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RBSTRACT: 

Two, 3-km-deep boreholes have been d r i l l e d  in to  
hot (% 200OC) g ran i t e  in  northern New Mexico 
i n  o rder  t o  ex t r ac t  geothermal energy from hot 
dry rock. Both boreholes were hydraul ical ly  
f rac tured  t o  e s t ab l i sh  a flow connection. 
Present ly  t h i s  connection has a la rge  flow 
impedance which may be improved with fu r the r  
s t imulat ion.  Fracture-to-borehole in te rsec t ion  
loca t ions  and in s i t u  thermal conductivity were 
determined from flowing temperature logs.  

measurements of permeabili ty show an 
extremely strong dependance upon pore pressure - -  
the permeabili ty increased by a f ac to r  o f  80 as 
the pressure was increased 83 bars (1200 p s i ) .  
4n es t imate  of the minimum horizontal ea r th  
s t r e s s  was derived from f r ac tu re  extension 
wessures and found t o  be one-half the overburden 
s t r e s s .  

& 

INTRODUCTION: 

R program designed t o  demonstrate the  f eas i -  
b i l i t y  of ex t rac t ing  energy from hot dry rock 
has been i n i t i a t e d  a t  the  Los Alamos Scien- 
t i f i c  Laboratory. Basical ly ,  i t  i s  proposed 
t h a t  man-nlade geothermal energy reservoi rs  can 
be created by d r i l l i n g  in to  r e l a t ive ly  im- 
permeable rock t o  a depth where the temperature 
i s  h i g h  enough t o  be useful ;  creat ing a 

References and i l l u s t r a t i o n s  a t  en d of DaDer 

-eservoir  by hydraulic f r ac tu r ing ;  and rhen 
:ompleting the c i r cu la t ion  loop by d r i l l i n g  a 
iecond hole t o  i n t e r s e c t  the  hydraul ical ly  
Fractured region, o r  by d r i l l i n g  in to  the 
immediate v i c i n i t y  of the  f i r s t  f r ac tu re  and 
:hen crea t ing  a second f r ac tu re  t h a t  i n t e r -  
sects the f i r s t  one. 

Thermal power would be ex t rac ted  from t h i s  
;ystem by in jec t ing  cold water down the f i r s t  
i o l e ,  forcing the  water t o  sweep by t h e  f r e sh ly  
?xposed hot rock surface in the  reservoi r /  
Fracture system, and then returning the h o t  
vater t o  the surface where the  thermal energy 
vould be converted t o  e l e c t r i c a l  energy o r  
ised f o r  other  purposes. System pressures  
vould be maintained such t h a t  only one phase, 
l iquid water,  would be present  i n  the  reservoi r  
i n d  tne  d r i l l e d  holes.  The concept i s  
lescribed i n  more d e t a i l  by Smith, e t  a l l  and 
the mechanics of the  heat ex t rac t ion  process 
lave been reported by Harlow and Pracht ,2  and 
IcFarland and Murphy. 

The hot dry rock concept i s  being invest igated 
i n  a s e r i e s  of f i e l d  experiments a t  a s i t e  
:alled Fentori H i l l ,  located on the  west f lank 
)f a dormant volcano, t he  Valles Caldera,  in 
the Jemez mountains of northern New Mexico. 
I n  December 1974, the f i r s t  deep borehcle,  
:T-2, was completed t o  a depth of 2.929 km 
(9609 f t )  in  g ran i t e ,  where the temperature 
Mas 197°C (386°F). 
then created c lose  t o  the  bottom of t h i s  

A hydraulic f r ac tu re  was 
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t h a t  o f  the  rock which, based upon the  r e s u l t s  b r e h o l e .  

d r i l l e d  t o  complete the c i r cu la t ion  loop, b u t  
i t  f a i l e d  t o  in t e r sec t  the GT-2 f r ac tu re  by 
approximately 6 m (20 f t ) .  Communication 
between the wellbores was then establ ished by 
i n i t i a t i n g  a f r ac tu re  from EE-1. T h i s  f r ac tu re  
i s  located an average d is tance  of approximately 
6 m (20 f t )  from the GT-2 f r ac tu re .  Due t o  
uncer ta in t ies  in f r ac tu re  or ien ta t ion  measure- 
ments, i t  i s  not known whether the  two f r ac tu res  
in t e r sec t ,  A s e r i e s  of flow experiments was 
then conducted t o  determine the nature of t h i s  
c i r cu la t ion  path,  and t o  measure f r ac tu re  
proper t ies  necessary t o  complete the  design of 
a demonstration heat ex t rac t ion  experiment. T h e  
r e s u l t s  of these experiments a r e  described i n  
the following sec t ions .  

A second borehole, EE-1, was then 

RNALYSIS OF TRANSIENT WELLBORE PRESSURES: 

By assuming constant ,  one-dimensional, per- 
neable flow in to  a homogeneous porous media 
w i t h  constant  proper t ies ,  and by a l s o  assuming 
tha t  the  hydraulic conduct ivi ty  of the f r ac tu re  
i s  very l a rge  compared t o  t h a t  of the rock, i t  
can be shown t h a t  i f  water i s  injected in to  a 
f r ac tu re  a t  a constant r a t e ,  q ,  the  change in  
f r ac tu re  pressure,  p, i s :4 ’  

3ecause the hydraulic d i f f u s i v i t y ,  K, i s  
K = k/p B . , . . . . . . (2)  

the product of the  f r ac tu re  area times 
square root  of permeabili ty,  A&, i s  g 
rewrit ing E q  1. - - 

the  
ven by 

( 3 )  
gownhole pressure Ehanges a t  the  f r ac tu re  face  
sre estimated by cor rec t ing  the  measured surface 
ilrell head pressure f o r  pressure losses .  These 
pressure losses  cons is t  of f r i c t i o n a l  losses  in 
surface p i p i n g ,  f lowing  f r i c t i o n  i n  the  well- 
Sore and, a s  the flow en te r s  the  f r ac tu re ,  an 
iddi t ional  wel lbore- to-fracture  impedance 
(analogous t o  a s k i n  e f f e c t ) .  Since the  flow 
pate i s  constant  and wellbore s torage e f f e c t s  
3re not s i g n i f i c a n t ,  the  t o t a l  pressure loss  
h e  t o  these e f f e c t s  i s  a l s o  constant ,  and can 
,e estimated by ex t rapola t ing  the pressure 
:urves back t o  zero time. 

rypical data  f o r  the  EE-1 f r ac tu re  a r e  pre- 
sented in  Figure 1.  The experiment was conduct- 
?d by pumping i n to  the EE-1 wellbore a t  a con- 
s tan t  r a t e  of 2.1 U s  (34 gal/min),  corrected t o  
downhole condi t ions.  A good l i n e a r  f i t  t o  the  
data i s  obtained on P versus JT coordinates.  
l ev ia t ion  of the l a t e r  time data  from the l i n e a r  
f i t  i s  thought t o  be due t o  pressure dependent 
lermeabi l i ty ,  o r  a “ leak”  from the EE-1 f r ac tu re  
to t h e  GT-2 f r a c t u r e  via a flow connection; a s  
f i l l  be discussed. 

Since the poros i ty  of the g ran i t e  is  l e s s  than. 
1 % .  the mean comDressibilitY, B. i s  essent  i a l l v  

of sonic ve loc i ty  logs ,  i s  estimated t o  be 
2.7 x lom6  bar -’ (1.9 x lo-’ psi-’ ;  
lo’ N/m2 = 14.5 p s i ) .  Using ava i l ab le  proper t ies  
of water a t  2OO0Cy6 and the  above values of B 
and q ,  i t  can be shown t h a t  the  A& value f o r  
the E E - 1  f r ac tu re  a t  the  time this  experiment 
was conducted was 2.2 x 10-’m3 (7.8 x 10 cu 
f t ) .  
i n i t i a l  pore pressure of zero ( tak ing  hydros ta t ic  
pressure a s  the  basel ine)  , the  A& derived i s  
more properly designated as  ( A & ) , ,  where the  
subscr ip t  represents  the  change in the  i n i t i a l  
pore pressure.  

An extrapolat ion of the  l i n e a r  f i t  i n  F i g .  1 
back t o  zero time provides an est imate  of 2.8 
bars (40 psi)  f o r  the pressure losses between 
the surface and the f r ac tu re .  Although this 
pressure lo s s  i s  probably not l ir lear with flow 
r a t e ,  espec ia l ly  a t  much higher  flow r a t e s ,  i t  
i s  instructive, f o r  purposes of comparison, t o  
divide i t  by the  flow r a t e  t o  y ie ld  a s p e c i f i c  
impedance. T h i s  spec i f i c  impedance from the  
surface t o  the EE-1 f r a c t u r e  i s  1 .3  bar-sec/ 
l i t e r  (1.2 psi-min/gal)  which, a s  we wil l  show, 
i s  small compared t o  the overal l  c i r cu la t ion  
impedance. Similar  r e s u l t s  with the GT-2 
f r ac tu re  ind ica te  t h a t  i t s  (A&),  i s  5.2 x 10-’m3 
(1.8 x cu f t )  and the sur face  t o  GT-2 
f r ac tu re  impedance i s  3.9 ba r - sec / l i t e r  
(3.5 psi-min/gal) .  Pot te r  e t  a l ’  r epor t  t h a t  
the permeabili ty o f  GT-2 core specimens i s  0.01 
t o  0.1 inicro-darcy a t  downhole condi t ions o f  
temperature and pressure,  while West e t  a1 
r e p o r t t h a t ,  based upon d r i l l - s t em t e s t i n g  a t  a 
dept,h of 1 .5  km (5000 f t )  in GT-2, the  permea- 
b i l i t y  of a s imi l a r  g ran i t e  i s  approximately 
one micro-darcy. Taking the  l a t t e r  r e s u l t  a s  
perhaps more representa t ive  of heterogenous rock 
conditions suggests t h a t  the  area o f  the  GT-2 
f r ac tu re  i s  approximately 5.2 x 104m2 
(5.6 x lo’ sq f t ) ,  and i f  c i r c u l a r ,  has a rad ius  
of 90 rn (300 f t ) .  This i s  a r o u g h  es t imate  of 
course,  b u t  Albright’ repor t s ,  on the  bas i s  o f  
microseismic acous t ic  techniques,  t h a t  the 
radius  of the  GT-2 f r a c t u r e  m u s t  be a t  l e a s t  
50 rn (160 f t ) .  

1 bar = 

Since this r e s u l t  was obtained with an 

I t  i s  found t h a t  values of (A&), a r e  most use- 
fu l  when they a r e  in te rpre ted  a s  a parameter 
which charac te r izes  a f r ac tu re .  Changes i n  
(A&), ind ica te  i r r e v e r s i b l e  changes in  a 
f r ac tu re ,  examples being f r a c t u r e  extension due 
t o  pressurizat ion o r  changes i n  k due t o  
potent ia l  geochemical e f f e c t s  such a s  the  
formation and p rec ip i t a t ion  of rock-water i n t e r -  
act ion products o r  the d isso lu t ion  of rock 
mineral components, pa r t i cu la r ly  si1 ica  (SiOn).  

A h i s to r i ca l  summary o f  t he  (Ad?) ,  f o r  both 
f r ac tu res  i s  presented i n  Figure 2. A t  the  top 
of this f igu re  a r e  iden t i f i ed  the  various flow 
experiments (which a r e  discussed in more d e t a i l  
i n  reference l o ) ,  while near the  bottom, the 
maximum EE-1 we1 1 head pressure achieved d u r i n g  
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each experiment i s  indicated.  Since the  
creat ion of the EE-1 f r ac tu re  i n  October, 1975, 
i t s  ( A & > o  has increased during several  o f  these 
flow experiments. Furthermore, these increases 
have been observed only when the EE-1 pressure 
has exceeded 90 t o  94 bars  (1300 t o  1360 p s i ) .  
T h u s ,  i t  i s  believed t h a t  these increases  in 
(A&), a r e  due t o  increases  i n  A ( f r ac tu re  ex- 
tensions)  and t h a t  t he  f r ac tu re  extension 
pressure,  Pe, i s  approximately 92 'bars (1330 psi 
above hydrostat ic .  Since i t s  c r ea t ion ,  (AJIT) ,  
of the GT-2 f r ac tu re  has not changed s i g n i f i -  
cant ly .  
reached a t  the GT-2 wellhead was 91 bars (1320 
p s i ) ,  i . e . ,  below Pe. The permeabili ty of the 
rock surrounding the  GT-2 f r ac tu re  has apparent- 
l y  not changed, i n  spite of the potent ia l  
geochemical e f f e c t s  c i t e d  above. 

The maximum sustained pressure ever 

DETERMINATION OF MINIMUM EARTH STRESS: 

Based upon a theory of f r ac tu re  mechanics, Sack' 
has shown t h a t  the d i f fe rence  between the 
f r ac tu re  extension pressure and the ea r th  s t r e s s  
perpendicular t o  the  f r ac tu re  plane,  SJ, ( t h e  
l e a s t  compressive pr incipal  stress) is :  

Aamodt'2nas reported values of the  proper t ies  f o r  
a gran i te  s imi l a r  t o  t h a t  found i n  EE-1 and 
GT-2; y = 100 J/m2 (6 .8  l b / f t ) ,  E = 3.8 x l o 5  
bars (5.5 x 10' p s i )  and u = 0.3. Subs t i tu t ing  
these values and supposing t h a t  e i t h e r  f r ac tu re  
radius ,  R ,  i s  p resent ly  a s  small a s  50 m (160 
f t ) ,  i t  can be shown t h a t  Pe - S 3  i s  only 3.6 
bars (53 p s i ) .  T h u s  the minimum ea r th  s t r e s s ,  
SB, i n  the EE-1 f r ac tu re  i s  approximately 88 
bars  (1280 p s i )  above hydrostat ic .  As will  be 
shown, the EE-1 f r a c t u r e  i s  roughly centered 
about a depth of 2.55 km (9670 f t ) ,  so t h a t  the 
absolute  value of S 3  i s  375 bars (5440 ps i )  or  
50% o f  the  overburden pressure,  SI, ( the  maximum 
compressive p r i n c i p a l  s t ress) .  As expected, 
these f r ac tu res  a r e  v e r t i c a l l y  or iented.  

P , - s ~  =\lFy&- . - . . . (4) 

PORE PRESSURE DEPENDENT PERMEABILITY: 

The e f f e c t s  of pore pressure upon AJlT a r e  
indicated in Figure 3. The r e s u l t s  were obtain- 
ed from an experiment (No. 111) in which the 
sequence of operat ions was t o  f i r s t  i n j e c t  water 
i n to  the EE-1 f r a c t u r e  a t  a constant  r a t e  un t i l  
a pressure of 28 bars  (400 psi)  above hydPo- 
s t a t i c  was reached, and then ad jus t  the flow 
r a t e  such t h a t  t h i s  pressure was maintained 
constant f o r  two hours. In such a manner a new 
pore pressure was establ ished i n  the  rock 
adjacent t o  the  f r ac tu re  face.  Following the 
two-hour "soak" the procedure was repeated a t  
the addi ional pressure l eve l s  shown on the  
f igure .  The s t a r t  of each new change i n  
pressure level  was taken a s  a new zero time and 
the resu t s ,  when p lo t ted  versus A, yielded 
s t r a i g h t  l i n e s  a s  shown. 
pr inc ip le  of superposi t ion,  the  AJI( f o r  each 
increment of pressure can be calculated and the 

Using a modified 

r e s u l t s  a r e  indicated on the tigure. As can be 
seen, increasing the pore pressure from 0 t o  65  
bars (1000 p s i )  above hydros ta t ic  resu l ted  .in a 
f ac to r  of 3.8 increase in A&. Since A did n o t  
change (pressure l eve l s  were below the  f r ac tu re  
extension pressure)  the  permeabil i t y  apparent ly  
increased by a f ac to r  of 15. 

3 

Additional r e s u l t s ,  obtained from another flow 
experiment (No. 114) ,  presented in  Figure 4 
ind ica te  t h a t  the permeabili ty increases  even 
more sharply ( u p  t o  a f a c t o r  o f  80!) a s  the  pore 
pressure increases  t o  83 bars (1200 p s i )  above 
hydrostat ic .  These r e s u l t s  a r e  qua l i t a t ive ly  
s imi la r  t o  those of Brace, e t  a l l 3  f o r  westerly 
g ran i t e  and t o  those of Po t t e r ,  e t  a17 f o r  GT-2 
core specimens. I f  one i n t e r p r e t s  the  "ef-  
f ec t ive"  s t r e s s  holding microcracks closed as 
simply the d i f fe rence  between the ea r th  s t r e c s  
and the pore pressure,  then Brace, e t  a1 have 
shown t h a t  reducing the  e f f ec t ive  s t r e s s  by 
increasing the  pore pressure tends t o  open the  
microcracks, leading t o  la rge  changes i n  the  
e f f ec t ive  permeabili ty of the  rock. 

Figure 5 presents  a summary of a l l  the data  we 
have measured per a ining t o  pore-pressure- 
dependent permeab l i t y .  Included a r e  data from 
the EE-1 f r ac tu re  the  present GT-2 f r ac tu re  
(roughly centered a t  2.81 k m )  and an ea r ly ,  now- 
inac t ive  f r ac tu re  in GT-2. Empirically we have 
found t h a t  the  square root  of the  r a t i o  of the  
permeabili ty a t  zero wellhead pressure t o  the  
permeabili ty a t  e levated pressures ,  Jk,lk, i s  
reasonably l i n e a r  with pressure a s  shown. A ' 

value of zero f o r  the r a t i o  v m  a t  t he  i n i e r -  
cept  w i t h  the  abscissa  mathematically implies 
in f in l ' t e  permeabili ty a t  the face  of the f r ac tu re  
plane. A reasonable in t e rp re t a t ion  would be 
tha t  when the pressure approaches the  maximurn 
horizontal  component of ea r th  s t r e s s ,  S2,  ( t h e  
intermediate ea r th  s t r e s s ,  al igned hor izonta l ly  
and para l le l  t o  the frat-ture p l a n e )  ti le e f f e c t i v e  
stress i n  the S p  d i rec t ion  approaches zero with 
concomitant opening of microfractures .  The 
l e a s t  squares l i n e  using the e n t i r e  data  s e t  has 
the equation : 

\& = 1.00 - 0.0098 P(Bars) . . . (5) 
and the extrapolated pressure,  a t  Jka7i; = 0, o f  
702 bars (1480 p s i )  above hydros ta t ic  i s  
believed t o  be a n  es t imate  o f  S p  

ANALYSIS O F  FLOWING TEMPERATURE LOGS- 

In S i tu  Thermal Conductivity. The  equation des- 
cr ibing the heat transfe- the rock surround- 
i n g  a wellbore is :  

(6)  a2T 1 aT pc aT + - - = -- - 
o r  r a r  x a t " " " '  

and  the equation f o r  the  flowing f l u i d  i n  the  
Mellbore is :  
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PRELIMINARY ASSESSMENT OF A GEOTHERMAL ENERGY 
4 RESERVOIR FORMED BY HYDRAULIC FRACTURING 
I n  t h e  d e r i v a t i o n  o f  Eqs. 6 and 7 i t  has been 
assumed t h a t  t he  p r o p e r t i e s  o f  t he  rock  and t h e  
water  a re  constant  and t h a t  t he  t u r b u l e n t  mix-  
i n g  t h a t  occurs i n  t h e  f l o w i n g  water r e s u l t s  i n  
n e g l i g i b l y  small r a d i a l  temperature g rad ien ts  
i n  t h e  water.  If these equat ions a re  nondimen- 
s iona l i zed ,  i t  can be shown'4 t h a t  a dimension- 
l e s s  temperature d i f f e r e n c e  i s  a f u n c t i o n  o f  a 
dimensionless t ime  and t h e  r a t i o  o f  t h e  
vo lumet r i c  heat c a p a c i t y  o f  t he  rock t o  t h a t  o f  
t h e  f l u i d :  

(Tof - Tf)  =O (A)* Y(x). . . (8)  

pfcfa2U dTf/dz p c a2 P f C f  . - . I  

Mhere Tf = f l u i d  temperature a t  t ime  t, depth z 
Tof = i n i t i a l  f l u i d  temperature a t  depth z 

Equation 8 i s  v a l i d  when bo th  the  f l u i d  v e l o c i t y  
J ,  and the  temperature g r a d i e n t  dTf/dz do n o t  
vary s i g n i f i c a n t l y  w i t h  t ime. 
x n d i t i o n  r e q u i r e s  t h a t  t he  f o l l o w i n g  dimension- 
l ess  grouping be l e s s  than 0.314 

The l a t t e r  

pfcfaU&f/Xz - < 0.3 . . . . . . . . . (9 )  

1 we l lbo re  heat t ransmiss ion  computer programE 
vas used t o  generate t h e  f u n c t i o n a l  form o f  Eq 8 
For a va lue of pc/pfcf  app rop r ia te  f o r  g r a n i t e  
tnd 200°C water.  
i n  F ig .  6. This  curve i s  e s s e n t i a l l y  a type 
:urve, and i s  t h e  thermal analog t o  t h e  t ype  
:urve developed by Ramey16 f o r  pressure a n a l y s i s  
)f a s i n g l e  w e l l  i n  an i n f i n i t e  r e s e r v o i r  w i t h  
/ e l  1 bore storage. 

L11 parameters except temperature and time, i n  
:q. 8, a re  assumed cons tan t  so i f  exper imental  
fa lues o f  log (Tof-Tf)  a r e  p l o t t e d  aga ins t  l o g  
t), t h e  p l o t  should have t h e  same shape as 
i g .  6. The data from t h e  temperature l o g s  
.aken i n  t h e  GT-2 wel lbore,  a t  a depth o f  
lpprox imate ly  2.77 km (9100 f t ) ,  i n j e c t i n g  a t  a 
ons tan t  r a t e  o f  0.6 l i t e r / s e c  (9  ga l /min)  w i t h  
o n d i t i o n s  s a t i s f y i n g  equat ion (91, were p l o t t e d  
In l o g - l o g  coord inates and t h e  r e s u l t s  a re  
ve r layed  on the type curve o f  F igu re  6. 
iatch of curve shape occurs and a match p o i n t  
t an exper imental  t ime  o f  10,000 seconds 
orresponds t o  a dimensionless t ime o f  1.4. The 
e l l b o r e  r a d i u s  i s  0.087 m. Using a va lue o f  
700 kg/m3 f o r  t h e  rock  dens i t y ,  p ,  and a va lue 
f 1050 J/kg-K f o r  t he  heat  capac i t y  c, t h e  
a l c u l a t e d  va lue  o f  t h e  i n  s i t u  thermal con- 
u c t i v i t y  o f  t he  rock  i s  3 .0 W/m-K (1.7 BTU/hr- 
t-OF). Th is  i s  i n  e x c e l l e n t  agreement w i t h  
he l a b o r a t o r y  r e s u l t s  r e p o r t e d  by S i b b i t t 1 7  f o r  
o r e  specimens taken from GT-2. 

s a check, t he  temperature d i f f e r e n c e  a t  10,000 
econds i s  2.8"C and u s i n g  values: 

pf = 950 kg/m3 (59.2 l b / f t 3 )  

q = 6 x 10-"m3/sec (9 gpm) 

The computed curve i s  shown 

A 

Cf  = 4184 J/kg-K (1.0 BTU/lb-OF) 

X = 3.0 W/m-K (1.7 BTUlhr-ft-OF) 
AT (d imension less)  = 0.66 

a va lue of 32"C/km (0.017 O F l f t )  i s  c a l c u l a t e d  
f o r  t h e  average temperature g r a d i e n t  dTf/dz. 
Th is  i s  i n  e x c e l l e n t  agreement w i t h  t h e  l o c a l  
measured temperature l o g  i n  the i n t e r v a l  o f  t h e  
we l l bo re  near 2.77 km (9100 f t ) .  
measured g r a d i e n t s  f rom 1 t o  2.9 km (3050 t o  
9600 f t )  depths i n  GT-2 a r e  between 50 and 60°C/ 
km (0.027 and 0.032OF/ft). 

Determinat ion o f  Wel lbore- to-Fracture Connection 
Depths. By  assuming constant  rock  p r o p e r t i e s  
a n d c o n s t a n t  we l l bo re  rad ius ,  t h e  r a t i o  o f  t he  
water v e l o c i t y  U2 ( a t  some depth z 2  and t i m e  t )  
t o  t h e  v e l o c i t y  U1 a t  a re fe rence  depth z 1  i s  
r e l a t e d  t o  t h e  water temperature changes and 
water temperature g rad ien ts ,  G,at these depths 
and t ime as: 

Average 

U2 - Tf(Z2) - Tof(Z2) - -  ~ . . . (10) G ( 2 2 )  

u1 T f ( Z l )  - Tof(Z1) G ( 2 1 )  

It should be noted t h a t  t h e  g r a d i e n t ,  G = 
3Tf/az, i s  no l onger  r e q u i r e d  t o  be cons tan t  i n  
Zq. 10 and i n  fac t ,  t he  g r a d i e n t  t o  be used, 
:, i s  an " e f f e c t i v e  average" g r a d i e n t .  
sho r t  t ime t e s t s  w i t h  i n s i g n i f i c a n t  we l l bo re  
i e a t  s torage ( l<a t /a2<10) ,  a u s e f u l  app rox i -  
nat ion f o r  6 i s : 1 4  

G =  JG(t) ;htG(=)dr . . . . . (11) 

The r e s u l t s  o f  temperature l o g s  taken w h i l e  
i n j e c t i n g  a t  a cons tan t  r a t e  i n t o  the  GT-2 
ve l l bo re  a r e  shown i n  F igu re  7. These l o g s  were 
Laken under c o n d i t i o n s  s a t i s f y i n g  t h e  s h o r t  t ime  
: r i t e r i o n  Eq. 9. The data c "  F igu re  7 were 
rnalyzed pe r  Eqs. (10) and (11) and F igu re  8 
) resents  t h e  r e l a t i v e  v e l o c i t y  as a f u n c t i o n  o f  
jepth. The depth i n t e r v a l s  a t  which water  i s  
)e ing l o s t  t o  t h e  surrounding rock a re  
? x c e p t i o n a l l y  w e l l  d e f i n e d  by t h i s  technique. 
-urthermore, F igu re  8 i n d i c a t e s  t h a t  80% o f  t he  
l a t e r  i s  f l o w i n g  i n t o  a f r a c t u r e  over  a more . 
tarrow i n t e r v a l  (% 40 m) than i s  suggested by 
;he depress ion i n  t h e  l o g s  o f  F igu re  7.  The 
- e l a t i v e  v e l o c i t i e s  p l o t t e d  i n  t h e  i n t e r v a l s  
rhere t h e  r e l a t i v e  v e l o c i t y  changes from 1 .O 
:o 0.2 and 0.2 t o  0.05 may n o t  be s i g n i f i c a n t ,  
> i n c e  i n  these i n t e r v a l s  water i s  f l o w i n g  i n t o  
.he r o c k  format ion,  and t h e  rock energy 
bquation, Eq. 6, should t h e r e f o r e  i n c o r p o r a t e  
n a d d i t i o n a l  convect ive mode o f  heat  t r a n s f e r .  

rom F i g u r e 8 -  i t  appears t h a t  t he  main connect ion 
letween t h e  GT-2 borehole and f r a c t u r e  i s  
entered a t  2.81 km (9220 ft), w i t h  a secondary 
onnect ion a t  2.87 km (9420 ft). 
onnect ion occurs where t h e  cas ing was damaged 
h i l e  " m i l l i n g  o u t "  a packer and t h e  secondary 
onnect ion occurs where t h e  cas ing was j e t -  
e r f o r a t e d .  
emperature l o g s  taken i n  t h e  EE-1 borehole 
nd i ca tes  t h a t  i t  i s  connected t o  i t s  f r a c t u r e  

For 

The main 

A s i m i l a r  a n a l y s i s  o f  f l o w i n g  

. . . , .. . . 
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a t  2.95 km (9670 f t ) .  Attempts t o  determine 
these fracture-to-we1 lbore connection points  
with spinner surveys have been unsuccessful 
because of t he  h i g h  temperatures a t  these depths 

IMPEDANCE TO FLOW CIRCULATION: 

The c i r cu la t ion  of flow through the  present down 
hole system i s  character ized by h i g h  impedance. 
Figure 9 presents  r e s u l t s  of an experiment in  
which water was injected in to  EE-1 while GT-2 
was vented. 
temperature d i f fe rences  a r e  not important i n  
shor t  term experiments the net  pressure d i f -  
ference i s  simply the EE-1 pressure;  while the 
ne t ,  c i rcu la ted  flow i s  simply the flow r a t e  
measured a t  the surface o u t l e t  a t  the  GT-2 
wellbore As can be seen, a l i nea r  re la t ionship  
exists between the  pressure d i f fe rence  and the 
c i rcu la ted  flow ( a t  l e a s t  a t  these  lo^ flow r a t e  
and the  s lope of the l i n e  y i e lds  the  spec i f i c  
impedance, which f o r  t h i s  experiment was 142 
ba r - sec / l i t e r  (130 psi-min/gal) .  

The r e s u l t s  of many flow c i r cu la t ion  tests 
ind ica te  t h a t  flow appears a t  the venting well- 
bore i n  two o r  more Stages suggesting t h a t  two 
o r  more paths of communication e x i s t  between 
the f r ac tu res .  In the  f i r s t  s tage ,  flow 
appears a t  t he  venting wellbore l e s s  than ten 
minutes a f t e r  the  s l : r t  of pumping  i n t o  the 
other  wellbore 
pared t o  the  calculated response time f o r  the 
low permeabili ty g ran i t e  between the two 
f r ac tu res ,  which a r e  estimated t o  be 6 m (20 f t )  
apar t ,  t h a t  we conclude t h a t  this early-stage 
of  flow must be via  a s e t  of natural  f i s s u r e s ,  
Dr a zone of l oca l ly  very high permeabili ty,  
Dr even possibly by means of an in te rsec t ion  of 
the two hydraulic f rac tures .  

Following t h i s  ear ly-arr iving flow, a slowly 
increasing flow r a t e  i s  observed, possibly 
caused by permeation of water through the rock 
separating the  two hydraulic f r ac tu res .  As 
expected, this addi t ional  increment of flow 
ra t e  var ies  w i t h  time and the  pressure leve ls  
s t  the two boreholes a s  well a s  the s i z e  of the 
f rac tures .  Because permeabili ty so g rea t ly  
increases w i t h  pore pressure,  ( see  Figure 4) 
this second path of communication cont ro ls  the  
na j o r  flow f r ac t ion  , part icul  a r l y  f o r  1 ong- term 
tests where both wellbores a r e  pressurized t o  
h i g h  leve ls .  

Figure 10 summarizes the impedance data  t o  date .  
The c i r c l ed  data  points  represent  the i n i t i a l  
( f i r s t  s tage)  impedance while the  ve r t i ca l  bars 
represent the f u l l  range of t r ans i en t  impedance 
exhibited d u r i n g  each long-term test. 

homalous t r ans i en t  pressure curves obtained 
j u r i n g  experiments 102 and 106 suggest t h a t  t he  
jec l ines  in i n i t i a l  impedance observed during 
these experiments a r e  due t o  the  removal of 
impedances i n  the f r ac tu res ;  possibly a 

Since buoyancy e f f e c t s  due t o  

T h i z  response i s  so f a s t  com- 

1 

"flushing out"  of rock/water /dr i l l  i n g  f l u id  
in te rac t ion  products which had p a r t i a l l y  closed 
the f r ac tu res  t o  flow. 

Figure 10 ind ica tes  t h a t  the lowest impedance 
measured t o  da te  i s  approximately 28 bar-sec/ 
l i t e r  (25 psi-min/gal) .  
i n  the  area of overlap of the  two f r ac tu res ,  
and the d is tance  between the  two f r ac tu res ,  
and the  extreme va r i a t ion  of permeabili ty with 
pore pressure,  i t  i s  d i f f i c u l t  t o  es t imate  the  
minimum value of impedance a t t a inab le  w i t h  t h e  
present system. However, very approximate 
ca lcu la t ions  suggest t h a t  i f  both boreholes 
were maintained a t  90 bars (1300 p s i ) ,  i . e . ,  
s l i g h t l y  below Pe, t he  impedance of the rock 
between the two f r ac tu res  m i g h t  u l t imately drop 
t o  5 ba r - sec / l i t e r  ( 5  psi-min/gal) ,  i . e . ,  
comparable t o  the  o ther  impedances in the  
system. 

Because of uncertaint ies  

DISCUSSION: 

System Potent ia l  As A Demonstration Heat 
Extraction Exper imm.  The measured in s i t u  
permeabili ty,  even a t  high pressures i s  low 
enough t h a t  "leak o f f , "  requir ing the continuous 
replenishment of water t o  the  system, i s  not a 
ser ious problem. Both f r ac tu res  appear t o  be 
located deep enough so t h a t  t h e i r  temperatures 
should exceed 185°C (364°F). 
time both f r ac tu res  have a computed radius o f  
90 m (300 f t )  o r  more. The i n  s i tu thermal 
conduct ivi ty  i s  3 W / m K ,  which-iFX high a s  
can be expected from competent gran i te .  l 7  

A t  the  present 

Calculations of the  s o r t  described i n  reference 
3 ind ica te  t h a t  w i t h  t he  condi t ions described 
above e i t h e r  one of the  two f r ac tu res  could 
provide enough energy f o r  a demonstration heat 
ex t rac t ion  experiment. I n i t i a l l y ,  10 MW 
( thermal) power could be ex t rac ted ,  b u t  the  
power would decl ine in  a sho r t  period of time 
(% months). 
power i s  ac tua l ly  prefer red ,  s ince t h i s  r e s u l t s  
i n  cooler  rock temperatures,  w i t h  subsequent 
contract ion and cracking of the rock, and, 
hopefully,enhancement of the heat t r ans fe r  a rea  
Field measurements of the e f f e c t s  of thermal 
s t r e s s  cracking a r e  pa r t i cu la r ly  des i rab le ,  
s ince a t  present, we have ava i lab le  only the  
theore t ica l  r e s u l t s  of Harlow and Pracht' t o  
guide us i n  the design of high performance 
(% 100 M W ( t )  f o r  r(, 30 years )  re-servoirs which 
continuously grow due t o  thermal s t r e s s  crack- 
i n g .  

A r e l a t i v e l y  f a s t  drawdown o f  

Unfortunately, a 10 MW ( thermal) demonstration 
heat ex t rac t ion  experiment would require  a flow 
r a t e  o f  15 l i te rs / second (240 gal/min) so t h a t  
even i f  t he  present  t o t a l  c i r cu la t ion  impedance 
was approximately 10 bar-sec/R ( 9  psi-min/gal) 
a s  a r e s u l t  o f  very high permeabili ty,  the 
pressure loss would be 150 bars (2200 p s i ) .  
This i s  not r e a l i s t i c  s ince the in jec t ion  well-  
bore would be pressurized above the f r ac tu re  



6 
PRELIMINARY ASSESSMENT OF A GEOTHERMAL ENERGY 

RESERVOIR FORMED BY HYDRAULIC FRACTURING SPE 605 
extens ion pressure .wh i le  t h e  o t h e r  would be 
operated a t  low pressure, w i t h  a lower  permeabil  
i t y  and h i g h e r  impedance e f f e c t .  

Flow Impedance. The exp lanat ion  we have o f f e r e d  
f o r  t h e  observed impedance behavior  i s  a s imple 
one, and t h e r e f o r e  appealing. Nature i s  n o t  
o f t e n  so s imple however, and t h e r e f o r e  o t h e r  
t h e o r i e s  can r i g h t f u l l y  be proposed. 
a l t e r n a t i v e  theory  main ta ins  t h a t  f l o w  communica 
t i o n  i s  by  means of two i n t e r s e c t i n g  f r a c t u r e s  
and t h a t  t h e  observed f low impedance i s  pr imar-  
i l y  due t o  f r a c t u r e s  which a r e  co l lapsed o r  
n e a r l y  c losed.  

The f r a c t u r e s  can s t a y  closed, near t h e  we l lbore  
even a t  pressures above S B  because o f  s t r e s s  
concent ra t ions  a t  t h e  wel lbore.  Changes i n  
impedance a r e  e f f e c t e d  by p r e s s u r i z i n g  t h e  
f r a c t u r e s ,  f o r c i n g  them t o  open somewhat. Such 
a theory  i s  n o t  i n  accord w i t h  t h e  observed 
t r a n s i e n t  pressure data,  which depends, f o r  i t s  
v a l i d i t y ,  upon an i n f i n i t e  c o n d u c t i v i t y  f r a c t u r e  
un less  i t  i s  assumed t h a t  t h e  p e r m e a b i l i t y  i n  
ques t ion  i s  n o t  t h a t  of t h e  rock,  b u t  t h a t  o f  
t h e  f r a c t u r e .  I f  t h e  l a t t e r  case were t rue ,  
then one c a l c u l a t e s  f rom t h e  apparent (A&) o f  
t h e  f r a c t u r e ,  t h a t  t h e  f r a c t u r e  a p e r t u r e  mugt 
be so l a r g e  t h a t  i t  should be considered t o  
have an i n f i n i t e  hydyau l ic  c o n d u c t i v i t y  com- 
pared t o  t h e  g r a n i t e  rock.  Unfor tunate ly ,  
t h e r e  a r e  enough u n c e r t a i n t i e s  t h a t  these 
c a l c u l a t i o n s  cannot be performed w i t h  complete 
conf idence and i t  i s  d i f f i c u l t  t o  unequiv- 
o c a l l y  v e r i f y  one model o r  t h e  o t h e r .  

Propping t h e  f r a c t u r e s  open w i t h  s u i t a b l e  
p a r t i c l e s ,  which have h igh  s t r e n g t h  and a r e  
r e s i s t a n t  t o  2OOOC water, i s  be ing considered 
as  a technique f o r  reduc ing  t h e  f l o w  impedance. 
An a l t e r n a t e  p o s s i b i l i t y  i s  chemical t reatment  
w i t h  an aqueous s o l u t i o n  o f  sodium carbonate 
(Na2C03) t o  p r e f e r e n t i a l l y  d i s s o l v e  t h e  quar tz  
component o f  t h e  g r a n i t e  r e s e r v o i r  and thus 
inc rease t h e  r o c k  m a t r i x  p e r m e a b i l i t y  and 
f r a c t u r e  conductance and h o p e f u l l y  reduce t h e  
t o t a l  impedance. Should n e i t h e r  o f  these 
techniques work, a r e d r i l l i n g  opera t ion  t o  
a c t u a l l y  i n t e r s e c t  one o f  t h e  f r a c t u r e s  w i l l  
be necessary. 

One 

CONCLUSIONS: 

Two v e r t i c a l  hydraul  i c  f r a c t u r e s  have been 
c rea ted  i n  ho t ,  d r y  g r a n i t e .  The f r a c t u r e  
i n i t i a t e d  f rom t h e  EE-1 borehole has been 
extended on severa l  occasions so t h a t  p r e s e n t l y  
b o t h  f r a c t u r e s  a r e  approx imate ly  90 m (300 ft) 
o r  more i n  r a d i u s .  I n  s i t u  measurements o f  
t h e  e f f e c t  o f  pore  pressure upon rock  permea- 
b i l i t y  conf i rm,  q u a l i t a t i v e l y ,  l a b o r a t o r y  
s t u d i e s  on core  specimens, and suggest t h a t  
l a r g e  increases i n  p e r m e a b i l i t y  occur  as t h e  
pore pressure approaches t n e  in te rmed ia te  
p r i n c i p a l .  e a r t h  s t r e s s ,  S 2 .  

. ~ .__ 

The two h o r i z o n t a l  p r i n c i p a l  s t resses,  S 2  and S3, 
d i f f e r  o n l y  by  14 bars  (200 psi.), b u t  they  bo th  
d i f f e r  cons iderab ly  f rom t h e  v e r t i c a l  s t ress ;  so 
t h a t  l i t h o s t a t i c  c o n d i t i o n s  do n o t  p r e v a i l  a t  
t h i s  depth, a t  t h i s  s i t e .  

Both f r a c t u r e s  a r e  s i t u a t e d  deep enough (2.8 km) 
so t h a t  t h e  r o c k  temperature exceeds 185°C 
( 3 6 4 O F ) ,  h i g h  enough t o  be u s e f u l  f o r  energy 
e x t r a c t i o n .  The i n  s i t u  thermal c o n d u c t i v i t y  i s  
3 W/mK (1.7 B T U / h K f m )  which compares f a v o r -  
a b l y  w i t h  l a b o r a t o r y  measurements on competent 
g r a n i t e  core  specimens. 
f a v o r a b l e  r o c k  temperatures, thermal conduct iv -  
i t y  and f r a c t u r e  r a d i i  i s  s u f f i c i e n t  t h a t  e i t h e r  
f r a c t u r e  cou ld  serve as a demonstrat ion heat  
e x t r a c t i o n  experiment. Before  t h i s  i s  accom- 
p l i s h e d  however, t h e  borehole which i s  n o t  
d i r e c t l y  connected t o  t h e  chosen f r a c t u r e  w i l l  
have t o  be cemented o f f  and r e d r i l l e d  so as  t o  
d i r e c t l y  i n t e r s e c t  t h e  f r a c t u r e  se lec ted  f o r  
e x p l o i t a t i o n ;  o r  e l s e  f u r t h e r  s t i m u l a t i o n  
(propping o r  l e a c h i n g )  w i l l  be r e q u i r e d  t o  
a t t a i n  a low impedance p a t h  between t h e  two 
f r a c t u r e s ,  i n  which case heat  can be e x t r a c t e d  
f rom p a r t s  o f  b o t h  f r a c t u r e s .  
s i t u a t i o n  may be more advantageous, s ince,  w i t h  
thermal f r a c t u r i n g ,  t h i s  system may evolve more 
q u i c k l y  i n t o  one i n  which heat  i s  be ing removed 
by t h e  water  f rom a r o c k  volume, r a t h e r  than a 
p lanar  f r a c t u r e .  

T h i s  combinat ion o f  

The l a t t e r  

NOMENCLATURE: 

A = Area ( b o t h  s ides)  o f  f r a c t u r e  
a = w e l l b o r e  r a d i u s  
c = s p e c i f i c  heat  c a p a c i t y  a t  cons tan t  

c f  = s p e c i f i c  heat  c a p a c i t y  a t  cons tan t  

E = Young's modulus o f  e l a s t i c i t y  f o r  t h e  r o c k  
G = " e f f e c t i v e  average" water  temperature 

k = p e r m e a b i l i t y  o f  r o c k  
P = pressure change i n  t h e  f r a c t u r e  
Pe = f r a c t u r e  ex tens ion  pressure 
q 
r = r a d i u s  c o o r d i n a t e  
R = maximum f r a c t u r e  r a d i u s  
SI, S2, S3 = maximum, i n t e r m e d i a t e  and minimum 

T = r o c k  temperature 
Tf = water  temperature 
Tof = i n i t i a l  ( b e f o r e  s t a r t  o f  f l o w )  water 

temperature 
t = t i m e  
U = v e l o c i t y  o f  water  i n  t h e  w e l l b o r e  
z = depth 
a = thermal d i f f u s i v i t y  o f  r o c k  (=A/pc) 
B = mean c o m p r e s s i b i l i t y  (=$Bf + (1 - $ ) B r )  
6, = c o m p r e s s i b i l i t y  o f  r o c k  
B~ = c o m p r e s s i b i l i t y  o f  water  
K = h y d r a u l i c  d i f f u s i v i t y  (= k/pg) 
y = f r a c t u r e  s u r f a c e  energy 
A = thermal c o n d u c t i v i t y  o f  r o c k  

pressure o f  t h e  r o c k  

pressure o f  t h e  water  

g r a d i e n t  

= v o l u m e t r i c  f l o w  r a t e  e n t e r i n g  t h e  f r a c t u r e  

compressive e a r t h  s t ress ,  
r e s p e c t i v e l y  
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1.1 = viscosity of water 
v = Poisson's ratio 
p = density of rock 
pf = density of water 
T =.dummy variable of integration 
$I = porosity 
9, Y= functions of nondimensional groupings 
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