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The objective of this work is the preliminary design of a low-ΔV transfer from an initial elliptical orbit around Jupiter into a final
circular orbit around themoon Europa. This type of trajectory represents an excellent opportunity for a low-cost mission to Europa,
accomplished through a small orbiter, as in the proposed Europa Tomography Probe mission, a European contribution to NASA’s
Europa Multiple-Flyby Mission (or Europa Clipper). The mission strategy is based on the v∞ leveraging concept, and the use of
resonant orbits to exploit multiple gravity-assist from the moon. Possible sequences of resonant orbits are selected with the help
of the Tisserand graph. Suitable trajectories are provided by an optimization code based on the parallel running of several
differential evolution algorithms. Different solutions are finally compared in terms of propellant consumption and flight time.

1. Introduction

The Jovian moon Europa is a celestial body of primary inter-
est for astrophysicists. The likely existence of a global subsur-
face ocean, proved by measurements carried out during
Galileo mission, makes Europa one of the most promising
environments in the Solar System to sustain human habit-
ability. The presence of an ocean may also imply that Europa
hosts (or, at least, hosted) life [1]. The importance of the
determination of the ice-water layer characteristics is clearly
stated in NASA’s 2013–2022 Decadal Survey [2].

Europa Clipper is the next mission planned by NASA
with the aim of exploring Europa. Because of the extremely
harsh Jovian environment in the proximity of Europa, the
initial concept of an orbiter was abandoned in favour of a
multi-flyby strategy, the same considered for Galileo mission.
The present mission profile, with more than 40 flybys of
Europa, allows for a paramount investigation of Europa sur-
face and subsurface properties, but is not very favourable to
the investigation of Europa’s deep interior structure.

A scientific enhancement to Europa Clipper mission
was investigated in [3]. There, a small probe deployed on
a polar orbit around Europa, hosting just one scientific
instrument (a magnetometer) and a transponder required

for the Intersatellite Link (ISL) with the mother spacecraft,
is proved to be capable of providing crucial information on
the interior structure of the moon, such as depth, thickness,
and conductivity of the subsurface ocean. Also, ISL could
support the reconstruction of the mother spacecraft orbit,
hence significantly improving the accuracy of the topo-
graphic reconstruction of Europa’s surface.

Standing on these arguments, a scientific and engineer-
ing team at Sapienza University of Rome, in collaboration
with the Imperial College of London, carried out a feasibility
study for a probe that could be hosted by the main spacecraft
during the interplanetary cruise and released in the Jovian
system with the aim at entering into a low-altitude circular
quasi-polar orbit around Europa [4]. The result is a small
spacecraft named Europa Tomography Probe (or ETP),
which could fit the provisional 250 kg allowance that NASA
has assigned to a secondary flight element hosted by the
main spacecraft.

The feasibility study was carried out under the design
philosophy of determining the minimum total mass and vol-
ume that allows for the scientific measurements considered
in [3]. All subsystems have been described with some details,
with the relevant exception of only two elements: (a) the
transponder and (b) the trajectory which moves ETP into a
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polar orbit around Europa, which should interfere as less as
possible with the mother spacecraft mission plan. This paper
investigates the latter point, that is, the capture strategy for an
Europa orbiter at the level of preliminary mission analysis.

The problem of optimizing the capture trajectory of
an orbiter (or a lander) directed towards a moon of an outer
planet, such as Europa [5], Enceladus [6], or Titan [7],
has been the subject of many investigations. A two-body
patched-conic approximation is usually assumed for inter-
planetary missions and transfers in a multibody planetary
system [8]. This dynamical model retains the most promi-
nent features of the real system, while keeping the numerical
difficulties low. Three-dimensionality and eccentricity of the
planetary bodies can be easily taken into account, and several
flybys of different moons can be dealt with.

The same kind of missions have been also studied by using
dynamical system techniques, which rely on circular restricted
three-body problem (CRTBP). Low-energy trajectories are
searched for, attempting the construction of “transfer tubes,”
whose boundaries are typically given by invariant manifolds
originating from invariant sets (such as L1 and L2 Lyapunov
orbits). As an example, dynamical chains formed by linking
heteroclinic connections and homoclinic orbits [9] are pro-
posed for the analysis of fast resonance transitions between
exterior and interior resonant orbits (in the Sun-Jupiter sys-
tem) [10] or “loose” capture trajectories [11]. Similar concepts
are exploited for Halo-to-Halo [12] or libration-to-libration
[13] transfers between planetary moons in the Jovian system,
adopting a “patched” CRTBP model.

In the present problem, the probe comes from a high-
energy condition and approaches the moon with a high
hyperbolic excess velocity. The latter techniques are thus
not efficient for attaining a solution, while a patched-conic
approximation can be profitably adopted.

Delta velocity gravity assist (ΔV-GA) or v∞ leveraging
[14] has proved a powerful concept to improve the design
of capture (or escape) trajectories. Large changes of the
hyperbolic excess velocity at the encounter (v∞) are obtained
by using small deep-space maneuvers. When this strategy is
used in conjunction with a series of resonant gravity assists,
a significant reduction of propellant requirement can be
achieved, with respect to a direct insertion maneuver [15].

In the present paper, the design of ETP capture trajectory
using v∞ leveraging is pursued by blending the patched-
conic model and a modern global optimization procedure
based on a differential evolution algorithm. The trajectory
is modeled as a sequence of legs between two moon encoun-
ters; only one deep-space maneuver is permitted in each leg.
This approach, proposed in [16] and hereafter referred as
“MGA-1DSM,” permits a quite general parameterization of
the whole trajectory, which is not limited to ΔV-GA maneu-
vers. A preliminary solution (the sequence of resonant orbits
and intercepted bodies) is defined by using two simple tools:
the suboptimal solution of the v∞ leveraging problem pro-
posed by Sims and Longuski [17] and the Tisserand graph
[18]. The former permits an easy design of a mission based
only on v∞ leveraging maneuvers, by suggesting a viable
sequence of resonant orbits. The latter is a powerful graphical
aid for the design of the same class of missions, when

multiple bodies are intercepted, and some deep-space
maneuvers are conveniently replaced by gravity assists of
other moons in the planetary system.

The paper organization is here outlined. In Section 2, the
physical problem of interest is described, and the adopted
dynamical model and relevant assumptions are stated. A
mathematical formulation (MGA-1DSM), which parameter-
izes a generic interplanetary trajectory as a sequence of legs
containing a gravity assist and one deep-space maneuver,
is outlined, leading to the purposeful definition of a global
optimization problem. Section 3 presents the multipopula-
tion differential evolution algorithm that has been used to
solve the optimization problem. Fundamental tools for pre-
liminary mission design, that is, v∞ leveraging and Tisser-
and graph, are discussed in Section 4. A tentative solution
is devised and used to prune global optimization search.
Numerical results of this investigation are presented in
Section 5. A conclusion section ends the paper.

2. Problem Statement and
Mathematical Modeling

2.1. Problem Overview. According to the ongoing proposal
[4], the probe is assumed to be released by the main
spacecraft after a few Europa flybys have been completed.
In particular, ETP starts its own transfer at the apocenter
of a Jovian orbit of period four times the period of Europa
(TEu), pericenter equal to the Europa semi-major axis, and
coplanar with the Europa orbit; the orientation of the major
axis is left free. A target circular quasi-polar orbit around
Europa is desired, of assigned altitude hEOI = 250 km over
Europa’s surface. Four R-6D bipropellant thrusters form
the primary propulsion system of the probe, which allows
for a total thrust of 88N with specific impulse Isp = 294 s.

This propulsion system will be used for deep-space maneu-
vers, Europa Orbit Insertion (EOI) maneuver, and orbit
maintenance during the scientific part of the mission.

A probe “net” mass mu = 146 6 kg, which does not
account for the propellant mp and tank ms masses, was

estimated in [4]. Assuming a structural coefficient ϵ =ms +

mp/ms = 6, which is a reasonable value for liquid propellant

systems, a maximum value of velocity increment ΔVmax =
1240 8 m/s can be obtained if the spacecraft wet mass
m0 =mu +mp +ms is constrained at 250 kg. This value of

ΔVmax must cover the orbit maintenance (about 43.2m/s
for a 6-month mission) and capture cost. The goal is to
reduce the ΔV required for the capture, so that a convenient
safety margin is left.

2.2. Dynamical Model. A patched-conic model is assumed for
the present analysis. Flybys are modeled as instantaneous
changes in velocity. Subscripts “−” and “+” are used to distin-
guish between values immediately before or after the discon-
tinuity, respectively. The radius of the sphere of influence
(SOI) of the secondary bodies and the travel time inside these
regions are assumed to be negligible. Powered flybys are
neglected, as considered useless to reduce propellant con-
sumption [19]. An impulsive-thrust model is adopted. This
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assumption well suits deep space maneuvers (DSMs), which
are performed at a large distance from the main body and
require usually a quite short time if compared to the orbital
period, as chemical engines are here considered. This
assumption is also used for the EOI maneuver, even though
finite-thrust losses might be considered. Only one DSM is
permitted between a flyby and the other. As a further
assumption, Jovian moons move on Keplerian orbits (even
though the proposed procedure is soon applicable to the gen-
eral case that uses planetary ephemeris).

Despite its simplicity, this model allows to capture the
most prominent features of the mission, while keeping the
analysis simple enough. In fact, under the hypothesis of
impulsive thrust, the trajectory can be computed analytically,
without involving the numerical integration of the complete
equations of motion.

2.3. Trajectory Parameterization. Let us assume that a
sequence M = M j ∣ j = 1,… ,N + 1 of N + 1 body encoun-

ters, where M j ∈ 1 4 identifies the encountered body

(1= Io, 2 =Eu, 3=Ga, and 4=Ca), has been established.
Europa is the first and last body in the series. The spacecraft
trajectory can be modeled according to the multiple gravity
assist-one deep space maneuver (MGA-1DSM) formulation
[16]. The trajectory is broken down into a series of body-
to-body legs. Each leg starts with a flyby and is made up of
two ballistic arcs, joined by an impulsive maneuver.

This general formulation for a multigravity assist trajec-
tory can be adapted to the problem at hand by adding an
initial leg, which moves the probe from the assigned initial
conditions to the first encounter with Europa. The mission
ends with a last approach to Europa’s surface, where an
impulsive maneuver inserts the probe into the assigned
polar orbit.

2.3.1. Departure Leg. The departure leg, which connects ETP
release position to the first encounter with Europa, is mod-
eled as a Lambert arc, where release epoch t0, flight angle
Δθ, and flight time ΔT0 are design parameters to optimize.

Let âr, ât, ân be a Jovicentric radial-traversal-normal
reference frame connected to a Europa position at epoch
t1 = t0 + ΔT0, that is,

âr =
r1
r1

ân =
r1 × vm,1

r1 × vm,1

ât = ân × âr, 1

where r1 =rM 1
t1 and vm,1 =vM 1

t1 indicates position and

velocity vectors of Europa (M 1 = 2) at time t1, respectively,

which are provided by the ephemeris.
The probe departure point is located on a circle of radius

r0 which lies on the plane âr − ât; hence, it can be expressed as

r0 = r4 1a cos Δθ âr − sin Δθ ât , 2

while the velocity immediately before the release maneuver is

v0− = v4 1a sin Δθ âr + cos Δθ ât , 3

where the values r4 1
a and v4 1

a are, respectively, the radius and
velocity magnitude at the apocenter of a Jovian orbit with

pericenter equal to the Europa semi-major axis, and period
4TEu. In this respect, the problem solution will eventually
define the optimal orientation of the line of apses of the initial
orbit with respect to Europa’s orbit.

The velocity vectors after the release maneuver v 0+
and

immediately before the first flyby v 1−
can now be evaluated

by solving the associated Lambert problem:

Lambert r0, r1, ΔT0 ⟶ v0+ , v1− 4

The propulsive cost of the release maneuver is evalu-
ated as

ΔV0 = v0+ − v0− 5

2.3.2. Intermediate Legs. The kth leg can be parametrized by
using four parameters rπ,k, βk, ΔTk, and ηk, which represent,

respectively, the flyby radius, the flyby plane orientation, the
(overall) leg flight time, and the fraction of the leg flight time
at which DSM occurs. The trajectory associated to a generic
intermediate leg is presented in Figure 1.

Beginning from time t1 at the first encounter, the epochs
of the following encounters can be evaluated recursively as
tk+1 = tk + ΔTk, while the DSM epochs are tk+1/2 = tk + ηkΔ
Tk. Moon position rk = rM k tk and velocity vm,k = vM k tk
are obtained from the body ephemeris. The position of the
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Figure 1: Trajectory sketch for an intermediate leg.
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spacecraft at the flyby must be the same as the intercepted
body; hence, rk− = rk+ = rk.

Let’s define a body-centered reference system ê1, ê2, ê3 ,
where ê1 is directed along the spacecraft incoming relative
velocity, ê2 is orthogonal to the moon orbital plane, and ê3
closes the right-hand side term

ê1 =
v∞k−

v∞k−

ê2 =
ê1 × vm,k

ê1 × vm,k

ê3 = ê1 × ê2,

6

where v∞k
= vk− − vm,k is the probe relative velocity before the

flyby. The probe velocity vk+ after the flyby is evaluated as

vk+ = vm,k + v∞,k

cos δk ê1 + cos βk sin δk ê2

+ sin βk sin δk ê3 ,

7

where the rotation δk of the hyperbolic excess velocity in the
flyby plane is

δk = 2a sin
μM k

μM k + rπ,k v
2
∞k

8

Once the spacecraft state after the flyby is fully known,
the position and velocity just before DSM, which are r k+1/2
and v k+1/2 −, respectively, can be evaluated analytically by

using propagation formulas for Keplerian orbits [20].
Position of the spacecraft is known at both DSM maneu-

ver and next flyby; the transfer time 1 − ηk ΔTk is also
known. Velocity vectors v k+1/2 + immediately after the

DSM and v k+1 − just before the subsequent flyby can be eval-

uated by solving the associated Lambert problem

Lambert rk+1/2, rk+1, ΔTk ⟶ v k+1/2 +, v k+1 − 9

Evaluation of the DSM propulsive cost is now
straightforward

ΔVk = v k+1/2 + − v k+1/2 − 10

2.3.3. Europa Orbit Insertion. The ETP injection into the
target polar orbit around Europa is modeled as an impulsive
burn applied at the hyperbola pericenter, which is purposely
located on the target circular orbit.

vEOI− = v2∞ +
2μEu
rEOI

vEOI+ =
μEu
rEOI

11

The cost of the EOI maneuver is evaluated as

ΔVN+1 = vEOI+ − vEOI− 12

2.4. Optimization Problem. For an assigned sequence of
encountered bodyMseq, the capture problem can be formally

defined as follows:

P Mseq
=

min
x

ΔV tot x

s t xL < x < xu

13

where ΔV tot =∑N+1
k=0 ΔVk is the overall cost of the capture tra-

jectory, accounting for deep-space, release, and EOI maneu-
vers; x is a vector of design variables given by

x = t0, ΔT0, Δθ ∪ rπ,j, βj, ΔT j, ηj
j=1, ,N

, 14

and xL and xU are, respectively, lower and upper bounds of
the design variables. The whole trajectory is thus parame-
trized by using 3 + 4N parameters.

3. Optimization Algorithm

The global optimization problem stated in Section 2 presents
several features that make it hard to solve with local optimi-
zation approaches (e.g., Newton-like methods) as (i) multiple
local optima exist, (ii) the solution may not be defined for
some “unfortunate” set of optimization variables, and (iii)
the gradient of the objective function is often not available
or does not exist at all. In these cases, stochastic algorithms
are usually preferred.

In the present application, an optimization algorithm
based on differential evolution (DE) has been employed.
DE is a population-based algorithm, featuring simple and
efficient heuristics for global optimization problems defined
over a continuous space [21]. Its good performance on sev-
eral benchmarks and real-world problems drew the atten-
tion of many researchers all over the world, who further
improved the effectiveness of the algorithm, by devising
many variants. A review of the state of art can be found
in [22]. The implementation adopted in this study collects
several of these ideas.

3.1. Standard Differential Evolution. A brief description of
the standard DE algorithm is here provided. Let us consider
the minimization problem

min x f x

s t xl ≤ x ≤ xU

15

A population of NP candidate solutions Pop = xi, i = 1
NP is randomly created, and for each individual (or agent)

xi ∈ℝ
ND , the corresponding fitness f xi is evaluated. Then, a

new population Popnew is constructed by repeating, for each
vector xi belonging to Pop, a sequence of mutation/cross-
over/selection steps, defined as follows.

3.1.1. Mutation. A mutated vector vi is created as a linear
combination of a few population members. More precisely,
several mutation rules were proposed in order to attain
either a better exploration of the search space or a faster
convergence (exploitation). In the present implementation,
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the following four strategies, among those available in lit-
erature, are adopted:

vi = xr1
+ F xr2

− xr3
,

vi = xGbest + F xr1
− xr2

,

vi = xi + F xGbest − xi + F xr1
− xr2

,

vi = xGbest + F xr1
− xr2

+ F xr3
− xr4

,

16

where F is a parameter controlling the mutation scale, xGbest
is the best individual (or agent) of the current generation, and
r1,… , r4 represent randomly chosen, nonrepeated, indexes
belonging to 1 NP .

Each strategy has weaknesses and strengths: Strategies
based on mutation of the best individual (strategies 2
and 4) typically show a faster converge rate toward an
(often local) minimum, whereas strategies based on ran-
domly chosen individuals (strategies 1 and 3) better explore
the whole search space.

3.1.2. Crossover. A trial vector u i is obtained by a crossover
between the target vector x i and the mutated vector v i

ui,j =
vi,j if pj ≤ CR or j = jrand

xi,j else
j = 1,… ,ND, 17

where pj is a random number between 0 and 1, CR is an

algorithm parameter (typical values about 0.5), and jrand is
a randomly chosen index in the range 1 ND .

3.1.3. Selection. Target and trial vectors are compared. The
best one is retained and inserted in the new population

x
new
i =

ui if f ui < f xi

xi else
18

This process is repeated iteratively, creating at each
generation a new population which replaces the previous
one. The procedure ends after a fixed number of generations
(NG). The best attained solution is deemed the optimal
problem solution.

3.2. Self-Adaptation of Control Parameters. A common prac-
tical issue for many stochastic algorithms concerns the selec-
tion of suitable values for the control parameters. A fine
tuning is often required in order to make the algorithm suit-
able for complex, real-world problems. DE is privileged in
this respect, as the number of its parameters is very low.
Apart from the the population size NP, the performance of
the DE algorithm depends on an appropriate selection of
the scale factor F, which controls the mutation phase, and
crossover probability CR, which controls the crossover phase.

In order to avoid the manual tuning of DE control
parameters, a self-adaptation scheme [23] has been imple-
mented. The values of F and CR are encoded into the individ-
uals, which enter the optimization procedure, and randomly
initialized within the intervals Fmin, Fmax and CRmin

, CRmax
,

respectively. Better values of these encoded control parame-
ters will presumably lead to better individuals who, in turn,

are more prone to survive and produce offspring, thus prop-
agating these “superior” control parameters.

In order to maintain a certain diversity of the control
parameters among the population, at the end of each gener-
ation, each individual undergoes a random uniform muta-
tion of his control parameters which happens with
probability pτ, that is,

FG+1 =
U Fmin, Fmax , if p1 ≤ pτ

FG, otherwise,

CR
G+1 =

U CRmin
, CRmax

, if p2 ≤ pτ

CR
G, otherwise,

19

where p1 and p2 are random numbers in 0, 1 , the apexes
G and G + 1 refer to the current and next generation,
respectively, and U a, b indicates to a randomly sampled
number in the range a, b . In the present implementation,
the following values are used: Fmin = 0 1, Fmax = 1, CRmin

=

0 5, CRmax
= 1, and pτ = 0 1.

3.3. Balancing Local and Global Search. A key point in
designing a global optimization algorithm concerns the
delicate balance between two opposite needs: “global” explo-
ration and “local” exploitation. Exploration refers to the algo-
rithm capability of probing wide portions of the search space,
with the hope of finding promising solutions that are yet to
refine, while exploitation is the ability of improving a previ-
ous solution by probing a small region of the search space
around it. A proper balance is required for the success of
the algorithm: favouring local search reduces computational
time, at the risk of being trapped in local optima, whereas
favouring the global search requires longer computation time
as a wide portion of the search space has to be tested. In order
to achieve a good balance between exploration and exploita-
tion, the proposed algorithm encompasses the creation of
different populations, or tribes, each located on an “island.”

Each tribe evolves independently from the others and
features one specific mutation strategy among the four pro-
posed variants. As shown in Figure 2, the different islands
are arranged in a radial configuration, so that tribes on inner
islands feature the less exploiting (i.e., most exploring) muta-
tion strategy, whereas tribes on the outer islands feature the
most exploiting mutation strategy. The order of the strategies
from the outer to the inner islands is then 2, 4, 3, and 1. Every
100 generations, a migration is performed: Each tribe passes
its best three agents to the “following one” (if it does exist,
according to the direction of migration), in which these
agents replace the three worst agents. Outward and inward
migration tides alternate at each migration event. The pro-
posed scheme allows an easy parallelization. A minimum of
4 islands are required to make it effective, but it scales well
on any architecture with 4x cores.

3.4. Termination Criterion. The termination criterion is
mainly based on the generation number, that is, on the avail-
able computational budget. This parameter strongly depends
on the complexity of the analyzed problem. The maximum
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number of generation is chosen in such a way that the out-
comes of independent runs of the code bring, in almost all
cases, to similar results. In this respect, maintaining a certain
diversity of the population in terms of its distribution on the
search space is mandatory, to avoid a premature convergence
on a local optimum.

A partial-restart mechanism, hereafter named “Epi-
demic,” is adopted to handle this issue. More precisely, pop-
ulation diversity is evaluated for each tribe at the end of each
generation, by using as metric the Euclidean distance
between pairs of solutions. If the diversity score falls under
a certain threshold, a large part (90%) of the population is
randomly reinitialized over the entire search space. The max-
imum number of epidemic events that may occur in any run
is fixed (2, in this application) in order not to compromise
the overall efficiency of the search.

The reported solutions have been obtained by exploiting
an 8-tribe optimization engine, with 512 agents per tribe and
a maximum number of generations equal to 10000. In order
to mitigate potential issues due to the stochastic nature of the
algorithm, that is, an unfortunate premature convergence on
a suboptimal solution, several runs can be performed starting
from a different initial population, increasing the confidence
on the attained result. In the present application, each opti-
mization is repeated 25 times, and the best found solution
is assumed as putative optimal solution.

4. Preliminary Analysis

A preliminary analysis is carried out in order to define the
main features of the tentative trajectory that undergoes the
DE optimization process. For the sake of simplicity, the
orbits of the Galilean moons are assumed to be circular and
coplanar. The Tisserand graph and the numerical suboptimal
solution of the v∞ leveraging or ΔV-Europa gravity assist
(ΔV-EGA) maneuver are effective tools in defining the pre-
liminary solution. These tools are here described with refer-
ence to the dual problem of escaping from Europa, because
it is more intuitive and several papers are found in literature,
dealing with v∞ leveraging to move away from the Earth.

4.1. Tisserand Graph. The Tisserand graph is a powerful
instrument for the preliminary design of trajectories of a
spacecraft that exploits multiple gravity assists in a multibody
planetary system. Several versions have been discussed by
different authors. The two-dimensional apoapsis-periapsis
(or ra − rp) plot is adopted here.

Any point on the graph (ra > rp > 0) identifies a Keplerian

elliptical orbit of the spacecraft around the central body
(Jupiter). For a given secondary body M, moving on a circu-
lar orbit of radius rM , the region AM = ra, rp ∣ rp < rM <

ra encompasses all spacecraft orbits that intersect the moon
orbit. For each point ra, rp in this region, one can easily

compute the values of magnitude and direction of the hyper-
bolic excess velocity v∞ in case of encounter. The direction
of v∞ with respect to the moon velocity v m is defined by
the pump angle α (see Figure 3).

Curves of constant hyperbolic excess velocity are typi-
cally superimposed on this plot. Each curve collects all Jovi-
centric orbits approaching the moon with the same v∞
magnitude and pump angle ranging from 0 degrees (rp =

rM , rightmost point) to 180 degrees (ra = rM , leftmost point).
Lines of constant orbital period (i.e., constant energy) can

also be plotted. This feature is mainly used to represent K :L
resonant orbits, where K and L indicate the number of revo-
lutions completed by moon and spacecraft, respectively,
between two successive encounters.

1

2

3

4

(a) Outward tide

1

2

3

4

(b) Inward tide

Figure 2: Migration scheme: forward (red) and backward (blue), for the 16-island case.
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Figure 3: Velocity before (−) and after (+) the flyby.
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Starting from any point on the graph, a shift to another
orbit along a curve of constant v∞ can be obtained at no cost,
as result of a gravity assist. The displacement along the curve
depends on the rotation of the hyperbolic excess velocity δ,
which is given by 8.

Sequences of flybys can be performed, provided that the
spacecraft is able to re-encounter the moon. The role of res-
onant orbits is now apparent, as hopping between resonant
orbits guarantees the re-encounter in a known time.

For each resonant orbit, one can draw a pair of maximum
deviation curves, assuming that a minimum-altitude flyby is
enforced. These curves encompass all Jovicentric orbits
achievable from that resonant orbit, by means of a gravity
assist. Maximum deviation curves show, for any initial v∞
value, which resonances are available for the next jump.

Points that do not lay on the same v∞ curve can be con-
nected only by means of some propulsive maneuver. As an
example, vertical displacements on the graph can be obtained
as a result of a tangential impulse at the apocenter.

Figure 4 shows a Tisserand plot for the Jovian planetary
system. Contour lines of constant v∞ value are displayed
for Europa and Ganymede. Resonant orbits corresponding
to resonance 6 : 5, 3 : 2, 7 : 4, 2 : 1, and 5 : 2 with Europa
and associated maximum-deviation curves are shown as
an example.

4.2. Suboptimal Solution for V Leveraging Transfers. The
maneuver known as v∞ leveraging, illustrated in Figure 5,
provides an efficient way to move between points on the
Tisserand graph that do not lay on the same v∞ curve,
as a large change of v∞ is obtained by means of a small
ΔV . The spacecraft leaves the secondary body (Europa) with
a given hyperbolic excess velocity v∞, entering a near-
resonant orbit around the central body (Jupiter). A deep-
space maneuver is performed near the apoapsis in order to
modify v∞ (increase, if one is considering an escape trajec-
tory, or decrease, if one instead considers a capture) at the
next encounter of the probe with the secondary body. Here,

a flyby permits to rotate the hyperbolic excess of velocity,
allowing the probe to enter a Jovicentric orbit with a larger
apocenter. A generic ΔV-EGA maneuver can be labeled as
K :L M ± , where K and L indicate the number of revolu-
tions that moon and probe complete, respectively, before
the next encounter;M ≤ L denotes the spacecraft orbit where
DSM occours; the sign ± is used to distinguish between the
possible encounter locations: just before (−) or after (+) tra-
versing the line of apsides.

A suboptimal solution for ΔV-EGA maneuvers is easily
achieved [14] under the assumption that (i) the spacecraft
initial orbit is tangent to the moon’s orbit and (ii) a tangential
ΔV is applied at the apocenter of the nearly-resonant K :L
orbit. The maneuver is slightly improved if the aforemen-
tioned assumptions are removed [24]. Dealing with high-
v∞ flybys, the replacement of the patched-conic model with
the RTBP model does not modify the mission and the
numerical performance [25].

5. Numerical Results

5.1. Tentative Solution. The dual problem of escaping from
Europa is considered in this section. A sequence of ΔV-
EGA maneuvers with increasing K :L resonances is used to
progressively augment the probe apocenter, by targeting,
after each flyby, a larger near-resonant orbit. Eventually, the
spacecraft enters a hyperbolic trajectory and escapes Jupiter
SOI [15]. In the present case, the probe trajectory ends at
the apocenter of a 4 : 1 resonant orbit.

The tentative solution depends on the performance index
that is minimized. In a minimum-propellant problem, the
total ΔV is minimized by aligning vector v∞, after each flyby,
to Europa orbital velocity. This corresponds to maximizing
the energy after the flyby (max-E strategy), assuming
assigned v∞. Low increments of v∞ correspond to very small
deep-space impulses. The optimization problem is ill-defined
without any kind of time constraints, as the optimal solution
would require an infinite number of ΔV-EGA maneuvers,
each with infinitesimal v∞ increment. Overall flight time is
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Figure 5: ΔV-EGA trajectory.
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approximately equal to TEu∑K . As a consequence, high-K
resonances should be avoided.

Assuming Kmax = 16, the suboptimal minimum-
propellant solution presents ΔV =1.04318 km/s with flight
time of 627.8 days. However, by skipping some resonances,
while keeping max-E strategy, flight time can be consider-
ably reduced with a minimum increment of propellant
expenditure. Europa, due to its small mass, can provide only
small rotations of the hyperbolic excess velocity, and long
resonances, such as 9 : 5 and 11 : 5, must be included in order
to exploit max-E strategy. Flight time remains incompatible
with ETP mission requirements.

High-K resonances can be skipped by privileging the
energy increment provided by each gravity assist, instead of
the energy after the flyby. The maximum increment of energy
(max-ΔE strategy) implies the maximum change of the semi-
major axis, that is, period. In an unconstrained gravity assist,
max-ΔE strategy requires the alignment of the hyperbola
axis to the velocity of the secondary body (α+ = π − α−).
Moreover, a v∞ magnitude exists that maximizes ΔE. The
present problem is, at a large extent, different. The resonant
orbit after the previous gravity assist is assigned, and the
pump angle α− before the flyby is not free but a function of
v∞. Moreover, the new resonance is “a priori” selected in
order to contain the trip time (low K is preferred). Therefore,
ΔE is assigned and the mission designer just selects a hyper-
bolic excess velocity in the range that permits the desired res-
onance jump. The best v∞ value depends on the entire
mission and will be a result of the optimization process.
When the max-ΔE strategy (here improperly so called) is
adopted, v∞ and pump angle after the gravity assist are large,
and a further flyby, without any DSM (and leveraging), could
align the spacecraft velocity to the moon orbital velocity.

The mission can be further improved by taking advan-
tage from Europa’s eccentricity and by removing constraints
on position and direction of the deep-space impulse. This
task is carried out by means of the proposed optimization
algorithm, based on the general MGA-1DSM formulation
described in Section 2. A reasonable tentative sequence of
resonances is used to prune the global search. A careful exam
of the Tisserand graph, in the light of the previous concepts,
permits the exclusion of resonances with K > 7. Lower and
upper bounds of the optimization variables are conveniently
adjusted to improve convergence. In particular, for a generic
K :L(M) ΔV-EGA maneuver, one has

rπ ∈ rπ,min, rπ,max ,

β ∈ −π, π ,

ΔT ∈ K − 0 1 TEu, K + 0 1 TEu ,

η ∈
M − 1

L
+ 1e − 5,

M

L

20

Flyby parameters rπ and β do not depend on the pre-
scribed resonance.

A capture trajectory is first attained under the hypothesis
of a circular orbit for Europa (solution “A”). Next, this
assumption is removed, and a slightly different trajectory is

attained (solution “B”). Eventually, a third trajectory, which
also exploits a flyby of Ganymede, is proposed (solution “C”).

5.2. Solution “A”—Europa Circular Orbit. Solutions accord-
ing to max-E strategy are impractical as the overall flight
time is incompatible with ETP mission requirements. The
Tisserand graph actually suggests that a reduction of the
flight time can be achieved performing maneuvers based on
max-ΔE strategy. Solution “A” is obtained by assuming that
Europa moves on a circular orbit, in order to match hypoth-
esis and indications of the Tisserand graph. A suitable
sequence of resonant orbits is assumed, and an optimal solu-
tion is provided by the DE algorithm. Features of the mission
are summarized in Table 1. Each row presents initial time,
v∞ magnitude at flyby, resonance, and deep-space impulse
of each leg. The last row refers to the impulsive injection into
the target orbit around Europa.

Capture ΔV is reduced substantially with respect to a
direct insertion (2781.9m/s), allowing to reduce ETP total

Table 1: Solution “A”—mission features.

Event Time [days] v∞[m/s] Resonance DSM [m/s]

0 Departure 0.00 4 : 1 1.931

A Eu flyby 7.07 3683.4 7 : 2 13.09

B Eu flyby 32.13 3519.7 3 : 1 15.16

C Eu flyby 42.74 3351.2 5 : 2 21.00

D Eu flyby 60.46 3150.8 2 : 1 97.19

E Eu flyby 67.29 2353.0 7 : 4 40.55

F Eu flyby 91.98 2016.7 3 : 2 62.49

G Eu flyby 102.39 1560.1 4 : 3 56.11

H Eu flyby 116.33 1176.8 6:5 60.56

I EOI 137.32 803.2 715.18

Totals 137.32 1083.27

↓ Callisto’s orbit

Lambert arc

Propagation arc

DSM

Eu flyby

EOI maneuver

↓ Ganymede’s orbit

B
C
D
A

E

H
F

G

Jupiter

Europa’s orbit

I

r(t0)

ΔVs

Figure 6: Jovicentric trajectory of solution A.
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mass (including propellant and structures) to 239.58 kg. The
Jovicentric trajectory is plotted in Figure 6. Deep-space
maneuvers are performed substantially at the apogee of the
resonant orbits. Flyby locations on Europa orbit move clock-
wise, indicating that all maneuvers belong to class (−). Only
the first flyby does not follow this rule, probably due to the
peculiar features of the transition from the initial leg to the
first intermediate leg.

The Tisserand graph is presented in Figure 7. For reso-
nances lower than 2 : 1, after the flyby the spacecraft enters
a Jovicentric orbit with perigee equal to Europa radius. This
matches the suboptimal solution proposed by Longuski,
where the hyperbolic excess of velocity is aligned with the
moon velocity. The alignment condition is not verified for
resonance higher than 2 : 1, when max-ΔE maneuvers are
carried out in order to minimize the number of ΔV-EGA
maneuvers, skipping the most time-consuming legs.

5.3. Solution “B”—Europa Elliptic Orbit. The hypothesis on
circularity of Europa’s orbit is removed, and a new solution
for the same mission scheme is searched for. Table 2

describes the attained solution. Figures 8 and 9 present the
spacecraft trajectory and the corresponding Tisserand graph,
respectively. Minor, yet interesting differences, can be
observed. The transition between resonances 2 : 1 and 7 : 4 is
now obtained by means of a max-ΔE maneuver. The final
flybys and EOI maneuver occur in close proximity of
Europa pericenter, in order to benefit from a lower v∞.
The propellant consumption is coherent with solution A,
and the mission takes slight advantage from the eccentricity
of Europa orbit.

5.4. Solution “C”—Ganymede Flyby. Previous solutions show
that ETP trajectory crosses Callisto and Ganymede orbits
during its journey. An improved solution is searched for,
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Figure 7: Tisserand graph of solution A. Axes are normalized with respect to Europa semi-major axis.

Table 2: Solution “B”—mission features.

Event Time [days] v∞[m/s] Resonance DSM [m/s]

0 Departure 1.40 4 : 1 0.01

A Eu flyby 8.56 3702.4 7 : 2 14.65

B Eu flyby 33.36 3518.4 3 : 1 16.32

C Eu flyby 43.96 3335.6 5 : 2 21.58

D Eu flyby 61.67 3127.5 2:1 79.93

E Eu flyby 68.60 2478.3 7:4 57.09

F Eu flyby 93.26 2012.6 3:2 63.14

G Eu flyby 103.67 1548.9 4 : 3 55.76

H Eu flyby 117.62 1166.5 6:5 59.85

I EOI 137.21 797.0 712.76

Totals 137.88 1081.10

↓ Callisto’s orbit

↓ Ganymede’s orbit

Jupiter

Europa’s orbit

r(t0)

ΔVs

A
B
C

D
E

F G
H

I

Lambert arc
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DSM

Eu flyby
EOI maneuver

Figure 8: Jovicentric trajectory of solution B.
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aiming at replacing some deep-space maneuvers with Gany-
mede or Callisto flybys.

In particular, the semi-major axis of Ganymede (1 595
REu) almost matches the apoapsis radius of the nominal
3 : 2 orbit (1 621REu). The 3 : 2(2) arc from Europa to Europa
is thus substituted by two legs: the first from Europa to
Ganymede and the second from Ganymede to Europa. Also,
a 5 : 3 resonant orbit is used instead of 7 : 4, reducing the flight
time by 2TEu.

Results for this mission are summarized in Table 3.
The Jovicentric trajectory and the Tisserand graph are pre-
sented in Figures 10 and 11, respectively. The flybys pro-
gressively rotate the initial hyperbolic excess velocity of
the spacecraft, moving the spacecraft through a series of res-
onant orbits, until the apocenter is close to the Ganymede
orbit, where a gravity assist from this moon makes the

spacecraft orbit almost tangent to Europa orbit. No signifi-
cant DSM is performed during the legs preceding the Gany-
mede flyby; thus, the Europa position at the encounters A–F
is the same.

The Tisserand graph for this solution is presented in
Figure 11, confirming that one Ganymede flyby is sufficient
to change v∞ in a so large amount that no deep space maneu-
ver is necessary before two final Europa gravity assists permit
the achievement of the 6 : 5 resonant orbit which ends with
the EOI maneuver. A closer inspection shows small changes
of v∞ in the first part of the mission, despite no impulsive
maneuver is performed. This is explained by recalling that
v∞ curves on the Tisserand plot are drawn assuming circular
and coplanar orbits of the moons. In particular, Ganymede
and Europa orbits are not coplanar (their inclinations are
0.2 and 0.4 degree, resp.); therefore, unlike previous solu-
tions, this ETP trajectory is not coplanar with the Europa
orbit. Spacecraft inclination and velocity vary at each flyby,
resulting into a deceptive v∞ change on the planar circular
Tisserand graph.

The DE algorithm was able to find a solution with
negligible deep-space impulses between flybys A and H.
This kind of optimization method suffers the very low
variation of the performance index in the proximity of
the optimal solution and cannot be very accurate. The
quality of the solution can be improved by replacing
the general MGA-1DSM formulation with another one
that considers ballistic legs between flybys, when required
by theoretical considerations.

By reducing the capture ΔV to 882.04m/s, ETP mass
becomes 218.61 kg, saving approximately 21 kg with respect
to previous solutions. The exploitation of a gravity assist by
Ganymede also permits a 6-day reduction of the mission
time length. A major drawback is the requirement of a suit-
able initial phasing between Europa and Ganymede, or a
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Table 3: Solution “C”—mission features.

Event Time [days] v∞[m/s] Resonance DSM [m/s]

0 Departure 3.03 4 : 1 0.64

A Eu flyby 10.05 3769.2 7 : 2 0.47

B Eu flyby 34.92 3772.7 3 : 1 0.01

C Eu flyby 45.58 3772.7 5 : 2 0.63

D Eu flyby 63.34 3767.9 2 : 1 0.05

E Eu flyby 70.45 3767.8 5:3 0.06

F Eu flyby 88.22 3767.7 0.11

G Ga flyby 95.65 2666.3 0.01

H Eu flyby 99.68 1784.5 4 : 3 90.24

I Eu flyby 113.61 1213.2 6:5 67.19

J EOI 134.59 806.9 716.64

Totals 131.56 882.04
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precise timing for ETP release, which repeats every 7.058
days, that is, the Ganymede-Europa synodic period. Even
though this issue might be thought irrelevant, as nowadays
missions withstandmany complex trajectory constraints, this
is quite a delicate point for a probe that aims at minimal
impact on the mission of the mother spacecraft. In this
respect, a similar solution should be searched for, only after
the baseline mission has been defined. The ETP release con-
dition will be accordingly constrained.

6. Conclusions

In the search for a low-ΔV capture of a light-weight space-
craft into a polar orbit around Europa, v∞ leveraging repre-
sents an excellent technique, which reduces the propellant
consumption, at the cost of increased flight time. Moreover,
several deep-space maneuvers along Europa-resonant orbits
can be replaced by a single Ganymede gravity assist; total
ΔV is further reduced with a small saving of the flight
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↑ Ganymede’s orbit
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Figure 10: Jovicentric trajectory of solution C.
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time. The Tisserand graph has proved to be an effective
tool for the preliminary analysis. The same graph is also
useful to introduce in the mission the gravity assist from
other Galilean moons.

The search for the optimal solution is made complex
by the need that the actual mission must take eccentricity
and inclination of the secondary bodies into account. The
exploitation of an effective heuristic optimization code
allowed a wide exploration of the solution space, and an opti-
mal solution is found in a relatively easy and fast manner.
The performance of this Europa capture trajectory confirms
the feasibility of a low-cost exploration mission, carried out
by a small orbiter, compatible with the specifics for the sec-
ondary payload of Europa Clipper mission.

Data Availability

All data generated or analyzed during this study are included
in the present paper, with the relevant exception of physical
constants and orbit parameters of Jupiter and its moons,
which are easy to retrieve elsewhere. As an example, an inter-
ested reader can look at ESA/GTOC6 repository, https://
sophia.estec.esa.int/gtoc_portal/?page_id=26.
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