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Abstract: With the technological development and means of 
communication, the Internet of Things (IoT) has become an essential role 
in providing many services in daily life through millions of 
heterogeneous but interconnected devices and nodes. This development is 
opening to many security and privacy challenges that can cause complete 
network breakdown, bypassed access control or the loss of critical data. 
This paper attempts to provide a preliminary analysis for malware 
detection within data generated by IoT-based devices and services in the 
form of operational codes (Opcode) sequences. Three machine learning 
algorithms are evaluated and compared for accuracy, precision, recall  
and F-measure. The results showed that the Random Forest (RF) 
achieved the best accuracy of 98%, followed by SVM and k-NN, both 
with 91%. The results are further analyzed based on the Receiver 
Operating Characteristic (ROC) curve and Precision-Recall curve to 
further illustrate the difference in performance of all three algorithms 
when dealing with IoT data. 
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Introduction 

Today, the Internet of Things (IoT) has offered many 
services through interconnection of huge number of 
sensor devices, embedded systems or services (Mosenia 
and Jha, 2016; Azmoodeh et al., 2018). IoT has become 
a driving technology in many domain such as smart city, 
intelligent transportation, as well as health and energy 
systems (D’Orazio et al., 2016; Patel et al., 2012). The 
massive expansion of IoT applications has resulted in 
surge of data, hence opening to many security and 
privacy challenges such as the malware attacks (Tankard, 
2015; D’Orazio et al., 2016; Watson and Dehghantanha, 
2016). The core reason of these challenges is simply 
because any network is subject to threat and penetration 
from devices that are connected to the network (Yang et al., 
2016; Li et al., 2019; Wazid et al., 2019). 

Malware is the collective name for different types of 
malicious software, including viruses, ransomware and 
spyware. The main issue with malware detection lies in 
the ineffective methods used for signing and monitoring 
the suspected code for known security changes. This has 
led to many investigation on formulating new methods 

and techniques that can overcome different attack 
vectors (Burguera et al., 2011).  

Machine learning is a popular method used to detect 
attacks and malware, as the concept of self-learning by 
extracting data features and training them is able to identify 
features of other data that have not been trained before 
(Rehman et al., 2018). In 2016, feature selection methods 
have been investigated in anomaly detection systems using 
the Principle Component Analysis (PCA) and Guttman-
Kaiser (Kakavand et al., 2016). However, the study was not 
limited to reducing the dimensions of the features but rather 
preserving the information that is important in classifying 
the anomalies. The results showed a high intrusion rate of 
97% with a false positive rate of 1.2%. 

Research by Milosevic et al. (2017) studied malware 
detection that targeted android systems. This research 
used permissions and source code analysis through the 
use of the bag-of-words representation model and 
features implemented using a privacy and security 
protection application for Android devices called 
OWASP Seraphim droid. The results showed that the 
classification accuracy achieved was 89% and further 
increased to 95% with source code analysis.  
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Subsequent research by Kakavand et al. (2018) applied 
two machine learning algorithms, which are Support Vector 
Machines (SVM) and K-Nearest Neighbors (k-NN), 
through the supervised learning process in order to classify 
malware and benign. This research focused on android 
application data and reported 79.1 and 80.5% accuracy 
percentage for SVM and k-NN, respectively. 

In a more recent work, Kumar et al. (2019) presented 
a new method that combined machine learning methods 
and blockchain technology to improve the performance 
of malware detection model in Android devices. The 
proposal was implemented using a sequencing 
approach that combined clustering and classification in 
blockchain technology, as well as extracting 
information about malware and storing it back in 
blockchain. The main purpose was to develop a malware 
database, thus easily detecting other malicious in the 
future that do not exist previously. 

Deep learning approaches have also been explored 
to classify data based on the dynamic approach to 
malware detection. A new method has been introduced 
to extract features in order to analyze the dynamic 
behavior and build a model of repeated neural networks 
to extract the abstract features (Xiaofeng et al., 2018). 
This research also studied many of the serial data 
processing to get rid of redundant data. The results 
showed that combining the two methods had better 
results and it was 99.3% where the classification 
performance was proven to be higher when merging 
machine learning and deep learning methods as 
compared to using the models separately. 

In general, malware detection is an important and 
fundamental matter in providing security in IoT-based 
applications such as smart devices. According to the 
Kaspersky Lab, in 2016 most of the Internet devices were 
unsafe and most of the devices had a default password or 
security glitches that were not processed, which lead to 
easy penetration of these devices (Kolias et al., 2017; 
HaddadPajouh et al., 2018; Goyal et al., 2019). 
Security experts have warned the dangers to which the 
Internet of Things (IoT) can cause, specifically the 
malware due to the widespread dependence on devices 
connected to the Internet. Organizations are in need of a 
mechanism that has the ability to discover malware and 
suspicious bugs when their devices and services are 
connected to the Internet (Mahindru and Singh, 2017; 
Meidan et al., 2017). 

In detecting malware within IoT environment, 
Bragen (2015) investigated both supervised and non-
supervised machine learning approach to detect attacks 
on IoT-generated data such as spoofing attack 
eavesdropping and jamming. HaddadPajouh et al. (2018) 
used three different Long Short Term Memory (LSTM), 
a type of Recurrent Neural Network (RNN) machine 
learning architecture. The results showed that second 

configurations with two-layer neurons achieved the 
highest accuracy of 98.2%. Although various machine 
learning and deep learning approaches have been used in 
malware detection, the literature has shown that the 
domain has evolved from email to mobile devices and 
most recently, to IoT devices (Lu et al., 2003).  

In order to address the gap in providing adequate 
protection systems among IoT-based applications and 
smart devices, this research is set to provide a 
preliminary analysis of malware detection for 
operation code (Opcode) sequences within IoT 
environment as benchmark performance for future 
works. The remaining of this paper is organized as 
follows. Section 2 presents the materials and methods 
along with validation methods and algorithms. Section 
3 presents the results, Section 4 discusses the results 
and finally section 5 concludes with future work. 

Materials and Methods  

In detecting malware within IoT-based applications, a 
classification methodology is adopted to predict 
categorical class labels (malware vs. benign) from the 
operational codes (Opcode) sequence dataset. The 
classification experiments will be carried out based on 
training and testing dataset to classify newly available 
data (Allahyari et al., 2017). The classification 
methodology is shown in Figure 1. The sub-sections will 
detail out the dataset, pre-processing, model validation, 
algorithms and the evaluation metrics. 

Dataset 

This research focuses on malware detection within 
data generated by IoT-based applications. With 
Raspberry Pie II, it is worth noting that AMD 
processors have been widely used in cloud edge 
devices, hence qualifying Raspberry Pi II as an IoT 
cloud edge device. The dataset used in this research 
was sourced from the Linux Debian package 
repositories (https://pkgs.org/). 

The dataset is based on 32-bit ARM-based malware 
within the Virus Total Threat Intelligence platform as of 
30 September 2017 in the form of Executable and 
Linkable Format (ELF). The ELF is used because it 
consideres the structure for binaries, libraries and core 
files, as well as roles in the process of linking program 
and execution. Since ELF features are considered static 
features, higher accuracy in malware detection is 
expected. Analyzing ELF is also important as it gives 
generic understanding of how an operating system works 
during software development. 

Following HaddadPajouh et al. (2018), a Linux bash 
script for the Opcode samples in the dataset was written 
to extract the sequence of Opcodes in each sample. 
After extracting the ELF files using the Debian bundle, 
the dataset provided 280 malware and 270 benign 

https://pkgs.org/
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programs samples. Next, Object-Dump tool was used to 
decompile all samples to extract Opcode sequences in 

each sample. Fig. 2 and Fig. 3 show the excerpts of 
malware and benign samples. 

 

 
 

Fig. 1: Research methodology 
 

 
 

Fig. 2: Excerpt of attack (malware) samples 
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Fig. 3: Excerpt of normal (benign) samples 

 

 
 

Fig. 4: Validation methodology 
 

Pre-Processing 

After disassembling, the opcode sequences extracted 
will be pre-processed through various pre-processing 
steps, which include normalizing, centering and scaling. 
A Phyton code is used to convert the opcodes into Excel 
file with rows of opcodes and columns of features before 
they are ready for splitting into training and testing set. 
Normalizing can give us several meanings, is used 
informally in statistics, it is the ability to remove the 
unit’s measurement of data, which allows us to compare 
data from different places with greater ease. 

For many types of data, centering and scaling are 
intertwined. Centering corresponds to a subtraction of a 
reference vector (often represented by the mean values 
of the variables or the settings of the setpoint). Scaling 

corresponds to a multiplication by a vector. The choice 
of scaling vector is crucial (Bro and Smilde, 2003). 

Model Validation 

The anomaly detection or malware classification 
experiments were carried out using the k-fold validation 
method for training and testing as shown in Fig. 4. In the 
ten-fold validation setting, eight times was used for 
training, one for documentation and the rest for testing. 
Following (Davis and Goadrich, 2006). A confusion 
matrix was derived summarized from 10 experiments 
together, analyzed and reported. Based on this figure, the 
k-fold cross-validation method divides n samples into k 
groups, whereby validation uses n/k a sample in each 
group at a time. When a group is chosen for a test, the 
group of k-1 and the other is used for training, after 

Performance 1 

 
Performance 2 

 
Performance 3 

 
Performance 4 

 
Performance 5 

 
Performance 6 

 
Performance 7 

 
Performance 8 

 
Performance 9 

 
Performance 10 

Validation 
fold data 

Model 

Prediction 

Performance 

Validation label 

Validation fold Training fold 

Training fold data 

Training fold label 

Hyperparameter 
value 

10

1

1
Performace

10 i
  



Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318 
DOI: 10.3844/jcssp.2020.1306.1318 

 

1310 

which the training is switched to the test group every 
time (cycle). In this way, the performance of the 
classifier can be determined by calculating the average 
error of k in each cycle (Varoquaux, 2018; Zhang et al., 
2016).  

Algorithms 

Three machine learning algorithms are used in the 
preliminary experiments, which are k-Nearest Neighbor 
(k-NN), Support Vector Machines (SVM) and Random 
Forest. All the algorithms were implemented using the 
Anaconda Navigator, TensorFlow, scikit-learn machine 
learning, Jupyter note-book, as well as tools in Phyton. 
All three algorithms have served as benchmark 
algorithms under the machine learning approach in many 
malware or anomaly detection problems in Internet-of-
Things (IoT) devices (Hasan et al., 2019; Nakhodchi et al., 
2020; Darabian et al., 2020), networks (Kumar and Lim, 
2019) and services (Ham et al., 2014; Sethi et al., 2017; 
Tien et al., 2020). The other reason is that these 
algorithms are more efficient with a small data set if 
compared to other methods such as deep learning 
methods that need big data since the data set of this 
research is considered small in size (Gislason et al., 
2003; Noi and Kappas, 2018; Wang et al., 2018a). 

k-Nearest Neighbor (k-NN) 

k-NN is an algorithm that determine a class of k 
nearest training samples through finding the most 
frequent class available in the feature space (Gupta and 
Mittal, 2018; Wang et al., 2018b). Given a set of features 
and classes (x1, y1),…, (xn, yn), where features x1 Rd and 
classes y1y, then for a given i, k-NN rates the neighbors 
of a test sequence among the training sample and use the 
class labels for the nearest neighbors in order to expect 
the test vector class (Allahyari et al., 2017). Therefore, k 
takes the new k-points and ranks them according to the 
majority of votes obtained for the closest k. This 
algorithm uses the Euclidean distance to measure the 
resemblance between two vectors points (Aburomman 
and Reaz, 2016). The formula for k-NN is shown in 
Equation 1: 
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  (1) 

 
Fig. 5 illustrates the concept of k-NN with two 

classes; when k = 3 and k = 7. 

Support Vector Machines (SVM) 

SVM is a group classifier models that is considered 
one of the effective methods with high popularization 
ability in practice (Huang et al., 2018). In contrast to 

statistical methods that are based on reducing 
experimental risks, SVM is based on reducing structural 
risks, this indicates the ability of this algorithm to avoid 
overrun. The way the algorithm works is to create 
hyperlinked decision plans that are divided into two 
categories with the maximal margin in the Fig. 6. These 
decisions are known as hyperplane as defined in 
Equation 2 where w is the weight vector, x is the input 
feature vector and b is the bias: 

 

0T
wx b    (2) 

 
The objective of SVM is to find decision 

boundaries between two classes that allow predictions 
of labels from one or more features, in a way that it 
separates the data and maximum the margin 1/||w||2, 
making them as close as possible to data points from 
each of these categories is called close points 
(Apostolidis-Afentoulis and Lioufi, 2015). 

 

 
 
Fig. 5: K-NN algorithm concept 

 

 
 
Fig. 6: Support Vector Machine (SVM) 
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Random Forests (RF) 

RF is one of the groups of classification algorithms 
that depend on decision trees. This algorithm consists of 
different subsets of training data taken from the original 
data set using the method bootstrap sampling approach, 
after that creating the decision tree k through training the 
sub-groups, in the end building a random forest of 
decision trees as shown in Fig. 7 (Chen et al., 2016). RF 
has the least error in classifying data if compared with 
other traditional tree-based methods. The number of 
trees, the minimum node size and the number of features 
that are used to divide each node have several 
advantages such as, after completing the random tree 
forest can be referred to in the future, RF has the ability 
to overcome the over fitting (Farnaaz and Jabbar, 2016). 
An RF algorithm can be formalized as Equation 3: 
 

  , ,i iS x y  (3) 

 
where x is the sample, y is the feature variable of s, n is 
the number of samples, m is the feature variable for each 
sample, i = 1,2,…, n and j = 1,2,…, m. 

Evaluation Metrics 

Following Nikam (2015), the evaluation metrics 
used in the experiments are accuracy, precision, recall 
and F-measure. The percentage is calculated based on 
confusion matrix, where the rows in the matrix 
represent instances of the actual class and each 
column represent instances of the predicted class. A 
confusion matrix is implemented based on the results 
illustrated in Table 1. The correct forecasts are 
distributed with the number of values distributed for 
each category given the total expected results after 
classification (Powers, 2011). 

Based on Table 1, a TP means the instance 
originally labeled as benign is correctly predicted as 
benign. A TN means the instance originally labeled as 
malware is correctly predicted as malware. An FP 
means the instance originally labeled as malware is 
incorrectly predicted as benign. Finally, an FN means 
the instance originally labeled as benign is incorrectly 
predicted as malware. Equation 4-7 show the formula 
for calculating the evaluation metrics. 

 

 
 

Fig. 7: Construction process of RF algorithm 

 
Table 1: Confusion matrix 
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Accuracy 

Accuracy is number of correct predictions from all 
predictions made. The formula for calculating accuracy 
is shown in Equation 4: 
 

TP TN
Accuracy

TP TN FP FN




  
 (4) 

 
Precision 

Precision is the ratio of predicted malware that are 
correctly labeled a malware. The formula for calculating 
accuracy is shown in Equation 5: 
 

TP
Precision

TP FP



 (5) 

 
Recall 

Recall or detection rate is the ratio of malware 
samples that are correctly predicted. The formula for 
calculating accuracy is shown in Equation 6: 
 

TP
Recall

TP FN



  (6)

  

F-Measure 

F-Measure is the harmonic mean of precision and recall, 
which is a very useful measure of success of prediction 
when the classes are imbalanced. In information retrieval, 
precision is a measure of result relevancy, while recall is a 
measure of how many truly relevant results are returned 
(Sabharwal and Sedghi, 2017). The formula for calculating 
accuracy is shown in Equation 7: 
 

2

2

TP
F measure

TP FP FN


 

  
 (7) 

 
Precision, recall and F-measure is measured because 

accuracy alone can be misleading. The Confusion Matrix 
as a way of describing the breakdown of errors in 
predictions for an unseen dataset. Precision will give 
exactness of a model while recall gives completeness the 

model. Finally, F-measure or F1 score gives the balance 
between the two. 

Results  

The purpose of the experiments is to compare the 
performance of three algorithms, which are k-Nearest 
Neighbor (k-NN), Support Vector Machines (SVM) and 
Random Forest (RF). The full results of accuracy, 
precision, recall and F-measure are shown in Table 2. 
Next, the results in Table 2 are analyzed based on 
Receiver Operating Characteristic (ROC) curve and 
Precision-Recall (PR) curve. Both types of curves played 
a fundamental role in understanding the technique of the 
various systems in the presence of uncertainty. These 
curves were used in several areas such as radiology, 
electrical engineering and several other arenas to 
education the performance of a binary forecast system as 
a function of a control parameter. As the control 
parameter, it is possible to increase the accuracy and 
reduce the false positive rate of the system according to 
the lower recall, which is the true positive rate or 
sensitivity (Pavlick et al., 2015; Ekelund, 2017). 

The Area Under Curve (AUC) will be used as a 
summary of the model skill. The model skill will be 
compared against a no-skill classifier, which is the one 
that cannot discriminate between the classes and would 
predict a random class or a constant class in all cases. A 
model with no-skill is represented at the point (0.5, 0.5). 
A model with no-skill at each threshold is represented by 
a diagonal line from the bottom left of the plot to the top 
right and has an AUC of 0.5. Table 3 summarizes the 
results of AUC for both ROC and PR curves across all 
three algorithms. 

Receiver Operating Characteristic (ROC) Curve 

A Receiver Operating Characteristic (ROC) curve 
summarizes the trade-off between TP rate and FP rate for 
a predictive model using different probability thresholds. 
It has two dimensions where the x-axis indicates the 
False Positive (FP) rate and the y-axis indicates the True 
Positive (TP) rate (Grau et al., 2015). Fig. 8 shows the 
ROC curve for k-Nearest Neighbor (k-NN). The ROC 
AUC is 0.959 with no-skill AUC at 0.500. 

 
Table 2: Comparison of results 

Algorithm Accuracy Rate Precision Rate Recall Rate F- Measure 

k-Nearest Neighbor (k-NN)  0.91 0.91 0.91 0.864 
Support Vector Machines (SVM) 0.91 0.91 0.91 0.905 
Random Forest (RF) 0.98 0.98 0.98 0.980 

 
Table 3: Area Under Curve (AUC) for both ROC and PR 

Algorithm ROC AUC PR AUC 

k-Nearest Neighbor (k-NN) 0.959 0.960 
Support Vector Machines (SVM) 0.888 0.885 
Random Forest (RF) 0.981 0.983 
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Fig. 8: ROC curve for k-Nearest Neighbor (k-NN) 
 

 
 

Fig. 9: ROC curve for Support Vector Machines (SVM) 
 

 
 

Fig. 10: ROC curve for Random Forest (RF) 
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Fig. 11: PR curve for k-Nearest Neighbor (k-NN) 
 

 
 

Fig. 12: PR curve for Support Vector Machines (SVM) 
 

 
 

Fig. 13: PR curve for Random Forest (RF) 
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Fig. 9 shows the ROC curve for Support Vector 
Machines (SVM). The ROC AUC is 0.888 with no-skill 
AUC at 0.500. Meanwhile, Fig. 10 shows the ROC curve 
for Random Forest (RF). The ROC AUC is 0.981 with no-
skill AUC at 0.500. 

Precision-Recall Curve 

A Precision-Recall (PR) curve summarize the trade-
off between the true positive rate and the positive 
predictive value for a predictive model using different 
probability thresholds. PR curve is a plot of the precision 
in the y-axis and the recall in the x-axis for different 
probability thresholds. Basically, it is the plot of Recall 
(x) vs. Precision (y). Fig. 11 shows the PR curve for k-
Nearest Neighbor (k-NN). The F-measure is 0.864 and 
PR AUC is 0.960. Fig. 12 shows the PR curve for 
Support Vector Machines (SVM). The F-measure is 
0.802 and PR AUC is 0.885. Finally, Fig. 13 shows the 
PR curve for Random Forest (RF). The F-measure is 
0.925 and PR AUC is 0.983. 

Discussion 

The preliminary analysis was carried out based on 
Area Under Curve (AUC) of two curves; Receiver 
Operating Characteristic (ROC) curve and Precision-
Recall (PR) curve. AUC is the best measurement as 
AUC does not have errors in the prediction, so ideal 
classifiers can an ideal that classifies data into two 
classes, which means the model succeeded in being 
without any false positives. Another benefit of using the 
ROC and PR curves together is to find points that are 
close or shared to give the best evaluation of the models 
used in this research as shown in Table 3. 

In both ROC and AUC, the threshold was used to 
apply to the cut-off point in probability between the 
positive and negative classes where the threshold is 
chosen by default for any classifier at 0.5 in the middle 
area of the outputs (0 and 1). The classifier that does not 
have the ability to distinguish between positive and 
negative class will be the diagonal line between the 
false rate of 0 and the true positive rate of zero (0, 0) 
and in the case of predicting all negative class to the 
false positive rate 1 or the true positive rate (1, 1) or 
expect all positive class. So, the line represented by the 
points below is the inability predictability of and there 
is no-skill in distinguishing between positive and 
negative class. So, the perfect classifier when the value 
between (0.0 and 1.0). 

The performance of the perfect model for the 
malware detection for the dataset depends on the 
choice of the appropriate model for the dataset. In k-
Nearest Neighbor model, it can be seen that the ROC 
AUC for k-NN model on the synthetic dataset is about 
0.903, which is much better than a no-skill classifier 

with a score of about 0.500. In SVM, it can be seen 
that the ROC AUC model on the synthetic dataset is 
about 0.903, which is much better than a no-skill 
classifier with a score of about 0.500. Finally, in RF, 
it can be seen that the ROC AUC model on the 
synthetic dataset is about 0.981, which is much better 
than a no-skill classifier with a score of about 0.500.  

The results showed that operational code (Opcode) 
sequence dataset generated from IoT sensors are 
highly useful in developing a malware detection 
model within the Internet of Things environment. The 
accuracy rates are considerably high and this indicates 
the possibility of developing and using machine 
learning methods with real-data from the Internet of 
things. The challenges facing the operational code 
sequence (Opcode) dataset is that not every sample 
consisting of all cipher codes in its vector feature, 
hence the features may have a zero value. Therefore, 
using word embedding technology to convert each 
sample into a digital sequence representation is possibly 
required (Puthal et al., 2016). 

Conclusion 

This paper presented a preliminary analysis of 
malware detection models within the scope of Internet-of-
Things (IoT) applications. The dataset used is in the form 
of operational codes (Opcodes) sequences generated from 
IoT-based devices (HaddadPajouh et al., 2018). Three 
machine learning algorithms were constructed and 
compared, which are k-Nearest Neighbor (k-NN), Support 
Vector Machines (SVM) and Random Forest. The 
experimental results showed that RF outperformed both k-
NN and SVM with 98% of detection accuracy as 
compared to 91% for both k-NN and SVM. These results 
are supported by analysis of Receiver Operating 
Characteristic (ROC) curve and Precision-Recall (PR) 
curve, which showed that the best methods used in this 
study is Random Forest, with highest accuracy of 0.98 
and supported by ROC/PR curves 0.983. 

The results from this preliminary analysis will be 
used as benchmark results for exploring deep learning 
methods with the same or similar dataset from IoT 
environment. It is hoped that these detection models will 
be embedded in the IoT application in order to secure the 
systems from malware attacks. 
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