

 © 2020 Firas Shihab Ahmed, Norwati Mustapha, Aida Mustapha, Mohsen Kakavand and Cik Feresa Mohd Foozy. This open

access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Preliminary Analysis of Malware Detection in Opcode

Sequences within IoT Environment

1Firas Shihab Ahmed, 1Norwati Mustapha,
2Aida Mustapha, 3Mohsen Kakavand and 2Cik Feresa Mohd Foozy

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia
2Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
3School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia

Article history

Received: 28-06-2020
Revised: 25-09-2020
Accepted: 02-10-2020

Corresponding Author:
Norwati Mustapha
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia,
Selangor, Malaysia
Email: norwati@upm.edu.my

Abstract: With the technological development and means of
communication, the Internet of Things (IoT) has become an essential role
in providing many services in daily life through millions of
heterogeneous but interconnected devices and nodes. This development is
opening to many security and privacy challenges that can cause complete
network breakdown, bypassed access control or the loss of critical data.
This paper attempts to provide a preliminary analysis for malware
detection within data generated by IoT-based devices and services in the
form of operational codes (Opcode) sequences. Three machine learning
algorithms are evaluated and compared for accuracy, precision, recall
and F-measure. The results showed that the Random Forest (RF)
achieved the best accuracy of 98%, followed by SVM and k-NN, both
with 91%. The results are further analyzed based on the Receiver
Operating Characteristic (ROC) curve and Precision-Recall curve to
further illustrate the difference in performance of all three algorithms
when dealing with IoT data.

Keywords: Machine Learning, Malware Detection, Operation Codes

Introduction

Today, the Internet of Things (IoT) has offered many
services through interconnection of huge number of
sensor devices, embedded systems or services (Mosenia
and Jha, 2016; Azmoodeh et al., 2018). IoT has become
a driving technology in many domain such as smart city,
intelligent transportation, as well as health and energy
systems (D’Orazio et al., 2016; Patel et al., 2012). The
massive expansion of IoT applications has resulted in
surge of data, hence opening to many security and
privacy challenges such as the malware attacks (Tankard,
2015; D’Orazio et al., 2016; Watson and Dehghantanha,
2016). The core reason of these challenges is simply
because any network is subject to threat and penetration
from devices that are connected to the network (Yang et al.,
2016; Li et al., 2019; Wazid et al., 2019).

Malware is the collective name for different types of
malicious software, including viruses, ransomware and
spyware. The main issue with malware detection lies in
the ineffective methods used for signing and monitoring
the suspected code for known security changes. This has
led to many investigation on formulating new methods

and techniques that can overcome different attack
vectors (Burguera et al., 2011).

Machine learning is a popular method used to detect
attacks and malware, as the concept of self-learning by
extracting data features and training them is able to identify
features of other data that have not been trained before
(Rehman et al., 2018). In 2016, feature selection methods
have been investigated in anomaly detection systems using
the Principle Component Analysis (PCA) and Guttman-
Kaiser (Kakavand et al., 2016). However, the study was not
limited to reducing the dimensions of the features but rather
preserving the information that is important in classifying
the anomalies. The results showed a high intrusion rate of
97% with a false positive rate of 1.2%.

Research by Milosevic et al. (2017) studied malware
detection that targeted android systems. This research
used permissions and source code analysis through the
use of the bag-of-words representation model and
features implemented using a privacy and security
protection application for Android devices called
OWASP Seraphim droid. The results showed that the
classification accuracy achieved was 89% and further
increased to 95% with source code analysis.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1307

Subsequent research by Kakavand et al. (2018) applied
two machine learning algorithms, which are Support Vector
Machines (SVM) and K-Nearest Neighbors (k-NN),
through the supervised learning process in order to classify
malware and benign. This research focused on android
application data and reported 79.1 and 80.5% accuracy
percentage for SVM and k-NN, respectively.

In a more recent work, Kumar et al. (2019) presented
a new method that combined machine learning methods
and blockchain technology to improve the performance
of malware detection model in Android devices. The
proposal was implemented using a sequencing
approach that combined clustering and classification in
blockchain technology, as well as extracting
information about malware and storing it back in
blockchain. The main purpose was to develop a malware
database, thus easily detecting other malicious in the
future that do not exist previously.

Deep learning approaches have also been explored
to classify data based on the dynamic approach to
malware detection. A new method has been introduced
to extract features in order to analyze the dynamic
behavior and build a model of repeated neural networks
to extract the abstract features (Xiaofeng et al., 2018).
This research also studied many of the serial data
processing to get rid of redundant data. The results
showed that combining the two methods had better
results and it was 99.3% where the classification
performance was proven to be higher when merging
machine learning and deep learning methods as
compared to using the models separately.

In general, malware detection is an important and
fundamental matter in providing security in IoT-based
applications such as smart devices. According to the
Kaspersky Lab, in 2016 most of the Internet devices were
unsafe and most of the devices had a default password or
security glitches that were not processed, which lead to
easy penetration of these devices (Kolias et al., 2017;
HaddadPajouh et al., 2018; Goyal et al., 2019).
Security experts have warned the dangers to which the
Internet of Things (IoT) can cause, specifically the
malware due to the widespread dependence on devices
connected to the Internet. Organizations are in need of a
mechanism that has the ability to discover malware and
suspicious bugs when their devices and services are
connected to the Internet (Mahindru and Singh, 2017;
Meidan et al., 2017).

In detecting malware within IoT environment,
Bragen (2015) investigated both supervised and non-
supervised machine learning approach to detect attacks
on IoT-generated data such as spoofing attack
eavesdropping and jamming. HaddadPajouh et al. (2018)
used three different Long Short Term Memory (LSTM),
a type of Recurrent Neural Network (RNN) machine
learning architecture. The results showed that second

configurations with two-layer neurons achieved the
highest accuracy of 98.2%. Although various machine
learning and deep learning approaches have been used in
malware detection, the literature has shown that the
domain has evolved from email to mobile devices and
most recently, to IoT devices (Lu et al., 2003).

In order to address the gap in providing adequate
protection systems among IoT-based applications and
smart devices, this research is set to provide a
preliminary analysis of malware detection for
operation code (Opcode) sequences within IoT
environment as benchmark performance for future
works. The remaining of this paper is organized as
follows. Section 2 presents the materials and methods
along with validation methods and algorithms. Section
3 presents the results, Section 4 discusses the results
and finally section 5 concludes with future work.

Materials and Methods

In detecting malware within IoT-based applications, a
classification methodology is adopted to predict
categorical class labels (malware vs. benign) from the
operational codes (Opcode) sequence dataset. The
classification experiments will be carried out based on
training and testing dataset to classify newly available
data (Allahyari et al., 2017). The classification
methodology is shown in Figure 1. The sub-sections will
detail out the dataset, pre-processing, model validation,
algorithms and the evaluation metrics.

Dataset

This research focuses on malware detection within
data generated by IoT-based applications. With
Raspberry Pie II, it is worth noting that AMD
processors have been widely used in cloud edge
devices, hence qualifying Raspberry Pi II as an IoT
cloud edge device. The dataset used in this research
was sourced from the Linux Debian package
repositories (https://pkgs.org/).

The dataset is based on 32-bit ARM-based malware
within the Virus Total Threat Intelligence platform as of
30 September 2017 in the form of Executable and
Linkable Format (ELF). The ELF is used because it
consideres the structure for binaries, libraries and core
files, as well as roles in the process of linking program
and execution. Since ELF features are considered static
features, higher accuracy in malware detection is
expected. Analyzing ELF is also important as it gives
generic understanding of how an operating system works
during software development.

Following HaddadPajouh et al. (2018), a Linux bash
script for the Opcode samples in the dataset was written
to extract the sequence of Opcodes in each sample.
After extracting the ELF files using the Debian bundle,
the dataset provided 280 malware and 270 benign

https://pkgs.org/

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1308

programs samples. Next, Object-Dump tool was used to
decompile all samples to extract Opcode sequences in

each sample. Fig. 2 and Fig. 3 show the excerpts of
malware and benign samples.

Fig. 1: Research methodology

Fig. 2: Excerpt of attack (malware) samples

Initial dataset

0: B480 pus

2: B083 sub

4: Af00 add

6: 6078 str

8: 687a ldr

Opcode sequence

Filtered opcode sequence

 Normalizing
 Centering
 Scaling

Pre-processed dataset

X1 X2 X3 X4 X5 Y

0.5 2.7 8 8.1 2 1

0.4 55 7 3 0.8 0

5 32 5 9 10 0

2 23 56 7.9 11 1

10 44 1.6 5.6 13 0

Disassembling

Cross validation
model

Using machine algorithms

 Random forest algorithm (RF)
 K-Nearest Neighbors (KNN)
 Support Vector Machine (SVM)

Model training

Test model

Prediction malware

Evaluate model

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1309

Fig. 3: Excerpt of normal (benign) samples

Fig. 4: Validation methodology

Pre-Processing

After disassembling, the opcode sequences extracted
will be pre-processed through various pre-processing
steps, which include normalizing, centering and scaling.
A Phyton code is used to convert the opcodes into Excel
file with rows of opcodes and columns of features before
they are ready for splitting into training and testing set.
Normalizing can give us several meanings, is used
informally in statistics, it is the ability to remove the
unit’s measurement of data, which allows us to compare
data from different places with greater ease.

For many types of data, centering and scaling are
intertwined. Centering corresponds to a subtraction of a
reference vector (often represented by the mean values
of the variables or the settings of the setpoint). Scaling

corresponds to a multiplication by a vector. The choice
of scaling vector is crucial (Bro and Smilde, 2003).

Model Validation

The anomaly detection or malware classification
experiments were carried out using the k-fold validation
method for training and testing as shown in Fig. 4. In the
ten-fold validation setting, eight times was used for
training, one for documentation and the rest for testing.
Following (Davis and Goadrich, 2006). A confusion
matrix was derived summarized from 10 experiments
together, analyzed and reported. Based on this figure, the
k-fold cross-validation method divides n samples into k
groups, whereby validation uses n/k a sample in each
group at a time. When a group is chosen for a test, the
group of k-1 and the other is used for training, after

Performance 1

Performance 2

Performance 3

Performance 4

Performance 5

Performance 6

Performance 7

Performance 8

Performance 9

Performance 10

Validation
fold data

Model

Prediction

Performance

Validation label

Validation fold Training fold

Training fold data

Training fold label

Hyperparameter
value

10

1

1
Performace

10 i

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1310

which the training is switched to the test group every
time (cycle). In this way, the performance of the
classifier can be determined by calculating the average
error of k in each cycle (Varoquaux, 2018; Zhang et al.,
2016).

Algorithms

Three machine learning algorithms are used in the
preliminary experiments, which are k-Nearest Neighbor
(k-NN), Support Vector Machines (SVM) and Random
Forest. All the algorithms were implemented using the
Anaconda Navigator, TensorFlow, scikit-learn machine
learning, Jupyter note-book, as well as tools in Phyton.
All three algorithms have served as benchmark
algorithms under the machine learning approach in many
malware or anomaly detection problems in Internet-of-
Things (IoT) devices (Hasan et al., 2019; Nakhodchi et al.,
2020; Darabian et al., 2020), networks (Kumar and Lim,
2019) and services (Ham et al., 2014; Sethi et al., 2017;
Tien et al., 2020). The other reason is that these
algorithms are more efficient with a small data set if
compared to other methods such as deep learning
methods that need big data since the data set of this
research is considered small in size (Gislason et al.,
2003; Noi and Kappas, 2018; Wang et al., 2018a).

k-Nearest Neighbor (k-NN)

k-NN is an algorithm that determine a class of k
nearest training samples through finding the most
frequent class available in the feature space (Gupta and
Mittal, 2018; Wang et al., 2018b). Given a set of features
and classes (x1, y1),…, (xn, yn), where features x1 Rd and
classes y1y, then for a given i, k-NN rates the neighbors
of a test sequence among the training sample and use the
class labels for the nearest neighbors in order to expect
the test vector class (Allahyari et al., 2017). Therefore, k
takes the new k-points and ranks them according to the
majority of votes obtained for the closest k. This
algorithm uses the Euclidean distance to measure the
resemblance between two vectors points (Aburomman
and Reaz, 2016). The formula for k-NN is shown in
Equation 1:

2
2

1

1 2

, ,

, , , ,...

d

i j i i ik jkk

d

i j i i i id

d x x x x x x

x x R x x x x

 (1)

Fig. 5 illustrates the concept of k-NN with two

classes; when k = 3 and k = 7.

Support Vector Machines (SVM)

SVM is a group classifier models that is considered
one of the effective methods with high popularization
ability in practice (Huang et al., 2018). In contrast to

statistical methods that are based on reducing
experimental risks, SVM is based on reducing structural
risks, this indicates the ability of this algorithm to avoid
overrun. The way the algorithm works is to create
hyperlinked decision plans that are divided into two
categories with the maximal margin in the Fig. 6. These
decisions are known as hyperplane as defined in
Equation 2 where w is the weight vector, x is the input
feature vector and b is the bias:

0T
wx b (2)

The objective of SVM is to find decision

boundaries between two classes that allow predictions
of labels from one or more features, in a way that it
separates the data and maximum the margin 1/||w||2,
making them as close as possible to data points from
each of these categories is called close points
(Apostolidis-Afentoulis and Lioufi, 2015).

Fig. 5: K-NN algorithm concept

Fig. 6: Support Vector Machine (SVM)

X1

X2

K = 7

K = 3

Support vector

Malignant

Margin

Benign

F
ea

tu
re

Feature

Support vector

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1311

Random Forests (RF)

RF is one of the groups of classification algorithms
that depend on decision trees. This algorithm consists of
different subsets of training data taken from the original
data set using the method bootstrap sampling approach,
after that creating the decision tree k through training the
sub-groups, in the end building a random forest of
decision trees as shown in Fig. 7 (Chen et al., 2016). RF
has the least error in classifying data if compared with
other traditional tree-based methods. The number of
trees, the minimum node size and the number of features
that are used to divide each node have several
advantages such as, after completing the random tree
forest can be referred to in the future, RF has the ability
to overcome the over fitting (Farnaaz and Jabbar, 2016).
An RF algorithm can be formalized as Equation 3:

 , ,i iS x y (3)

where x is the sample, y is the feature variable of s, n is
the number of samples, m is the feature variable for each
sample, i = 1,2,…, n and j = 1,2,…, m.

Evaluation Metrics

Following Nikam (2015), the evaluation metrics
used in the experiments are accuracy, precision, recall
and F-measure. The percentage is calculated based on
confusion matrix, where the rows in the matrix
represent instances of the actual class and each
column represent instances of the predicted class. A
confusion matrix is implemented based on the results
illustrated in Table 1. The correct forecasts are
distributed with the number of values distributed for
each category given the total expected results after
classification (Powers, 2011).

Based on Table 1, a TP means the instance
originally labeled as benign is correctly predicted as
benign. A TN means the instance originally labeled as
malware is correctly predicted as malware. An FP
means the instance originally labeled as malware is
incorrectly predicted as benign. Finally, an FN means
the instance originally labeled as benign is incorrectly
predicted as malware. Equation 4-7 show the formula
for calculating the evaluation metrics.

Fig. 7: Construction process of RF algorithm

Table 1: Confusion matrix

 Predicted

 --

Actual Positive class (Benign) Negative class (Malware)

Positive class (Benign) True Positive (TP) False Negative (FN)

Negative class (Malware) False Positive (FP) True Negative (TN)

S = N M

S1 = N M S2 = N M Sk = N M

X

1 M

h1 (x) h2 (x) hk (x)

h1 (x) h2 (x) hk (x)

H (X)

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1312

Accuracy

Accuracy is number of correct predictions from all
predictions made. The formula for calculating accuracy
is shown in Equation 4:

TP TN
Accuracy

TP TN FP FN

 (4)

Precision

Precision is the ratio of predicted malware that are
correctly labeled a malware. The formula for calculating
accuracy is shown in Equation 5:

TP
Precision

TP FP

 (5)

Recall

Recall or detection rate is the ratio of malware
samples that are correctly predicted. The formula for
calculating accuracy is shown in Equation 6:

TP
Recall

TP FN

 (6)

F-Measure

F-Measure is the harmonic mean of precision and recall,
which is a very useful measure of success of prediction
when the classes are imbalanced. In information retrieval,
precision is a measure of result relevancy, while recall is a
measure of how many truly relevant results are returned
(Sabharwal and Sedghi, 2017). The formula for calculating
accuracy is shown in Equation 7:

2

2

TP
F measure

TP FP FN

 (7)

Precision, recall and F-measure is measured because

accuracy alone can be misleading. The Confusion Matrix
as a way of describing the breakdown of errors in
predictions for an unseen dataset. Precision will give
exactness of a model while recall gives completeness the

model. Finally, F-measure or F1 score gives the balance
between the two.

Results

The purpose of the experiments is to compare the
performance of three algorithms, which are k-Nearest
Neighbor (k-NN), Support Vector Machines (SVM) and
Random Forest (RF). The full results of accuracy,
precision, recall and F-measure are shown in Table 2.
Next, the results in Table 2 are analyzed based on
Receiver Operating Characteristic (ROC) curve and
Precision-Recall (PR) curve. Both types of curves played
a fundamental role in understanding the technique of the
various systems in the presence of uncertainty. These
curves were used in several areas such as radiology,
electrical engineering and several other arenas to
education the performance of a binary forecast system as
a function of a control parameter. As the control
parameter, it is possible to increase the accuracy and
reduce the false positive rate of the system according to
the lower recall, which is the true positive rate or
sensitivity (Pavlick et al., 2015; Ekelund, 2017).

The Area Under Curve (AUC) will be used as a
summary of the model skill. The model skill will be
compared against a no-skill classifier, which is the one
that cannot discriminate between the classes and would
predict a random class or a constant class in all cases. A
model with no-skill is represented at the point (0.5, 0.5).
A model with no-skill at each threshold is represented by
a diagonal line from the bottom left of the plot to the top
right and has an AUC of 0.5. Table 3 summarizes the
results of AUC for both ROC and PR curves across all
three algorithms.

Receiver Operating Characteristic (ROC) Curve

A Receiver Operating Characteristic (ROC) curve
summarizes the trade-off between TP rate and FP rate for
a predictive model using different probability thresholds.
It has two dimensions where the x-axis indicates the
False Positive (FP) rate and the y-axis indicates the True
Positive (TP) rate (Grau et al., 2015). Fig. 8 shows the
ROC curve for k-Nearest Neighbor (k-NN). The ROC
AUC is 0.959 with no-skill AUC at 0.500.

Table 2: Comparison of results

Algorithm Accuracy Rate Precision Rate Recall Rate F- Measure

k-Nearest Neighbor (k-NN) 0.91 0.91 0.91 0.864
Support Vector Machines (SVM) 0.91 0.91 0.91 0.905
Random Forest (RF) 0.98 0.98 0.98 0.980

Table 3: Area Under Curve (AUC) for both ROC and PR

Algorithm ROC AUC PR AUC

k-Nearest Neighbor (k-NN) 0.959 0.960
Support Vector Machines (SVM) 0.888 0.885
Random Forest (RF) 0.981 0.983

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1313

Fig. 8: ROC curve for k-Nearest Neighbor (k-NN)

Fig. 9: ROC curve for Support Vector Machines (SVM)

Fig. 10: ROC curve for Random Forest (RF)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

No skill

K-Neighbors

T
ru

e
po

si
ti

v
e

ra
te

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

SVM

T
ru

e
po

si
ti

v
e

ra
te

False positive rate

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

Random forest

T
ru

e
po

si
ti

v
e

ra
te

False positive rate

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1314

Fig. 11: PR curve for k-Nearest Neighbor (k-NN)

Fig. 12: PR curve for Support Vector Machines (SVM)

Fig. 13: PR curve for Random Forest (RF)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

K-Neighbors
P

re
ci

si
o

n

Recall

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

SVM

P
re

ci
si

o
n

Recall

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

Random forest

P
re

ci
si

o
n

Recall

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1315

Fig. 9 shows the ROC curve for Support Vector
Machines (SVM). The ROC AUC is 0.888 with no-skill
AUC at 0.500. Meanwhile, Fig. 10 shows the ROC curve
for Random Forest (RF). The ROC AUC is 0.981 with no-
skill AUC at 0.500.

Precision-Recall Curve

A Precision-Recall (PR) curve summarize the trade-
off between the true positive rate and the positive
predictive value for a predictive model using different
probability thresholds. PR curve is a plot of the precision
in the y-axis and the recall in the x-axis for different
probability thresholds. Basically, it is the plot of Recall
(x) vs. Precision (y). Fig. 11 shows the PR curve for k-
Nearest Neighbor (k-NN). The F-measure is 0.864 and
PR AUC is 0.960. Fig. 12 shows the PR curve for
Support Vector Machines (SVM). The F-measure is
0.802 and PR AUC is 0.885. Finally, Fig. 13 shows the
PR curve for Random Forest (RF). The F-measure is
0.925 and PR AUC is 0.983.

Discussion

The preliminary analysis was carried out based on
Area Under Curve (AUC) of two curves; Receiver
Operating Characteristic (ROC) curve and Precision-
Recall (PR) curve. AUC is the best measurement as
AUC does not have errors in the prediction, so ideal
classifiers can an ideal that classifies data into two
classes, which means the model succeeded in being
without any false positives. Another benefit of using the
ROC and PR curves together is to find points that are
close or shared to give the best evaluation of the models
used in this research as shown in Table 3.

In both ROC and AUC, the threshold was used to
apply to the cut-off point in probability between the
positive and negative classes where the threshold is
chosen by default for any classifier at 0.5 in the middle
area of the outputs (0 and 1). The classifier that does not
have the ability to distinguish between positive and
negative class will be the diagonal line between the
false rate of 0 and the true positive rate of zero (0, 0)
and in the case of predicting all negative class to the
false positive rate 1 or the true positive rate (1, 1) or
expect all positive class. So, the line represented by the
points below is the inability predictability of and there
is no-skill in distinguishing between positive and
negative class. So, the perfect classifier when the value
between (0.0 and 1.0).

The performance of the perfect model for the
malware detection for the dataset depends on the
choice of the appropriate model for the dataset. In k-
Nearest Neighbor model, it can be seen that the ROC
AUC for k-NN model on the synthetic dataset is about
0.903, which is much better than a no-skill classifier

with a score of about 0.500. In SVM, it can be seen
that the ROC AUC model on the synthetic dataset is
about 0.903, which is much better than a no-skill
classifier with a score of about 0.500. Finally, in RF,
it can be seen that the ROC AUC model on the
synthetic dataset is about 0.981, which is much better
than a no-skill classifier with a score of about 0.500.

The results showed that operational code (Opcode)
sequence dataset generated from IoT sensors are
highly useful in developing a malware detection
model within the Internet of Things environment. The
accuracy rates are considerably high and this indicates
the possibility of developing and using machine
learning methods with real-data from the Internet of
things. The challenges facing the operational code
sequence (Opcode) dataset is that not every sample
consisting of all cipher codes in its vector feature,
hence the features may have a zero value. Therefore,
using word embedding technology to convert each
sample into a digital sequence representation is possibly
required (Puthal et al., 2016).

Conclusion

This paper presented a preliminary analysis of
malware detection models within the scope of Internet-of-
Things (IoT) applications. The dataset used is in the form
of operational codes (Opcodes) sequences generated from
IoT-based devices (HaddadPajouh et al., 2018). Three
machine learning algorithms were constructed and
compared, which are k-Nearest Neighbor (k-NN), Support
Vector Machines (SVM) and Random Forest. The
experimental results showed that RF outperformed both k-
NN and SVM with 98% of detection accuracy as
compared to 91% for both k-NN and SVM. These results
are supported by analysis of Receiver Operating
Characteristic (ROC) curve and Precision-Recall (PR)
curve, which showed that the best methods used in this
study is Random Forest, with highest accuracy of 0.98
and supported by ROC/PR curves 0.983.

The results from this preliminary analysis will be
used as benchmark results for exploring deep learning
methods with the same or similar dataset from IoT
environment. It is hoped that these detection models will
be embedded in the IoT application in order to secure the
systems from malware attacks.

Acknowledgement

This research is supported by Universiti Putra Malaysia.

Author’s Contributions

Firas Shihab Ahmed: Conceived the original idea,
carried out experiments, collected the results and drafted
the manuscript.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1316

Norwati Mustapha: Supervised the project, advised
on structure of manuscript, in charge of overall direction
and planning.

Aida Mustapha: Conceived the original idea,
worked on the manuscript.

Mohsen Kakavand: Processed the dataset, helped
with the experiments, and interpreted the results.

Cik Feresa Mohd Foozy: Worked on the literature
reviews and revising the manuscript.

Ethics

All authors have been personally and actively
involved in substantial work leading to the paper, and
will take public responsibility for its content.

References

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S.,
Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017).
A brief survey of text mining: Classification,
clustering and extraction techniques. arXiv preprint
arXiv:1707.02919.

Apostolidis-Afentoulis, V., & Lioufi, K. I. (2015). Svm
classification with linear and rbf kernels. July): 0-7.
http://www. academia.
edu/13811676/SVM_Classification_with_Linear_an
d_RBF_kernels.[21]

Aburomman, A. A., & Reaz, M. B. I. (2016). A novel
SVM-kNN-PSO ensemble method for intrusion
detection system. Applied Soft Computing, 38,
360-372.

Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R.
(2018). Robust malware detection for internet of
(battlefield) things devices using deep eigenspace
learning. IEEE Transactions on Sustainable
Computing, 4(1), 88-95.

Bragen, S. R. (2015). Malware detection through
opcode sequence analysis using machine learning
(Master's thesis).

Bro, R., & Smilde, A. K. (2003). Centering and scaling
in component analysis. Journal of Chemometrics,
17(1), 16-33.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S.
(2011, October). Crowdroid: behavior-based
malware detection system for android. In
Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile
devices (pp. 15-26).

Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., &
Li, K. (2016). A parallel random forest algorithm for
big data in a spark cloud computing environment.
IEEE Transactions on Parallel and Distributed
Systems, 28(4), 919-933.

D’Orazio, C. J., Choo, K. K. R., & Yang, L. T. (2016).
Data exfiltration from Internet of Things devices:
iOS devices as case studies. IEEE Internet of Things
Journal, 4(2), 524-535.

Darabian, H., Dehghantanha, A., Hashemi, S.,
Homayoun, S., & Choo, K. K. R. (2020). An
opcode‐based technique for polymorphic Internet
of Things malware detection. Concurrency and
Computation: Practice and Experience, 32(6),
e5173.

Davis, J., & Goadrich, M. (2006, June). The relationship
between Precision-Recall and ROC curves. In
Proceedings of the 23rd international conference on
Machine learning (pp. 233-240).

Ekelund, S. (2017). Precision-recall curves–what are
they and how are they used?. acutecaretesting. org.

Farnaaz, N., & Jabbar, M. A. (2016). Random forest
modeling for network intrusion detection system.
Procedia Computer Science, 89(1), 213-217.

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J.
R. (2003). Random forests for land cover
classification. Pattern Recognition Letters, 27(4),
294-300.

Goyal, M., Sahoo, I., & Geethakumari, G. (2019).
HTTP Botnet Detection in IOT Devices using
Network Traffic Analysis. In 2019 International
Conference on Recent Advances in Energy-
efficient Computing and Communication
(ICRAECC) (pp. 1-6). IEEE.

Grau, J., Grosse, I., & Keilwagen, J. (2015). PRROC:
computing and visualizing precision-recall and
receiver operating characteristic curves in R.
Bioinformatics, 31(15), 2595-2597.

Gupta, V., & Mittal, M. (2018). KNN and PCA classifier
with autoregressive modelling during different ECG
signal interpretation. Procedia Computer Science,
125, 18-24.

HaddadPajouh, H., Dehghantanha, A., Khayami, R., &
Choo, K. K. R. (2018). A deep recurrent neural
network based approach for internet of things
malware threat hunting. Future Generation
Computer Systems, 85, 88-96.

Ham, H. S., Kim, H. H., Kim, M. S., & Choi, M. J.
(2014). Linear SVM-based android malware
detection for reliable IoT services. Journal of
Applied Mathematics, 2014.

Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M.
M. A. (2019). Attack and anomaly detection in IoT
sensors in IoT sites using machine learning
approaches. Internet of Things, 7, 100059.

Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang,
Y., & Xu, W. (2018). Applications of support vector
machine (SVM) learning in cancer genomics.
Cancer Genomics-Proteomics, 15(1), 41-51.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1317

Kakavand, M., Dabbagh, M., & Dehghantanha, A.
(2018, November). Application of machine learning
algorithms for Android malware detection. In
Proceedings of the 2018 International Conference on
Computational Intelligence and Intelligent Systems
(pp. 32-36).

Kakavand, M., Mustapha, N., Mustapha, A., & Abdullah,
M. T. (2016). Effective Dimensionality Reduction of
Payload-Based Anomaly Detection in TMAD Model
for HTTP Payload. TIIS, 10(8), 3884-3910.

Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J.
(2017). DDoS in the IoT: Mirai and other botnets.
Computer, 50(7), 80-84.

Kumar, A., & Lim, T. J. (2019, April). EDIMA: Early
detection of IoT malware network activity using
machine learning techniques. In 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT) (pp.
289-294). IEEE.

Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar,
J., & Sharif, A. (2019). A multimodal malware
detection technique for Android IoT devices using
various features. IEEE Access, 7, 64411-64430.

Li, W., Tug, S., Meng, W., & Wang, Y. (2019).
Designing collaborative blockchained signature-
based intrusion detection in IoT environments.
Future Generation Computer Systems, 96, 481-489.

Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003).
Technology acceptance model for wireless Internet.
Internet research.

Mahindru, A., & Singh, P. (2017, February). Dynamic
permissions based android malware detection
using machine learning techniques. In
Proceedings of the 10th innovations in software
engineering conference (pp. 202-210).

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M.,
Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y.
(2017). Detection of unauthorized iot devices using
machine learning techniques. arXiv preprint
arXiv:1709.04647.

Milosevic, N., Dehghantanha, A., & Choo, K. K. R.
(2017). Machine learning aided Android malware
classification. Computers & Electrical Engineering,
61, 266-274.

Mosenia, A., & Jha, N. K. (2016). A comprehensive
study of security of internet-of-things. IEEE
Transactions on Emerging Topics in Computing,
5(4), 586-602.

Nakhodchi, S., Upadhyay, A., & Dehghantanha, A.
(2020). A comparison between different machine
learning models for IoT malware detection. In
Security of Cyber-Physical Systems (pp. 195-202).
Springer, Cham.

Nikam, S. S. (2015). A comparative study of
classification techniques in data mining algorithms.
Oriental journal of computer science & technology,
8(1), 13-19.

Noi, P. T., & Kappas, M. (2018). Comparison of random
forest, k-nearest neighbor and support vector
machine classifiers for land cover classification
using Sentinel-2 imagery. Sensors, 18(1), 18.

Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers,
M. (2012). A review of wearable sensors and
systems with application in rehabilitation. Journal
of neuroengineering and rehabilitation, 9(1), 1-17.

Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme,
B., & Callison-Burch, C. (2015, July). PPDB 2.0:
Better paraphrase ranking, fine-grained
entailment relations, word embeddings and style
classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 2: Short Papers) (pp. 425-430).

Powers, D. M. (2011). Evaluation: from precision, recall
and F-measure to ROC, informedness, markedness
and correlation.

Puthal, D., Nepal, S., Ranjan, R., & Chen, J. (2016).
Threats to networking cloud and edge datacenters in
the Internet of Things. IEEE Cloud Computing,
3(3), 64-71.

Rehman, Z. U., Khan, S. N., Muhammad, K., Lee, J.
W., Lv, Z., Baik, S. W., ... & Mehmood, I.
(2018). Machine learning-assisted signature and
heuristic-based detection of malwares in Android
devices. Computers & Electrical Engineering, 69,
828-841.

Sabharwal, A., & Sedghi, H. (2017). How Good Are
My Predictions? Efficiently Approximating
Precision-Recall Curves for Massive Datasets. In
UAI.

Sethi, K., Chaudhary, S. K., Tripathy, B. K., & Bera, P.
(2017, October). A novel malware analysis for
malware detection and classification using machine
learning algorithms. In Proceedings of the 10th
International Conference on Security of Information
and Networks (pp. 107-113).

Tankard, C. (2015). The security issues of the Internet
of Things. Computer Fraud & Security, 2015(9),
11-14.

Tien, C. W., Chen, S. W., Ban, T., & Kuo, S. Y. (2020).
Machine Learning Framework to Analyze IoT
Malware Using ELF and Opcode Features. Digital
Threats: Research and Practice, 1(1), 1-19.

Varoquaux, G. (2018). Cross-validation failure: small
sample sizes lead to large error bars. Neuroimage,
180, 68-77.

Wang, F., Zhen, Z., Wang, B., & Mi, Z. (2018a).
Comparative study on KNN and SVM based
weather classification models for day ahead short
term solar PV power forecasting. Applied Sciences,
8(1), 28.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318
DOI: 10.3844/jcssp.2020.1306.1318

1318

Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S.
(2018b). A support vector machine-based
ensemble algorithm for breast cancer diagnosis.
European Journal of Operational Research,
267(2), 687-699.

Watson, S., & Dehghantanha, A. (2016). Digital
forensics: the missing piece of the Internet of Things
promise. Computer Fraud & Security, 2016(6), 5-8.

Wazid, M., Das, A. K., Rodrigues, J. J., Shetty, S., &
Park, Y. (2019). IoMT malware detection
approaches: Analysis and research challenges. IEEE
Access, 7, 182459-182476.

Xiaofeng, L., Xiao, Z., Fangshuo, J., Shengwei, Y., &
Jing, S. (2018). ASSCA: API based sequence and
statistics features combined malware detection
architecture. Procedia Computer Science, 129,
248-256.

Yang, K., Hicks, M., Dong, Q., Austin, T., &
Sylvester, D. (2016, May). A2: Analog malicious
hardware. In 2016 IEEE symposium on security
and privacy (SP) (pp. 18-37). IEEE.

Zhang, Y. D., Yang, Z. J., Lu, H. M., Zhou, X. X.,
Phillips, P., Liu, Q. M., & Wang, S. H. (2016).
Facial emotion recognition based on biorthogonal
wavelet entropy, fuzzy support vector machine
and stratified cross validation. IEEE Access, 4,
8375-8385.

