het me een bijna onmogelijke opgave. Ten 

eerste zijn kamergenoten belangrijk, omdat je ze op een laagdrempelige en 

directe manier alles kan vragen waar je in je promotie tegenaan loopt. 

Vastlopende MRI analyses, een woord waar je niet op komt, een wazig formulier, 

tips over contact met proefpersonen of psychiaters, etc. Marjolijn, Ans, Lisette, 

Marte, Nynke en Leonie, bedankt voor jullie input en voor de gezelligheid op de 

kamer.  

Buiten de kamer is natuurlijk een leuke groep collega’s heel belangrijk. 

Cognies: Jozarni, Esther, Eline, Marieke, Sima, Marie-José, Gemma, Katharina, 

Michelle, Jorien, Piotr, Bertus, Hui, Japser, bedankt ook voor jullie gezelligheid, 

hulp met interviews en scannen en leuke gesprekjes tijdens lunch of ff 

tussendoor. Ruud, jij bedankt voor alle dingen die je me geleerd hebt door samen 

een artikel over antipsychotica en hersenactiviteit te schrijven. Zowel inhoudelijk 

als op het gebied van ene goed artikel schrijven heb je me ontzettend veel 

bijgebracht.  

En ik wil ook alle andere mensen in het NiC graag bedanken. Ik ga geen 

namen noemen, want dan wordt het een heel lang dankwoord. In ieder geval 

bedankt voor jullie hulp en advies, ook voor de gezelligheid en voor de uitjes. 

Kerstlunches, pickNICks, weekendje Schier, filmavond, ff naar de kroeg etc. Dat 

maakt je promotie toch een stuk aangenamer. Luca, ik wil jou nog wel apart 

bedanken voor je heerlijke kookkunsten en voor de heerlijk fanatieke potjes 

tafeltennis. 

 Ook collega’s buiten het NiC, van het UCP, RGOC bedankt voor de 

gezelligheid tijdens congressen en op andere momenten. Anne-Neeltje en 

Frederique, leuk om met jullie een kamer te delen en ongezouten meningen over 

het onderzoek er gewoon uit te kunnen gooien. Dick, Agna, Ellen, Sjoerd, Gerard, 

(en ook Frank, Erna, Geertje, Marije) ik vind het altijd erg fijn om met jullie te 

mogen samenwerken. Hoewel databases niet altijd makkelijk zijn en er vaak een 
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boel ingewikkelde dingen moeten gebeuren, zijn we er altijd samen uitgekomen. 

Ik denk dat we inderdaad kunnen zeggen dat we “goud” in handen hebben met 
onze databases hier in Groningen en dat we er zelfs internationaal trots op mogen 

zijn. Fijn om in een leuk team te werken om dit te bewerkstelligen. 

Hans Klein, jij bedankt voor je inhoudelijke input bij een artikel waar ook 

PET in voorkwam. Ik heb altijd veel bewondering gehad voor je onuitputtelijke 

kennis over de menselijk lichaam in relatie tot psychiatrie. Je input was zeker heel 

waardevol. 

De praktische uitvoering van een onderzoek wordt een stuk makkelijker 

met hulp van stagiaires. Een stuk gezelliger trouwens ook! Ozlem, Kelly, Thaïra, 

Ann-Kristin, Sophia, Geertje, Arno, Marije, Clara, Josse, heel erg bedankt voor 

jullie werk! Jullie hebben me een boel werk uit handen genomen, een boel 

vrolijkheid meegebracht en door jullie luisterend oor ook gemaakt dat ik mijn 

kwaliteiten om uit te leggen kon verbeteren. Thnx! 

Anita, Judith, en tijdelijk ook Nikky. Jullie zitten ver weggestopt in de kelder, 

maar ondertussen zou een MRI centrum niet zonder jullie kunnen bestaan! Jullie 

maakten dat de vele uren in de kelder en soms de stress momenten toch 

aangenaam waren. Anita, jij nog bedankt dat ik je altijd kon bellen als 

achterwacht, als er weer eens foutmeldingen (of water!) uit de scanner kwamen. 

Ook bedankt dat ik altijd geduldig te woord werd gestaan, als ik voor de zoveelste 

keer last minute om scan tijd kwam bedelen. 

Remco, ik wil je toch nog een stel nerd-points toekennen als dank. Toen ik 

een beetje doelloos rondliep aan het begin van mijn eerste stage, heb je me van 

de gang geraapt en me ondergedompeld in de wondere wereld van Matlab en 

SPM. Ik weet niet of ik het je in dank moet afnemen dat mijn nerd status daardoor 

ernstig hoog werd in het NiC, maar ik wil je wel heel erg bedanken voor het 

aanwakkeren van interesse in analyse. Ik vond je heel gaaf als stagebegeleider, en 

nu nog steeds als collega, ook om (voor mij diepgaande) discussies over analyse te 

hebben. En tot slot bedankt voor het meefietsen. Ik wil het nog één keer tegen je 

zeggen: die andere mensen fietsen niet langzaam, jij fietst hard! 

Ook op gebieden buiten de MRI ben ik bijgestaan door Roy Stewart en 

Edwin van den Heuvel. Heel erg bedankt voor jullie input. Roy, ik voel me altijd erg 
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welkom als ik je bel, of bij je langskomt. Ook bedankt voor je leuke verhalen over 

mijn naamgenoot die jij kent, verhalen over de stofdoekjes op je kamer en je 

eeuwige geduld met mijn vragen over factor analyses. Edwin, jouw mening komt 

vaak vrij direct naar buiten tijdens onze PEP-talks, maar kan erg opPEPpend 

werken. Jij verstaat de kunst om als methodoloog je ook in de achtergrond van 

vraagstellingen te verdiepen en dat komt communicatie vaak ten goede. Ook bij 

jou heb ik het idee dat de deur gewoon plat te lopen is en dat is een fijne 

eigenschap voor een PROFESSOR. 

Louis Huisman, met de uitvoering van dit hele proefschrift heb je niets te 

maken. Het onderwerp kan ook moeilijk verder van elkaar af liggen, van bacteriën 

onder een microscoop naar mensen in een MRI scanner. Wel heb je me de kans 

gegeven om me op persoonlijk gebied en in werksituaties goed te ontwikkelen. 

Maar liefst negen maal mocht ik student-assistent zijn. Ik heb daar veel geleerd 

over mijn mannetje staan voor een groep, uitleg geven op een begrijpelijke 

manier, presenteren, in teams werken, een autoclaaf bedienen (dan valt zo`n MRI 

scanner weer mee), enz. Nog bedankt overigens voor het gasstel, dat mijn ouders 

nog steeds gebruiken om pannenkoeken te bakken in de garage. 

Met een boel collega’s heb ik ook buiten werktijd gezellige momenten 

meegemaakt (Irene: thanx voor al onze lol en gesprekken en ovenschotels en thee 

momenten, Hedwig: proost!, Luca: eet smakelijk!, en andere collega’s: bedankt). 

Gelukkig is er naast promotie altijd voldoende tijd geweest om door te brengen 

met andere mensen die me nabij staan. Zij hielpen me te ontspannen, relativeren, 

nadenken, of maken mijn leven in het algemeen aangenamer en vrolijker.  

Tessa, er zijn weinig mensen die kunnen zeggen dat ze elkaar een heel 

leven kennen, maar wij kunnen dat beweren. We hebben heel wat meegemaakt, 

van wieg tot uit huis gaan en verder. Dat jij in een ander jaar kwam op de 

basisschool en daarna naar een andere school ging maakte niets uit. Ik ben 

benieuwd hoeveel kilometer we later met jouw hond Boris gelopen hebben, of 

misschien wil ik het ook wel niet weten… Ik vind je een fantastische moeder en 
een hele toffe persoon. Ook al loopt ons leven niet altijd synchroon en hebben we 

niet heel vaak contact, ik weet gewoon dat je altijd voor me bent als vriendin.  
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Josien, een aantal jaar geleden heb ik je leren kennen als mede-bioloog te 

midden van een groep psychologen waarmee we een heel biologisch vak moesten 

overleven. Heerlijk om in de pauze het geheel even door te nemen bij een 

koffieautomaat in het UMCG. Je bent een ontzettend toffe en dappere vriendin. 

Bedankt voor je toffe feesten, onze gesprekken real-life, per msn of mail over heel 

serieuze en ook totaal niet serieuze onderwerpen. Ook bedankt voor al het 

heerlijke eten en alle drank natuurlijk. Je leven is de afgelopen jaren niet altijd 

makkelijk geweest en een paar keer radicaal veranderd, maar ik wens je van harte 

toe dat het je de komende jaren toelacht. 

Aletta, pas een paar jaar geleden heb ik je leren kennen als medeslachtoffer 

in een EHBO bestuur. Vanaf het begin heb ik je bewonderd om hoeveel iemand in 

zijn leven aan activiteiten kan verzetten. En dan tegelijkertijd een heerlijke 

positieve manier van in het leven staan met een geweldige humor heeft. Iedereen 

is altijd, overal op welke manier dan ook bij je welkom. Petje af! Ik weet niet 

hoeveel koekies en thee we nog nodig hebben om de komende jaren door te 

komen, maar ondanks de minder leuke zaken die we ondertussen moeten 

doormaken (administratie, notulen, EHBO) vind ik het heel tof om met je om te 

gaan. 

Alwin, fijn om iemand te hebben om de EHBO-lessen mee te relativeren. 

Niet alleen dat natuurlijk! Het is altijd gezellig om met je af te spreken en de 

serieuze en minder serieuze zaken in het leven door te nemen. Heerlijke humor 

heb je, houd die er in! Dank ook voor al je hulp met klussen en klusjes in mijn huis 

en de rustige manier waarop je mij dingen kan uitleggen of laten doen (is een 

prestatie op zich).  

Ruud en Tryni, ik kwam jullie tegen tijdens vakantie. Heerlijk om fanatieke 

potjes tafeltennis met je te spelen Ruud. Ik ga graag binnenkort weer even testen 

wie nu sterker is van ons twee. En Trynie, bedankt voor alle kopjes thee, koffie, 

koekjes en gezellige gesprekjes. Ook via dit proefschrift heel veel groetjes. 

Gert-Jan, de manier waarop ik je heb leren kennen is denk ik nog steeds 

uniek. De vonk sloeg over tijdens de fitness die we samen deden. Ik heb 

ontzettend met je gelachen en heel veel fijne momenten meegemaakt. 
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Uiteindelijk is het niet gelopen zoals we gedacht hadden, maar ik hoop dat je nog 

veel geluk zult mogen meemaken in je leven. 

Zusje (mijn kleine, grote zus om precies te zijn)! Ex-stagiaire! Collega! 

Sportmaatje! Logeeradresje! Geertje! Je grote, kleine zus wil je graag bedanken 

voor je zus-zijn. Voor het samen eten, lachen, film kijken, sporten, sjoppen, en 

voor de tripjes naar Londen en Schotland. Leuk dat we ook collega’s zijn, maar 

gelukkig niet te nabij. Leuk ook dat je mijn stagiaire was. En nog bedankt voor het 

ge-/mis-bruik maken van je kamer, als ik weer eens een feestje in de stad had. 

Ook jullie bedankt, papa, mama en Henk. Voor het er zijn als ouders en 

broer. Voor de rustige weekenden zonder stage of promotie. Voor het me elke 

keer weer geduldig verhuizen of het voorzien van objecten die in het 

huis(houden) toch onontbeerlijk zijn. En gewoon omdat jullie mijn familie zijn. 

Ook al kom ik niet zo vaak in het mooie Fryslân omdat ik mijn eigen bezigheden 

heb, ik voel me altijd welkom bij jullie. En mocht ik echt te weinig komen naar 

jullie mening, mijn deur staat natuurlijk altijd open. 

Tot slot, lieve Rudolf, je bent nog niet zo lang in mijn leven, eigenlijk pas 

sinds de laatste loodjes van dit boekje. En wie had ooit kunnen denken dat ik 

“collega” tegen je kan zeggen? Wel kan ik zeggen dat ik ontzettend veel van je 

houd, je me heel veel vertrouwen en liefde geeft, en ik me heel fijn voel bij je. Ik 

blijf graag genieten van jou als persoon, het lekkere eten, de mooie muziek, onze 

serieuze en minder serieuze gesprekken en de wandelingen en andere dingen die 

we samen ondernemen. Laten we heel noord Groningen en de rest van Nederland 

wandelend, fietsend, kanoënd, skatend of rijdend op een mobylette gaan 

verkennen en zo vaak koken, dat de kruiden in je tuin opraken. En laten we hopen 

dat we dit nog lang kunnen blijven voortzetten en kijken wat de toekomst verder 

brengt. 
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15. Curriculum vitae 

Edith was born on 18th of July 1985 in Heerenveen, in the North of the 

Netherlands. In 1998 she started high school at the OSG Sevenwolden  in 

Heerenveen, where she in 2003 received her Gymnasium diploma. In the last year 

of  high school, she won the second prize in a quiz about natural sciences hosted 

by the University of Groningen. Always interested in nature and animals, she 

started studying biology in the Biological Center in Haren, near Groningen. There 

she discovered that despite the green surroundings and her love for animals, she 

would prefer to do research on human subjects. Therefore, she choose to 

specialize in medical biology and neurobiology. In 2005, she started - partly by 

chance - an internship on brain connectivity during resting state in patients with 

depression and anxiety, in the NeuroImaging Center. Her second internship 

concerned the effects of antipsychotic medication on brain function. This was in 

cooperation with the University Center Psychiatry of the UMCG. In 2008 Edith 

graduated as a medical biologist, and continued as a PhD student in the section of 

Cognitive Neuropsychiatry, supervised by André Aleman. Inclusion of patients in 

the medication trial of the project was challenging. She therefore used her 

experience acquired during her first internship to study brain connectivity in 

relation to different symptoms of schizophrenia. This resulted in this thesis on the 

role of prefrontal networks in schizophrenia. 

 



 

 

  

  

 

 


