
Preimage and Collision Attacks on MD2

Lars R. Knudsen1 and John E. Mathiassen2

1 Department of Mathematics, Technical University of Denmark
2 Department of Informatics, University of Bergen, Norway

Abstract. This paper contains several attacks on the hash function
MD2 which has a hash code size of 128 bits. At Asiacrypt 2004 Muller
presents the first known preimage attack on MD2. The time complexity
of the attack is about 2104 and the preimages consist always of 128 blocks.
We present a preimage attack of complexity about 297 with the further
advantage that the preimages are of variable lengths. Moreover we are
always able to find many preimages for one given hash value. Also we
introduce many new collisions for the MD2 compression function, which
lead to the first known (pseudo) collisions for the full MD2 (including
the checksum), but where the initial values differ. Finally we present a
pseudo preimage attack of complexity 295 but where the preimages can
have any desired lengths.

1 Introduction

A hash function is a function that takes an arbitrary long input, and produces
a fixed length output. The output is often called a fingerprint of the input. A
cryptographic hash function needs to satisfy certain security criteria in order to
be called a secure hash function. Let

H : {0, 1}∗ → {0, 1}n

denote a hash function, whose output is of length n bits. A cryptographic hash
function should be resistant against the following attacks:

– Collision: Find x and x′ such that x 6= x′ and H(x) = H(x′).
– 2nd preimage: Given x and y = H(x) find x′ 6= x such that H(x′) = y.
– Preimage: Given y = H(x), find x′ such that H(x′) = y.

Typically one requires that there must not exist attacks of these three types
which are better than brute-force methods. Thus, to find a collision should not
have a lower complexity than about 2n/2 and it should not be possible to find
preimages in time less than 2n.

It is common to construct hash functions from iterating a so-called a com-
pression function

h : {0, 1}n × {0, 1}l → {0, 1}n,

which compresses a fixed number of bits. Here the output of one application
of this function, hi, of length n is called a chaining variable and is used as an

input in the next iteration together with the next message block mi+1 of length
l. If the design of a hash function follows the principles of Merkle and Damg̊ard
[4,1], it can be shown that a collision for the hash function H implies a collision
for the compression function h. Thus, if one can design a secure compression
function, then one can also design a secure hash function. Still, the first step
towards finding weaknesses in the hash function may be to find weaknesses in
the compression function. The first chaining variable in an iterated hash function
is often called the IV (initial value) and this is often fixed. Attacks on hash
functions where the attacker is able to choose or change the IV are called pseudo
attacks. Must popular hash functions are using an iterative compression function
and a fixed IV . Examples are MD4, MD5, SHA-1, and RIPEMD-160.

The organisation of this paper is as follows. Section 2 presents the MD2 hash
function. Section 3 presents some collision attacks on the compression function
where many details are included in an appendix. Section 4 presents several at-
tacks on MD2 (including the checksum). They are a pseudo collision attack,
several preimage attacks, as well as a pseudo preimage attack. As far as we are
informed the complexities of all these attacks are the lowest known today. Below
is a summary of all known results on MD2, where an asterisk (*) indicates that
the attack is new.

Collision Preimage Comments

Compression function 28[6] 273 [5]
Hash function (pseudo) 216 (*) 295 (*) Arbitrary length messages

Hash function - 2104[5] Message length 128 blocks

Hash function - 297.6-2112 (*) Message length 44-128 blocks

2 The MD2

The MD2 hash algorithm is designed by Ron Rivest and published in 1988[2,3].
It is a function H : GF (256)∗ → GF (256)16, which takes an arbitrary number
of bytes GF (256) and outputs a string of 16 bytes GF (256)16. The function
consists of iterations of a compression function h : GF (256)16 × GF (256)16 →
GF (256)16, hi = h(hi−1,mi), where the input in the ith iteration is the ith
message block mi and the chaining variable hi−1. The message m to be hashed
is appended with some padding bytes and a checksum c before it is processed:
m||p||c = m1||m2|| · · · ||mt+1, where |mi| = 128 for i = 1, 2, . . . , t+1. At least one
byte and at most 16 bytes of mt are padded. Let b be the length of the message
in bytes, and i ≡ b mod 16, i ∈ {0, 1, . . . , 15}, then d = 16 − i (represented in
a byte) is added to the message d times. There is at least one byte padding,
so if the length is b ≡ 15mod 16, then d = 1 the byte p = 1 is appended the
message. If the message length in bytes is 0 modulo 16 , then d = 16 and the
byte sequence p =16| · · · |16 of length 16 bytes is added to the message, so that
the length of the message still is 0 modulo 16.

Next a checksum block mt+1 = c = c0 | c1 | · · · | c15 is appended to the
message. The checksum [Algorithm 1] is generated processing every byte of the

Algorithm 1 Algorithm to compute the checksum c = c0||c1|| · · · ||c15

for j = 0, 1, . . . , 15
cj = 0

for i = 1 to t do
for j = 0 to 15 do

cj = s(c
j−1mod 16

⊕ mi,j) ⊕ cj

end /*for i*/
end /*for j*/

Algorithm 2 The compression function in MD2, where the output is the 16
first bytes of hi,1 | hi,2 | · · · | hi,16| · · · |hi,48.

for j = 1 to 16 do
hi,j = hi−i,j

hi,16+j = mi,j

hi,32+j = hi−i,j ⊕ mi,j

t=0
for r = 1 to 18 do

for j = 1 to 48 do
t = hi,j = s(t) ⊕ hi,j

end /*for j*/
t = r − 1modulo 256

end /*for r*/

message one block at the time, starting at the first block. The checksum is
initialized to 0, ci = 0 for i = 0, 1, . . . , 15. Then for all t message blocks, mi for
i = 1, 2, . . . , t, process all 16 bytes of that block and the checksum j = 0, 1, . . . , 15
by the function cj = s(c(j−1) ⊕mi,j)⊕ cj where mi,j is the j’th byte of the i’th

block of the message and where s : {0, 1}
8
→ {0, 1}

8
is a bijective mapping, which

is also used in the compression function. The details of s are not important for
the results in this paper. The hash function is iterated in the following way:

– h0 = iv = 0

– hi = h(hi−1,mi) for i = 1, 2, . . . , t + 1

– H(m) = ht+1

The compression function [Algorithm 2] of MD2 takes two inputs of each 128
bits, cf., earlier, and consists of an 18-round iterative process, where a vector of
the 48 bytes constructed from hi−1||mi||hi−1 ⊕ mi and denoted

hi = hi,1||hi,2|| · · · ||hi,48

is repeatedly processed from left to right through the use of the same round func-
tion consisting of simple byte exclusive-ors and the eight-bit bijective mapping
s(), also used in the checksum calculation.

3 Attacks on the Compression Function

In [6] a collision attack on the compression function of MD2 is given. Recall
that this function computes hi = h(hi−1,mi). Rogier and Chavaud give 141
collisions for the compression function where for all collisions hi−1 is fixed to the
value zero. Note that the IV of MD2 as stated in [2] is zero. We found some
variations of this attack. First of all we found that the collision attack extends
and it is possible to find many more collisions of this form. We implemented one
improvement and found 32,784 collisions, all with hi−1 = 0. This attack takes
very little time. Also we found that it is possible to find so-called multi-collisions
for the compression function, that is, a set of different mis all with same output
in the compression function and all with hi−1 = 0. With a complexity of about
272 one expects a multiple collision of eight messages.

Another variation of Rogier and Chavauds attack is to fix mi to zero and find
different values of hi−1 leading to identical outputs of the compression function
and yet another variation is to fix mi ⊕ hi−1. These variants are similar to the
above original one, although the complexities are slightly higher. [6] also consider
cases where only a subset of the bytes of hi−1 are zeros. We show similar results
for the variations. The details of these variants and variations are described in
the appendices, but where we have left out the case where mi ⊕ hi−1 is fixed.
In the next section we shall use some of the improvements and variations of the
attacks on the compression function.

4 Attacks on the MD2 Hash Function

4.1 A Pseudo Collision Attack on MD2

In Appendix B.3 we present a collision attack on the compression function where
mi = m′

i = 0 and hi−1 6= h′

i−1, but where hi = h′

i. Using this attack we are able
to find collision for MD2 (including the checksum) but using different IV s. We
have found 130 such collisions in 2 seconds on a single PC, and can find ≈ 215

such collisions in about 512 seconds (under 9 minutes) with that property. For
any such collision hi−1 6= h′

i−1, thus if two different IV values of MD2 are chosen
to be IV = hi−1 and IV ′ = h′

i−1 then one can find collisions for all of MD2 for
a message using two different IV s.

– Find a pair (h0,m1) 6= (h′

0,m1) where m1 = 0 such that h(h0,m1) =
h(h′

0,m1).
– Set IV = h0 and IV ′ = h′

0.
– Choose message blocks m2|m3|, . . . , |mt.
– Then clearly H(IV,m) = H(IV ′,m), where m = m1|m2|m3|, . . . , |mt.

Notice that the checksums for both hashes are identical since the message blocks
are identical, and therefore we have pseudo collision for MD2.

Let us now consider a situation where such collisions could become practical.
Imagine a scenario where Alice and Bob use a digital signature system using a

hash function. Imagine that they are signing the same message m many times,
e.g., “Alice owes Bob 100 US$”. In order to avoid that the same message gives
an identical signature, Alice suggests to use a time-stamp, but Bob convinces
her that instead he shall send Alice a fresh random hash-IV (e.g., a nonce) to be
used in every new signature. Alice agrees to this, however demands that the IV
Bob chooses should be run through the hash function first. And so, they agree
on the following protocol.

– Bob chooses a random IV
– Alice calculates r = h(IV, 0), creates the hash as usual by h = H(r,m), and

signs the hash value, sign(h).

Assuming that the digital signature scheme and the hash function are secure, it
seems hard for Bob to cheat. In every new signature a different IV is used, so Bob
cannot play the replay attack. However using MD2 in this protocol is a problem
since Bob is able to find many collisions of the type h(IV, 0) = h(IV ′, 0), and
hence he is able to reuse the signature and message together with other IV s.

4.2 The Preimage Attack

In [5] F. Muller presents the first known preimage attack on MD2 faster than
a brute-force attack. The attack is divided into two parts: in the first part one
finds many preimages of the compression function and in the second part one
finds those preimages which conform with the checksum function. Note that
for most iterated hash functions a preimage attack of the compression function
immediately gives at least a pseudo preimage on the hash function, but this is
not true for MD2 because of the additional checksum block which is appended
to the messages. [5] lists three different attacks on the compression function:

1. Given hi and hi−1, find a message mi such that hi = h(hi−1,mi). The
complexity is 295.

2. Given hi and mi, find a value hi−i such that hi = h(hi−1,mi). The com-
plexity is 295.

3. Given hi, find a value hi−i and a message mi such that hi = h(hi−1,mi).
The complexity is 273.

Here one unit in the complexity measures is the time to run the compression
function once. All these attacks are expected to give one solution, but there
might also be zero or several solutions. Assuming that the compression function
is a random function, the probability that there is no solution is (1− 2−128)2

128

,
and the probability that there are at least w solutions is:

pw ≈ 1 −

w−1
∑

i=0

[(

2128

i

)

2−128i · (1 − 2−128)2
128

−i

]

≈ 1 − (

w−1
∑

i=0

1

i!
)e−1.

The first attack above can be used to find also preimages for (all of) MD2[5].
With h0 = 0 and h = h128 the attack is as follows, where h0 is given and i is
initialised to 1:

1. Choose a random value of hi.
2. If more than 2 solutions of mi satisfying hi = h(hi−1,mi) is found: Increase

i by 1. If i < 128: Goto step 1.
3. If no more than 2 solutions of m128 satisfying h128 = h(h127,m128) is found:

Set i to 127 and goto step 1.

This gives 128 consecutive pairs (hi−1, hi) for which there are at least 2 different
values of mi such that hi = h(hi−1,mi). Consequently there are at least 2128

different messages m (of 128 blocks) such that h = H(m), and therefore one
of these messages is expected to conform with the checksum m128 = c. Let c[i]
denote the checksum after i iterations (i message blocks). Using the birthday
attack on the checksum function has a complexity of about 264:

– Compute 264 values of c[64] by iterating the checksum function through 264

possible values of the blocks m1,m2, . . . ,m64.
– Compute 264 values of c[64] by calculating the checksum backwards through

264 possible values of the blocks m65,m66, . . . ,m128 = c.
– Search for a collision between elements in the two lists.

The expected number of collisions in this last step is 1. The overall complexity
of this attack is as follows. The probability of finding at least two solutions
in the attack on the compression function is approximately p2 = 1 − 2e−1,
and for each of the steps in the algorithm we expect p−1

2 repeats. So the total
complexity is 128 · p−1

2 · 295 ≈ 2104. The padding bytes have not been considered
in this attack, but it is strightforward to ensure that the preimages have correct
padding without increasing the complexity of the attack[5]. One drawback of this
preimage attack is that the messages always consist of 128 blocks. It is left as
an open question in [5] to find preimages with fewer blocks. In the next section
we give an improvement in complexity of the above attack as well as variants
where the messages have fewer than 128 blocks.

4.3 Improvement of the Preimage Attack

First we give a preimage attack also with 128 blocks in the messages but with a
lower complexity. We are given h0 = 0 and h = h128 and proceed as follows:

1. Given h0 = 0; use the collision attack from Section 3 (see also Appendix B)
to find h1 and a collision for u ≥ 4 different values of m1 satisfying h1 =
h(h0,m1).

2. Let h127 = h1, and use the preimage attack to try to find v ≥ 1 values of
m128 such that h128 = h(h127,m128). If there are no solutions, use another
collision from step 1.

3. Let h2 = h1 and find w ≥ 2 values of m2 such that h2 = h(h1,m2). If there
are no solutions, repeat step 2 using another collision from step 1.

4. Set hi = h1 for i = 3, . . . , 126.

This is a situation where h0 = 0, h1 = h2 = · · · = h127, h128 = h, and the use
of the birthday attack on the checksum is expected to give 1 solution. The first

Table 1. Complexities of the preimage attack for different message lengths, where in
each case one solution is expected.

w ≥ message length complexity

2 128 297.6

3 80 299.3

4 64 2101.4

5 55 2103.8

6 50 2106.4

7 46 2109.2

8 43 2112.2

step has a relative small complexity as discussed before, but we might be forced
to repeat steps 2 and 3. The probability of a solution in step 2 is approximately
p1 = 0.63, and the probability in the third step is approximately p2 = 0.26.
Total complexity of the attack is then

p−1
1 · p−1

2 · 295 ≤ 297.6.

There are possible ways to shorten the number of blocks in the preimages, but at
the expense of higher complexity. If we require that w ≥ 3 in step 3, we expect
a slightly higher complexity, but the number of blocks in the preimages would
drop to approximately log32

128. Table 1 shows the complexities and lengths of
the preimages for different lower bounds of w. As an example, it is possible to
lower the number of blocks in the preimages to 55 instead of 128, by requiring
w ≥ 5 in which case the complexity is ≤ 2104.

It is also possible to get more preimages without increasing the total (time)
complexity. Since we use a preimage where hi−1 = hi, the possible length of the
chain in the middle can be arbitrarily long, however the length is limited by the
complexity of the collision attack of the checksum. One example is an attack
where the messages are of length 191 and where w ≥ 2. This gives a memory
and computational complexity of 295 in the birthday attack on the checksum,
and it is expected to give 262 collisions and thereby 262 possible preimages, but
total running time of the attack is unchanged.

4.4 A Pseudo Preimage Attack on MD2

In this section we present a pseudo preimage attack on MD2 which has better
complexity than the preimage attack, and where the messages can be (almost)
as short or as long as we desire. This attack uses two attacks from [5] on the
compression function having complexities 273 and 295 respectively.

Initially a hash value h is given, and we are able to find a message m and an
IV which give us the desired hash value h = H(IV,m). First use the method of
finding pseudo preimages ht and mt+1 of ht+1 = h in the compression function.
Remember that the last message block mt+1 is the checksum block, and we

might repeat this preimage attack to find the second last message block, which
also contains the padding bytes. Due to the high degree of freedom in the attack
on the compression function, it is possible to choose between 1 and 16 suitable
padding bytes in this message block mt, but it is sufficient to choose the last
byte of mt equal to 1, and the attack still gives us mt and ht−1 with complexity
273.

Next we need to have at least one more message block in our preimage to
make the checksum consistent with the (given) initial value c[0] = 0, (recall
that c[i] denotes the checksum after i iterations (i message blocks). A potential
problem with the checksum could be to fit the two fixed ends c[0] = 0 and
c[t] = mt+1. However it turns out to be easy to “glue” two consecutive checksum
values c[i−1] and c[i] together by choosing an appropriate value mi. Notice that
it is also possible to calculate the checksum c[i] = c(c[i − 1],mi) backwards by
inverting the function, c[i − 1] = c−1(c[i],mi). Now suppose we have found the
message values m2 and the checksum, we compute c[2] and then c[1] by going
backwards. We now “glue” c[0] and c[1] together by finding the appropriate
m1. To get a preimage of two blocks we set h1 = ht−1 and m1 = mt−1, and
use another pseudo preimage attack from [5], having complexity 295, to find
IV = h0. Using the MD2 hash function on the IV and a message m will now
give the required hash h = H(IV,m). The total complexity in this situation
where the message length is two, is 295.

For a required message length t, and given ht+1 = h the algorithm is as
follows:

– Find ht and mt+1(= c) such that ht+1 = h(ht,mt+1).
– Find ht−1 and mt (included valid padding byte), such that ht = h(ht−1,mt).
– Repeat the preimage attack t − 2 times to find h1 and m2.
– Find c[1] by calculating the checksum backwards by using mi for i = 2, 3, . . . ,

t + 1
– Use special property in the checksum algorithm to find m1 such that c[1] =

c(0,m1).
– Use the other pseudo preimage attack[5] to find IV = h0 given h1 and m1.

The complexity of three first steps of the attack is t · 273 and the last step has
complexity 295. The other parts of the algorithm have relatively small complexity
and the total complexity of the attack is 295 as long as t ≤ 221. The message
length could be as small as t = 2.

5 Conclusion

In this paper some new attacks on the hash function MD2 were presented. First
some extended collision attacks on the compression function were given. Using
one of these attacks it was shown to be possible to mount a pseudo collision
on the MD2, which is the first known attack of its kind faster than the trivial
attacks. The paper also presented the best known preimage attack on MD2 which
is an improvment of a factor of 80 compared to existing attacks. Also, it was

shown that the lengths of the preimages can be made smaller than in previous
attacks, where the lengths were fixed and relatively high. Moreover it was shown
that it is possible to extend the attack such that many preimages are found.

References

1. I.B. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Ad-

vances in Cryptology: CRYPTO’89, Lecture Notes in Computer Science 435, pages
416–427. Springer Verlag, 1990.

2. B. Kaliski. The MD2 message-digest algorithm. Request for Comments (RFC) 1319,
Internet Activities Board, Internet Privacy Task Force, April 1992. Available from
http://www.faqs.org/rfcs/rfc1319.html.

3. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.
4. R. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in

Cryptology - CRYPTO’89, Lecture Notes in Computer Science 435, pages 428–446.
Springer Verlag, 1990.

5. F. Muller. The MD2 hash function is not one-way. In P.J. Lee, editor, Advances

in Cryptology - ASIACRYPT 2004, LNCS 3329, pages 214–229. Springer Verlag,
2004.

6. N. Rogier and P. Chauvaud. MD2 is not secure without the checksum byte. In
Designs, Codes and Cryptography, 12, pages 245–251, 1997.

A Properties of the MD2 Compression Function

In order to be able to describe the attacks it is convenient to describe the com-
pression function and its intermediate states in a 19 × 49-matrix

T = (Ti,j)
i=0,1,...,18
j=0,1,...,48,

which is also shown in Figure 1, where the first row is made from hi−1, mi and
hi−1 ⊕mi. The first element T0,0 is never used, but (T0,j)j=1,2,...,48 = hi−1 | mi |
hi−1 ⊕ mi−1.

Next the rows of the matrix is processed in an iterative manner:

– T1,0 = 0
– Ti,0 = Ti−1,48 + i − 2mod 256 for i = 2, 3, . . . , 18 (but not for i = 1)
– Ti,j = Ti−1,j ⊕ s(Ti,j−1) for i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48
– hi = (T18,j)j=1,2,...,16

After this procedure the matrix contains all the states of the compression matrix.
As we shall see, it is sometimes advantageous in a cryptanalytic approach to
try and compute the values in the matrix in a different order than the above
line by line approach. To help us do this, we have derived five computing rules
directly from the algorithm. The three first rules are shown in Figure 2. The
two remaining are just the dependencies between the first and last columns of
T . The rules are:

h
i

T
3

T
1

T
2

h
i−1

i
m h +m

i−1 i

Fig. 1. The MD2 compression function calculation shown as a matrix T. It also shows
how the submatrices T1, T2 and T3 are defined, and one line at the time is computed
from left to right. The 16 rightmost bytes of the last line of T1 (the dark area in the
last line) contains hi = h(hi−1, mi) when the matrix is completed.

1. Ti,j = Ti−1,j ⊕ s(Ti,j−1), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.

2. Ti−1,j = Ti,j ⊕ s(Ti,j−1), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.

3. Ti,j−1 = s−1(Ti,j ⊕ Ti−1,j), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.

4. Ti,0 = Ti−1,48 + (i − 2)mod 256, where i = 2, 3, . . . , 18.

5. Ti−1,48 = Ti,0 − (i − 2)mod 256, where i = 2, 3, . . . , 18.

The three first rules give us five properties from [6] also shown in Figure 3 and
Figure 4.

Property 1: Let k < m and l < n. If the elements (Tk,j)j=l,l+1,...,n from row

k and (Ti,l)
i=k,k+1,...,m from column l are known the submatrix (Ti,j)

i=k,k+1,...,m
j=l,l+1,...,n

is uniquely determined using rule 1 (Figure 3).

Property 2: Let k < m and l < n. If the elements (Tk,j)j=l,l+1,...,n from row

k and (Ti,n)i=k,k+1,...,m from column n are known the matrix (Ti,j)
i=k,k+1,...,m
j=l,l+1,...,n

is uniquely determined using rule 3 (Figure 3).

Property 3: Let k < m and l < n. If the elements (Tm,j)j=l,l+1,...,n from row

m and (Ti,l)
i=k,k+1,...,m from column l are known the matrix (Ti,j)

i=k,k+1,...,m
j=l,l+1,...,n

is uniquely determined using rule 2 (Figure 3).

Property 4: Let l < n and k < m, such that m − k = n − l. If the ele-
ments (Ti,n)i=k,k+1,...,m from column n are known then half the square matrix

(Ti,j)
i=k,k+1,...,m
j=l,l+1,...,n is uniquely determined under the diagonal (Ti,j)

i=k,k+1,...,m
j=n+k−i,(n+k−i)+1,...,n

using rule 3 (Figure 4).

Ti−1,j

Ti,j−1 Ti,j

i

s

¾
@

@
@
@R

6

6

Ti−1,j

Ti,j−1 Ti,j

i

s

@
@

@
@I

-

6

6

Ti−1,ji

s−1

¾
?

? @
@

@
@I

Ti,j−1 Ti,j

Fig. 2. The dependency of an element Ti,j in the matrix T . These three figures show
these three dependencies Ti,j = Ti−1,j⊕s(Ti,j−1), Ti−1,j = Ti,j⊕s(Ti,j−1) and Ti,j−1 =
s−1(Ti,j ⊕ Ti−1,j) respectively.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �l

k

m

n

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �l

k

m

n

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �l

k

m

n

Fig. 3. The figure from left to right shows the Properties 1, 2 and 3 respectively. If the
dark areas are known the rest of the matrix is uniquely defined.

Property 5: Let k < m and l < n, such that n − l = m − k. If the
elements (Tm,j)j=l,l+1,...,n from row m is known then half the square matrix

(Ti,j)
i=k,k+1,...,m
j=l,l+1,...,n is uniquely determined under the diagonal (Ti,j)

i=k,k+1,...,m
j=n+k−i,(n+k−i)+1,...,n

using rule 2 (Figure 4).

Observe that the Properties 4 and 5 are similar and define exactly the same
triangle, and that the Properties 1, 2 and 3 define the same rectangle. In the
attacks of the compression function it is useful to denote the leftmost 17, the
middle 17 and the rightmost 17 columns of the matrix T by (the matrices) T1,

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �l

k

m

n

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	l

k

m

n

Fig. 4. Illustration of the Properties 4 and 5. If the bottom row or the rightmost column
is known, the shaded triangle is uniquely defined.

T2, respectively T3 as shown in Figure 1. Notice that the first and last column
of T2 overlap with the last column of T1 and the first column of T3.

B Collision Attacks on the Compression Function of

MD2

B.1 Collision Attack where hi−1 = 0

The first part of this section is from [6] with our extensions at the end. We shall

��
��
��

hi

T3T1

T2

� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

Fig. 5. The figure shows the collision attack on the compression function where hi−1 =
0. The dark areas are processed line by line.

consider a special case where hi−1 = 0 and as a consequence mi = hi−1 ⊕ mi

and the first rows of T2 and T3 are equal. Since the first row of T1 and the first
element in row 1 are known (defined to be 0), we are able to calculate row 1 of
T1. Now we try to find values of mi such that the 13 first rows of T2 and T3 are
equal, and in order to be equal the leftmost columns of T2 and T3 must be equal
and the rightmost columns of T2 and T3 must be equal. Since the rightmost
column of T2 coincide with the leftmost column of T3, the four of them must
be equal in order for the matrices to be equal. Having the rightmost element
(T1)1,16 in the first row of T1, we know that we must have:

(T1)1,16 = (T2)1,0 = (T3)1,0 = (T2)1,16 = (T3)1,16 = T1,48

and if we know T1,48 we know that T2,0 = T1,48 + 0mod 256, so it is simple to
complete row 2 of T1. We continue until row k:

(T1)i,16 = (T2)i,16 = (T3)i,16 for i = 1, 2, . . . , k

and calculate row k + 1 of T1

The k values in the right column of T2 and T3 are now known and we might
complete a triangle in the rows 1, 2, . . . , k of these two matrices according to
property 2, shown in Figure 5. The figure shows the situation where 13 rows
(k = 13) are preprocessed and the triangles are completed, and there are 3
remaining bytes to be chosen to complete row 13 of T2 and T3. The 224 possible
choices of these bytes will determine 224 different first rows mi = hi−1 ⊕ mi

(property 3) and will complete row 13 in both of these matrices, and since the
first 14 rows of T1 is already fixed we have a multi collision in:

((T1)i,0)i=1,2,...,14

containing (28)3 different messages mi. It remains to find collisions among these
in the last 4 rows of column 0:

((T1)i,0)i=15,16,17,18

and equal values in row 0 and column 0 of T1 give an equal matrix by property 1,
and we also have collisions in 16 bytes of the last row of T1, which is the chaining
variable hi. The expected number of collisions in this case is approximately

(((28)3)2/2)/((28)4) = 215 = 32768

in theory, and we found 32784 collisions in practice. In [6] k = 14 and 2 bytes
are varied, and the expected number of collisions were 128 and in practice there
were 141 collisions, but to decrease k to get more collisions is not mentioned
explicitly in the paper.

In general we would expect

(((28)16−k)2/2)/((28)18−(k+1)) = 28(15−k)−1

collisions, only depending on the choice of k. The memory and computational
complexity is proportional to the number of bytes varied: 28(16−k).

In the preimage attack described earlier in this paper it is advantageous to
use this attack when h0 = 0 and to get collisions in m1. It is possible to get
more than 2 different m1 such that all of them give the same output h1, and if
so we have a multiple collision. If we look for a d-tuple collision and we are able
to vary b = 16 − k bytes in the first phase of the attack, we expect

(

28b

d

)

/28(b+1)(d−1) ≈ 28(b+1−d)/d!

d-tuple collisions. If b = 9 and d = 8 we expect ≈ 20,7 ≥ 1 multiple collisions of
size 8, and the complexity is approximately 272.

There are similar attacks on the compression function where mi = 0 or
where hi−1 ⊕ mi = 0. For these two attacks and the one where hi−1 = 0 there
are generalizations which are described in detail in Appendix B.2.

B.2 General Case where Subset of hi−1 is Zero

There is a more general method also described in the paper [6], where only the
rightmost parts of hi−1 is zero. It should be mentioned that the attack is possible
if hi−1 contains a certain amount of consecutive zeroes, not necessarily in the
right end.

Let z be the number of consecutive zero bytes in hi−1, and y denote the
remaining number of bytes y = 16 − z. So we have equality in z consecutive
bits of mi and hi−1 ⊕ mi which is in the first rows of T2 and T3. Define two
submatrices ST2 and ST3 to be the z columns of T2 and T3 that corresponds to
the parts of mi and hi−1⊕mi that are equal, plus the column before. Now these
submatrices contain z + 1 columns, and as in the special case we require that
their left columns and their right columns are equal in the first k rows, because
the matrices are required to be equal in these k rows. The remaining y bytes of
hi−1, mi are fixed during the attack and hence also the corresponding bytes of
hi−1 ⊕ mi, as we want to find multiple collisions in the column 0:

((T1)i,0)i=1,2,...,k+1

and having a number of multiple collisions in the first k + 1 rows we search for
collisions amongst these in the last 17 − k positions:

((T1)i,0)i=k+2,16,17,18

in order to have a collision in column 0 in all the rows of T1, and if so, by property
1 there will also be a collision in the last row of T1 and hence in hi.

First we have to process the first k rows of T to create a multiple collision, and
we start by completing the first row. Since we know the first value T1,0 = 0 we
might calculate all the values of the first row including the first column of ST2,
because we know the values of the appropriate positions in the row above. Then
since the leftmost column of ST2 and ST3 must be equal, we also know the first
element in ST3. It is now possible to go backwards and calculate the rightmost
element of ST2, since we know the values in the row above. As the rightmost
columns of ST2 and ST3 are supposed to be equal we know the rightmost element
of ST3, and may complete row 1. First element in T are always calculated from
the last element in the previous row, so we also know T2,0.

Repeat this procedure until k rows of ST2 and ST3 are completed and k + 1
rows of T1. Next thing to do is to complete the triangles of ST2 and ST3 as
Figure 6 shows, and there will be z − k bytes left in those two matrices in order
to complete row k. These bytes may be varied in 28(z−k) ways to create 28(z−k)

multiple collisions. The attack requires k < z or else there will be no multiple
collisions. There is now 18− (k + 1) bytes left to be identical in order to have a
collision in the compression function, so the expected number of collisions will
be:

(((28)z−k)2/2)/((28)18−(k+1)) = 28(2z−17−k)−1

and the memory and computational complexity is proportional to the number of
bytes varied 28(z−k). If we keep z−k constant and hence also the complexity, and
decrease the number of zeroes z and k by d, we get a factor 2−d fewer collisions.

SThi

� � �� � �� � �� � � � � �� � �
� � �� � �

� �� �� �� �� �� �� �� �

��
��
��
��

3

2

ST

Fig. 6. The collision method for the compression function where z consecutive bytes
of hi−1 is zero. Here it is the rightmost bytes of hi−1 which is zero.

On the other hand the attack could be repeated using all the 28y = 28(16−z)

variations in hi−1 and mi (the variations of hi−1⊕mi depends on both of these),
and we get a factor (28)2y more collisions by an increased computational cost of
a factor (28)2y. So if we now decrease both z and k by d and try all variations
there will be an increase of collisions by a factor 28d and the computational
complexity increase by a factor 216d, but the memory requirement remains the
same.

One could also vary the position of the z consecutive 0 bytes of hi−1 to
increase the computational complexity and the number of collisions by a factor
y + 1. All this increase in number of collisions might be done without increasing
the memory requirement, and the increased complexity might be distributed
on different computers without a dependency between the different choice of
variations.

B.3 Our variants where subset of mi (or hi−1 ⊕ mi) is zero

In this section we describe a way to find collisions in the compression function
similar to one described in the previous section. The requirement is that z con-
secutive bytes of mi (or hi−1 ⊕ mi) is zero, and the y = 16 − z remaining bytes
are arbitrary. Again we define two submatrices ST1 and ST3 as the columns of
T1 and T3 that corresponds to the z positions where hi−1 and hi−1 ⊕ mi are
equal (because mi is zero in those positions), and they also include the column
before. Again these matrices should be equal and therefore also the first columns
are equal and the last columns are equal.

First complete the first row from T1,0 = 0 to the first element (column) of
ST1, and copy this element to the first column of ST3. Calculate backwards from

the first element of ST3 to the last element of ST1, and copy that element to the
last element of ST3 and complete the row 1 to T1,48. The first element in the
next row T2,0 is then known, so it is possible to repeat the procedure including
row k, and to complete the triangles of ST1 and ST3 like in Figure 7. Now we are
able to vary the remaining z − k bytes of row k of ST1 and ST3, and complete
the matrices above row k by property 3, and we get a multiple collision in the k
first rows of column 16 of T1, because of a multiple collision in the last column
of ST1 and the use of property 1. If we have a collision in the whole column 16
of T1 we have a collision in the last row of T1 (which includes hi) by property 4
(complete the triangle). The expected number of collisions is:

(((28)z−k)2/2)/((28)18−k) = 28(2z−18−k)−1

which is a factor 28 less than the previous attack, but the memory and compu-
tational complexities are the same 28(z−k). Here it is also possible with a factor
(28)2y(z + 1) increase in the number of collisions by varying the fixed bytes,
and the position of the z consecutive zeroes. These variations are independent
of each other, and may therefore be run in parallel.

1

hi

� � �� � �� � �
� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

� �� �� �� �� �� �� �� �� �

��
��
��
��
�

3STST

Fig. 7. The collision method for the compression function where z consecutive bytes
of mi is zero. Here it is the rightmost bytes of mi which is zero.

The last case shown in Figure 8, which requires z consecutive bytes of hi−1⊕
mi, is analogue to the mi case, and the complexities and the tricks possible in
the attack are the same. The only difference is that we look at the submatrices
ST1 and ST2 which corresponds to the columns of T1 and T2 where hi−1 and mi

are equal plus the column before. Complete row by row and assure that the first
columns and the last columns of ST1 and ST2 are equal included row k, and we
have collisions in column 16 of T1, and thereby collisions in hi by property 4.

However we do not see any advantages of this attack since we cannot fix any of
the inputs hi−1 and mi.

2
hi

� � �� � �� � �
� � �� � �� � �

� �� �� �� �� �� �� �� �� �

��
��
��
��
�

! ! !! ! !! ! !

ST1

ST

Fig. 8. The collision method for the compression function where z consecutive bytes
of hi−1 ⊕ mi is zero. Here it is the rightmost bytes of hi−1 ⊕ mi which is zero.

