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Abstract. This paper shows preimage attacks on one-block MD4 and
MD5 reduced to 63 (out of 64) steps. Our attacks are based on the meet-in-
the-middle attack, and many additional improvements make the preimage
computable faster than that of the brute-force attack, 2128 hash compu-
tation. A preimage of one-block MD4 can be computed in the complexity
of the 2107 MD4 compression function computation, and a preimage of
MD5 reduced to 63 steps can be computed in the complexity of the 2121

MD5 compression function computation. Moreover, we optimize the com-
putational order of the brute-force attack against MD5, and a preimage
of full-round MD5 can be computed in the complexity of the 2127 MD5
compression function computation.

Keywords: MD5, MD4, meet-in-the-middle, local collision, one-way,
preimage.

1 Introduction

A cryptographic hash function is an important primitive of cryptographic tech-
niques. There are many applications to make a scheme secure using a hash
function: message compression in digital signatures and message authentication,
for example. However, surprisingly, unlike block ciphers, there are not many con-
crete instantiations of hash functions. MD5 [12] and SHA-1 [14] are the de facto
standards of a hash function and their security is not analyzed well.

A hash function should have several security properties such as collision re-
sistance and one-wayness. After the breakthrough of Wang’s work [15], a lot of
study has been applied to collision resistance of hash functions. However, the
one-wayness of hash functions is not analyzed much.

At FSE 2008, Leurent showed that a preimage attack of MD4, which is a
predecessor of MD5 and consists of 48 steps, can be computed in the complex-
ity of the 2100.5 MD4 compression function [10]. (Hereafter, we omit the unit
of complexity, which is the computational complexity of the compression func-
tion of the corresponding hash function.) The attack is based on the pioneering
work by Dobbertin [4] and its extension [8]. The techniques used in that paper
made extensive use of the property of MD4 such as simple step function, not
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well-mixed message expansion, and so on. Therefore, applying those techniques
to MD5 directly seems difficult. Recently, [13] have tried to compute a preimage
of MD5, which consists of 64 steps, utilizing the techniques in [10]. However,
[13] can compute a preimage of reduced variants of MD5 up to only 44 steps
faster than the brute-force attack. While De et al. proposed preimage attacks on
reduced variants of MD4 and MD5 based on SAT-solver [3].

This paper applies the meet-in-the-middle attack to MD5. With newly devel-
oped techniques, a preimage of MD5 reduced to 63 steps can be computed in 2121,
and a pseudo-preimage of full-round MD5 can be computed in 2125.7, which is
faster than the brute-force attack. On the concrete preimage of full-round MD5,
we develop a clever brute-force algorithm, and it finds a preimage of full-round
MD5 in 2127. Moreover, utilizing our technique with absorption properties of
Boolean functions used in MD4, we can compute a one-block preimage of MD4
in 2107, while [10] computes a preimage of more than 1 block.

A summary of our results and previously published results is shown in Table 11.
Note that we do not think that our attack can be used to practically compute
a preimage by using currently available resources, since all of our attacks need
very high complexity. Since the storage requirements for our attacks are 232

blocks at most, we do not mention the precise memory requirement in this
paper.

Table 1. Comparison of preimage attacks against MD4 and MD5

Target Attack Attacked steps Complexity

Pseudo-preimage Preimage

MD4 [4] 32 232 †

(Total 48 steps) [8] 32 232 †

[3] 39 Not given (8 hours) †

[10] 48 (Full) 296 2100.5

Our result (Sect. 5.2) 48 (Full) 2107 †

MD5 [3] 26 Not given

(Total 64 steps) [13] 44 296 †

[1] 47 296 2102

Our result (Sect. 3.2) 55 296 2113

Our result (Sect. 3.3) 59 296 *

Our result (Sect. 3.4) 63 2112 2121

Our result (Sect. 4) 64 (Full) 2125.7 ‡ 2127 †‡

† One-block attack.
‡ The attack is just the brute-force attack, but the computation is optimized.
* This attack only computes a pseudo-preimage. If a very long preimage is ac-

cepted, the attack can be converted to a preimage attack whose preimage
length is ≈ 264 blocks and computed in 2113.

1 Aumasson et al. independently shows a preimage attack in [1]. We refer their result
in the table for convenience.
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2 Description of MD5 and MD4

2.1 MD5 Specification and Its Properties

This section briefly describes the specification of MD5. Refer to details in [12].
MD5 is one of the Merkle-Damg̊ard hash functions, that is, the hash value is

computed as follows:
{

H0 ← IV,
Hi+1 ← md5(Hi, Mi) for i = 0, 1, . . . , n− 1,

(1)

where IV is the initial value defined in the specification, md5: {0, 1}128 ×
{0, 1}512 → {0, 1}128 is the compression function of MD5, and the output of the
hash function is Hn. Before applying (1), the messages string M is processed as
follows:

– The messages are padded in 512-bit multiples.
– The padded string includes the length of the message, which is represented

by 64-bits, and the length string is placed at the end of the padding.

After the process, the message string is divided into 512-bit blocks, Mi (i =
0, 1, . . . , n− 1).

The compression function Hi+1 ← md5(Hi, Mi) is computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. Do the following recurrence:

{
p0 ← Hi,

pj+1 ← RMD5
j (pj , mπMD5(j)) for j = 0, 1, . . . , 63.

3. Output Hi+1 (= p64 +Hi), where “+” denotes 32-bit word-wise addition. In
this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

RMD5
j is the step function for Step j. Let Qj be a 32-bit value that satisfies

pj = (Qj−3‖Qj‖Qj−1‖Qj−2). RMD5
j is defined as follows:

RMD5
j (pj , mπMD5(j)) = (Qj−2‖Qj+1‖Qj‖Qj−1), where Qj+1

= Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπMD5(j) + kj) ≪ sj , (2)

where Φj , kj , and sj are bitwise Boolean function, constant value, and left ro-
tation defined in the specification. πMD5(j) is a function for MD5 message ex-
pansion shown in Table 2. Note that (RMD5

j )−1(·, mπMD5(j)) can be computed in
almost the same complexity as that of RMD5

j .

2.2 MD4 Specification and Its Properties

The structure of MD4 is similar to that of MD5. The compression function of
MD4 consists of 48 steps. The step function RMD4

j for Step j is defined as follows:

Qj+1 = (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπMD4(j) + kj) ≪ sj , (3)
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Table 2. MD5 message expansion

πMD5(0), πMD5(1), . . . , πMD5(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πMD5(16), πMD5(17), . . . , πMD5(31) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
πMD5(32), πMD5(33), . . . , πMD5(47) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
πMD5(48), πMD5(49), . . . , πMD5(63) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Table 3. MD4 Boolean functions and message expansion

Φj(X, Y, Z), 0 ≤ j ≤ 15 (X ∧ Y ) ∨ (¬X ∧ Z)
Φj(X, Y, Z), 16 ≤ j ≤ 31 (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z)
Φj(X, Y, Z), 32 ≤ j ≤ 47 X ⊕ Y ⊕ Z

πMD4(0), πMD4(1), . . . , πMD4(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πMD4(16), πMD4(17), . . . , πMD4(31) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
πMD4(32), πMD4(33), . . . , πMD4(47) 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

where Φj , kj , sj, and πMD4(j) are defined differently than in MD5. Φj and
πMD4(j) are shown in Table 3. Note that (RMD4

j )−1(·, mπMD4(j)) can be com-
puted in almost the same complexity as that of RMD4

j .
Hereafter, we omit superscripts of RMD5

j , RMD4
j , πMD5, and πMD4 if the hash

function discussed is obvious from the context.

3 Preimage Attacks against Reduced MD5

3.1 Converting Pseudo-preimages to a Preimage

First, we describe the generic algorithm that converts pseudo-preimages to a
preimage [11, Fact 9.99]. Assume that there is an algorithm that finds (H1, (M1,
M2, . . . , Mn−1)) such that Hi+1 = md5(Hi, Mi) (i = 1, 2, . . . , n − 1) in the
complexity of 2x and H1 looks random. Prepare a table that includes 264−x/2

entries of (H1, (M1, M2, . . . , Mn−1)). Compute 264+x/2 md5(H0, M0) for random
M0, then one of them agrees with one of the entries in the table with high
probability. The required complexity of the attack is about 265+x/2. Therefore,
showing how to compute (H1, M1) from a given hash value within 2x where
x < 126 is enough for theoretical preimage attack.

3.2 A Preimage Attack against MD5 Reduced to 55 Steps

The proposed attack finds a preimage of MD5 reduced to 55 steps from a given
hash value Hn. Our attack target is MD5 reduced to 55 steps, and the steps lie
from Step 5 to Step 592. We propose a new technique called the splice-and-cut
technique.

2 We confirmed that Step 5 to Step 59, which are 55 steps in total, are the longest
section that can be attacked with only the splice-and-cut technique.
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Technique 1: Splice-and-Cut
We consider the first and last steps of the attack target as consecutive steps.
Then, we divide the attack target into two chunks of steps so that each chunk
includes at least one message word that is independent from the other chunk.
We call such message words “neutral words.” Then, we find pseudo-preimages
by the meet-in-the-middle approach.

Observe the message expansion described in Table 2 and notice that Steps 23-
37 do not contain m0, m6, m10, m15, and Steps 5-22 and 38-59 do not contain
m4 as shown in Fig. 1.

Our attack finds a 2-block preimage, so first, the appropriate padding strings
for 2-block messages are set in m13, m14, and m15. For a given H2, an attack
procedure is given below.

Attack Procedure
1. Choose mi (i �∈ {4, 6, 13, 14, 15}) and p38 randomly.
2. For all m6, do the following:⎧⎨

⎩
pj+1 ← Rj(pj , mπ(j)) for j = 38, 39, . . . , 59,
p5 ← H2 − p60,
pj+1 ← Rj(pj , mπ(j)) for j = 5, 6, . . . , 22.

3. Make a table of (m6, p23)s which are computed in the last step.
4. For all m4, do the following:

pj ← R−1
j (pj+1, mπ(j)) for j = 37, 36, . . . , 23,

and examine that the computed p23 is in the table made by the previous
step. If p23 is in the table, the corresponding message and H1 is just a
pseudo-preimage of H2.

Note that p5 in the attack is just H1.
The computational complexity of the above attack procedure is about 232

(= 232 40
55 + 232 15

55 ), and the success probability is about 2−64 (= 232 · 232/2128).
Thus, by iterating the above procedure 264 times, we expect to find one pseudo-
preimage (H1, M1), and its complexity is about 296 (= 264 · 232). By applying
the technique in Section 3.1, we expect that a preimage of MD5 reduced to 55
steps can be computed in 2113 (= 265+96/2).

3.3 A Preimage Attack against MD5 Reduced to 59 Steps

We propose an attack that finds a preimage of MD5 reduced to 59 steps starting
from Step 3 and ending with Step 61. We notice that this attack cannot deal with
the message padding, therefore, the attack can only find a pseudo-preimage.

In the attack against MD5 reduced to 55 steps, two chunks reach the same pi,
and we examine 128-bit matching. Here, we do not have to check all 128 bits,
but we check part of them e.g. only 32 bits.

Assume that one chunk produces 232 pis and the other chunk produces 232

pi−3s. Since pi = (Qi−3‖Qi‖Qi−1‖Qi−2) and pi−3 = (Qi−6‖Qi−3‖Qi−4‖Qi−5),
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2 3 4© 5 6© 7 8 9 10© 11 12 13 14 15©

excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0© 5 10© 15© 4© 9 14 3 8 13 2 7 12

first chunk second chunk

Step 32 33 34 35 36 3738 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4© 7 10© 13 0© 3 6© 9 12 15© 2

second chunk first chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0© 7 14 5 12 3 10© 1 8 15© 6© 13 4© 11 2 9

first chunk excluded

Fig. 1. Message word distribution in MD5 observed in 55-step attack

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15©

excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6 11 0 5 10 15© 4 9 14 3 8 13 2© 7 12

first chunk second chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15© 2©

second chunk skip

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14 5 12 3 10 1 8 15© 6 13 4 11 2© 9

first chunk excluded

Fig. 2. Message word distribution in MD5 observed in 59-step attack

we can examine 32-bit matching without computing three steps. This enables us
to find longer sections that are vulnerable against our attack.

Technique 2: Partial Matching
By executing only one-word matching instead of all-word matching, up to three
consecutive steps can be skipped from the attack target.

Observe the message expansion described in Table 2 and notice that Steps
23-44 do not contain m15, and Steps 3-22 and 48-61 do not contain m2 as
shown in Fig. 2. For a given H2, the rough sketch of the attack procedure is as
follows3.

Attack Procedure
1. Choose mi (i �∈ {2, 15}) and p23 randomly.
2. For all m15, do the following:
3 In this attack, skipping two steps is enough. However, we explain the attack proce-

dure for skipping three steps to show the generality of our attack.
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⎧⎨
⎩

pj ← R−1
j (pj+1, mπ(j)) for j = 22, 21, . . . , 3,

p62 ← H2 − p3,
pj ← R−1

j (pj+1, mπ(j)) for j = 61, 60, . . . , 48,

and store (m15, p48)s in a table.
3. For all m2, do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 23, 24, . . . , 44.

Since p48 = (Q45‖Q48‖Q47‖Q46) and p45 = (Q42‖Q45‖Q44‖Q43) we can
examine Q45 is in the table. If Q45 is in the table, we compute Q46 to Q48

by the corresponding mi, and check whether all of Q46 to Q48 are matched.

The computational complexity and the success probability are almost the same
with the attack against MD5 reduced to 55 steps. Therefore, a pseudo-preimage
of MD5 reduced to 59 steps can be found at the complexity of 296. Note that
we can compute a very long preimage by using the technique in Section 3.1 and
expandable message introduced in [6], where the length is determined by m15.

Note that we can attack MD5 reduced up to 50 steps even if we restrict that
the reduced MD5 should start with the first step (Step 0). The first chunk starts
with Step 17 and is 19 steps long, and the second chunk starts with Step 36 and
is 28 steps long. The neutral words are m1 and m14.

3.4 A Preimage Attack against MD5 Reduced to 63 Steps

We propose an attack that finds a preimage of the last 63 steps of MD5. In
addition to the splice-and-cut and partial-matching techniques, we use partial-
fixing technique.

In previous attack variants, neutral words are totally free when we execute the
meet-in-the-middle attack, and thus, both chunks can produce 232 outputs. In
this attack, we fix the lower 16 bits of a neutral word. By this effort, computation
of one chunk can be partially continued even if the message word for the other
chunk appears.

Let us see the inversion of the step function R−1
j . R−1

j (·, mπ(j)) is written by
using Qj as follows:

Qj−3 = ((Qj+1 −Qj) ≫ sj)− Φj(Qj , Qj−1, Qj−2)−mπ(j) − kj . (4)

When the lower n bits of Qj−1, Qj−2, and mπ(j) are fixed and other variables
are fully fixed, we can compute the lower n bits of R−1

j (·, mπ(j)) independently
from the higher 32 − n bits of Qj−1, Qj−2, and mπ(j). As a consequence, we
can partially compute 3 more steps if neutral words are partially fixed. This is
graphically explained in Appendix A.

Technique 3: Partial Fixing
By partially fixing neutral words in chunks, up to three consecutive steps can be
additionally skipped from the attack target.
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Observe the message expansion described in Table 2 and notice that Steps
19-42 do not contain m6, and Steps 1-18 and 49-63 do not contain m0 as shown
in Fig. 3.

For a given H2, the rough sketch of the attack procedure is as follows.

Attack Procedure
1. Set m13, m14, and m15 to appropriate padding for 2-block messages.
2. Choose mi (i �∈ {0, 6}), p19, and the lower 16 bits of m0, randomly.
3. For all higher 16 bits of m0, do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 19, 20, . . . , 42,

and store (m0, p43)s in a table, where p43 = (Q40‖Q43‖Q42‖Q41).
4. (a) For all m6, do the following:

⎧⎨
⎩

pj ← R−1
j (pj+1, mπ(j)) for j = 18, 17, . . . , 1,

p64 ← H2 − p1,
pj ← R−1

j (pj+1, mπ(j)) for j = 63, 62, . . . , 49.

(b) From obtained p49 = (Q46‖Q49‖Q48‖Q47), by the partial-fixing tech-
nique, we can compute the lower 16 bits of Q45, Q44, and Q43.

(c) From the partial-matching technique described in Section 3.3, we can
examine 16-bit matching by Q43.

Step 3 of the above procedure needs the complexity of 216, and steps 4(a) and
4(b) need the complexity of 232. Therefore, the total complexity is 232. At step
4(c), we examine 16-bit matching for 248 pairs, and we obtain 248 × 2−16 = 232

pairs whose 16 bits are matched. Finally, by repeating the above procedure
280 times, we obtain a pair, where all 128 bits are matched. Therefore, the
final complexity of the pseudo-preimage attack is 232 × 280 = 2112, and this is
converted to a preimage attack whose complexity is 2121.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2 3 4 5 6© 7 8 9 10 11 12 13 14 15
excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0© 5 10 15 4 9 14 3 8 13 2 7 12

first chunk second chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4 7 10 13 0© 3 6© 9 12 15 2

second chunk skip

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0© 7 14 5 12 3 10 1 8 15 6© 13 4 11 2 9

skip first chunk

Fig. 3. Message word distribution in MD5 observed in 63-step attack
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4 Notes on Preimage Attack against Full-Round MD5

This section studies the preimage resistance against full-round MD5. We, un-
fortunately, cannot find any “cryptanalytic attacks” against full-round MD5.
While, we find clever technique to perform a brute-force attack. Using this tech-
nique, we can find a pseudo-preimage of MD5 at the complexity of 2126, and a
preimage of MD5 at the complexity of about 2127.

4.1 Finding Pseudo-preimage of MD5

As we learned by the partial-matching and partial-fixing techniques, a few steps
can be skipped from the attack target. Based on this finding, we searched for
the minimum number of steps that must be skipped to attack the full-round
MD5. The best selection of two chunks where the number of skipped steps is 19
is shown in Fig. 4. (Only this pattern allows skipped steps to be less than 20.)

Since the number of skipped steps is large, we cannot find an efficient way to
check whether results from both chunks are matched or not. In this attack, we
exhaustively search for the pair that can be matched. Assume we obtain values
of p14, p33, and all message words. Whether the computation for that message
from p14 reaches p33 can be checked at the complexity of computing only 13 steps
with negligible cost since the complexity of computing 6 steps can be saved by
the partial-matching and partial-fixing techniques.

When we only consider pseudo-preimage of the compression function md5,
the attack procedure becomes very simple. However, we later want to discuss
the conversion from pseudo-preimage(s) to a preimage in Section 4.3. So, we
stress that m14 is selected as a neutral word, Therefore, some effort is necessary
to adjust the padding part. Since m5 is selected as a neutral word, the last
message block must be longer than or equal to 192 bits. As explained later,
this attack needs at least a 2-block message. Therefore, we fix 9 bits of m14 to
guarantee that the value of m14 is 192+512n, n ≥ 1 for any choice of other bits.
Details of messages we select are as follows:

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5© 6 7 8 9 10 11 12 13 14©15

first chunk skip

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6 11 0 5© 10 15 4 9 14© 3 8 13 2 7 12

skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5© 8 11 14© 1 4 7 10 13 0 3 6 9 12 15 2

skip second chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14© 5©12 3 10 1 8 15 6 13 4 11 2 9

2nd chunk first chunk

Fig. 4. Message word distribution in MD5 observed in full-round MD5
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– m0, . . . , m4 ← Randomly chosen fixed value,
– Lower 16 bits of m5 ← Randomly chosen fixed value,
– m6 ← 0x00000080,
– m7, . . . , m13 ← 0x00000000,
– m14 is chosen to be 192 + 512n, n ≥ 1,
– m15 ← 0x00000000.

For a given hash value Hn, the attack procedure is as follows.

Attack Procedure
1. Set messages as explained above and choose p51 randomly.
2. For all the 23 free-bits of m14, do the following:{

pj ← R−1
j (pj+1, mπ(j)) for j = 50, 49, . . . , 33,

Partially compute Q29, Q28, and Q27 by the partial-fixing technique,

and store (m14, p33, partial Q29, partial Q28, partial Q27)s in a table.
3. For all of higher 16-bits of m5, do the following:⎧⎨

⎩
pj+1 ← Rj(pj , mπ(j)) for j = 51, 52, . . . , 63,
p0 ← Hn − p64,
pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 13,

and keep the values of (m5, p14).

(a) For all (m14, p33, partial Q29, partial Q28, partial Q27) stored in a table,
do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 14, 15, . . . , 26,

and examine the lower 16-bit match of Q27.
(b) If lower 16 bits of Q27 are matched, compute all bits of Q29, Q28, and

Q27 by using p33 and m5. Then, examine the higher 16-bit match of Q27.
(c) If higher 16 bits of Q27 are matched, compute p28 = R27(p27, mπ(27)),

and examine the match of Q28.
(d) If Q28 is matched, compute p29 = R28(p28, mπ(28)), and examine the

match of Q29.
(e) If Q29 is matched, compute p30 = R29(p29, mπ(29)), and examine the

match of Q30. If matched, corresponding (p0, M) is a pseudo-preimage.

Step 2 of the above procedure needs the complexity of 223 21
64 . For each m5, the

first 4 lines of step 3 need the complexity of 27
64 . Step 3(a) needs the complexity

of 223 13
64 . As a result of lower 16-bit match of Q27, 223 × 2−16 = 27 pairs are

expected to be remained. Step 3(b) needs the complexity of 27 3
64 . As a result of

higher 16-bit match of Q27, 27×2−16 = 2−9 pair is expected to be remained. Step
3(c) needs the complexity of 2−9 1

64 . After the match of Q28, 2−9 × 2−32 = 2−41

pair is expected to be remained. The complexities of 3(d) and 3(e) are negligible.
Hence, the complexity of step 3 is 223 21

64 +216 27
64 +216(223 13

64 +27 3
64 +2−9 1

64 ) < 237.
Finally, by repeating this procedure 289 times, we obtain a pair, where all 128

bits are matched. Therefore, the final complexity of the pseudo-preimage attack
is 289 × (216 × 223 13

64 ) < 2126.
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4.2 Increase the Speed of the Naive Search

When we compute hash values of 2128 different messages, we do not have to
compute 2128 times of md5. For example, two different messages whose m0 to
m14 are the same and whose m15 are different will have the same computation
result after the first 15 steps. This saves us the cost of computing the first 15
steps of the second message. By extending this idea, the complexity of computing
hash values of 2128 different messages becomes 2127 = 2128 32

64 .
We use a technique named Q4 Tunnel by Klima [7], which enables us to

compute md5 from an intermediate step. In this technique, the value of m3 in the
first round is changed, however, any change in m3 can be offset by modifying m4

and m7 so that all other chaining variables in the first round are kept unchanged.
Since m3, m4, and m7 appear in Steps 23, 26, and 30, respectively in the second
round, any choice of m3 does not impact on chaining variables up to Step 22.
Therefore, this technique saves us the cost for computing the first 23 steps.
Moreover, we can save the complexity of a few more steps:

1. Since the initial value and hash value are fixed and messagewords used in Steps
61, 62, and 63 are not m3, m4, and m7, we can compute p63, p62, and p61 in-
dependently of m3, m4, and m7. This saves us the complexity of three steps.

2. The partial-matching and partial-fixing techniques described in Section 3.3
save us the complexity of six steps.

Finally, the complexity to compute a hash value becomes 64− 23− 3 − 6 = 32
steps, we can compute hash values of 2128 messages at the complexity of 2128 32

64 .

4.3 Discussion on Converting a Pseudo-preimage to a Preimage

Let E(x) = 1 − exp(−x), then the success probability of a brute-force attack
for computing preimage is b = E(2128/2128) ≈ 0.63. The attack described in
Section 4.2 finds a pseudo-preimage at the complexity of 2125.70 (= 2128 13

64 )
with probability b. If we directly use the conversion described in Section 3.1,
a preimage will be found at the complexity of 2127.85 with probability b2. This
complexity is higher than 2127.00 (= 2128 32

64 ) described in Section 4.2. Applying
the technique in Section 4.2 to the computation of md5(H0, M0) in the conversion
described in Section 3.1, resulting preimage attack still requires 2127.39 with
probability b2.

Using the idea of expandable message [6] as in [10], one preimage is enough
to compute a preimage4. This attack requires 2126.86 (= 2128 13

64 + 2128 32
64/2).

However, the success probability is b2, which is lower than that of the brute-
force attack, b. Spending c12128 13

64 work for computing a pseudo-preimage and
c22128 32

64/2 for brute-force attack, the success probability of the attack is E(c1)
E(c2) and the complexity is 2128 13c1+16c2

64 . To achieve the same success probabil-
ity b = E(c1)E(c2), the attack requires 2127.52, where c1 ≈ 1.672 and c2 ≈ 1.507.

4 Appendix B shows extensions of the attack.
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Even if computing a pseudo-preimage fails, we can continue to seek a preimage
using brute-force attack. The complexity of the attack is also 2128 13c1+16c2

64 , and
the success probability increases to E(c1)E(c2)+(1−E(c1))E(c2/2). To achieve
the same success probability b, the attack requires 2126.94, where c1 ≈ 0.354 and
c2 ≈ 1.636.

5 Preimage Attacks against MD4

The first preimage attack against full-round MD4 was proposed by Leurent [10].
It finds a preimage of MD4 with the complexity of 2102 by using messages of 34
blocks5. Therefore, no one has succeeded in attacking MD4 by using one-block
messages. A one-block attack is particularly interesting since an attacker cannot
use the characteristics of the Merkle-Damg̊ard structure. A one-block attack
analyzes the security of the compression function md4.

In this section, we first show a preimage attack using messages of 2 blocks to
show that the splice-and-cut approach can be also applied to MD4. This attack
finds a preimage of MD4 at the complexity of 2121. Second, we show a one-block
attack that finds a preimage at the complexity of 2107.

5.1 Two-Block Preimage Attack against MD4

MD4 can be analyzed in a manner similar to MD5. By using the splice-and-cut,
partial-matching, and partial-fixing techniques, we can find a pseudo-preimage
at the complexity of 2112, and this attack is converted to a preimage attack at
the complexity of 2121. The selection of two chunks is shown in Fig. 5.

5.2 One-Block Preimage Attack against MD4

By checking the details of the step function of MD4, we can find a preimage
that consists of a one-block message. The key idea is fixing the value of p0 to
the original MD4 IV when we compute a chunk. To achieve this, we use a local-
collision approach. By this approach, the value of p0 can be kept unchanged even
if the value of a neutral word in a chunk is changed. (The similar idea is used by
Sasaki et al. [13] to analyze MD5.) We thus search for a pair of chunks in which
one chunk includes one neutral word and the other chunk includes two neutral
words where changes of one neutral word can be offset by changing the other
neutral word. The selected chunks are shown in Fig. 6.

When we compute the first chunk by changing the value of m7, the correspond-
ing chaining variable Q4 is updated according to the selection of m7. In this attack,
by selecting m3 adaptively and fixing p7, m0 to m2, and m4 to m6 in advance, Q0

to Q−3 can be fixed to the original IV of MD4 for any m7. This attack heavily
uses the absorption properties of Boolean functions of MD4, so readers who are
not familiar with them are recommended to read [10, Section 2.1]. The method to

5 This attack can be easily converted to an attack that finds a preimage with the
complexity of 2113 by using messages of 2 blocks.
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5 6 7© 8© 9 10 11 12 13 14 15

first chunk second chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3 7©11 15

second chunk skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3 11 7© 15

skip first chunk

Fig. 5. Message word distribution in MD4 observed in 2-block attack

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3© 4 5 6 7© 8© 9 10 11 12 13 14 15

first chunk second chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3© 7© 11 15

second chunk skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3© 11 7© 15

skip first chunk

Fig. 6. Message word distribution in MD4 observed in 1-block attack

select p7 and m0 to m7 is shown in Table 4. 0, 1, Ci, and ∗ denote 0x00000000,
0xffffffff, a randomly fixed value, and a flexible value which depends on the
value of m7, respectively.

The attack procedure is as follows:

Precomputation

1. Set the values of chaining variables Qj as shown in Table 4. Note the value
of ∗ is left undetermined.

2. Compute mj , j ∈ {0, 1, 2, 4, 5, 6} by the following equation:

mπ(j) = (Qj+1 ≫ sj)−Qj−3 − Φj(Qj , Qj−1, Qj−2)− kj . (5)

Computation of the first chunk including m7 and m3

3. For all 32-bits of m7, compute the value of ∗.
4. For each m7, compute m3 by the following equation:

mπ(3) = (Q4 ≫ s3)−Q0 − Φ3(Q3, Q2, Q1)− k3. (6)
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Table 4. Fixed values for MD4 one-block preimage attack

step j mπ(j) Qj−2 Qj+1 Qj Qj−1

0 m0 Q−3 Q0 Q−1 Q−2

1 m1 Q−2 C4 Q0 Q−1

2 m2 Q−1 C3 C4 Q0

3 m3© Q0 C3 C3 C4

4 m4 C4 ∗ C3 C3

5 m5 C3 0 ∗ C3

6 m6 C3 1 0 ∗
7 m7© ∗ C2 1 0

8 0 C1 C2 1

At Step 2 of the above procedure, the value of ∗ is involved in the computation
for m4, m5, and m6. However, due to the absorption properties, m4, m5, and m6

can be computed independently on ∗.
In this attack, we fix lower 11-bits of m8 to an arbitrary value. Then, we

compute the second chunk for all the remaining 21-bits of m8 and store the
results. After that, we compute the first chunk for all m7, then check whether
they are matched with stored items by comparing the lower 11-bits of Q27 and
Q28

6. Finally, we can find a one-block preimage at the complexity of 2107.

6 Conclusion

This paper has shown the preimage attacks of one-block MD4 and MD5 reduced
to 63 (out of 64) steps. A preimage of MD5 reduced to 63 steps can be computed
in 2121 MD5 computations, which is faster than the brute-force attack, and a
pseudo-preimage of full-round MD5 can be computed in 2125.7 MD5 computa-
tions. On a preimage of full-round MD5, we optimize the computational order
of the brute-force attack against MD5, and a preimage of full-round MD5 can
be computed in the complexity of the 2127 MD5 compression function compu-
tation. Moreover, a one-block preimage of MD4 can be computed in 2107 MD4
computations, while the previous work [10] computes a preimage of more than
1 block. The key idea of our attacks, which are based on the meet-in-the-middle
technique, is quite simple, but very effective for preimage attacks. We left the
application of our attack to other hash functions as a problem.
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A Graphical Explanation of Partial-Matching and
Partial-Fixing Techniques

The way partial-matching and partial-fixing techniques work when we skip 6
steps from the attack target are shown in Fig. 7. The numbers in Fig. 7 denote
the number of bits that can be computed independently of the neutral word for
the other chunk.

mb

ma

A chunk with a neutral message mb

32 32 32 32

32 - x

32 - x 32 - x

32 - x 32 - x 32 - x

32 - x 32 32 - x 32 - x

32 - x 32 32 32 - x

32 - x 32 32 32

32 32 32 32

A chunk with a neutral message ma

Step i

Step i+1

Step i+2

Step i+3

Step i+4

Step i+5

Step i+6

Step i+7

Fig. 7. Graphical explanation of the partial-matching and partial-fixing techniques

First, we store results of the computation of the chunk including ma for all
possible values of ma. Note that to use the partial-fixing technique, we fix the
lower x-bits of ma to any value. Since mb is used in Step i+1, this computation
can be carried out until Step i. Then, we compute the chunk including mb for
all possible values of mb. Until Step i + 7, all 128-bit values can be computed
independently of ma.

Since the lower x-bits of ma are fixed by the partial-fixing technique, we can
partially execute inverse computation in Step i + 6 independently of the higher
(32−x)-bits of ma. A similar situation occurs in Steps i+5 and i+4. Finally, by
applying the partial-matching technique, we can compare 32− x bits of results
of the two chunks.

B Notes on MD-Strengthening

Section 3.1 describes how to convert pseudo-images to a preimage on Merkle-
Damg̊ard structure. When the length of preimages is not fixed and MD-strength-
ening [9] is used in the target hash function, the method cannot be applied. The
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problem can be solved using “expandable message” introduced in [6]. An (a, b)-
expandable message inputs a fixed chaining value, and can take any message
length between a and b blocks, and outputs the same chaining value. The expand-
able message to adjust the length of preimage is already applied to MD4 [10].
Actually, when the compression function is constructed by Davies-Meyer, an ex-
pandable message is easily found, and [6] showed how to construct (n, n+2n−1)-
expandable message for a generic compression function. However, when the com-
putational cost of computing preimages is nearly the complexity of brute-force
attack, [6] may not be efficient to compute a preimage. The following algorithm
efficiently produce (k + 1, k + n)-expandable message for given k. Note that the
algorithm is not efficient when n is large compared with [6].

Assume we need to generate a multi-collision that consists of messages whose
length are (k + 1)-block, (k + 2)-block, . . ., (k + n)-block. Such a multi-collision
is generated as follows:

1. Randomly generate a k-block message Mk and compute Hk = h(H0, Mk).
2. Randomly generate a 1-block message Mk+1 and compute Hk+1 = h(Hk,

Mk+1).
3. For i = 1, 2, . . . , n − 1, search for a 1-block message Mk+i+1 such that

h(Hk, Mk+i+1) = h(Hk+i, Mk+i+1). Let the generated value be Hk+i+1.
4. Finally, (Mk‖Mk+n), (Mk‖Mk+n−1‖Mk+n), . . ., (Mk‖Mk+1‖ · · · ‖Mk+n−1

‖Mk+n) are multi-collision messages of (k + 1), (k + 2), . . ., (k + n) blocks.

In the above procedure, generating Mk+i+1 costs the complexity of the birthday
paradox, which is sufficiently low in the preimage attacks.

Very recently, [2] introduced the use of P3graph. When a random directed
graph has n nodes which are a part of chaining values, 2n edges are sufficient
to connect from IV to a given hash value, and the path from IV to the given
hash value can take any length if the length is large enough. On the other
hand, we know n edges are sufficient to connect to the given hash value with
high probability, and we conjectured that there exists paths to the given hash
value from about

√
n nodes. The conjecture is true for the case of random map

[5], and we examine the conjecture by computer simulations. Though we only
examined that the number of nodes is less than 4096, about 1.1n edges make

√
n

nodes connect to the given hash value. Followed by the idea in Section 3.1 with
expandable message and above conjecture, a preimage can be computed and its
complexity is about half compared with that in [2]. More precisely, the number
of nodes in P3graph is small, a preimage can be computed more efficiently.
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