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ABSTRACT 
Home heating is a major factor in worldwide energy use. 
Our system, PreHeat, aims to more efficiently heat homes 
by using occupancy sensing and occupancy prediction to 
automatically control home heating. We deployed PreHeat 
in five homes, three in the US and two in the UK. In UK 
homes, we controlled heating on a per-room basis to enable 
further energy savings. We compared PreHeat’s prediction 
algorithm with a static program over an average 61 days per 
house, alternating days between these conditions, and 
measuring actual gas consumption and occupancy. In UK 
homes PreHeat both saved gas and reduced MissTime (the 
time that the house was occupied but not warm). In US 
homes, PreHeat decreased MissTime by a factor of 6-12, 
while consuming a similar amount of gas. In summary, 
PreHeat enables more efficient heating while removing the 
need for users to program thermostat schedules. 
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INTRODUCTION 
Home heating uses more energy than any other residential 
energy expenditure including air conditioning, water 
heating, and appliances [1]. This makes increasing the 
efficiency of home heating an important goal for saving 
money and reducing our ecological footprint. Although 
programmable thermostats provide the technology to reduce 
this problem, they are underutilized. Surveys have found 
that fewer than 50% of US households have programmable 
thermostats, and even worse, the US Environmental 
Protection Agency estimates that 30% or more of US 

households with programmable thermostats are not using 
their thermostat's programming feature, so they are not 
saving the 10%-30% claimed for such devices [2, 6]. 

Fundamentally, home heating is a trade-off between energy 
use and warmth. By leaving their thermostat set 
permanently to a warm temperature, households incur 
increased energy use costs; by using a programmed 
thermostat to only heat for some of the time, households 
can use less energy, but occupants may be cold if the 
program is wrong or while waiting for the house to heat.  

Our home heating system, PreHeat, aims both to eliminate 
the need for manual user programming of a thermostat 
schedule and to improve the efficiency of home heating 
(i.e., improving the tradeoff achieved between energy use 
and time in which occupants are cold). PreHeat uses 
occupancy sensing and historical occupancy data to 
estimate the probability of future occupancy, allowing the 
home to be heated only when necessary. 

We experimentally evaluated PreHeat in five family homes. 
In three US homes, we controlled whole-house forced air 
heating systems and used active RFID for occupancy 
sensing. In two UK homes, we controlled radiators and 
underfloor heating per room, and we sensed occupancy 
using motion sensors. During the study, we alternated days 
between using PreHeat and using a schedule, with an 
average 61 study days per house. We found that PreHeat 
did indeed achieve a better tradeoff between gas 
consumption and MissTime [8] – the amount of time 
someone was home and the house was not warm. US homes 
used about the same amount of gas, but had a 6x-12x 
reduction in MissTime. In the UK houses (with per-room 
control), improvements in both metrics were achieved. 

We acknowledge that there are many complementary ways 
to save energy in home heating, including better insulation, 
new architectural standards, and persuasive/informative 
approaches. Our contribution focuses on better heating 
scheduling. By deploying our system into real homes, and 
by directly comparing it to the previous control systems, we 
provide evidence that our novel predictive heating 
algorithm can improve on the tradeoff between energy 
consumption and MissTime, and can do so without 
requiring homeowners to program complex occupancy 
schedules. 
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BACKGROUND AND RELATED WORK 
In this paper, we focus on the control of two types of 
central heating systems common in Europe and North 
America. The first type is hot water space heating, in which 
a boiler heats water to 60°C or more and circulates it 
around the house. Heat in each room is distributed from 
floor-embedded pipes (underfloor heating) or by wall-
mounted radiators. The second type, more common in 
North America, is forced air heating, in which a furnace 
heats air and circulates it through ductwork to rooms. 

For both types of systems, the temperature is often 
controlled using a single thermostat located in a central area 
of the home such as a living room or hallway. The 
thermostat takes temperature readings and switches the 
central heating on as needed to maintain a user-defined 
setpoint temperature. Systems with radiators can also be 
fitted with a thermostatic valve at each radiator, which can 
be manually set from “1” to “5” to define a separate target 
temperature for each room. In some houses, particularly 
those with underfloor heating and some forced-air systems, 
the system control is split into zones, each of which has its 
own thermostat.  

Modern thermostats are typically programmable, allowing 
the user to specify a schedule of times during the day or 
week when the home should be heated to the setpoint. 
Outside of these times, the thermostat may use a lower 
setback temperature to reduce the heating energy required, 
or, as is common in the UK, simply be turned off. 

More sophisticated thermostats exist: some are controllable 
via the Internet; some measure the heat-up latency of the 
house and compensate the schedule; and others are reactive 
to occupancy as sensed by entryway or motion sensors. 
These are expensive, not commonly installed, and as others 
have reported [3, 8], the latter two tend to heat 
unnecessarily, actually increasing the energy required. 

Researchers have studied the use of domestic heating 
systems for some time. In 1978, Sonderegger observed that 
the total energy required by a home’s heating system is 
heavily determined by the particular people living there, 
dwarfing the effects of insulation or heating infrastructure 
[9]. Other work has aimed to reduce heating energy using 
feedback, e.g. via increased frequency and detail of utility 
bills [10], or real-time energy displays [4]. Feedback and 
more direct interventions such as “persuasive” interfaces 
are complementary to our work: while PreHeat may lower 
energy use by heating less during unoccupied times, a 
persuasive display may “nudge” an occupant to lower the 
setpoint and wear a sweater. 

Closest to our work are approaches that have aimed to 
improve control beyond what off-the-shelf products 
currently offer. Mozer et al. describe a “Neurothermostat” 
which utilizes a hybrid occupancy predictor, making use of 
an available daily schedule and a neural network which was 
trained on five consecutive months of occupancy data [7]. 
Although real occupancy data from one house is used in the 

analysis, a first order approximation of the heating system 
and house is used to model temperature and energy 
consumption. Mozer et al. show that the Neurothermostat 
results in a lower unified cost, where energy and occupant 
“comfort” are expressed as a combined figure, in dollars. 
We believe that the equivalency of comfort and energy is 
problematic (the relationship between setpoint deviation 
and dollars is nonlinear, depends upon the individual, and 
changes over time), so we prefer to characterize separately 
the deviation from setpoint temperature at occupied times, 
and the energy required. 

Gupta et al. propose using live data from mobile phones or 
in-vehicle GPS devices to control home heating and cooling 
[3]. Their method works by ensuring the home can always 
be brought to the setpoint in the time it would take the 
person to travel home from the current location. Using a 
simulation based on look-up tables extrapolated from three 
days of temperature readings, they compute the savings 
possible in four houses based on two months of GPS data. 
While their scheme does ensure the house is always at 
setpoint upon arrival, it typically results in lower savings 
than programmable or manual thermostats.  

Lu et al. formulate a hidden Markov model to predict 
occupancy and control HVAC systems [8]. They collected 
occupancy data in eight US households for one to two 
weeks. Using leave-one-out cross-validation to train and 
test the HMM, they evaluate their approach’s MissTime 
(i.e. total occupied time not at setpoint) and energy savings 
for each day in a week using the US Dept. of Energy’s 
EnergyPlus simulator. Their forward-looking approach is 
designed to control specialized two-stage HVAC systems 
and employs a second “deep” setback (10°C/50°F). By 
contrast, we show how our system performs in real 
households using single setback temperatures and single-
stage, gas-fired equipment commonly deployed today. 

Our occupancy prediction algorithm is itself an 
improvement over the above approaches: it results in more 
favorable trade-offs between miss time and energy than the 
GPS-reactive system [3]. Krumm and Brush [5] also 
presented an occupancy prediction algorithm that gives 
probabilities of occupancy at different times of day. 
However, this algorithm computes a representative Sunday, 
Monday, etc. for each day of the week, without being able 
to respond to changing occupancy patterns as PreHeat does. 

More broadly, and unlike any of the above work, we 
evaluate the performance of PreHeat in situ in five houses, 
using custom embedded sensing and real-time control of the 
central heating. Previous evaluations have relied upon 
simulations [3, 7, 8]. While industry standard simulators 
such as EnergyPlus may go beyond simple first-order 
approximations, we question the efficacy of simulators for 
characterizing either (1) the daily energy requirement of 
heating infrastructure – savings of smaller than 10% can be 
important, so daily errors of even 3 kWh can muddy 
analysis; or (2) the deviation from setpoint at occupied 



 

 

times (i.e. MissTime) – this requires simulator granularity 
finer than five minutes, better than 1°C, and for individual 
rooms (when using per-room prediction and control). In 
contrast, our deployment allows us to characterize PreHeat 
using real temperatures, gas readings, and occupancy 
sensors. 

EXPERIMENTAL HEATING SYSTEM 
We implemented an experimental system, designed to 
facilitate comparison between PreHeat and existing heating 
controls. We deployed this system in five homes: three in 
Seattle, USA (referred to as US1, US2, US3) and two in 
Cambridge, UK (UK1, UK2) during the winter from 
January – April, 2011. We chose to deploy in homes of 
project researchers or our colleaagues, so people knew how 
to cope if any problems occurred. All of the homes were 
family homes with two adults and one or more children – 
ranging from one toddler (UK1) to three school-age 
children (US1). All US homes used forced air heating, UK1 
used both radiators (4 of 10 independently heatable rooms) 
and underfloor heating (8 of 10 rooms, 2 with radiators 
too), and UK2 used radiators in all 14 rooms. 

Hardware 
We built custom hardware, shown in Figure 1, to control the 
heating systems. In US houses, we replaced the existing 
thermostat for whole-house control with a “House Unit” 
built using our in-house-developed prototyping platform, 
Microsoft .NET Gadgeteer. The core of this unit is a 
mainboard based on GHI Electronics’ Embedded Master 
module with ARM7 CPU, running custom software in C#. 
Additionally there were a number of peripheral modules. 
The House Unit measured temperature using a Sensiron 
SHT15 sensor (accuracy +/- 0.1°C), and used an Avago 
ASSR-1611 solid state relay to control the furnace through 
the existing wiring. It also included a rotary encoder, RGB 
light level sensor, a 128x128 OLED display and a passive 
infra-red motion sensor (Panasonic PIR-AMN34111J, 10m 
max range and 110 degree beam angle).  

In UK houses, we controlled the heating on a per-room 
basis by installing “Room Units” in each space with 
independent heating. These were similar to “House Units”, 
but instead of a relay had an 868MHz transmitter (TX868-

785 from elv.de) to control wireless radiator valves 
(HHFHT-8V from HouseHeat) which replaced the existing 
thermostatic radiator valves on the radiators in each room.  

In the UK we also deployed “Control Units” that did not 
have any sensors, but included either Avago ASSR-1611 
relays for controlling per-room underfloor heating valves or 
Omron G6D relays providing 240V control of the house 
boiler. Turning on heating in any individual room involved 
activating the boiler (if it was not already active for another 
room’s heating) and per-room valves – either on radiators 
or for the underfloor heating. These units also controlled the 
hot water heating for sinks, showers, etc., using a static 
schedule reflecting the previous hot water schedule. 

All hardware was powered through USB mains power 
adaptors, aside from the battery-powered wireless radiator 
valves. Power optimization is possible (c.f. battery powered 
wireless security sensors), but is not our focus. All units had 
ZigBee radio modules (the “XBee ZB”) for wireless mesh 
communication with a central server PC in each house, 
running custom software described in the next section. 

To evaluate PreHeat, we logged actual gas usage. In the 
UK, we deployed gas meter readers based on the RFXPulse 
sensor from RFXCom. In the US, we used daily meter 
readings provided by the local energy company website.  

Occupancy sensing 
In US houses, we sensed when occupants were home by 
using an RFID receiver plugged into the server and placing 
a small Active RFID tag (RF8315T-s manufactured by 
Ananiah Electronics) on the house keys of each adult using 
the house, including the nanny for US3. The option was 
provided to each household to have RFID tags for kids, but 
none of the houses accepted this offer, since the kids were 
in general not expected to be home alone. Visitors were not 
provided with RFID tags. Each tag sent its identity to the 
receiver every 5s when in range. The server was placed 
such that the 8m nominal range included the whole “front 
hall” area of the house, where we asked participants to 
leave their keys. We also asked participants to take their 
keys whenever they left the house (compliance results are 
described in the Deployment section).  

          

(a) (b) (c) 

Figure 1: Photographs of (a) House Unit installed in US house replacing thermostat on wall, (b) Room Unit in UK room, (c) 
Control Unit beside old house thermostat in UK, wired into boiler control circuitry. 



 

 

In UK houses, where we could control heating at the room 
level, we added motion sensors that could determine per 
room occupancy. These detected motion by any occupant: 
adults, children or visitors – note that neither UK house had 
pets. This allowed our predictive system in the UK houses 
to heat for and predict arrival of any type of occupant, not 
just those with RFID tags. UK occupants also had RFID 
tags deployed which were only used during system 
evaluation, and not for prediction.  

Our occupancy sensors (RFID and motion) generated 
events at discrete points in time. From this data, we derived 
periods of occupancy by filling in gaps between two sensed 
events within a certain time difference (2 minutes for RFID, 
5 minutes for motion sensing during the day, and 30 
minutes for motion sensing during pre-defined sleep hours).  

Software 
The PC we deployed in each house ran our custom software 
which managed the network of devices, collected sensor 
data and ran the heating algorithm. The heating algorithm 
was provided with a collection of preset parameters. These 
comprised (for each day of the week): Sleep and Wake 
times, a Sleep setpoint temperature to use between those 
times, and Occupied1 and Away setpoints. In the UK, each 
room could have its own Occupied temperature. For our 
experiments, we deployed different heating algorithms, and 
we switched between algorithms at the preset Sleep time 
(which all houses chose to be the same time on all seven 
days of the week). The experimental system was designed 
so that the only difference between conditions was the 
algorithm’s choice of which setpoint to use at a particular 
time. Our study used the following algorithms: 

Scheduled: Equivalent to a seven-day programmable 
thermostat, it used preconfigured times for Leave and 
Return for each of the seven week days. The Away setpoint 
is used between Leave and Return times, and the Occupied 
setpoint is used otherwise (other than during Sleep hours). 

AlwaysOn:  Forced the use of the Occupied setpoint all the 
time including between Sleep and Wake. 

PreHeat: Our prediction algorithm which chooses between 
Occupied and Away depending on current and predicted 
occupancy – more details later in this section. 

Heating in Anticipation of Occupancy 
If a space (whole house in US or room in UK) was deemed 
occupied by the heating algorithm, this determined the 
setpoint to use. However, even if a space was not occupied, 
it may require heating in order to be warm for future need. 
To achieve this, the system looked ahead up to three hours 

                                                           
1 Although our system supported having different morning 
and evening setpoints (mirroring many US thermostats), all 
of our households chose the same value for these, so we 
refer to a single Occupied setpoint to simplify discussion. 

into the future. If a higher setpoint was expected by the 
heating algorithm, then the system evaluated the current 
temperature, target temperature, look ahead duration, and 
the HeatRate, which is the warming rate of the house in 
degrees per hour, to decide whether it needed to start 
heating at the present time. For example, with a HeatRate of 
3°C/hour, space temperature of 20°C, and a requirement for 
22°C in one hour’s time, no heating is yet needed. Twenty 
minutes later, if the space temperature remained 20°C, then 
the system would activate the heat in order to warm up in 
time for the future (predicted or scheduled) occupancy.  

User Interface and Overrides 
We provided a user interface for occupants on the House 
Unit/Room Units themselves. This showed the current 
space temperature and the setpoint. Just as with normal 
heating controls, we provided a menu option on the units 
that gave occupants a way to override the system in case 
they were too cold. We also used the light sensor to 
automatically dim the screen when the space was dark, to 
make our system “bedroom friendly”. 

System Reliability 
Since our system ran in real homes, we conducted extensive 
in-situ testing and implemented a number of features to 
promote reliability, including the ability to remotely log in 
to the servers, automatic emails if problems occurred, an 
auto-restart program to recover from software crashes, etc.  

We also implemented a “failsafe mode.” In the rare case 
that the unit was unable to contact the server, while it 
attempted to recover communication it would act as a local 
thermostat using the Occupied setpoint. As we later detail, 
the system achieved an average 99.8% uptime in the study. 

PreHeat Occupancy Prediction Algorithm 
The PreHeat prediction algorithm works in two ways. First, 
it uses occupancy-reactive heating; when a space is 
occupied, it uses the Occupied setpoint (or Sleep setpoint at 
night). Second, when a space is not occupied, it predicts 
when it will next be occupied by matching the occupancy 
data from the current day against historical occupancy data.  

We represent space occupancy as a binary vector for each 
day, where each element represents occupancy in a 15-
minute interval, as shown in Figure 2. In the UK such 
spaces are individual rooms, in the US we use a single 
whole-house space – no distinction is made by the 
algorithm. The vector element is 1 if there is any occupancy 
during the interval or 0 otherwise. As a day progresses, we 
maintain a partial occupancy vector from midnight up to the 
current time. To predict future occupancy, we use this 
partial occupancy vector to find similar days in the past. 
Specifically, we compute the Hamming distance between 
the current partial day and the corresponding parts of all the 
past occupancy vectors. (The Hamming distance simply 
counts the number of unequal corresponding binary vector 
elements.) We then pick the K nearest past days for making 
the prediction. Based on initial experiments, we found K=5 
proved to be a good choice for high prediction accuracy. 



 

 

The predicted occupancy probability for a future time is 
simply the mean of the corresponding occupancy values in 
the K nearest past days.  

There are two slight variations of this basic algorithm that 
we implemented to improve accuracy. The first variation 
distinguishes between weekdays and weekends. Weekday 
predictions are only computed from past weekdays, and 
similarly for weekends. This helps accuracy, because 
households often have quite different occupancy patterns on 
the two types of days. The second variation augments the 
beginning of each occupancy vector with four hours of 
occupancy data from the previous day. This gives 
predictions near the beginning of the day some extra basis 
on which to compare to previous days. We also pad the end 
of each occupancy vector with four hours of occupancy 
data from the following day. This avoids complexities in 
making predictions that span midnight. 

While in this algorithm we treated every historical day 
equally for prediction purposes, we could instead 
automatically adapt to changing occupancy schedules by 
preferring more recent days when matching.  

One advantage of an algorithm like ours is that it gives 
occupancy probabilities. This gives us the freedom to set a 
probability threshold for declaring when a space will be 
occupied. For our experiments, we set this threshold to a 
neutral value of ½. But, a more environmentally-conscious 
user may set the threshold higher to ensure that the system 
is more confident of future occupancy before heating. In 
contrast, a user more concerned about being warm would 
choose a lower probability threshold. We demonstrate the 
effect of this tradeoff in the results section below. 

In testing, we found that PreHeat did not perform well in 
per-room situations for a certain class of rooms – those 
which are only occupied for very short periods of time and 
at random intervals, e.g. bathrooms and hallways. These 

spaces tended to be predicted as “never occupied”. We 
therefore decided to use whole-house occupancy 
(determined by using the mathematical union of signals 
from all motion sensors) to predict and heat these rooms. 
Intuitively, whenever you are home it is possible that you 
might use the bathroom. In addition to these “whole house 
spaces”, this left 6 individually controlled rooms out of 10 
for UK1 and 8 rooms out of 10 for UK2. 

DEPLOYMENT 
Deployment allowed us to evaluate the heating algorithms 
using real weather conditions, central heating systems, and 
human occupancy behavior. Our three phase deployment 
lasted three to four months in each house, with an average 
of 61 days per house in Phase 2 (see Table 1), the main 
comparison between PreHeat and Scheduled heating.  

Phase 0: Debug/Acclimatization (≥ 7 days) 
In this phase we installed our system running the Scheduled 
algorithm. We showed adult members of the household 
how to use the UI and attached RFID tags to keys. To get 
the most accurate schedule we used the household’s current 
thermostat settings as a baseline and asked household 
members to update the program if necessary. For per-room 
heating in the UK we asked participants to provide 
“Occupied” setpoint temperatures for each room. To model 
typical systems in the UK which simply turn off between 
heating periods rather than use a setback, we did not ask for 
Sleep or Away temperatures, but used a low value of 5°C, 
which never triggered any heating during our study. 

The goal of this phase was to make sure our system was 
running smoothly in the home and to give people time to 
adjust their setpoint temperatures or scheduled times if 
desired. Although changes were permitted in later phases, 
no household requested to make such a change. We used 
the average observed heating rate from this phase to set the 
HeatRate parameter for each house (ranging from 
1.5°C/hour in UK1 to 3°C/hour in US2). Phase 0 lasted a 
minimum of a week and was longest in US1, US2 and UK1 
where we did initial in-situ testing.  

Phase 1: Initial Data Collection (14 days)  
PreHeat’s prediction algorithm requires some occupancy 
history data to work. We therefore ran a 14 day phase 
without Prediction, which gave the subsequent prediction 
phase enough historical data to work accurately. In a real 
deployment of PreHeat, the system might bootstrap by 
simply heating during all non-sleep hours until it 
determined that its predictions were accurate enough to start 
using Away. In our post hoc analysis, however, we found 
that prediction accuracy was adequate after just one or two 
days of occupancy data. Given that prior research [3, 8] has 
used AlwaysOn as a baseline, during Phase 1 we decided to 
alternate between the AlwaysOn and Scheduled conditions.  

Phase 2: PreHeat vs. Scheduled (48-72 days, 61 average) 
This comparison was our main focus and comprised the 
majority of days in the study (see Table 1). In order to 
balance any effect weather or household schedule changes 

 

Figure 2: PreHeat prediction algorithm. Each vertical set of 
blocks represents one day of occupancy split into 15-minute 

periods. Given a partially observed current day, the 
algorithm finds the five best matches in the past and averages 

the remainder of those matched days to compute 
probabilities for future occupancy. 



 

 

may have on our study, we alternated each day between two 
conditions: using PreHeat’s prediction algorithm and the 
Scheduled algorithm. Using neighborhood weather data 
provided to each US house by their utility company and 
from nearby public weather stations in the UK, we 
determined that, for all houses, the average outdoor 
temperature for PreHeat days differed from Scheduled days 
by less than 0.3°C. 

Our primary metrics for comparing PreHeat and Scheduled 
were gas consumption and the MissTime metric used by Lu 
et. al [8]. They defined MissTime as the total time in 
minutes that the home is occupied but the temperature was 
more than 1°C below the Occupied setpoint. We used the 
same definition, but applied it per-space (room in the UK, 
house in the US). For gas consumption, we used automated 
meter readings of the volume of gas used as described 
earlier. Because the system was deployed in our own 
houses, we purposefully avoided any subjective metrics. 

Households US2, US3, and UK2 each went on vacation for 
about a week during the study. Since at such times it is 
usual to do some exceptional thermostat programming (e.g. 
turn it off), we collected a list of such days and excluded 
them from Phase 2. This is primarily because vacation 
times are “unfair” to the Scheduled condition which heats 
regardless. We took advantage of vacation days to run 
additional AlwaysOn days in these houses. We continued to 
collect occupancy data during vacations, as PreHeat is 
robust to having these periods in the historical data set.  

Reliability During Deployment 
During the study period we had a small number of technical 
problems which caused us to remove three days from the 
analysis (N.B. In Table 1 and elsewhere, we have excluded 
these days already). In UK1, an electrical fuse trip caused 
two days to be excluded. In UK2, the XBee radio module 
attached to the PC “hung” and required manual power 
cycling, causing one day to be excluded.  

Of the study days used for analysis, the system was in a 
not-fully-functional state for an average of three minutes 
per day (uptime 99.8%). House UK2 had the most 
problems, averaging eight minutes per day where units 
were in “failsafe” mode. Most problems were due to XBee, 
and the system recovered automatically. 

Ensuring Occupancy Correctness 
Because our MissTime metric is only as valid as the 
occupancy data used, we took extensive steps to ensure 
accuracy. Each server directed an email to a house occupant 
and a project member every morning with a summary of the 
previous day’s per-space occupancy. The recipients looked 
for any discrepancies, consulting family members if 
necessary. The documented errors included both “social” 
failures due to forgetting to carry an RFID tag, and 
“technical” failures where some aspect of the sensing 
failed. We also ran data integrity checks on the 37,000 
occupancy records generated over the course of the study to 
find failure cases: In the US, we examined days where 

RFID tags disappeared many times (a radio range failure). 
In the UK, we used the RFID data (which was not used for 
heating prediction purposes) to highlight times when the 
house was occupied but no motion sensors were active. 

Using the documented errors and integrity checks we found 
a set of 57 issues that could affect the analysis and 
corrected them in a “ground truth” occupancy table. In the 
US, there were 17 corrections, of which 14 were “social”, 
and 12 of those occurred in US1. This household had 
keyless entry so the RFIDs were not as convenient. In the 
UK, 21/40 corrections were due to occupants being asleep 
outside the Sleep/Wake period (and thus difficult to detect 
using motion). In future work, we hope to address sleep 
detection. Issues with a motion sensor in UK2 not 
completely covering a room resulted in 18/40 corrections.  

We compared the MissTime metric using the original table 
against the ground truth table and found that only a single 
instance actually altered the result set (this impacted UK2 - 
the corrected data is reported in this paper). In the 
remaining instances, the house was warm enough to prevent 
the error from impacting the occupants. It is important to 
note that the PreHeat algorithm did NOT use corrected 
data; it predicted based on live data that included any 
errors. This is more representative of a real-life deployment. 

PREHEAT VS SCHEDULED RESULTS 
Figure 3 and Table 1 summarize how the measured gas 
consumption and MissTime metrics differ between the 
Scheduled and PreHeat conditions in each house.  

In the UK, PreHeat performed better than Scheduled on 
both metrics. PreHeat saved energy by not only selecting 
better heating times, but also by heating rooms different 
amounts – more details to follow in the Per-Room Heating 
section. Gas usage decreased from Scheduled by 18% in 
UK1 and 8% in UK2. In both conditions, the UK houses 
had comparatively little MissTime, but PreHeat also 
succeeded in decreasing this by 38% and 60%.  

In the US houses, MissTime improved by a large factor 
(84%, 88% and 92% reductions, a factor of 6-12 decrease!). 

 

Figure 3:  PreHeat improves the trade-off between gas used 
and MissTime compared to Scheduled 

0

10

20

30

40

50

60

0 5 10 15

M
is
sT
im

e
 P
e
r 
D
ay
 (
m
in
u
te
s)

Gas Used Per Day (m3)

Metric Changes Scheduled → PreHeat

� Scheduled
∆ PreHeat

US3

UK2

US1US2

UK1



 

 

 

Figure 4: Occurrences of long MissTimes are much reduced 
with PreHeat, particularly for US houses.  

(Note Y-axis intercept at 50%) 
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This is further shown by Figure 4 which illustrates that 
MissTime happens unevenly through the study – over half 
the days had no MissTime, but one Scheduled day in five 
(in US houses) had over one hour. PreHeat, unlike a static 
schedule, is able to dynamically heat day-by-day to more 
closely match the occupancy. To give one example, in US2, 
PreHeat heated more on weekends and less on weekdays 
than Scheduled, while being adaptive to instances of 
absence on weekends or occupancy on weekdays. PreHeat 
was able to achieve these large improvements in MissTime 
while using a similar amount of gas – saving slightly in 
US3 and using slightly more in US1 and US2. In the 
Occupancy Prediction section, we discuss how PreHeat 
could instead be tuned to favor energy savings at the 
expense of a smaller improvement in MissTime.  

Many More Overrides in Scheduled 
Our system’s user interface allowed occupants to override 
the current action. We classify overrides into two 
categories: “time” overrides when the system was not 
heating and the user overrode it to heat to the normal 
Occupied temperature, and “temperature” overrides when a 
non-standard temperature was set. During the study, there 
were 23 time overrides, 21 of which occurred in the 
Scheduled condition. The “time” overrides in Scheduled 
happened when people were home on vacation, sick, or 
otherwise home at times when Scheduled was not heating 
the house and they felt cold. The overrides caused more 
energy to be used, but without these overrides, the 
MissTime metric would have been (even) higher. The 
occupancy-reactive element of PreHeat reduces the need for 
overrides. There were two “time” overrides in the PreHeat 
condition, which were due to occupancy sensing failures – a 
guest in US2 who did not have an RFID tag, and a resident 
of US1 left her RFID tag in the car. The small number of 
“time” overrides in PreHeat supports our claim that PreHeat 
requires less programming of a heating schedule by 
occupants (since overriding is a form of programming). 

There were nine “temperature” overrides during Phase 2. 
These types of overrides can occur in either condition if an 
occupant wanted a deviation from the normal setpoint. In 
US3, participants overrode the temperature to be 1-3 
degrees higher than the setpoint seven times: three in 
Scheduled and four in PreHeat. In UK2, an occupant 
overrode the temperature to be lower than the setpoint 
twice, both in PreHeat, because it was sunny and he didn’t 
feel the heat needed to be on.  

Per-Room Heating 
Although we did not study the effect of per-room heating 
through a direct comparison, we can still get a measure of 
how well PreHeat tailored its behavior to individual room 
occupancy patterns.  

Figure 5 shows UK1’s six per-room-controlled spaces (the 
other four spaces used whole-house occupancy for heating 
as previously described), illustrating average occupancy in 
each space and the amount of time that the Occupied 
setpoint was used in both PreHeat and Scheduled 
conditions. We see that Scheduled heats around the same 
amount in each space (variation is due to turning on a little 
earlier or later in each space depending on how cold it gets 
when away/asleep). PreHeat tracks occupancy fairly well. 

 US1 US2 US3 UK1 UK2

Phase 2 Days (Alternating 
PreHeat and Scheduled) 

72 64 58 62 48 

Average Daily Occupancy 89% 69% 67% 73% 68%

Savings in MissTime 
PreHeat vs. Scheduled 88% 84% 92% 38% 60%

Savings in Gas Used  
PreHeat vs. Scheduled 

-5% -1% 2% 18% 8% 

(worse) (better) 

Savings in Gas Used 
PreHeat vs. AlwaysOnModel 

3% 17% 10% 27% 35%

Table 1: PreHeat decreased MissTime in all houses. Gas Used 
decreased in PreHeat in the UK homes with per room heating 
and was equivalent or slightly higher for the three US homes. 

Figure 5: PreHeat heats higher-occupied rooms more, while 
Scheduled does not adapt per-room. 
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Note that the rightmost room is the bedroom where all 
occupants sleep, so this space needs less heating than 
occupancy might suggest.  

OCCUPANCY PREDICTION  
Occupancy prediction is a key part of PreHeat. This section 
explores how accurate the predictions are compared to 
actual occupancy. 

Figure 6 shows the overall prediction accuracy for different 
look ahead times for the five houses. We compute accuracy 
for a given look ahead time as simply the number of correct 
occupancy predictions (either true or false) divided by the 
number of attempted predictions. The graph reveals that 
prediction accuracy for all houses was generally high. The 
median line shows that prediction accuracy only slightly 
decreases for longer look ahead times. 

Since the system needs advance notice of the need for heat 
in order for the space to reach the desired setpoint in time, 
we should evaluate the prediction based on how well it can 
achieve this goal. Examining each daytime heating instance 
during Phase 2, we find that 91% of the time, the system 
needed 90 minutes or less advance notice. For the 
remainder of our prediction assessments, we evaluate based 
on this 90-minute look ahead time. 

Figure 7 shows the prediction accuracies for 90 minutes 
into the future. For comparison, it also shows the prediction 
accuracy of the manually programed Scheduled condition, 
which was worse by a median 10 percentage points. We 
suspect that the improvement from using PreHeat would be 
much greater for the general population, many of whom do 
not keep up to date programs on their thermostats or do not 
have programmable thermostats [3]. 

As one might expect, prediction accuracy varied with the 
time of day. Accuracy is highest during sleep time and 
drops during the day when occupancy is naturally less 
predictable. Because prediction accuracy is high during 
sleep times, we have eliminated sleep times from all our 
prediction accuracy assessments. Thus, all our prediction 

assessments, including those in Figure 6 and Figure 7, 
pertain only to non-sleep times, eliminating the 
uninteresting boost in accuracy we would otherwise get.  

We also evaluated how prediction accuracy varied with the 
day of the week. As expected, weekend days are worse, 
with Sunday being the better of the two. We attribute this to 
the fact that our households generally had parents with 
regular working hours and children with regular school 
hours during the week. 

Our prediction algorithm computes occupancy probabilities 
that are then subjected to a threshold to make a concrete 
occupancy prediction. For our study, this threshold was set 
to a neutral value of ½. The effect of this threshold is shown 
in the receiver operating characteristic (ROC) curve in 
Figure 8. For different values of the probability threshold, 
these curves show the tradeoff between false positives 
(mistakenly predicting positive occupancy when the home 
would actually be empty) and true positives (correctly 
predicting positive occupancy). Our selected threshold 
value is indicated by a dot on each ROC curve.  

The ideal operating point is in the upper left corner, where 
the false positive rate is 0.0 and the true positive rate is 1.0. 
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Figure 8: These ROC curves demonstrate the tradeoff in 
prediction errors due to adjusting the probability threshold. 
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In reality, as with almost all detection problems, increasing 
the true positive rate comes at the expense of increasing the 
false positive rate. An environmentally-conscious user, who 
is more concerned about energy rather than warmth, would 
operate with a high probability threshold, which is toward 
the left side of the ROC curve. This would give fewer 
mistaken heating events at the expense of missing times 
when the heat should actually be turned on. A more 
warmth-sensitive user would operate with a lower 
probability threshold, which would cause heating more 
often during times of both occupancy and non-occupancy. 

Our study results show that PreHeat improved MissTime in 
all houses by substantial amounts. This indicates that our 
selected threshold was generally closer to the “warmth” end 
of the curves than the “savings” end, as verified in Figure 8. 
The operating point for US1 is biased far toward warmth. 
This is because this house was almost continuously 
occupied, resulting in prediction probabilities that were 
generally high (including sleep time, US1 was occupied 
89% of the day vs. a median of 69% for the other houses). 
Even with a relatively high false positive rate of 93%, the 
house was occupied so much that its overall 90-minute 
prediction accuracy was highest of all the houses at 86%. 

Finally, we also looked at prediction on a per-person basis, 
by applying our algorithm to each individual RFID tag 
using the tag’s unique ID. Running our algorithm in this 
way showed that our prediction accuracy is even higher, 
with a median accuracy of 97% compared to a whole-
household median of 80%. This means our algorithm could 
be used to accommodate different temperature preferences 
when only one of the home’s occupants is present. 

DISCUSSION 
We now discuss how PreHeat compares with AlwaysOn 
and to occupancy-reactive heating, and share some 
observations from our experiences of living with PreHeat. 

Comparison with Other Heating Algorithms 
Our main study directly compared PreHeat with Scheduled 
based on actual measurements. We now discuss how 
PreHeat compares to other algorithms. 

AlwaysOn 
Prior research [e.g. 3, 8] frequently uses the energy 
necessary to keep the house at a permanent setpoint 
(AlwaysOn) as a baseline for comparison. Given its past 
inclusion, we also provide this comparison baseline; 
however, we believe the comparison between PreHeat and 
Scheduled to be more meaningful.  

Since there were not sufficient days in a single winter to run 
three conditions, we elected to only gather AlwaysOn data 
during Phase 1 and vacations. We then used linear 
regression on this data to model the gas consumed given the 
average outside daily temperature. The linear regression 
showed average daily temperature was a very good 
predictor of gas used for the US houses, where more than 
92% of the variance in the data was accounted for in the 
linear regression equation (all R2> 0.92). Modeling did not 

work as well in the UK, with R2 = 0.69 in UK1 and R2 = 
0.78 in UK2. However, the models still give us some ability 
to compare PreHeat to AlwaysOn. 

For each PreHeat day we used the average daily 
temperature as input to the linear regression equation. We 
show the comparison between the model’s result and the 
actual gas used by PreHeat in Table 1. As expected, 
PreHeat uses less gas than the AlwaysOn model (ranging 
from a 3% to a 35% decrease). Although the difference in 
US1 is quite small (3%) we attribute this to the fact that the 
house was only empty 11% of the day which does not 
provide much opportunity for savings. 

Occupancy-reactive 
The PreHeat system incorporates both occupancy-reactive 
and predictive heating. We wished to evaluate how often 
just occupancy-reactive heating would have been sufficient 
in our study, and thereby get a measure of the value of the 
predictive element. We therefore looked for instances when 
someone entered a space that had been unoccupied for more 
than 60 minutes on PreHeat days. As Figure 9 shows, 
occupancy-reactive heating would have worked 36% of the 
time (average for all houses) without any MissTime – i.e., 
the space was still warm enough when someone returned. 
However, in 45% of the instances PreHeat heated the 
unoccupied space prior to the person’s return and so 
occupancy-reactive heating would have caused MissTime 
to occur. Thus we can conclude that predictive heating 
plays a very significant part in the PreHeat system. 

Living With PreHeat 
We quantitatively compared the Scheduled and PreHeat 
algorithms because of the potential for bias when using our 
own system. However, based on our experience with living 
with PreHeat, we report a few qualitative examples of how 
PreHeat gracefully adapted to our homes. 

PreHeat Better Handles Weekend Chaos: During the 
setup phase, we heard that weekend schedules varied more 
than weekday schedules, and that it was difficult to program 
the thermostat for weekends. Households adopted one of 

 

Figure 9: Predictive heating was important in all houses. 
While occupancy-reactive heating would have sufficed in 
36% of cases (average across households) where heating 
was not required, predictive heating was used to achieve 

warmth on return for an average of 45% of cases.  
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two strategies for their (previous) thermostat programs, 
either heating all day on the weekends (US1, US3) or using 
a shorter away duration than their weekday schedule (US2, 
UK1, UK2). These strategies were carried over into the 
study’s Scheduled condition. In either case, PreHeat better 
handled weekend heating without requiring manual effort 
by household members. For households with a weekend 
setback, the house stayed warm when they were home on 
PreHeat days without an override. Households that left the 
heating on all day had the potential to save energy on 
weekend days if they left home.  

PreHeat Supports More Complicated Occupancy 
Patterns: Programmable thermostats typically allow people 
to schedule one away period per day. In contrast, PreHeat 
can predict multiple away periods. For example, by the end 
of the study, PreHeat was correctly predicting that US2 
would come home and then leave again for a regular Friday 
evening appointment, and similarly for UK1 on Tuesday 
evenings. More valuable was PreHeat’s ability to predict on 
a per-room basis in the UK. Even if households had the 
ability to program on a per room basis, it is unlikely they 
would make the effort to maintain up-to-date programs in 
each room separately. We also observed that PreHeat 
handled occupancy patterns that re-occurred, but not on a 
weekly basis. For example, PreHeat smoothly handled the 
fact that a member of US2 arrived home early roughly 
every other Tuesday afternoon. 

PreHeat Adapts to Changing Schedules: In US3, the 
Nanny who stayed at home after school with the kids took 
another job during the study. As is likely typical after this 
type of change, it did not occur to the occupants of US3 that 
they should change their heating schedule. However, 
PreHeat adapted over time and began correctly predicting 
later arrival times at the home.  

CONCLUDING REMARKS 
By predicting future occupancy from historical data and 
current occupancy, the PreHeat system provides a better 
trade-off between energy use and MissTime (the amount of 
time an occupied space is cold) than a thermostat program, 
and does so without requiring a user to program an 
occupancy schedule (which past research has shown that 
many users fail to do). We evaluated PreHeat using a real 
deployment in five family homes during winter 2011, 
alternating days between PreHeat and scheduled heating to 
provide a direct comparison with measured gas 
consumption and MissTime. 

In three US homes, we found that PreHeat reduced 
MissTime by a factor of 6-12 while using around the same 
amount of gas. Across two UK homes, PreHeat halved 
MissTime and also reduced gas usage by 8% and 18% - this 
is because UK homes used PreHeat on a per-room basis, so 
it was able to make additional savings by heating rooms 
adaptively at different times of day, again without requiring 
any programming of per-room schedules. 

Our research suggests several interesting directions for 
future work. We want to investigate improvements to the 
PreHeat algorithm, e.g. using other sources of data such as 
location from phones, or further exploring per-person 
predictions. Sleep detection would assist with automatically 
determining times for setpoint changes. A more 
sophisticated heating model could also enable more 
savings, e.g. by predicting departures and “pre cooling” 
since houses stay warm for some time. Finally, we plan to 
explore exposing the high-level tradeoffs PreHeat offers 
between the likelihood of being warm when arriving home 
unexpectedly and energy consumption to users so they can 
customize based on their personal preferences. 
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