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Pregnenolone sulfate normalizes schizophrenia-like behaviors

in dopamine transporter knockout mice through the AKT/

GSK3β pathway
P Wong1,2, Y Sze1, CCR Chang1, J Lee3,4 and X Zhang1,5,6

Pregnenolone sulfate, an endogenous neurosteroid in the central nervous system, is a positive allosteric modulator of the NMDA

receptor, and plays a role in the modulation of learning and memory. Here, we study the actions of pregnenolone sulfate using the

dopamine transporter knockout (DAT-KO) mice, which exhibit endophenotypes that recapitulate certain symptoms of

schizophrenia, including the psychomotor agitation, stereotypy, prepulse inhibition (PPI) deficits and cognitive impairments. We

found that acute treatment with pregnenolone sulfate normalized the hyperlocomotion and stereotypic bouts, and rescued the PPI

deficits of DAT-KO mice. In addition, long-term treatment with pregnenolone sulfate rescued the cognitive deficits of DAT-KO mice

in the novel object recognition and social transmission of food preference tests. We also showed that pregnenolone sulfate

normalized behavioral abnormalities in MK801-treated wild-type mice, whereas pregnenolone, its precursor, only partially rescued

MK801-induced behavioral abnormalities. This indicates that there are distinct mechanisms of action between pregnenolone sulfate

and pregnenolone, and the involvement of NMDA receptor signaling in the action of pregnenolone sulfate. Moreover, we found

that acute treatment with pregnenolone sulfate increased the phosphorylation levels of striatal AKT and GSK3β in DAT-KO mice,

and that long-term treatment with pregnenolone sulfate increased expression levels of NR1 subunit of the NMDA receptor in

hippocampus. Thus, pregnenolone sulfate was able to rescue the behavioral anomalies of DAT-KO mice through the NMDA

receptor-mediated, AKT/GSK3β signaling pathway.
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INTRODUCTION

Schizophrenia is a debilitating mental disorder, which affects ~ 1%
of the world population.1 Understanding the pathophysiology of
schizophrenia is the key for its effective diagnosis and treatment.
The dopamine hypothesis is one of the more established theories
of schizophrenia to date, and is supported by clinical observations
of amphetamine-induced psychosis and dopamine D2 receptor-
mediated antipsychotic treatment.2,3 Although antipsychotics are
commonly used to treat positive symptoms of schizophrenia,
there are few effective tools that can be used to combat the
cognitive deficits and negative symptoms of schizophrenia.4,5

Another prominent hypothesis suggests that the hypofunction
of glutamatergic NMDA receptors is an underlying cause of
schizophrenia.6–9 This hypothesis arose from clinical observations
that NMDA receptor antagonists, such as ketamine and phenylcy-
clidine, can induce schizophrenia-like symptoms,10,11 and that
schizophrenia patients exhibit decreased levels of NMDA
receptors.12 Given that NMDA receptors regulate dopaminergic
neurotransmission, the dopaminergic and glutamatergic models
are not mutually exclusive, and hypofunction of NMDA receptors
may in fact be responsible for the abnormal dopamine activity
observed in schizophrenia.8 These two neurotransmitter systems
also converge on many levels, one of which is the AKT/GSK3β
pathway through dopamine D2 receptor signaling13 or NMDA/

PI3K signaling.14 AKT phosphorylation regulates various down-

stream molecules, including GSK3β.15 A constitutively active

kinase that has many downstream targets that modulate synaptic

plasticity, GSK3β plays an important role in learning and

memory.16 Dysfunction of the AKT/GSK3β signaling pathway has

been implicated in schizophrenia.17,18

In addition to antipsychotics, there have been recent advances
in the treatment of schizophrenia using alternative pharmacolo-

gical agents,19 such as neurosteroids.20,21 Neurosteroids are

synthesized in the central nervous system, and have effects on

anxiety, cognition and memory.22–26 Altered levels of neuroster-

oids such as pregnenolone (Preg) and dehydroepiandrosterone

have been observed in patients with schizophrenia,27 and

administration of Preg has been shown to rescue certain

schizophrenia symptoms in proof-of-concept, randomized con-

trolled clinical trials.20 Recently, it has been shown that Preg can

rescue schizophrenia-like behavior in dopamine transporter

knockout (DAT-KO) mice.28 DAT-KO mice have behavioral

manifestations that mirror the positive and negative symptoms

associated with schizophrenia,29–31 suggesting that the DAT-KO

mouse is an ideal mouse model for use to study schizophrenia. In

addition, elevated GSK3β activity through dopamine D2 receptor

has also been observed in DAT-KO mice,13 thus recapitulating the
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impaired AKT/GSK3β signaling pathway in schizophrenia
patients.17,18

As Preg can be converted to its soluble form of pregnenolone
sulfate (PregS), PregS may also have the potential to alleviate

symptoms of schizophrenia. Moreover, PregS is a known positive
allosteric NMDA receptor modulator,32–36 and may exert its effects
by ameliorating NMDA receptor hypofunction. In this study, we
propose that PregS possesses a distinct mechanism of action from

its precursor, Preg, and is able to rescue schizophrenia-like
behavior in DAT-KO mice by modulating AKT/GSK3β signaling
via the NMDA receptor. Therefore, PregS may be a potential
alternative therapeutic agent in the treatment of schizophrenia.

MATERIALS AND METHODS

Animals

Male and female, wild-type (WT) and DAT-KO mice (8–10 weeks) were bred

from C57BL/6J DAT heterozygous mice. Genotyping was carried out as

previously described.28 Mice were housed in a specific pathogen-free

environment, with ad libitum access to food and water, on a 12-h light/dark

cycle (lights on at 0700 h). Animal procedures were approved by the

Institutional Animal Care and Use Committees of NUS and Duke-NUS

Graduate Medical School Singapore, in accordance with national guide-

lines for the care and use of laboratory animals for scientific purposes.

Drug preparation and adminstration

PregS (Steraloids, Newport, RI, USA) was first dissolved in ethanol and

diluted in autoclaved water to a final ethanol concentration of 0.6%. PregS

or 0.6% ethanol vehicle was injected intraperitoneally with a 5ml kg− 1

injection volume. Preg (60mg kg− 1, Sigma-Aldrich, St. Louis, MO, USA) was

administered as a suspension in peanut oil either intraperitoneally (for

acute injections) or subcutaneously (for long-term injections) with a 5

ml kg− 1 volume. Controls were injected with peanut oil vehicle. For long-

term injections, PregS was administered for 10 consecutive days, while

Preg was administered for 14 consecutive days.

Open field activity

Locomotor activity was recorded using an automated Omnitech Digiscan

apparatus (AccuScan Instruments, Columbus, OH, USA) under ~ 180 lux

illumination. The mice were placed into the chamber for 30min to obtain

baseline activity, followed by an injection (intraperitoneally) with vehicle or

PregS at 40mg kg− 1 or 80mg kg− 1, then returned to the chamber for

120min. Activity was measured in terms of total distance traveled, rearing

as vertical activity and stereotypy as the numbers of repeated beambreaks

with intervals of o1 s.

PPI of acoustic startle

The mice were injected (intraperitoneally) with vehicle, or PregS at 20

mg kg− 1 or 40mg kg− 1 and were placed into startle chambers (SR-LAB,

San Diego Instruments, San Diego, CA, USA) for 10min of acclimatization.

The mice were then exposed to a series of trials as previously described,28

with three different prepulse stimuli, which were 4, 8 or 12 dB above the

white-noise background. Prepulse inhibition (PPI) responses were

calculated as percentage scores for each prepulse intensity, where %

PPI = [1− (prepulse trials/startle-only trials)] × 100.

Novel object recognition test

The mice were injected (intraperitoneally) with vehicle or PregS at 40

mg kg− 1 daily for 10 days. On the next day, the novel object recognition

test was carried out as previously described.28 In brief, they were trained

with identical ‘familiar’ objects for 5 min and then assessed for short-term,

long-term and remote memory, which were conducted 20min, 24 h and

14 days after training, respectively. All the tests were video recorded and

scored using the TopScan Behaviour Analyzing system (CleverSys, Reston,

VA, USA). Preference score was calculated as (Time spent with novel

object− Time spent with familiar object)/(Total time spent with both

objects).

Social transmission of food preference test

Mice were injected (intraperitoneally), with vehicle or 40mg kg− 1 PregS,
daily for 10 days. After the last injection, the animals were food deprived
for 16–18 hours before testing.28 The familiar diet was the standard mouse
diet (5LJ5, LabDiet, St. Louis, MO, USA) mixed with 1% of ground oregano
(McCormick, Hunt Valley, MD, USA). Novel diets for short-term, long-term
and remote memory tests were flavored with 1% ground thyme, marjoram
or cumin, respectively. The mice were then tested at 20min, 24 h and
14 days after exposure to assess for short-term, long-term and remote
memory, respectively. Preference scores were calculated as (Amount of
familiar diet consumed−Amount of novel diet consumed)/(Total amount
of both diets consumed).

Western blotting

Tissues of striatum and hippocampus were rapidly dissected and
homogenized at 4 °C in lysis buffer (20mM Tris; pH 8.0, 150 mM NaCl,
1 mM EDTA, 1 mM EGTA, 1% Triton X-100). Thirty micrograms of protein
extracts were resolved on 10% SDS-polyacrylamide gels and transferred
onto nitrocellulose membranes (Bio-Rad, Richmond, CA, USA). Immuno-
blots of striatal samples were probed with the following primary
antibodies: AKT (1:10 000); phospho-AKT (Thr308) (1:2000); GSK3β (1:30
000); phospho-GSK3β (1:5000); GAPDH (1:30 000; Cell Signaling Technol-
ogy, Beverly, MA, USA). Immunoblots of hippocampal samples were
probed with antibodies against NR1 (1:4000; Synaptic Systems, Gottingen,
Germany) and Actin (1:20 000; Merck Millipore, Billerica, MA, USA). Image J
software (National Institutes of Health, USA) was used for the densitometric
analyses.

Statistical analysis

R statistical program (R Foundation for Statistical Computing, Vienna,
Austria) was used for data analyses. Data were expressed as means± s.e.m.
and Po0.05 was considered statistically significant. A two-way analysis of
variance was used for open field cumulative activities, and null and startle
activity in PPI. Mixed factorial design analysis of variance was used to
analyze PPI, novel object recognition and social transmission of food
preference tests. For all tests, genotype and treatment were between-
subject factors; while inhibition across prepulse intensities for PPI, and test
sessions for both cognitive tests were within-subject factors. A t-test was
used to analyze the preference scores in the novel object recognition and
social transmission of food preference tests versus ‘0’, and for densito-
metric analyses. Bonferroni-corrected pair-wise comparisons were used as
post hoc tests.

RESULTS

PregS normalizes hyperlocomotor activities in DAT-KO mice

WT and DAT-KO mice were treated with vehicle or PregS (40 and
80mg kg− 1) and tested for locomotor activities. The locomotor,
rearing and stereotypic activities were aggregated over baseline
(0–30min) and the post-injection (31–150min) periods. The
cumulative baseline activity showed a significant main effect of
genotype, but no significant main effect of treatment nor
genotype by treatment interaction, for locomotion, rearing and
stereotypical activity (F1,59= 234; 129; and 541, respectively,
Pso0.05). As has been previously shown,30 DAT-KO mice had
significantly higher cumulative baseline activities than WT mice
(Figures 1a to c). For the cumulative post-injection period, there
were significant main effects of genotype (locomotion: F1,59= 117;
rearing: F1,59= 35.8; stereotypy: F1,59= 234, Pso0.001) and treat-
ment (locomotion: F2,59= 41.9; rearing: F2,59= 14.4; stereotypy: F

2,59= 31.9, Pso0.001), with a significant genotype by treatment
interaction (locomotion: F2,59= 35.3; rearing: F2,59= 11.1; stereo-
typy: F2,59= 10.4, Pso0.001). Pair-wise comparisons showed that
the activities of WT mice were unaffected by 40 or 80 mg kg− 1 of
PregS (Figures 1d to f). However, relative to vehicle controls, the
activities of DAT-KO mice were partially suppressed with 40
mg kg− 1 PregS (Pso0.005) and further suppressed with 80
mg kg− 1 PregS (Pso0.001). Activities of DAT-KO mice treated
with 80mg kg− 1 PregS were suppressed to levels that were
comparable to WT vehicle control.
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PregS rescues PPI deficits in DAT-KO mice

The mice received treatments of either 20 or 40mg kg− 1 PregS to
investigate the effects of PregS on PPI. There were no genotype
differences for the percentage of null activity (WT: 1.32–10.31%;
DAT-KO: 2.23–10.76%) and for the startle response. In addition, the
treatment did not affect startle responses (Figure 2b). There were
significant main effects of genotype, treatment and prepulse (F

1,204= 82.2, F2,204= 22.9 and F2,204= 161, respectively, Pso0.001),
with significant treatment by genotype interaction (F2,204= 21.8,
Po0.001). DAT-KO mice showed distinct PPI deficits compared
with WT controls at all prepulse intensities (Pso0.005). WT mice
were not affected by 20 or 40 mg kg− 1 PregS treatment. Relative
to WT controls, PPI deficits of DAT-KO mice were partially rescued
with 20mg kg− 1 PregS and fully rescued with 40 mg kg− 1 PregS
(Pso0.05, Figure 2a).

PregS alleviates the cognitive deficits in DAT-KO mice

To evaluate the effect of PregS on cognition, WT and DAT-KO mice
were administered 40mg kg− 1 PregS for 10 days, and then
examined in the novel object recognition and social transmission
of food preference tests. For the novel object recognition test,
there were significant main effects of genotype, treatment and
test session (F1,176= 21.5, F1,176= 21.5 and F3,176= 13.4, respec-
tively, Pso0.001), with significant genotype by treatment inter-
action (F1,176= 14.0, Pso0.001). During training, no preference
was shown for either identical object used by genotype or
treatment group (Figure 3a). During the testing, vehicle-treated
WT mice showed preference for the novel object for all the three
test sessions (t(40.318)o4.46, Pso0.01). PregS treatment did
not affect the preference scores of WT mice, with them showing
preference for the novel object (t(40.170)o7.15, Pso0.001). In
contrast, vehicle-treated DAT-KO mice showed no preference for

either the novel or familiar object during each of the three test
sessions. For all the three test sessions, PregS-treated DAT-KO
mice show increased preference for the novel object relative to
vehicle-treated DAT-KO mice (Pso0.001), to levels similar to
vehicle- or PregS-treated WT mice (Figure 3a). For short-term,
long-term and remote memory, a one-sample t-test showed that
the preference scores of PregS-treated DAT-KO mice were
significantly higher than 0 (t(44.14)o6.17, Pso0.001). For the
total duration of object exploration, the only significant main
effect was that of test session (F3,96= 5.72, Po0.01), with no other
significant main effects or interactions (Figure 3b). Thus, the
differences in preference scores were not due to genotypic
differences in the total duration of object exploration. As such, the
reduced preference for the novel object by the DAT-KO mice is
not due to genotype differences in durations of object
explorations.
For the social transmission of food preference test, there were

significant main effects of genotype, treatment and test session (F

1,105= 16.9 and 17.7, respectively, Pso0.001), and significant
genotype by treatment interaction (F1,105= 20.4, Pso0.001).
Vehicle-treated WT mice showed positive preference, indicating
that they preferred the familiar diet over the novel diet across all
the three test sessions (t(46.23)o6.56, Pso0.001). Preference
scores of WT mice were not affected by PregS treatment (t(44.53)
o7.45, Pso0.001, Figure 3c). Vehicle-treated DAT-KO mice
showed no preference for either diet across the three sessions,
whereas those treated with 40 mg kg− 1 PregS preferred the
familiar diet for all the three test sessions (t(45.6)o9.01,
Pso0.001), with preference scores that were significantly higher
than that of their DAT-KO controls (Pso0.05) and that were
similar to vehicle- or PregS-treated WT mice (Figure 3c). To ensure
that the preference scores were not biased by genotype
differences in motivation to consume food, the total amount of

Figure 1. Pregnenolone sulfate (PregS) suppresses hyperlocomotor activities in DAT-KO mice. Baseline activities (pre-injection baseline) were
measured for 30min before mice were injected (intraperitoneally) with vehicle (Veh), or 40 or 60 mg kg− 1 PregS, and locomotor activities were
monitored for a further 2 h (post-injection). Cumulative distance traveled (a), vertical activity (b) and stereotypical activity (c) at baseline are
shown. Cumulative post-injection activities are shown for horizontal activity (d), rearing (e) and stereotypy (f). N= 10–16 mice per genotype
per treatment condition; aPo0.05, WT-Veh versus DAT-KO-Veh; bPo0.05, within treatment groups WT versus DAT-KO; cPo0.05, within
groups versus Veh; dPo0.05, within groups PregS40 versus PregS80. DAT-KO, dopamine transporter knockout; WT, wild type.
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food consumed by each group of mice for each test session were
calculated. The only significant main effect detected was that of
test session (F2,105= 9.37, Po0.01; Figure 3d). Therefore, the
differences in preference scores between the test groups are not
due to differing motivations for consuming the different diets.

PregS antagonizes MK801-induced behavioral deficits in WT mice

As PregS is a known positive allosteric modulator of NMDA
receptors, WT mice were administered MK801 to induce
behavioral deficits, and then treated with PregS or its precursor,
Preg (Figure 4). Both locomotor activity and PPI paradigms were
used to determine the efficacy of PregS versus Preg. Cumulative
post-injection distance traveled showed a significant main effect
of treatment for distance traveled in the open field test (F5,53
= 54.1, Po0.001; Figures 4a and b). WT mice treated with 0.1
mg kg− 1 MK801 had significantly increased locomotion relative to
vehicle-treated mice (Po0.001). MK801-induced hyperlocomotion
was fully suppressed by 80mg kg− 1 PregS (Po0.001), but was
partially suppressed by 60mg kg− 1 Preg (Po0.001) to levels that
were still higher than that of vehicle-treated WT mice (Pso0.05).
In PPI, the main effects of treatment and prepulse intensity were

significant (F5,222= 36.0 and F2,222= 214, respectively, Pso0.001),
but the treatment and prepulse intensity interaction were not.
MK801 treatment suppressed PPI relative to vehicle-treated WT for
all the three prepulse intensities (Pso0.001; Figure 4c). At 40
mg kg− 1, PregS restored PPI of MK801-treated WT mice
(Pso0.001) to levels of the vehicle-treated WT mice at all the
three prepulse intensities, whereas 60 mg kg− 1 Preg only partially
rescued the MK801-induced PPI deficits at the 4 and 8 db prepulse
intensities (Pso0.01). At the 12 db prepulse intensity, 60 mg kg− 1

Preg could not fully rescue PPI deficits of MK801-treated WT mice
(Pso0.05).

Acute treatment of PregS, but not Preg, activates AKT/GSK
signaling pathway

As PregS could antagonize MK801-induced hyperlocomotion, we
tested whether acute treatment with PregS affected NMDA
receptor-related downstream signaling pathways, such as the
AKT/GSK3β pathway, in a time-dependent manner. We found that
there was significant main effect of time for phosphorylation
levels of AKT and GSK3β (F3,13= 10.7; 12.4, respectively, Pso0.001;
Figures 5a to c) in striatal tissues of PregS-treated WT mice.
Maximal phosphorylation levels of AKT and GSK3β occurred at
15min after 80mg kg− 1 PregS treatment. At 15 min, pAKT and
pGSK3β showed a 2.08 (±0.185) and 1.87 (±0.212) fold increase
relative to vehicle (n= 4; Pso0.01).
For the DAT-KO treated groups, the phosphorylation levels of

AKT and GSK3β showed a significant main effect of time (F1,21
= 77.2; 29.2, respectively, Pso0.001, Figures 5d to f). At 15 and
30min, pAKT and pGSK3β levels were higher than that of baseline
(Pso0.005). Maximal levels of pAKT and pGSK3β occurred at
30min after 80mg kg− 1 PregS treatment, which were significantly
higher than at 15 and 60min (Pso0.001). Phosphorylated GSK3β
levels returned to baseline levels 60 min after PregS treatment,
whereas pAKT levels still remained elevated (Pso0.001).
In contrast, Preg, the precursor of PregS, showed no significant

effect on pAKT in DAT-KO mice (Supplementary Figures S1A and
B). There was a significant main effect of time on the
phosphorylation levels of GSK3β (F1,11= 4.00, Ps = 0.0375,
Supplementary Figures S1A and C), with maximal levels of pGSK3β
occurring at 30min after 60 mg kg− 1 Preg treatment (Ps= 0.038,
relative to baseline). Phosphorylation levels of pGSK3β at 15 min
and 60min were not significantly different from 0min.

Long-term treatment of PregS, but not Preg, increases NMDA
receptor NR1 subunit levels

As the 10-day treatment with PregS improved the performance of
DAT-KO mice in learning and memory tests (Figure 3), we tested
whether long-term PregS treatment changes NMDA receptor
levels in the hippocampus of WT and DAT-KO mice (Figure 5g). In
WT mice, there was no significant main effect of treatment on the
expression of the NR1 subunit of the NMDA receptor (Figure 5h),
whereas in DAT-KO mice, long-term PregS treatment significantly
increased NR1 levels in the hippocampus relative to vehicle
treatment (F1,7= 37.62, Po0.001; Figure 5i). In contrast, although
long-term Preg treatment has also been shown to improve
cognitive performance in DAT-KO mice,28 hippocampal NR1
expression levels did not increase with treatment in both WT
and DAT-KO mice (Supplementary Figure S1D to F).

DISCUSSION

In this study, we characterized the efficacy of PregS on alleviating
the schizophrenia-like behaviors in DAT-KO mice. DAT-KO mice
show an elevated dopaminergic tone and as a result, exhibit
certain schizophrenia-like endophenotypes, including hyperloco-
motion, stereotypy,29 deficits in prepulse inhibition28,31 and
impaired spatial memory.28 Previous studies have also shown
that dysregulation in the AKT/GSK3β pathway is the underlying
cause of hyperlocomotion in DAT-KO mice.13

Here, we showed that acute administration of PregS in DAT-KO
mice dose-dependently suppressed their hyperlocomotion and
stereotypic activity (Figure 1), and rescued prepulse inhibition
deficits (Figure 2). Long-term administration of 40 mg kg− 1 PregS
alleviated the cognitive deficits of DAT-KO mice in the novel
object recognition and social transmission of food preference
paradigms (Figure 3). Therefore, increasing the circulating levels of

Figure 2. Pregnenolone sulfate (PregS) rescues PPI deficits in DAT-
KO mice. WT and DAT-KO mice were injected (intraperitoneally) with
vehicle (Veh), or 20 or 40mg kg− 1 PregS before being tested. (a) PPI
levels of WT (left) and DAT-KO (right) mice. (b) Amplitude of startle
responses of WT and DAT-KO mice. N= 9–17 mice per genotype per
treatment condition; aPo0.05, WT-Veh versus DAT-KO-Veh;
bPo0.05, within treatment groups WT versus DAT-KO; cPo0.05,
within groups versus Veh; dPo0.05, within groups PregS40 versus
PregS80. DAT-KO, dopamine transporter knockout; PPI, prepulse
inhibition; WT, wild type.
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PregS alleviates the positive and negative schizophrenia-like
endophenotypes in DAT-KO mice without adversely affecting

WT mice.

PregS rescues the aberrant behaviors of DAT-KO mice by acting on
the central nervous system

PregS is a neurosteroid that is converted from Preg by a
sulfotransferase.37–41 However, the level of PregS in human brain

is controversial due to technical limitations, as the level of PregS is
below the detection limit of 0.3 ng per gram tissue.34 Even then, it
is likely that the brain tissue levels of PregS are likely to be lower
than its precursor, Preg.37

When systemically administered, PregS was able to cross the
blood–brain barrier to increase brain levels of PregS.42 Here, we
show that systemic administration of PregS changes phosphoryla-
tion levels of signaling molecules in brain tissues (Figure 5). This
confirms that the observed behavioral effects following acute

Figure 3. Pregnenolone sulfate (PregS) alleviates cognitive deficits in DAT-KO mice. WT and DAT-KO mice were treated with vehicle (Veh) or
40mg kg− 1 PregS for 10 consecutive days before being tested in the paradigms of novel object recognition (a) and social transmission of food
preference (c) for short-term (STM), long-term (LTM) and remote memory. Total duration of contacts with both objects (b) in the novel object
recognition test and the total amount of food consumed (d) in the social transmission of food preference test were also calculated. N= 9–12
mice per genotype per treatment condition for each test. aPo0.05, WT-Veh versus DAT-KO-Veh; cPo0.05, within groups versus Veh. DAT-KO,
dopamine transporter knockout; WT, wild type.

Figure 4. Pregnenolone sulfate (PregS) rescues MK801-induced hyperlocomotion and PPI deficit. (a) WT mice were treated with vehicle or
MK801, followed by an injection of vehicle (Veh) or PregS 80mg kg− 1 before being monitored for horizontal activity for 90min. (b) PregS
80mg kg− 1 fully suppressed MK801-induced hyperactivity, whereas 60mg kg− 1 Preg showed partial suppression. (c) WT mice were treated
with vehicle or MK801, followed by vehicle, PregS 40mg kg− 1 or Preg 60mg kg− 1, and subsequently tested in PPI. PregS 40mg kg− 1 fully
rescued MK801-induced PPI deficits, whereas 60mg kg− 1 Preg showed partial effects (c). N= 9–14 mice per treatment condition for each test.
aPo0.05, versus WT Veh-Veh; bPo0.05, versus WT MK801-Veh; cPo0.05, MK801-PregS-treated groups versus MK801-Preg treated groups. PPI,
prepulse inhibition; WT, wild type.
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PregS administration are due to the actions of PregS on the
central nervous system.

PregS modulates NMDA signaling to rescue cognitive deficits

PregS has important regulatory effects on several neurotransmis-
sion signaling systems, such as those regulated by sigma-1
(ref. 43) and GABAA

44 receptors. More importantly, PregS is a
positive allosteric modulator of NMDA neurotransmission, possibly
through its interaction with NR1/NR2B subunits.35 Here, we
showed that acute PregS treatment had antagonistic effects to a
NMDA receptor antagonist, MK801, on locomotor activity and
acoustic startle reflex behavior (Figure 4).
In addition, the concentration of PregS is known to be higher in

the hippocampus, an area primarily associated with memory, than
in the cortex,45 which may give rise to the role of PregS in learning
and memory. Previous studies have shown that PregS is an
effective memory enhancer for rodent models.22,46,47 For example,
the infusion of PregS into the hippocampus restored the memory
deficits of aged rats in the Y maze.48 PregS has also been shown to
antagonize the memory deficits induced by NMDA receptor

antagonists.49,50 Here, we showed that long-term treatment of
DAT-KO mice with PregS rescued their impaired episodic memory
and poor discriminative abilities (Figure 3), and increased the
expression of the NR1 subunit of the NMDA receptor in the
hippocampus (Figure 5i). As NMDA receptor signaling is important
for long-term potentiation,51,52 we postulate that the increased
NR1 expression may be the underlying mechanism of the rescued
cognitive deficits of DAT-KO mice. These data are also in
agreement with recent findings that PregS can stimulate NMDA
receptor surface expression.53

Acute PregS treatment has modulatory effects on the AKT/GSK3β
signaling pathway

It has been proposed that DAT-KO mice have dysregulated AKT/
GSK3β signaling due to overstimulation of dopamine D2 receptor,
which results in increased striatal GSK3β activation, that is,
decreased GSK3β phosphorylation.13 Therefore, inhibition of
GSK3β activity, (i.e. increased GSK3β phosphorylation), by a GSK3β
inhibitor, such as 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-
dione, lithium or dopamine D2 receptor antagonists, reduces

Figure 5. Modulatory effects of PregS on NMDA signaling. Effects of acute treatment of 80mg kg− 1 PregS on AKT/GSK3β signaling in striatum
were analyzed in WT (a–c) and DAT-KO (d–f) mice by antibodies against phospho-AKT (Thr308), phospho-GSK3β (Ser9) and their respective
non-phosphorylated forms. (g–i) Long-term effects of chronic treatment of 40mg kg− 1 PregS on NR1 subunit of NMDA receptor in
hippocampus were characterized in WT and DAT-KO (g–i) mice. GAPDH (a,d) and actin (g) were used as loading controls for densitometry
measures. Quantified ratios of phosphorylated/non-phosphorylated forms were normalized to 0min. aPo0.05, versus 0min or vehicle (Veh)
group. DAT-KO, dopamine transporter knockout; PregS, pregnenolone sulfate; WT, wild type.
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hyperlocomotion in DAT-KO mice.13 Interestingly,
hyperdopamine-induced behavioral abnormalities of DAT-KO
mice were further enhanced by MK801, but were attenuated by
positive modulators of AMPA receptors, suggesting dysregulation
of glutamatergic function in DAT-KO mice.54 As NMDA receptor
antagonists also affect AKT/GSK3β signaling,55–57 the antagonistic
action of PregS on MK801 effects has led us to hypothesize that
PregS may modulate the NMDA receptor signaling through the
phosphatidylinositol 3-kinase/AKT signaling.58 To investigate this
possibility, we treated WT and DAT-KO mice with 80 mg kg− 1

PregS for 15, 30 and 60min, and measured the non-
phosphorylated and phosphorylated forms of AKT and GSK3β in
the striatum (Figures 5a to f). In WT mice, we found that PregS
treatment caused an increase in the phosphorylation levels of AKT
and GSK3β 15min after treatment, and the phosphorylation levels
returned to baseline after 30 min. In PregS-treated DAT-KO mice,
there was a delayed activation of the AKT/GSK3β phosphorylation
levels, and AKT phosphorylation was persistent even at 60 min,
concomitant with the attenuation of hyperlocomotion and
stereotypic activity. Although PregS treatment increases phos-
phorylation levels of AKT and GSK3β in both WT and DAT-KO
mice, it is observed that there was a temporal difference in their
responses. We propose that this temporal difference may be due
to the dysregulated AKT/GSK3β signaling in DAT-KO mice, evident
from the decreased levels of AKT and GSK3β phosphorylation at
baseline.13

It is also worthwhile to note that in comparison to vehicle-
treated controls, DAT-KO mice treated long term with PregS still
exhibited hyperlocomotion, and showed no changes in pAKT/AKT
and pGSK3β/GSK3β levels when assayed the day after the last
PregS injection (data not shown). These results suggest that the
different treatment regimens of PregS, acute versus long term,
bring about different biological responses. The effect of PregS on
striatal-driven behaviors, such as locomotion, is fast-acting and
short-lasting; whereas the effect of PregS on hippocampal-driven
behaviors, such as memory, requires prolonged treatment and is
more long-lasting.

PregS and Preg have differing mechanisms of action

PregS and Preg are inter-convertible.38–41,59 Therefore, given our
results presented here and that of Wong et al.,28 where Preg and
PregS treatment rescued the abberrant behaviors of DAT-KO mice,
we carried out further experiments to determine whether the
observed behavioral rescue was due to inter-conversion between
PregS and Preg, or distinct PregS and Preg mechanisms of actions
that converged on similar behavioral results.
Previous studies have shown that acute PregS treatment

increases levels of Preg, allopregnanolone and 5α-dihydroproges-
terone in the brain.42,50 It has also been shown that in the brain,
the conversion rate of PregS to Preg is lower than that of Preg to
PregS.42,60 However, most older studies obtained the levels of
PregS through indirect measurements, which are rather
inaccurate,34 and direct assays have shown that the level of PregS
in the brain is actually very low.61 Yet, we would like to highlight
that the rate of inhibition of locomotor responses of DAT-KO mice
is similar between acute PregS and Preg treatments, which should
not be the case if the conversion of PregS to Preg is at a different
rate from the conversion of Preg to PregS.42,60 As such, it is
unlikely that the inhibition of locomotor activity following PregS
treatment is due to the conversion to Preg.
A previous study has shown that unlike PregS, Preg does not

directly affect NMDA receptor actions.62 In addition, PregS, but not
Preg, could potentiate NMDA-induced toxicity in vivo.63 These
evidences suggest that PregS directly, rather than through the
conversion to Preg, affected NMDA receptor actions. Our results
are congruent with previous findings, where PregS, but not Preg,

fully rescued MK801-induced hyperactivity and prepulse inhibition
deficits (Figure 4).
When we investigated the effects of Preg on downstream

signaling molecules, we found that Preg treatment did not
increase pAKT levels in DAT-KO mice and the relative increase in
pGSK levels is smaller than that of PregS-treated mice
(Supplementary Figures S1A and C). These data suggest that
even though PregS and Preg are inter-convertible, the observed
effects on the AKT/GSK3β signaling pathway following the
administration of PregS, is not due to the conversion of PregS
to Preg. This also points to the presence of distinct mechanisms
underlying the action of PregS and Preg in attenuating
schizophrenia-like endophenotypes in DAT-KO mice. In addition,
we showed that long-term treatment with PregS, but not Preg
(Supplementary Figure S1) increased expression of hippocampal
NR1 subunit of NMDA receptor in DAT-KO mice. Therefore, our
biochemical and behavioral results suggest that PregS, but not
Preg, acts through the NMDA receptor-modulated AKT/GSK3β
signaling pathway to normalize the behaviors of DAT-KO mice.13

CONCLUDING REMARKS

Dysregulation of dopaminergic and glutamatergic signaling are
key players in the pathophysiology of schizophrenia.2,3,5,6 Both of
these signaling systems converge on the AKT/GSK3β pathway,
where dysregulation in the AKT/GSK3β signaling pathway has
been implicated in schizophrenia.18,64 In mouse models, mice
deficient in AKT1 (ref. 65) or overexpressing GSK3β66 show defects
in working memory. The DAT-KO mice are known to have
dysregulated AKT/GSK3β signaling,13 and recapitulate several
schizophrenia-like endophenotypes. We have shown here that
acute PregS treatment increases striatal GSK3β phosphorylation as
a potential effect in normalizing the positive schizophrenia-like
symptoms of DAT-KO mice. We have shown evidence that the
actions of PregS is somewhat distinct from Preg, in terms of
biochemical and temporal signaling patterns. However, the
conversion of PregS to other neurosteroid metabolites, such as
dehydroisoandrosterone sulfate,67 cannot be ruled out without
further studies to determine the metabolism of systemically
delivered PregS, which will involve direct assays to measure the
levels of the downstream biosynthesized neurosteroids. We also
showed that long-term administration of PregS ameliorates the
cognitive deficits of DAT-KO mice, possibly through increasing
hippocampal NR1 levels.
The results obtained with this study suggest that PregS may be

able to directly address the NMDA receptor hypofunction in
schizophrenic patients, which in turn leads to the amelioration of
the associated negative symptoms and cognitive deficits.68,69 This
study also strengthens the potential use of neurosteroids as
therapeutics in the treatment of neuropsychiatric disorders.
However, more studies are required to understand the enzymatic
kinetics that regulate the metabolism of Preg, PregS and the other
downstream neurosteroids.
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