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The purpose of PREIM (Progressive RB-EIM) [1] 1s to reduce the offline costs of nonlinear parabolic
reduced order models with accurate RB approximations in the online stage. The key idea is a pro-
gressive enrichment of both the EIM approximation and the RB space, in contrast to the standard
approach where the EIM approximation and the RB space are built separately. PREIM uses high-
fidelity computations whenever available and RB computations otherwise. Another key feature of
each PREIM iteration is to select twice the parameter in a greedy fashion, the second selection being
made after computing the high-fidelity solution for the firstly selected value of the parameter.

Model problem

Numerical results

Numerical results were obtained for a nonlinearity on the solution
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and for a nonlinearity depending on partial derivatives
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For u € 27", we consider the nonlinear heat transfer equation A Y
du, We focus on (6) with @ = 6.25-1073, up =293 K (20°C), kp = 1 m* K ?-s7 ! and ¢, =3 K-m-s~!
- v (0 +T (1t 1)) V) = f, in [0,7] x €, e Space discretization: mesh containing .#” = 1429 nodes.
o . . L
\ (K0+F(,u,uu)) uli _ (be, on [O,T] < aQ7 (1) e Time discretization:
— s . tr
it = O, ) — ("), inQ, Discrete tl.mes nodes K" = {1,...,50},
: — Constant time step At* = 0.05 s.
with the standard uniform ellipticity assumption B; < kop+1'(u,z) < B, and 0 < B; < B < e=. e Parametrization
— Interval & = [1,40]
it tr __
Standard RB-EIM approach ~Training set = {1,..., 40}
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For the RB approximation w,, =} 4, ,0,, , the space-time discretized PDE (1) in reduced || — RB-.EIM || — PREIM+RB
formulation reads
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We introduce (1, k,x) := I'(1,uj;(x)) and seek a separated approximation of 7 in the form
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j=1 Figure 1: RB approximation error |[uy — iy |21 (qr) Figure 2: RB approximation error |[uy — iy || 2 p1 (o)
for €pop = 5-1072 and & = 1073 for €pop = 5-1072 and &g = 1073
In the standard RB-EIM, the EIM approximation (3) and the RB space Xy = span{(6,)<,<y} are
built separately. | [— PREM 1[— RB-EM
1| —— RB-EIM 1| =— PREIM+RB
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We introduce

(M k) €

e compute .Sy =

(Bons Ko

ok uﬁ if u € ,@nI;IF : Figure 3: RB approximation error |[uy — iy |21 qry Figure 4: RB approximation error |[uy — iy | 2 g1 ()
iy = A% otherwise, (4) for €pop = 2.5- 102 and gy = 10~ for €pop = 2.5- 102 and &gy = 10~
and the nonlinear function at iteration m 100 —rRE
_ ik ] —  PREIM ..
Y (e k,x) i= T, i, (x)). (5)
PREIM has two goals:
e produce a set of RB functions (60");<,<ym; .
= 1n-1
e produce a rank-m approximation of the nonlinearity (5) in the form 50
T (oK) =} (9")y ;05
j=l1
three main ingredients: 2 4 6 8 10 12 14 16
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Figure 6: Sclected parameters and time nodes in PREIM for &g, = 101,
parameter selection and, therefore, to a new HF computation.

Conclusions

The gray cells correspond to a new

PREIM diminishes the offline expenses in the nonlinear RB method applied to unsteady nonlinear

e update the reduced basis i
E = POD(y, 8POD)

with © := (0")<p<ym and Loy := (1 —
and three accuracy criteria:
® &op 18 the truncation threshold for the POD-based RB construction.

Hspan(@)u)uéfﬂout

® &y 1S threshold for the approximation of the nonlinearity.

® & 1s threshold for the RB approximation.

PDEs, as long as the computation of high-fidelity trajectories 1s the dominant part of the offline

Ccost.

References

[1] Benaceur, A., Ehrlacher, V., Ern, A., Meunier, S.: A progressive reduced basis/empirical interpo-
lation method for nonlinear parabolic problems (2018). URL https://hal.archives-ouvertes.fr/hal-

01599304




