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Abstract. The cryptanalysis of the cryptographic hash function Tiger
has, until now, focussed on finding collisions. In this paper we describe
a preimage attack on the compression function of Tiger-12, i.e., Tiger
reduced to 12 rounds out of 24, with a complexity of 263.5 compression
function evaluations. We show how this can be used to construct second
preimages with complexity 263.5 and first preimages with complexity
264.5 for Tiger-12. These attacks can also be extended to Tiger-13 at the
expense of an additional factor of 264 in complexity.

Key words: Tiger, hash functions, preimages

1 Introduction

A cryptographic hash function is expected to possess three properties: colli-
sion resistance, preimage resistance and second preimage resistance. While other
properties exist, the above three are the most well known.

Collision resistance: It is difficult to find two distinct messages m 6= m′ that
hash to the same result, i.e., h(m) = h(m′).

Preimage resistance: When given a hash result y (for which it holds that
∃x : h(x) = y), it is difficult to find a message m which hashes to y, i.e.,
h(m) = y.

Second preimage resistance: When given a message m, it is difficult to find
a message m′ 6= m that hashes to the same result as the given message, i.e.,
h(m) = h(m′).

There are generic attacks that apply to any hash function and whose time com-
plexity only depends on the size of the hash result. Collisions for a hash function
with an n-bit result can be found in time 2n/2 using a birthday attack [6], and
preimages can be found by brute force in time 2n. Weaker attacks may aim
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at finding pseudo-collisions, where slight differences in the hash results are al-
lowed, or pseudo-near-collisions, where differences may also appear in the initial
chaining values.

All attacks on the cryptographic hash function Tiger [1] have so far been
collision attacks. Kelsey and Lucks [3] showed a collision attack on Tiger re-
duced to 16 rounds with a complexity of 244 compression function evaluations.
Mendel et al. [4] extended this to a collision attack on 19 rounds of Tiger with a
complexity of 262 compression function evaluations. In both papers some weaker
attacks (e.g. pseudo-collisions) for a larger number of rounds were also shown.
These results were further improved by Mendel et al. [5] towards a pseudo-near-
collision for the full hash function and a pseudo-collision for 23 rounds of Tiger.

We focus on finding preimages for reduced variants of Tiger instead. More
specifically, we describe a method to find first and second preimages for 12 and 13
rounds reduced Tiger. This method is conceptually similar to Dobbertin’s preim-
age attack on reduced MD4 [2]. Our attack finds first and second preimages for
Tiger-12 with a complexity of 264.5 and 263.5 compression function evaluations,
respectively. It can be extended to Tiger-13, where the complexities become
2128.5 and 2127.5, respectively. As Tiger has a digest size of 192 bits, the theoret-
ical complexity for finding first or second preimages is 2192 compression function
evaluations. To the best of our knowledge, this is the first result concerning
preimages for reduced round Tiger.

The structure of the paper is as follows. In Sect. 2, the Tiger hash function
is described, along with the notation that will be used throughout the paper.
Section 3 describes a preimage attack on three rounds of Tiger. The three round
preimage attack is then used as a building block to construct preimages for the
compression function of Tiger-12 and Tiger-13 in Sect. 4. Then, in Sect. 5 it is
shown how first and second preimages for these reduced variants of the Tiger
hash function can be constructed. Finally, Sect. 6 presents our conclusions.

2 Description of Tiger

Tiger [1] is an iterative cryptographic hash function, designed by Anderson and
Biham in 1996. It has an output size of 192 bits. Truncated variants with a digest
size of 160 and 128 bits were also defined. It was designed for 64-bit architectures
and hence all words are 64 bits wide and arithmetic is performed modulo 264.
Tiger uses the little-endian byte ordering.

First, the message to be hashed is padded by appending a single “1”-bit and
as many “0”-bits as necessary to make the message length 64 bits less than the
next multiple of 512 bits. Then the message length (in bits) is appended as a
64-bit unsigned integer. After this procedure, the padded message consists of an
integer number of 512-bit blocks. Then, Tiger’s compression function is applied
iteratively to each 512-bit block of the padded message.

Tiger’s compression function operates on a 192-bit chaining value and a 512-
bit message block. The message block is split into eight 64-bit words Xi. The
192-bit chaining value is split into three 64-bit words which are used as the



Table 1. Notations

X + Y Addition of X and Y modulo 264

X − Y Subtraction of X and Y modulo 264

X × Y Multiplication of X and Y modulo 264

X ⊕ Y Bit-wise exclusive or of X and Y

X Bit-wise complement of X

X ≪ n Logical left bit shift of X by n positions
X ≫ n Logical right bit shift of X by n positions
X||Y The concatenation of X and Y

Xi The i-th expanded message word
Yi The i-th intermediate value of the key schedule algorithm

Ai, Bi, Ci State variables at the output of round i, 0 ≤ i < 24
Ki The round constant used in round i, 0 ≤ i < 24

K
−1

i
Multiplicative inverse of Ki modulo 264

T1,. . . ,T4 The four 8-to-64-bit S-boxes used in Tiger

initial state variables A−1, B−1 and C−1. The compression function consists of
three passes of 8 rounds of a state update transformation (24 rounds in total),
each using one Xi to update the three state variables Ai, Bi and Ci. Table 1
summarises the notations used in this paper.

The i-th round of Tiger (0 ≤ i < 24) is depicted in Fig. 1. Equivalently, the
state update transformation can be described by the following equations:

Ai = Ki × (Bi−1 + odd (Ci−1 ⊕ Xi)) ,
Bi = Ci−1 ⊕ Xi ,
Ci = Ai−1 − even (Ci−1 ⊕ Xi) .

(1)

In every round, a round constant Ki is used. These constants are given by:

Ki =







5 if 0 ≤ i < 8 ,
7 if 8 ≤ i < 16 ,
9 if 16 ≤ i < 24 .

(2)

The non-linear functions odd(·) and even(·) are defined as follows.

odd(c7|| . . . ||c0) = T4[c1] ⊕ T3[c3] ⊕ T2[c5] ⊕ T1[c7] ,
even(c7|| . . . ||c0) = T1[c0] ⊕ T2[c2] ⊕ T3[c4] ⊕ T4[c6] .

(3)

Here, ci denotes the i-th byte of a 64-bit word, using the little-endian byte
ordering, i.e., c0 is the least significant byte.1 Both functions use four 8-to-64-
bit S-boxes, T1 through T4. Note that both functions only use four out of eight
input bytes, and thus map 32 bits to 64 bits. They are called odd(·) and even(·)
because they operate on the odd, respectively even bytes of the input word.

The first eight message words Xi, 0 ≤ i < 8, are taken directly from the mes-
sage block. The message words X8,. . . ,X15 are derived from X0, . . . , X7 using an

1 Note that there was a misinterpretation of the byte order in [3,4]. The attacks de-
scribed there can however be modified to overcome this problem. [5]
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Fig. 1. The state update transformation of Tiger

algorithm which the designers of Tiger refer to as the key schedule algorithm [1].
Then, using the same algorithm, X16,. . . ,X23 are determined from X8,. . . ,X15.
This key schedule algorithm consists of two passes, given by the following equa-
tions:

Y0 = X0 − (X7 ⊕ A5 . . . A5x) ,
Y1 = X1 ⊕ Y0 ,
Y2 = X2 + Y1 ,
Y3 = X3 −

(

Y2 ⊕ (Y1 ≪ 19)
)

,
Y4 = X4 ⊕ Y3 ,
Y5 = X5 + Y4 ,
Y6 = X6 −

(

Y5 ⊕ (Y4 ≫ 23)
)

,
Y7 = X7 ⊕ Y6 .

X8 = Y0 + Y7 ,
X9 = Y1 −

(

X8 ⊕ (Y7 ≪ 19)
)

,
X10 = Y2 ⊕ X9 ,
X11 = Y3 + X10 ,
X12 = Y4 −

(

X11 ⊕ (X10 ≫ 23)
)

,
X13 = Y5 ⊕ X12 ,
X14 = Y6 + X13 ,
X15 = Y7 − (X14 ⊕ 01 . . . EFx) .

(4)

Finally, after 24 rounds, the initial state variables are fed forward, using a com-
bination of exclusive or, subtraction and addition.

A⋆ = A−1 ⊕ A23 ,
B⋆ = B−1 − B23 ,
C⋆ = C−1 + C23 .

(5)

The 192-bit output of the compression function is A⋆||B⋆||C⋆, i.e., the concate-
nation of A⋆, B⋆ and C⋆.



3 Preimages for Three Rounds of Tiger

In this section we describe a solution due to Mendel et al. [4] to the problem of
finding preimages for three rounds of the state update transformation of Tiger.
There is always exactly one solution, which can be found in constant time.
Although rather straightforward, it will prove to be a useful building block in
preimage attacks on a larger number of Tiger rounds.

More in detail, we are given A−1, B−1, C−1, A2, B2 and C2 and want to
determine the three message words X0, X1 and X2 such that the constraints
originating from the state update transformation are satisfied. Note that, without
knowing any of the message words, all the state variables in these three rounds
can already be determined. Indeed, from (1) it follows that

A1 = C2 + even (B2) ,
B1 =

(

A2 × K−1

2

)

− odd (B2) ,
B0 =

(

A1 × K−1

1

)

− odd (B1) ,
A0 = K0 × (B−1 + odd (B0)) ,
C0 = A−1 − even (B0) ,
C1 = A0 − even (B1) .

(6)

Note that each Ki as given in (2) is coprime with 264 so its multiplicative inverse
modulo 264 exists and can be computed easily. Knowing the state variables, it
is trivial to determine X0, X1 and X2.

X0 = C−1 ⊕ B0 ,
X1 = C0 ⊕ B1 ,
X2 = C1 ⊕ B2 .

(7)

This procedure is fully deterministic and always gives exactly one solution. The
time complexity of this procedure is equivalent to three rounds of Tiger.

Of course this can equally be applied to any three consecutive rounds of
Tiger, as part of a larger attack. To conclude, control over three consecutive
expanded message words yields complete control over the intermediate state of
Tiger.

4 Preimages for the Compression Function of Tiger-12

In this section, we first describe a method to find preimages for the compression
function of Tiger, reduced to 12 rounds. Then we extend this to Tiger-13, i.e.,
Tiger reduced to 13 rounds.

Given the algorithm from Sect. 3, one can easily find sets of expanded message
words Xi which ensure that the output of the compression function of Tiger (or
a round-reduced version thereof) is equal to some desired value. However, if
the number of attacked rounds is greater than eight there is no guarantee that
these expanded message words satisfy the constraints from the key schedule
algorithm. For eight or less rounds of Tiger, the message expansion becomes



trivial, as each of the first eight expanded message words is under direct control
of an adversary. Hence also finding preimages for these variants of Tiger is trivial
by making arbitrary choices and using the algorithm from Sect. 3 for the last
three rounds.

The circular dependency can be broken by guessing some intermediate vari-
able(s) and later verifying if the guess was correct. If the guess was wrong, the
attack is simply repeated. Hence the time complexity of the attack is highly
dependent on the probability that the correct guess was made. Since we assume
that every value for the guessed variables is equally likely, this probability is
equal to 2−n where n is the total number of guessed bits.

Conceptually, this approach is very similar to the work of Dobbertin [2] on
finding preimages for a reduced variant of MD4. Of course the similarity only
exists on a very high level, due to the fact that MD4 and Tiger are very different
hash functions.

4.1 Algorithm

In this section, a detailed description of the algorithm for finding preimages for
the compression function of Tiger-12 is given. As we are given the desired input
and output chaining values, the feed-forward given in (5) can easily be removed.
Therefore, the state variables A−1, B−1, C−1, A11, B11 and C11 are known at
the beginning of the attack.

1. Make arbitrary choices for the message words used in the four last rounds,
(i.e. X8, X9, X10 and X11). The state update transformation can be used in
the backwards direction to determine A7, B7 and C7, as follows:







Ai−1 = Ci + even (Bi) ,
Bi−1 =

(

Ai × K−1

i

)

− odd (Bi) ,
Ci−1 = Bi ⊕ Xi .

for i = 11, . . . , 8 (8)

2. Guess Y7, an intermediate value of the key schedule algorithm. This 64-bit
guess is the only guess that will be made in the attack. It will be verified in
the final step of the attack.

3. The message words X8 through X11 are normally computed from the key
schedule. These equations can easily be inverted to find the intermediate
values Y0, Y1, Y2 and Y3 for which the values chosen in step 1 will appear:

Y0 = X8 − Y7 ,
Y1 = X9 +

(

X8 ⊕
(

Y7 ≪ 19
))

,
Y2 = X10 ⊕ X9 ,
Y3 = X11 − X10 .

(9)

This step is deterministic and always leads to a single solution. Looking
further at the key schedule, the message words X1 through X3 can also be
determined uniquely:

X1 = Y1 ⊕ Y0 ,
X2 = Y2 − Y1 ,
X3 = Y3 +

(

Y2 ⊕
(

Y1 ≪ 19
))

.
(10)



4. Choose X7 (there are 264 choices) and compute X0 using the key schedule:

X0 = Y0 + (X7 ⊕ A5A5A5A5A5A5A5A5x) (11)

5. Now, the first four expanded message words (i.e. X0 through X3) are known.
The state update transformation can thus be used in the forward direction
to calculate A3, B3 and C3.







Ai = Ki × (Bi−1 + odd (Ci−1 ⊕ Xi)) ,
Bi = Ci−1 ⊕ Xi ,
Ci = Ai−1 − even (Ci−1 ⊕ Xi) .

for i = 0, . . . , 3 (12)

Similarly, as X7 is known, the state update transformation can be applied
in the backwards direction to calculate A6, B6 and C6.

A6 = C7 + even (B7) ,
B6 =

(

A7 × K−1

7

)

− odd (B7) ,
C6 = B7 ⊕ X7 .

(13)

6. Note that, because A3, B3, C3, A6, B6 and C6 are now known, the algorithm
from Sect. 3 can be applied to determine the unique solution for X4, X5 and
X6.

A5 = C6 + even (B6) ,
B5 =

(

A6 × K−1

6

)

− odd (B6) ,
B4 =

(

A5 × K−1

5

)

− odd (B5) ,
A4 = K4 × (B3 + odd (B4)) ,
C4 = A3 − even (B4) ,
C5 = A4 − even (B5) ,
X4 = C3 ⊕ B4 ,
X5 = C4 ⊕ B5 ,
X6 = C5 ⊕ B6 .

(14)

7. Finally, apply the key schedule, which is given in (4), to compute the correct
value for Y7 from the message words X0 through X7, all of which have now
been determined. Verify if the guess for Y7 made in step 2 is correct. If it is,
a preimage has been found. If not, restart from step 4 with a different choice
for X7.

The probability that the guess for Y7 is correct is 2−64 so we expect to find a
preimage after 264 tries. Note that one attempt requires just 8 rounds of the state
update transformation and 5 equations of the key schedule algorithm, which is
only about 2/3 of the computations of a compression function evaluation. For
simplicity, we assume that every equation of the key schedule algorithm takes
an equivalent amount of work. Hence, the overall complexity of the attack is
equivalent to slightly less than 263.5 evaluations of the compression function.
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Fig. 2. Constructing second preimages for Tiger-12

4.2 Extension to Tiger-13

The attack can be extended to 13 rounds, by additionally guessing the value
of X12 before the attack and verifying if the guess was correct afterwards. This
again happens with a probability of 2−64, yielding a total complexity of 2127.5.
While it is theoretically possible to make an extension towards 14 rounds of
Tiger, this hardly has an advantage over a simple exhaustive search.

5 First and Second Preimages for Tiger-12

The technique that has been developed in the previous section will now be
applied to construct first and second preimages for Tiger-12. An extension of
this construction to Tiger-13 is also possible.

5.1 Second Preimages for Tiger-12

Figure 2 shows how second preimages for Tiger-12 can be constructed, for
(padded) messages with at least two message blocks and no padding bits in
the first message block. This is equivalent to the requirement that the given
message is at least 512 bits long.

In order to circumvent any issues that arise from the padding (which includes
the message length) we choose the length of the preimage to be equal to that
of the given message. We can hence reuse the last message block from the given
message. All message blocks from the beginning up to the second to last message
block can be chosen arbitrarily. This leaves us with exactly one message block,
the central block in Fig. 2. Because the chaining values are known before and
after this block, the attack from Sect. 4 can be applied. Of course a trivial gen-
eralisation where more than one message block is copied from the given message
exists. In this case, the attack is applied to an earlier message block instead.

This procedure to find second preimages adds negligible overhead to the
attack as described in Sect. 4. Hence, the time complexity remains at 263.5 eval-
uations of the Tiger-12 compression function.
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Fig. 3. Constructing first preimages for Tiger-12

5.2 First Preimages for Tiger-12

Finding first preimages is a bit more involved due to the fact that there is no
given message which can be used to easily circumvent issues originating from
the padding. To construct first preimages for Tiger-12, we proceed as follows.

First we choose the message length such that only a single bit of padding
will be placed in X6 of the last message block. This is equivalent to choosing a
message length of k ·512+447 bits, where k is a positive integer. Next, as shown
in Fig. 3, all message blocks besides the last one are chosen arbitrarily and the
attack is applied to this last block.

By choosing the message length in this way, X7 of the last message block
contains the message length as a 64-bit integer, which is fixed. Hence we can no
longer choose X7 freely during step 4 of the attack. By using the freedom in the
choice of Y7 in step 2 instead, the attack still works. Because step 3 is now also
repeated, a larger part of the key schedule has to be redone on every attempt.
The complexity figure of 263.5 compression function evaluations can however be
maintained because even with the larger part of the key schedule, the work of
a single attempt does not exceed 70% — a fraction 2−0.5 — of a compression
function evaluation. But additionally, we have to verify if the last bit of X6

is a “1”, as dictated by the padding rule. This happens with probability 2−1,
resulting in an overall complexity of 264.5 compression function evaluations.

Note that the first preimages constructed in this way do not contain an
integer number of bytes, which may not be acceptable. This problem can be
solved by choosing the message length equal to k · 512 + 440 bits instead. The
only difference is that X6 of the last message block now contains an entire
byte of padding. The probability that this byte turns out to be correct after
executing the attack is only 2−8, and hence the overall complexity increases to
271.5 compression function evaluations.



5.3 Extension to Tiger-13

Both attacks can be extended to Tiger-13, as explained in Sect. 4.2. The com-
plexities become 2127.5 for second preimages, 2128.5 for first preimages and 2135.5

for first preimages of an integer number of bytes. A similar extension to Tiger-14
could be made, but as previously explained it does not give any advantage over
an exhaustive search.

6 Conclusion

In this paper we have shown preimage attacks on reduced variants of the Tiger
hash function. A method to find preimages for the compression function of
Tiger-12 and Tiger-13 with a complexity of 263.5 and 2127.5, respectively, was
described. It was shown how to construct first and second preimages for these
variants of Tiger based on this method. To the best of our knowledge, this is the
first result with respect to preimages of the Tiger hash function.
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