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The purpose of PREIM (Progressive RB-EIM) [1] is to reduce the offline costs of nonlinear parabolic
reduced order models with accurate RB approximations in the online stage. The key idea is a pro-
gressive enrichment of both the EIM approximation and the RB space, in contrast to the standard
approach where the EIM approximation and the RB space are built separately. PREIM uses high-
fidelity computations whenever available and RB computations otherwise. Another key feature of
each PREIM iteration is to select twice the parameter in a greedy fashion, the second selection being
made after computing the high-fidelity solution for the firstly selected value of the parameter.

Model problem
For µ ∈P tr, we consider the nonlinear heat transfer equation
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with the standard uniform ellipticity assumption β1 ≤ κ0+Γ(µ,z)≤ β2 and 0 < β1 < β2 < ∞.

Standard RB-EIM approach
For the RB approximation ûk

µ = ∑
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µ,nθ n, , the space-time discretized PDE (1) in reduced
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ûk−1
µ,n

∫
Ω

Γ

(
µ,

N

∑
n′=1
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We introduce γ(µ,k,x) := Γ(µ,uk
µ(x)) and seek a separated approximation of γ in the form
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M
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ϕ
k
µ, jq j(x), (3)

In the standard RB-EIM, the EIM approximation (3) and the RB space XN = span{(θn)1≤n≤N} are
built separately.

PREIM

We introduce
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and the nonlinear function at iteration m
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PREIM has two goals:

• produce a set of RB functions (θ m
n )1≤n≤Nm;

• produce a rank-m approximation of the nonlinearity (5) in the form
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three main ingredients:

•PHF
m ⊂P tr: Set that collects the previously computed HF trajectories

•Xm: Set of interpolation points (x̄i)1≤i≤m

•Qm: Set of interpolation functions (q̄ j)1≤ j≤m

three main steps (the detailed algorithm appears in [1]):
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• update the reduced basis
Ξ := POD(S̃ ,εPOD)

with Θ := (θ m
n )1≤n≤Nm and S̃out := (u−Πspan(Θ)u)u∈Sout

and three accuracy criteria:

• εPOD is the truncation threshold for the POD-based RB construction.

• εEIM is threshold for the approximation of the nonlinearity.

• εRB is threshold for the RB approximation.

Numerical results
Numerical results were obtained for a nonlinearity on the solution
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and for a nonlinearity depending on partial derivatives
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We focus on (6) with ω = 6.25 ·10−3, u0 = 293 K (20 oC), κ0 = 1 m2·K−2·s−1 and φe = 3 K·m·s−1.

• Space discretization: mesh containing N = 1429 nodes.

• Time discretization:

– Discrete times nodes Ktr = {1, . . . ,50},
– Constant time step ∆tk = 0.05 s.

• Parametrization

– Interval P = [1,40]
– Training set P tr = {1, . . . ,40}.

Figure 1: RB approximation error ‖uµ − ûµ‖`2(Itr;H1(Ωtr))

for εPOD = 5 ·10−2 and εEIM = 10−3
Figure 2: RB approximation error ‖uµ − ûµ‖`2(Itr;H1(Ωtr))

for εPOD = 5 ·10−2 and εEIM = 10−3

Figure 3: RB approximation error ‖uµ − ûµ‖`2(Itr;H1(Ωtr))

for εPOD = 2.5 ·10−2 and εEIM = 10−4
Figure 4: RB approximation error ‖uµ − ûµ‖`2(Itr;H1(Ωtr))

for εPOD = 2.5 ·10−2 and εEIM = 10−4

Figure 5: EIM approximation errors.

Figure 6: Selected parameters and time nodes in PREIM for εEIM = 10−1. The gray cells correspond to a new
parameter selection and, therefore, to a new HF computation.

Conclusions
PREIM diminishes the offline expenses in the nonlinear RB method applied to unsteady nonlinear
PDEs, as long as the computation of high-fidelity trajectories is the dominant part of the offline
cost.
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