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Preindustrial 14CH4 indicates greater 
anthropogenic fossil CH4 emissions

Benjamin Hmiel1 ✉, V. V. Petrenko1, M. N. Dyonisius1, C. Buizert2, A. M. Smith3, P. F. Place1,  

C. Harth4, R. Beaudette4, Q. Hua3, B. Yang3, I. Vimont5, S. E. Michel6, J. P. Severinghaus4,  

D. Etheridge7, T. Bromley8, J. Schmitt9, X. Faïn10, R. F. Weiss4 & E. Dlugokencky11

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has 

more than doubled since the preindustrial era1. Fossil fuel extraction and use are 

among the largest anthropogenic sources of CH4 emissions, but the precise 

magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) 

can be used to distinguish between fossil (14C-free) CH4 emissions and 

contemporaneous biogenic sources; however, poorly constrained direct 14CH4 

emissions from nuclear reactors have complicated this approach since the middle of 

the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 

172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological 

sources (such as seeps and mud volcanoes) is under debate; emission inventories 

suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. 

Geological emissions were less than 15.4 teragrams CH4 per year at the end of the 

Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for 

present-day emissions owing to the large terrestrial ice sheet cover, lower sea level 

and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements 

to show that natural geological CH4 emissions to the atmosphere were about 1.6 

teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent 

con�dence limit)—an order of magnitude lower than the currently used estimates. 

This result indicates that anthropogenic fossil CH4 emissions are underestimated by 

about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. 

Our record highlights the human impact on the atmosphere and climate, provides a 

�rm target for inventories of the global CH4 budget, and will help to inform strategies 

for targeted emission reductions9,10.

Atmospheric measurements of carbon-13 in methane (δ13CH4) have 

been used to estimate the fossil fraction of the contemporaneous CH4 

budget3. This approach relies on having accurate estimates of the δ13C 

signatures of the major CH4 source categories (fossil, microbial and 

biomass burning) and the strength of the biomass burning source. 

Large uncertainties in these parameters in the past preclude accurate 

δ13CH4-based estimates of preindustrial-era fossil CH4 emissions8,11,12. 

Radiocarbon (14C) is an ideal tracer for quantifying the fossil component 

of the atmospheric CH4 budget because all 14C in fossil CH4 has decayed. 

By contrast, biogenic CH4 sources (wetlands, biomass burning) have a 
14C activity similar to that of contemporaneous atmospheric CO2 (ref. 
4,8). Interpretation of atmospheric 14CH4 measurements from 1987–2000 

suggests that the fossil fraction of the contemporary CH4 budget is 

30 ± 2.3% (ref. 13; 1σ). However, the interpretation of atmospheric 14CH4 

in recent decades has been complicated by (1) rapidly changing atmos-

pheric 14CO2 (from above-ground nuclear testing and fossil fuel emis-

sions) that propagates into biospheric CH4 emissions13, and (2) direct 
14CH4 emissions from nuclear power plants4,5. By contrast, palaeoatmos-

pheric 14CH4 measurements from ice cores offer a direct constraint on 

natural geological CH4 emissions without these complications. Whereas 

geological CH4 emissions have the potential to change on tectonic- and 

glacial-cycle timescales14, they have very probably been constant over 

the past few centuries. The preindustrial-era emission estimates can 

therefore be applied to the modern CH4 budget with confidence.

Ice core 14CH4 analysis is challenging owing to both the very large 

sample requirement (~1,000 kg of ice) and interference from in situ 
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cosmogenic 14C production within the ice crystal lattice15. We address 

the former by using a large-diameter ice drill and a large-volume ice-

melting apparatus (Supplementary Information section 1) to obtain 

sufficient CH4 (~20 µg C) for 14C analysis by accelerator mass spec-

trometry. To address the latter, we follow the established8,16 approach 

of analysing 14C of carbon monoxide (CO) in parallel with 14CH4. 14CO is 

very sensitive to in situ cosmogenic 14C production15 and can be used 

to precisely establish the effective cosmic ray exposure history of each 

sample. We then correct the 14CH4 data using the known in situ cosmo-

genic 14CH4/14CO production ratio in ice15 (Supplementary Information 

sections 5, 6). The in situ cosmogenic 14CH4 component in the samples 

used in this study is much lower (<2% of total 14CH4) than in ablation-

zone ice used in previous palaeoatmospheric 14CH4 studies (~30% of 

total 14CH4)8,16. We present new 14CH4 data from large-volume ice core 

samples and firn air sampling from Summit, Greenland, which we com-

bine with prior firn air 14CH4 measurements from Law Dome DSSW20K4 

and Megadunes17, Antarctica. Our combined record spans from about 

1750 to 2013 and captures the evolution of atmospheric 14CH4 since the 

preindustrial era (Fig. 1). The movement of gases within the firn and 

closure into bubbles is characterized using a firn air transport model18, 

and the time series of atmospheric 14CH4 is reconstructed using a matrix 

inversion technique19,20 (Supplementary Information section 9).

Our atmospheric 14CH4 reconstruction (Fig. 1) is indistinguishable 

from the 14CO2-derived contemporaneous biogenic 14CH4 signature 

(blue curve, Supplementary Information section 10) before 1880, sug-

gesting very low natural geological CH4 emissions. Atmospheric 14CH4 

began to decrease around 1880, coincident with substantial increases 

in the use of coal, oil and natural gas (Fig. 2)21. The precise timing of 

the 14CH4 minimum (in the 1940s in our reconstruction) is difficult to 

establish owing to the broad age distributions of individual firn air 

and ice core samples, as well as the smoothing applied by the matrix 

inversion technique to address the non-uniqueness of the solution19. 

Beyond this fossil 14C minimum, our samples are affected by the propa-

gation of 14C from atmospheric nuclear testing into the carbon cycle22 

and by emissions from nuclear power plants (starting in the 1970s), 

which drove a sustained 14CH4 increase despite decreasing 14CO2
4,5. We 

calculate the fossil CH4 fraction and develop a time series of fossil CH4 

emissions (Fig. 2) using a one-box atmospheric model (Supplementary 

Information section 10). The broad age distributions of our air samples 

(Supplementary Fig. 3) result in a smoothed representation of the 

atmospheric 14CH4 history that cannot capture the abrupt increase 

of bomb 14CO2 (and subsequently 14CH4) starting in 1955. Therefore, 

we interpret the fossil CH4 fraction only before the 1940s. We find an 

increase in the total (geological plus anthropogenic) fossil emissions 

from negligible CH4 emissions in the mid-19th century to 64.8 tera-

grams CH4 per year (Tg CH4 yr−1) in 1940.

Assuming that the oldest ice core 14CH4 sample in our reconstruc-

tion (mean age 1756 AD; Fig. 1) is devoid of anthropogenic fossil CH4 

contributions, we use the contemporaneous biogenic 14CH4 source 

signature to calculate the natural geological CH4 emissions during 

the preindustrial era: 1.6 Tg CH4 yr−1 with a 95% confidence interval (CI) 

maximum of 5.4 Tg CH4 yr−1 (Supplementary Information section 10, 

Supplementary Fig. 5). Our 95% confidence limit of 5.4 Tg CH4 yr−1 agrees 

well with, and provides a tighter constraint than, the only other pub-

lished 14CH4-based estimate of natural geological CH4 emissions from 

ice cores, which sampled air from the most recent deglaciation (0 to 

15.4 Tg CH4 yr−1, 95% CI range)8.

Our result is much lower than estimates from recent source inven-

tory (‘bottom-up’) studies typically used in global CH4 budgets2, which 

suggest natural geological emissions of ~40–60 Tg CH4 yr−1 (ref. 6). A 

recent study7 aimed at developing gridded maps of geological CH4 

emissions revised this estimate downwards to 37 Tg CH4 yr−1 on the 

basis of data and modelling specifically targeted for gridding; however, 

the CH4 emissions increased to 43–50 Tg CH4 yr−1 when extrapolated to 

account for temporal variability in mud volcano eruptions and onshore 

or submarine geological seeps that lack location-specific measure-

ments. Natural fossil CH4 emissions of about 40 Tg CH4 yr−1 (out of total 

preindustrial-era CH4 emissions of 215 Tg CH4 yr−1; Supplementary Fig. 5) 

would result in a preindustrial-era ∆14CH4 of around −185‰, which is in 

clear disagreement with our data (1.5‰ ± 21.2‰, 2σ; Fig. 1). Bringing 

our 14C results into agreement with the bottom-up estimates of natural 

fossil CH4 emissions would require an order-of-magnitude larger cor-

rection for in situ cosmogenic 14CH4. This would in turn require either 

an order-of-magnitude higher 14CO content in the sampled ice or an 

order-of-magnitude higher in situ 14CH4/14CO production ratio; both 

of these possibilities are well outside the respective uncertainties. The 

added uncertainties arising from the in situ and procedural corrections 

to the measured 14CH4 are also too small to explain the disagreement 
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Fig. 1 | Reconstruction of atmospheric 14CH4 from firn air and ice core data.  

a, Global CH4 mole fraction, [CH4], reconstructed from ice core, firn air and 

atmospheric measurements1. ppb, parts per billion. b, Reconstructed history 

of atmospheric ∆14CH4 from firn air and ice core samples (this study). Dotted 

lines represent the 95% confidence range based on all calculated 14CH4 histories 

using three different inversion methods (Supplementary Information 

section 9). Ice core and firn air ∆14CH4 measurements are shown at the mean age 

of the modelled air age distribution. Vertical error bars on the ∆14CH4 data from 

each site represent the 2σ uncertainty for each sample after corrections 

(Supplementary Information Tables 2, 6), and horizontal error bars represent 

±2∆, where ∆ is the spectral width of the sample-air age distribution20. We also 

plot the 14CH4 signature of the contemporaneous biogenic source (blue; 

Supplementary Information section 10). Our time series begins in 1850 

because the age distributions of the collected ice core samples have poor 

coverage of air from ~1780 to 1850 (Supplementary Information section 10, 

Supplementary Fig. 3B).
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(Supplementary Information section 10, Supplementary Information 

Table 8).

Diffuse microseepage (24 Tg CH4 yr−1), macro-seeps and mud 

volcanoes (8.1 Tg CH4 yr−1), submarine seepage (>7 Tg CH4 yr−1) and 

geothermal manifestations (5.7 Tg CH4 yr−1) represent the main catego-

ries of natural geological CH4 emissions in the latest comprehensive 

bottom-up analysis7. Each of these four categories is nearly equiva-

lent to, or exceeds, our upper bound (at 95% confidence) on the total 

preindustrial-era geological CH4 emissions (5.4 Tg CH4 yr−1). Emission 

estimates for diffuse microseepage are based on limited flux-chamber 

measurements in regions of known gas seepage (for example, ref. 23), 

which are scaled up to a global flux estimate based on the total dryland 

area situated above hydrocarbon reservoirs (~10% of Earth’s total land 

surface area), the percentage of measurements that show a positive 

flux, and emission rates chosen on the basis of several geological fac-

tors7. It is possible that the uncertainties associated with such global 

upscaling are much larger than reported, resulting in an overestima-

tion by an order of magnitude or more. Similarly, emission estimates 

from macro-seeps, mud volcanoes and geothermal manifestations 

are derived from limited observations, which are scaled up to a global 

total7. To provide a sense of scale for the extrapolation in the case 

of mud volcanoes, ~0.0026 Tg CH4 yr−1 of measured CH4 emissions 

(table S2 in the supplement of ref. 7) are scaled up to 6.1 Tg CH4 yr−1 

(table 2 in ref. 7).

With regard to submarine seepage, recent studies suggest that CH4 

emissions to the atmosphere are probably very low owing to rapid 

dissolution of rising bubbles24 and rapid oxidation of dissolved CH4 

(ref. 25). Furthermore, 14CH4 measurements in surface waters indicate 

minimal quantities of fossil CH4 even in shallow waters over areas of 

active seeps or methane hydrate degradation26. Our atmospheric 
14CH4 measurements for the preindustrial era indicate that either 

(1) the uncertainties associated with global upscaling of geological 

emissions from discrete measurements result in overestimation by 

an order of magnitude, or (2) geological CH4 emissions quantified 

by these measurements were not present in the preindustrial era 

and may have been triggered by fossil fuel extraction from hydro-

carbon reservoirs or other anthropogenic activity such as ground-

water aquifer depletion. If the latter is true, such emissions cannot 

be considered natural.

A recent study3 used ice core δ13CH4 measurements to arrive at a 

natural geological CH4 emission estimate that is on par with what is 

indicated by bottom-up methods (~50 Tg CH4 yr−1). However, ref. 8 

showed that ice core δ13CH4 data do not provide a strong constraint 

on preindustrial-era geological emissions and are also compatible 

with a minimal geological source. Measurements of ethane27 in ice 

cores have also been used to suggest considerable emissions of fossil 

CH4 during the preindustrial era. However, this is also an ambiguous 

constraint because ice core measurements of ethane mole fraction 

cannot discriminate between contributions from biomass burning (a 

major source) and natural geological emissions11. Our preindustrial-era 
14CH4 measurements, by contrast, place an unambiguous constraint on 

natural fossil CH4 emissions by directly recording the 14C-free fraction 

of atmospheric CH4.

Our 14CH4 reconstruction does not allow accurate quantification of 

the post-1950 fossil CH4 budget, owing to relatively poor constraints 

on the interfering nuclear 14CH4 sources. Previous work used atmos-

pheric δ13CH4 measurements to quantify the global fossil CH4 source 

in recent decades3, but relied on inventory-based assessments to 

constrain the natural geological component. We combine our 14CH4-

based constraint on natural geological emissions (1.6 Tg CH4 yr−1) 

with δ13CH4-based constraints on the total fossil source (following 

the same one-box model approach as ref. 3; Supplementary Informa-

tion section 11) to estimate recent anthropogenic fossil CH4 emis-

sions. This approach yields 177 ± 37 Tg CH4 yr−1 (1σ) for anthropogenic 

fossil CH4 emissions during 2003–2012. Our estimate is 22% higher 

than the previous estimate of 145 ± 23 Tg CH4 yr−1 (1σ) over the same 

interval3, and 33–55% higher than the range of bottom-up estimates 

(114–133 Tg CH4 yr−1; ref. 2). We note that our δ13CH4-based calcula-

tion uses an updated value for the CH4 sink isotopic fractionation 

(Supplementary Information section 11); if we use the same value as  

ref. 3, the anthropogenic fossil source estimate is 194 ± 34 Tg CH4 yr−1 

for the same time period.

Our results indicate that bottom-up inventories strongly underesti-

mate CH4 emissions from fossil fuel extraction, distribution and use. 

A study using both ground-based facility-scale measurements and 

verification from aircraft sampling found that US oil and natural-gas 

CH4 emissions (largely from the production and gathering industry 

segments) are ~60% higher than those reported by the US Environ-

mental Protection Agency28, one of the primary data sources used in 

bottom-up inventories2. If we consider a scenario in which the global 

bottom-up emissions of fossil CH4 from the oil and natural-gas indus-

tries (79 Tg CH4 yr−1; ref. 2) are similarly underreported by 60%, this 

would amount to unreported emissions of ~47 Tg CH4 yr−1, which is in 

agreement with the fossil CH4 emission shortfall that we identify in the 

current generation of bottom-up inventories (44–63 Tg CH4 yr−1). Our 

results imply that anthropogenic fossil CH4 emissions now account 

for about 30% of the global CH4 source and for nearly half of anthropo-

genic emissions, highlighting the critical role of emission reductions 

in mitigating climate change9,10.
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Fig. 2 | Growth in fossil CH4 emissions and fossil fuel consumption.  

a, Historical fossil fuel energy consumption21. b, Calculated total fossil CH4 

emission history (solid line) from the one-box model (Supplementary 

Information section 10). The dashed lines show the 95% confidence interval.
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Data availability

The ice core and firn air 14CH4 data presented in Fig. 1 are provided in 

Supplementary Information Tables 2, 6. Additional measurements 

not provided in Supplementary Information Tables 1–8 are available 

via the NSF Arctic Data Center at https://doi.org/10.18739/A2599Z216.

Code availability

The code for the firn air inverse model and atmospheric box model 

(MATLAB) is available from the corresponding author upon request.
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