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This paper presents a novel approach for the preliminary design of Low-Thrust, many-revolution transfers. The main feature of
the novel approach is a considerable reduction in the control parameters and a consequent gain in computational speed. Each
spiral is built by using a predefined pattern for thrust direction and switching structure. The pattern is then optimised to minimise
propellant consumption and transfer time. The variation of the orbital elements due to the thrust is computed analytically from
a first-order solution of the perturbed Keplerian motion. The proposed approach allows for a realistic estimation of ∆V and time
of flight required to transfer a spacecraft between two arbitrary orbits. Eccentricity and plane changes are both accounted for.
The novel approach is applied here to the design of missions for the removal of space debris by means of an Ion Beam Shepherd
Spacecraft. In particular, two slightly different variants of the proposed low-thrust control model are used for the different phases
of the mission. Thanks to their low computational cost they can be included in a multiobjective optimisation problem in which
the sequence and timing of the removal of five pieces of debris are optimised to minimise propellant consumption and mission
duration.

1. Introduction

One of the most critical issues related to the exploitation of
space around the Earth is the threat posed by space debris.
Since the beginning of the space era in the late 1950s, an
increasing number of man-made, inert objects has been
orbiting the Earth. Recent statistics revealed around 15000
trackable objects, for a total of some 6000 tons of material.
Some of these objects are simply spent upper stages of launch
vehicles, some others are satellites which are no longer active
due to failures or to having reached their end of life. Others,
however, are the results of past collisions. It is easy to imagine
that even a single collision between two objects is likely to
generate tens of smaller objects as a result. The outcome of a
collision in an already crowded environment could generate
a cascade of collisions generating an exponentially increasing
volume of space debris. In fact, the debris produced by
a collision is itself likely to collide with other objects,
thereby producing other debris which will generate further

collisions, and so on. This chain reaction, known as the
Kessler Syndrome [1], occurs once the rate of generation of
debris due to collisions or simple human-driven additions
exceeds the natural debris removal rate. According to Kessler
et al., this reaction is likely to be ignited once the object
density in a certain orbital band reaches a critical point; once
started, it will probably render most spacecraft in that orbital
band useless within a matter of months or years.

Recent guidelines issued by international spacer regu-
latory institutions such as the United Nations Committee
for the Peaceful Uses of Outer Space (COPUOS) [2] and
the Inter-Agency Space Debris Coordination Committee
(IADC) [3] prescribe some actions to be followed by national
or private agencies putting satellites into orbit in order to
mitigate debris growth. For example, it is demanded that
every new mission in Low Earth Orbit (LEO) must be
planned such that the satellite itself must re-enter in the
Earth’s atmosphere within 25 years after the end of the
mission. Alternatively, for higher orbits like geostationary
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orbits, the requirement is for the spacecraft to be placed
on a higher graveyard orbit. Measures like these, even if
strictly applied (and at the moment compliance with them
is on a voluntary basis), are only likely to slow down the
accumulation of space debris around the Earth. Therefore,
active removal actions will probably be needed in the near
future to eliminate at least the most dangerous objects.

There have been various proposals on how to remove
inert objects from space. They can be generally classified
in two major groups: contactless and with direct physical
contact. In the latter category, one can find methods based
on some form of docking with or capturing the object.
Once the removing spacecraft and the piece of debris are
attached, the latter is dragged into a re-entry trajectory
or to a graveyard orbit. Technical problems related to the
attitude state of motion of the piece of debris and the fragility
of appendices and cover material (including paint) make
this removal solution complicated. A potentially interesting
solution is represented by Project ROGER [4], developed by
EADS/Astrium with the support of ESA. Among contactless
solutions, one can find what is commonly referred to as
the space broom [5]. It entails irradiating the target object
with a high-power laser which will induce sublimation of
the surface material; the ejecta plume will then generate
a low-thrusting acceleration which will slowly degrade the
debris’ orbit until it reaches an altitude where atmospheric
drag will accelerate its re-entry. Such a technique has the
advantage that no physical contact is required, on the other
hand, current proposals envisage the use of lasers installed
on Earth and beaming through the atmosphere. The beam
collimation and thrust time is, therefore, limited and this
solution is effective for small-sized objects only. Recent
proposals have demonstrated that the use of in-space laser
systems might be more interesting even to remove larger
objects [6]. Other proposals involve, for example, the use of
electrodynamic tethers [7], inflatable balloons [8], which are
meant to be lightweight and efficient but require, however,
the physical attachment of the device to the target object and
are, therefore, of difficult application to existing debris.

A recent idea simultaneously proposed by Bombardelli
and Peláez [9], Ruault et al. [10], and JAXA [11] suggested
the use of a collimated beam of ions generated by a spacecraft
flying in formation with the piece of debris. In this paper,
this concept will be called Ion Beam Shepherd (IBS), using
the name introduced by Bombardelli and Peláez. The effect
of the ion beam is that of producing a thrusting force, equal
in magnitude but opposite in direction, on both the IBS
and the piece of debris. This force will induce a thrusting
acceleration which can be controlled in order to modify the
orbit of the piece of debris. A second ion engine is then
fired in a direction opposite to the first one in order to keep
the IBS spacecraft at a constant distance from the piece of
debris. Among the advantages of this concept is the fact that
it employs already existing and proven technologies; it does
not require any contact with the target, and the fact that a
single spacecraft can be used to fetch and deorbit multiple
pieces of debris. In [6], one can find a similar concept that
uses concentrated solar light instead of ions to generate a
thrust and modify the orbit of debris.

Assuming a scenario in which a single IBS needs to de-
orbit multiple pieces of debris, one would need to solve
an interesting mission design problem: the optimisation of
the de-orbit sequence and trajectories for multiple target
objects in minimum time and with minimum propellant.
In the hypothetical mission scenario which is analysed in
this work, it is assumed that a number of pieces of debris
have been shortlisted as priority targets due to the threat
they pose to satellites operating in LEO. For example, Liou
and Johnson [12] propose some criteria to choose the object
whose removal will be most effective to mitigate the risk of
collisions. They underline that an effective removal strategy
must be targeted first to large objects in crowded orbits up
to 1500 km. Thus, a removal mission by means of an IBS
spacecraft is planned to be launched from the Earth. Its
task is that of removing five objects lying on different low
Earth orbits. The design of such a mission is a complex opti-
misation problem, because it requires the computation of
multiple low-thrust, many-revolution transfers. Therefore,
this work proposes an approach to the fast estimation and
optimisation of the cost and time duration of the fetch and
de-orbit sequences. In past works, other authors have already
proposed approaches to the design of Low-Thrust (LT),
many-revolution transfers, based on analytical solutions to
an optimal orbit raising problem under the assumption of
small eccentricity [13–15] or on averaging techniques [16–
18]. This work, proposes a different approach, based on
a first-order solution of perturbed Keplerian motion. The
approach in this paper aims at capturing the definition and
optimisation of the thrusted arcs for each orbit without sac-
rificing computational speed. The approach can be classified
as direct method for trajectory design as it does not derive the
necessary conditions for optimality but translates the initial
optimal control problem into an NLP problem.

The paper is organised as follows: Section 2 will briefly
outline the IBS concept and in particular will outline
how to compute the thrusting acceleration generated on a
given target object; Section 3 will analyse an hypothetical
mission profile for the removal mission and most important,
Sections 3.1 and 3.2 will present in detail the proposed
trajectory models. Section 4 will then show how the mission
design problem can be then translated into as a series of
multiobjective optimisation problems which are solved with
a stochastic optimiser. The results are then presented and
discussed.

2. The Ion Beam Shepherd Spacecraft

As shown by Bombardelli and Peláez [9], the concept behind
the Ion Beam Shepherd is relatively simple and envisions
employing a spacecraft provided with two sets of ion engines
mounted along the same axis but in opposite directions
(see Figure 1). The jet from one of the sets will be directed
towards the piece of debris and will exert a thrusting force
Fp1 on it. Due to Newton’s third law, an opposite force of
same magnitude will also act on the spacecraft itself, but this
component will be balanced by the thrust Fp2 provided by
the other set of ion engines.
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Figure 1: Ion Beam Shepherd spacecraft.

Since it is necessary to keep the Shepherd spacecraft at a
constant distance from the debris, the thrust Fp2 shall be such
that the second derivative of the distance d between the two
spacecraft is null:

d̈ =
Fp2 − Fp1

mIBS
−

Fp1

md
= 0. (1)

Note that in (1) the acceleration terms due to the gravity
of the central body have been neglected since it is assumed
that the debris and the Shepherd are in close proximity and
arranged in a leader-follower configuration. A more accurate
and detailed modelling of the proximal motion dynamics of
these two bodies is beyond the scope of this study. Thus, in
the following sections, the IBS-debris combination will be
treated as a point mass, in order to apply two-body dynamics.
By rearranging the terms in (1), one obtains:

Fp2 = Fp1

(

1 +
m IBS

md

)

. (2)

Under the assumption that the total propulsive power of the
IBS spacecraft Ptot is constant and that the total propulsive
thrust is proportional to it Ftot, one can write

Fp1 + Fp2 = Ftot ∝ Ptot, (3)

thus

Ftot = Fp1

(

2 +
mIBS

md

)

. (4)

Therefore, the maximum acceleration acting on the IBS-
debris combination can be computed as a function of the
total available thrust Ftot:

εIBS−debr =
Fp1

md
=

Ftot

2md + mIBS
. (5)

It is assumed here to have a 1000 kg IBS spacecraft with
a total available thrust of 0.5 N. Such a high thrust would
correspond to a substantial power and propulsion system
mass, however, this is deemed realistic if one considers that
the payload of the IBS spacecraft is in fact its propulsion and
power systems. Hence, the propulsion and power systems
might be oversized compared to other applications in which

ion engines are used for propulsion only. Note that the valid-
ity of the methodology proposed in this paper would not be
affected even if lower thrust levels were considered. Thus,
in this case, considering, for example, an 800 kg debris, the
magnitude of the acceleration would be 1.923·10−7 km/s2. If
one considers instead the spacecraft alone, the acceleration
achievable would be slightly higher, 5·10−7 km/s2. Given
this order of magnitude, the thrust acceleration can be
considered as a perturbative force compared to the Earth’s
gravitational force, and therefore, the analytical approach to
the propagation of the low-thrust motion described in [19]
can be applied.

3. Mission Profile

The objective of this study is that of optimising the perfor-
mance and cost of a debris de-orbiting mission performed
by a single spacecraft. As mentioned in the introduction, it
is assumed that there are five pieces of debris of different
masses and lying in circular orbits with different radii and
orientations. It is assumed that the IBS spacecraft departs
from a low-Earth parking orbit, rendezvous with the first
object, transfers it to an elliptical re-entry orbit, rendezvous
with the second object, transfers it to a second elliptical re-
entry orbit, and so forth until all five pieces of debris are
removed. One important issue is defining in which order the
pieces of debris need to be de-orbited. In the following, all
possible sequences are generated a priori and optimised one
by one.

Each fetch and de-orbit operation is split in two phases:

(i) A de-orbit phase, in which the perigee of the orbit
of the piece of debris is lowered such that the orbit
will decay naturally in a relatively short time. In this
study, it is assumed that this condition is met if the
perigee altitude of the debris’ orbit is equal or lower
than 300 km.

(ii) A transfer phase, in which the IBS spacecraft ren-
dezvouses with the next piece of debris (which lies on
a circular orbit), after having abandoned the current
piece of debris on an orbit with a 300 km perigee
altitude.

Given the magnitude of the available thrust acceleration,
both phases require a spiral orbit transfer. If a direct
transcription approach is used to optimise each spiral the
number of parameters that needs to be defined is very high
leading to high computational times. The latter fact would
make the solution of a multiobjective optimisation of all
possible de-orbiting sequences computationally intractable.
Thus, in this paper, a simplified, highly efficient, trajectory
model is proposed for each one of the two phases.

3.1. De-Orbiting Trajectory Model. The objective of the de-
orbiting phase is that of lowering an initial circular orbit such
that its perigee is equal or below 300 km, which basically
translates into a perigee lowering manoeuvre. Therefore, it
is appropriate to assume that in general, as soon as the
initial circular orbit becomes slightly eccentric, one keeps
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thrusting around the apogee in order to lower the perigee.
The thrust level will also be kept at its maximum in order
to minimize gravity losses. Moreover, since the de-orbit
condition is independent of the final orbit’s orientation,
one can reasonably assume that the perigee lowering will
be performed in-plane. In this sense, the only Keplerian
parameters which need to be altered are the semimajor
axis and eccentricity. By analysing the structure of Gauss’
variational equations:

da

dt
=

2a2

h

(

e sin θar +
p

r
aθ

)

,

de

dt
=

1

h

{

p sin θar +
[(

p + r
)

cos θ + re
]

aθ
}

,

di

dt
=

r cos θ

h
ah,

dΩ

dt
=

r sin θ

h sin i
ah,

dω

dt
=

1

he

[

−p cos θar +
(

p + r
)

sin θaθ
]

−
r sin θ cos i

h sin i
ah,

dθ

dt
=

h

r2
+

1

eh

[

p cos θar −
(

p + r
)

sin θaθ
]

,

(6)

where a is the semimajor axis, e the eccentricity, i the in-
clination Ω is the Right Ascension of the Ascending node
(RAAN), ω the argument of perigee, θ the true anomaly,
p the semilatus rectus, and h the angular momentum;
ar , aθ , and ah are the radial, transversal, and out-of-plane
components of the thrust acceleration. If one considers the
case of thrusting with maximum acceleration along arcs
which are symmetrical around apogee (θ = π), one can
see that the contributions to semimajor axis and eccentricity
variations given by the ar components are negligible (since
they are multiplied by sin θ). Therefore, a good suboptimal
thrust direction can be obtained by imposing aθ as the only
non-zero component of the thrust acceleration. Under these
assumptions, the variation of Keplerian parameters will be
[20]

da

dt
=

2a2

h

p

r
aθ ,

de

dt
=

1

h

[(

p + r
)

cos θ + re
]

aθ ,

di

dt
= 0,

dΩ

dt
= 0,

dω

dt
=

(

p + r
)

he
sin θaθ ,

dθ

dt
=

h

r2
+
(

p + r
)

sin θaθ .

(7)

It should be noted that the terms of the variation of ω and
θ which depend on aθ will also be very small due to the
presence of sin θ integrated around θ = π. Figure 2 visualises
the proposed pattern for thrusting arcs.

In order to obtain a fast propagation of the thrusting arcs,
the analytical propagation of perturbed motion with finite

Apogee 
thrusting 

arc

Coasting 
arc

Orbital 
motion

2∆La

Figure 2: Thrusting arc around apogee with thrust directed along
transverse direction.

perturbative elements in time (FPET) derived in [19, 21] will
be used. In order to employ FPET, one has also to assume that
the thrust acceleration is constant around each thrusting arc,
which is reasonable given the low propellant consumption
per arc. This assumption ensures that, if the engine thrust
is constant, the resulting acceleration can also be considered
constant over short thrusting arcs.

Motion propagation with FPET is based on a first-order
analytical solution of perturbed Keplerian motion. In this
formulation, the state is expressed in nonsingular equinoctial
elements:

a,

P1 = e sin(Ω + ω),

P2 = e cos(Ω + ω),

Q1 = tan
i

2
sinΩ,

Q2 = tan
i

2
cosΩ,

L = Ω + ω + θ.

(8)

Assuming constant thrust-acceleration in the radial-trans-
verse reference frame:

a =
[

ar aθ ah
]T
= ε

[

cosα cosβ sinα cosβ sinβ
]T

, (9)

then one can obtain a first-order analytical expansion of
the variation of equinoctial elements, parameterised in
Longitude L and with respect to a reference longitude L0:

a(L) = a0(L0) + ε a1

(

L0,∆L,α,β
)

,

P1(L) = P10(L0) + ε P11

(

L0,∆L,α,β
)

,

P2(L) = P20(L0) + ε P21

(

L0,∆L,α,β
)

,

Q1(L) = Q10(L0) + ε Q11

(

L0,∆L,α,β
)

,

Q2(L) = Q20(L0) + ε Q21

(

L0,∆L,α,β
)

,

t(L) = t00(L0,∆L) + ε t11

(

L0,∆L,α,β
)

,

(10)

where

L = L0 + ∆L, (11)

where a a0 P10,P20,Q10,Q20 are reference values at L0 and
a1,P11,P21,Q11,Q21 are first-order terms as reported in [19,
21]. In [19],it has also been shown that this analytical
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propagation scheme provides good accuracy along relatively
long trajectory arcs.

As explained above, the only nonzero component of the
acceleration will be aθ and since the aim is obtaining a
decrease of the orbit energy, it will also be in the negative
direction. Therefore, the acceleration azimuth will be α =

−π/2 and the elevation β = 0 (since, as already mentioned,
the motion will be within the initial orbit plane). The
variation of equinoctial elements after an apogee thrusting
arc will be given by

E+ =

⎡

⎢

⎣

a
P1

P2

⎤

⎥

⎦

L+=La+∆La

=

⎡

⎢

⎣

a
P1

P2

⎤

⎥

⎦

L−=La−∆La

+ ε

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a1

(

2∆La,
π

2
, 0

)

P11

(

2∆La,
π

2
, 0

)

P21

(

2∆La,
π

2
, 0

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= E− + εf

(

2∆La,
π

2
, 0

)

,

(12)

where La is the apocentre longitude, L− and L+ are the
longitudes at the start and end of thrusting, respectively. ∆La
is the semiamplitude of the apogee thrusting arc. Note that,
given that β = 0, there is no variation on Q1 and Q2 and thus
they are omitted. The coasting time is computed from the last
of (10) as

tthrust = t00(La − ∆La, 2∆La) + εt11

(

2∆La,−
π

2
, 0

)

. (13)

Since the thrust magnitude and direction are fixed, the
only free control parameter is the semiamplitude ∆La for
each orbit. In order to keep the number of decision variables
to a minimum, the semiamplitude for each orbit is computed
from a piece-wise linear polynomial interpolating a limited
number of ∆La,i over a number of orbits. The nodes ∆La,i are
equally distributed between orbit 1 and an arbitrary number
of orbits (in this paper, 1200 was found to be adequate). In
this paper, the number of interpolating nodes was limited to
2: ∆La1 and ∆La f .

In order to evaluate the time and ∆V needed to de-orbit
a piece of debris from its initial orbit with semimajor axis
adebr0, given a set of decision (or control) parameters ∆La1

and ∆La f , the following procedure was implemented.

(1) Compute the set of initial Equinoctial parameters L0

and E0 = [adebr0 P10 P20]T , where P10 and P20 will
be null due to the fact that the initial orbit is circular.

(2) Initialise the number of orbits, the total ∆V and time
of flight to zero:

Norbit = 0,

∆V = 0,

TOF = 0.

(14)

(3) Set E− = E0 and Lcoast = L0.

(4) Initialise the mass of the IBS spacecraft:

mIBS = mIBS0. (15)

(5) While Norbit is smaller than Norbitsmax,

(a) Norbit = Norbit + 1.

(b) Interpolate the amplitude of the thrusting arc
in the current orbit, that is, ∆La and compute
L− = La − ∆La and L+ = La + ∆La.

(c) Compute the acceleration εIBS−debr acting on the
IBS-debris combination from (5).

(d) Compute the time of flight tcoast spent coasting
from Lcoast to L−.

(e) Compute the equinoctial parameters after the
thrusting arc E+ as in (12).

(f) Compute the current perigee radius rp and if
this is lower than the threshold r p = 300 km
proceed to step 6, otherwise, proceed to step g.

(g) Compute the thrusting time tthrust from (13)
and update the total ∆V cost:

∆V = ∆V + εIBS−debrtthrust. (16)

(h) Update the total time of flight:

TOF = TOF + tcoast + tthrust. (17)

(i) Update the IBS spacecraft mass:

mIBS = (mIBS + 2mdebr) exp

(

−
εIBS−debrtthrust

Ispg0

)

− 2mdebr.

(18)

(j) Set E− = E+ and Lcoast = L+.

(6) Back track the value of the longitude L f for which
rp = r p and compute the related and tthrust from (13)
and update TOF and ∆V accordingly. Compute the
equinoctial parameters E f at L f from (12).

At this point, one gets the ∆V , the time of flight TOF, and
the semimajor axis and eccentricity of the final orbit (which
are easily computed from E f ). It is important to note that,
given the simplifications introduced, once one sets the initial
mass and orbit of the piece of debris, and the characteristics
of the IBS propulsion system, that is, Ftot and Isp, the de-
orbit depends exclusively on the mass of the IBS mIBS0 at the
beginning of the de-orbit phase and the interpolating values
for ∆La, that is, ∆La1 and ∆La f . Therefore, it was decided to
precompute the corresponding ∆V and TOF for a given set
of these three parameters and for each piece of debris (i.e.,
for each mdebr and adebr0). Table 1 reports upper and lower
bounds for mIBS0, ∆La1 and ∆La f , and the number of samples
taken, equally distributed.

Given the limited number of decision variables, for
each piece of debris, one has 20000 de-orbit instances to
propagate. Since each instance requires typically 1·10−2 s
of CPU time, with a code implemented in MATLAB and
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Figure 3: (a) ∆V and (b) TOF surfaces with respect to ∆La1 and ∆La f for mIBS0 = 300 kg, adebr0 = 7128 km and mdebr = 120 kg.

Table 1: Bounds and number of samples for the de-orbit parame-
ters.

mIBS0 ∆La1 ∆La f

Lower bound Mdry +100 = 350 kg 0 0

Upper bound Mlaunch = 1000 kg π π

Samples 8 50 50

running on a 3.16 GHz, 4 GB desktop PC running Windows
7, the whole computation can be completed in roughly five
minutes. The set of de-orbit ∆V and TOF is then used to
build a response surface, or surrogate model, of the de-
orbiting process. Figures 3(a) and 3(b) show examples of
two-dimensional surface, respectively, for ∆V and TOF, with
respect to a fixed mIBS0 of 300 kg. One can see that the two
quantities show opposite trends, the ∆V being high when the
TOF is low and vice versa. Figures 4(a) and 4(b) show the
final semimajor axis and eccentricity, respectively. Note that
the minimum TOF transfer corresponds to a quasicircular
spiralling trajectory in which the IBS spacecraft is thrusting
continuously. On the other hand, the minimum ∆V transfer
corresponds also to the one with maximum final eccentricity.

Now, it is desirable that the surrogate model returns
the ∆V cost as a function of mIBS0, mdebr, adebr0, and
TOF. From the available data relating the ∆V and TOF
to the decision variables ∆La1 and ∆La f , one can derive

the functional relationship between ∆V and TOF. Given
a triplet mIBS0,mdebr, adebr0, each TOF value defines a level
curve on the ∆La1 and ∆La f plane (see Figure 3(a)), which
can be mapped into a set of ∆V values (see Figure 3(b)).
Within this set, one can take the element with minimum
∆V . Thus, for each time of flight, between a minimum and a
maximum, one can derive the corresponding minimum ∆V
cost. A similar procedure is followed to find the functional
relationship between the final semimajor axis and the TOF.
Note that there is no need to do the same for the eccentricity
given the fact that the final perigee radius is fixed at r p and,
therefore, the final e can be computed from the final a. In this
way one can build the two surrogate models:

∆V = f∆V ,interp(TOF,mIBS0,mdebr, adebr0),

a f = fa f ,interp(TOF,mIBS0,mdebr, adebr0).
(19)

Figures 5(a) and 5(b) show examples of tridimensional plots
(mIBS0-TOF-∆V and mIBS0-TOF-a f , resp.) created by evalu-
ating the surrogated models keeping adebr0 and mdebr fixed.
In Figure 5(a), one can see that there is a large plateau region
corresponding to large time of flights and a smaller region
close to the minimum TOF where the de-orbit cost increases
very steeply and the final semimajor axis in Figure 5(b)
similarly decreases. The complete procedure for the creation
of the interpolated de-orbit cost models requires few minutes
of CPU time and once completed allows for a very fast
estimation of the de-orbit cost. The surrogated models will
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Figure 4: (a) final semi-major axis and (b) eccentricity after de-orbit with respect to ∆La1 and ∆La f for mIBS0 = 300 kg, adebr0 = 7128 km and
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be extremely useful in the multiobjective optimisation of
debris removal sequences as it will be shown in the following
sections.

3.2. Orbit Transfer Model. According to the scenario pre-
sented in Section 3, after having left the debris on a re-entry
orbit, the IBS will have to transfer to the orbit of the next
debris and rendezvous with it. The design of such a transfer
arc would normally require the solution of a fixed-time two
point boundary value problem (TPBVP) which would be
computationally very expensive given the high number of
control parameters and constraints involved. A second sim-
plified model was then created to quickly estimate the cost
of a low-thrust multirevolution orbit transfer with boundary
constraints. The approach and assumptions presented in this
section are similar to those already introduced for the de-
orbit model.

First, given the limited acceleration provided by low-
thrust propulsion systems, one should consider that the orbit
transfer will require a high number of multiple revolutions
around the Earth, typical in the range of hundreds to few
thousands. In this sense, it is possible to argue that achieving
the proper phasing to transfer from the initial to final orbit
would not be a major issue. Even a small variation of ω and
θ per revolution would be sufficient to attain the required
orientation to rendezvous with the piece of debris. Moreover,
it is important to bear in mind that, in order to de-orbit the
previous debris in the sequence, the IBS spacecraft, started
from a circular orbit which was subsequently modified into
an elliptical one with perigee r p. Thus, it would be also
possible to conveniently adjust the start point of the de-
orbit procedure from the circular orbit in order to obtain
the proper phasing once this is completed. For all these
reasons, it is assumed that in this particular case, the phasing
problem will have a negligible effect on the ∆V and time
required to rendezvous with the next piece of debris in the
sequence. Therefore, in the following, it is assumed that it is
not necessary to match the arrivalω and θ computed with the
simplified model with those of the target object. Matching
the target inclination i and RAAN Ω, instead, cannot be
ignored without introducing a considerable error in the ∆V
cost. In order to match the inclination and RAAN difference,
one need to take into account only the geometric angle
between planes of the initial and final orbits, which is given
by

∆i = arccos
(

− cos i0 cos
(

π − i f
)

+ sin i0 sin
(

π − i f
)

cos
(

Ω f −Ω0

))

.
(20)

Thus, in order to account for ∆i, the inclination of the
initial orbit is fictitiously set to zero, while the final one is set
at ∆i. The matching of the RAAN is assured by performing
the circularisation properly. The assumption is that the
deorbiting of one piece of debris starts at a true anomaly
such that the resulting elliptical orbit has the line of apses
perpendicular with the line of the nodes of the following
piece of debris. Since the orbits of the debris are assumed to
be circular, it is always possible to start the deorbiting at the

right true anomaly with minimum delay. This hypothesis will
be discussed in more detail with some numerical examples in
Section 4.

With these assumptions, the main issue in designing
the multirevolution transfer will be that of achieving the
required change in the apogee and perigee radii in order to
match those of the final orbit, and to achieve the required
rotation of the orbit plane.

The control of eccentricity and semimajor axis, required
to match the target perigee and apogee altitudes, can
be obtained by inserting two thrust arcs per revolution,
one around the apogee and one around the perigee. This
methodology is analogous to what was done in the previous
section for the perigee lowering. In the same way, the radial
component of the thrust acceleration is set to zero. The
transverse component this time can have either positive or
negative sign (α = ±π/2) depending whether the perigee (or
apogee) needs to be raised or lowered.

Since a plane change is required, the out-of-plane com-
ponent of the thrust acceleration is nonzero. Thanks to this,
the control parameters can be reduced to the semiamplitude
of the apogee and perigee thrusting arcs, ∆La and ∆Lp, the
sign of the θ component of the thrust acceleration (i.e., the
sign of αa,αp = ±π/2), and the out-of-plane component
in the same arcs, βa and βp. Define ∆Lthrust as half the
total thrusting arc length and rt as the ratio of ∆Lthrust

which is devoted to apogee thrusting. In order to have a
parameterisation which accounts also for the sign of αa and
αp, the following one is proposed:

αa =

⎧

⎪

⎨

⎪

⎩

π

2
∆Lt ≥ 0,

−
π

2
∆Lt < 0,

αp =

{

αa 0 ≤ rt ≤ 1,

−αa 1 < rt ≤ 2,

∆La =

{

rt|∆Lthrust| 0 ≤ rt ≤ 1,

(2− rt)|∆Lthrust| 1 < rt ≤ 2,

∆Lp = |∆Lthrust| − ∆La,

(21)

with

∆Lthrust ∈
[

−π π
]

,

rt ∈
[

0 2
]

.
(22)

To define the actual values of ∆Lthrust and rt in each rev-
olution, an interpolating strategy from a set of nodal values
similar to the one used for the de-orbit model is adopted.
In this case, however, the interpolated values will not be
computed with respect to the current revolution number but
with respect to the time. Again the number of interpolating
nodes can be chosen arbitrarily and is set to 2 in this
case, ∆Lt1,∆Lt f , rt1, rt f . For βa and βp, it is chosen to have
a constant value along the entire transfer. The thrusting
pattern along each revolution is shown in Figure 6.

Given a set of control parameters [∆Lt1 ∆Lt f rt1 rt f
βa βp], a multirevolution transfer with specified duration

TOF, departing from an orbit defined by [a0 e0 0]T and
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targeted to an orbit defined by [a f e f ∆i]T , is propagated
according to the following procedure.

(1) Compute the set of initial Equinoctial parameters L0

and E0 = [a0 P10 P20 Q10 Q20]T . Q10 and Q20 will
be zero since the initial inclination is arbitrarily set to
zero.

(2) Compute the set of target Equinoctial parameters

E f = [a f P1 f P2 f Q1 f Q2 f ]
T

. Note that P1 f and

P2 f will be zero since in this case the target orbit is a
circular one.

(3) Initialise the total ∆V and Time of flight to zero:

∆V = 0,

TOF = 0.
(23)

(4) Set Ep
− = E0 and Lcoast,a = L0.

(5) Initialise the mass of the IBS spacecraft:

mIBS = mIBS0. (24)

(6) While TOF < TOF.

(a) Compute the interpolated values for ∆Lt and rt .
Hence, calculate αa,αp,∆La, and∆Lp from (21).

(b) Compute

La
− = La − ∆La La

+ = La + ∆La,

Lp
− = Lp − ∆Lp Lp

+ = Lp + ∆Lp.
(25)

(c) Compute the current acceleration acting on the
spacecraft:

εIBS =
Ftot

mIBS
. (26)

(d) Compute the time of flight tcoast,p spent coasting
before perigee from Lcoast,p to L−p .

(e) Compute the Equinoctial parameters after the
thrusting perigee arc E+

p with an expression
analogous to (12).

(f) Compute the thrusting time at perigee tthrust,p

from (13). If (TOF−TOF) < tthrust,p, proceed to
step g. Otherwise, break the iterative sequence
and go to step 7.

(g) Update ∆V and TOF:

∆V = ∆V + εIBStthrust,p,

TOF = TOF + tcoast,p + tthrust,p.
(27)

(h) Update the IBS spacecraft mass:

mIBS = mIBS exp

(

−
εIBStthrust,p

Ispg0

)

. (28)

(i) Set Ea
− = Ep

+ and Lcoast,a = Lp
+.

(j) Compute the current acceleration on the space-
craft:

εIBS =
Ftot

mIBS
. (29)

(k) Compute the time of flight tcoast,a spent coasting
before apogee from Lcoast,a to L−a .

(l) Compute the equinoctial parameters after the
thrusting apogee arc E+

a as in (12).

(m) Compute the thrusting time at apogee tthrust,a

from (13). If (TOF−TOF) < tthrust,a, proceed to
step n. Otherwise, break the iterative sequence
and go to step 7.

(n) Update ∆V and TOF:

∆V = ∆V + εIBStthrust,a,

TOF = TOF + tcoast,a + tthrust,a.
(30)

(o) Update the IBS spacecraft mass:

mIBS = mIBS exp

(

−
εIBStthrust,a

Ispg0

)

. (31)

(p) Set Ep
− = Ea

+ and Lcoast,p = La
+.

(7) Back-track the point at which TOF = TOF and
compute the corresponding equinoctial parameters

E f = [a f P1 f P2 f Q1 f Q2 f ]T and update ∆V
accordingly.

(8) Compute the mismatch between the actual final
conditions and the target orbit:

Ceq

=

⎡

⎢

⎢

⎢

⎢

⎣

a f − a f

e f − e f =
√

P1 f
2 + P2 f

2 −

√

P1 f
2

+ P2 f
2

i f −i f =2

(

arctan
√

Q1 f
2 +Q2 f

2−arctan

√

Q1 f
2
+Q2 f

2

)

⎤

⎥

⎥

⎥

⎥

⎦

.

(32)

Summarizing, the TPBVP has been reduced to an opti-
misation problem in the form:

min
x

∆V

s.t. Ceq = 0

with x =
[

∆Lt1,∆Lt f , rt1, rt f ,βa,βp

]

.

(33)
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Table 2: Parameters of departure and arrival orbits.

a (km) e i (deg)

Departure 6892.24 0.031 0

Arrival 7478.16 0 10

This problem can be solved with a gradient-based opti-
misation algorithm like MATLAB’s fmincon. Note that the
time of flight TOF is specified a priori and, therefore, it
might occur that this duration is too short as to obtain the
change in the orbital parameters specified by the boundary
constraints. In this case, the problem is infeasible and the
optimisation is terminated after a maximum of 50 iterations
if the constraints are not satisfied.

In the following, an example of transfer from an elliptical
orbit with 300 km perigee altitude and eccentricity 0.031
(corresponding to the final orbit of a de-orbiting strategy)
to a circular orbit of 1100 km altitude (corresponding to the
orbit of the next debris in an hypothetical removal sequence).
Parameters of the two orbits are reported in Table 2. Note
that the total plane rotation ∆i in this case is 10 degrees. The
specified time of flight is 70 days.

First, it is considered the case of a coplanar transfer, that
is, ∆i = 0 will be computed. The optimisation problem
was solved with fmincon in 6 iterations and less than 10
seconds, returning a minimum ∆V cost of 0.301 km/s, with
1001 revolutions. Figures 7(a)–7(c) report, respectively, the
variation of semimajor axis, eccentricity, apogee and perigee
radii. One can see that a is monotonically increasing while
e on the other hand is monotonically decreasing to zero. In
order to reach the desired circular orbit, the perigee had to be
raised by almost 700 km while the apogee had to be raised by
some 400 km. This higher effort needed to raise the perigee
explains the larger amplitude of apogee thrusting arcs ∆La
compared to perigee ones ∆Lp (as shown in Figure 8(a)).
The azimuth thrust angles αp,αa (see Figure 8(b)) are both
positive since both the perigee and apogee are raised. βp and
βa are obviously zero because the transfer is coplanar and
thus ∆i is constantly null.

The same problem, but this time with the 10◦ plane
change specified in Table 2, returns a ∆V of 1.480 km/s with
1004 revolutions. The high cost of out plane manoeuvres
is well exemplified by the fact that the ∆V required is
more than four times larger than a coplanar transfer. As
can be seen in Figures 9(a), 9(b), and 9(d), semimajor
axis, eccentricity, apogee, and perigee radii show a similar
behaviour to the coplanar case while this time also the
inclination (as in Figure 9(c)) increases monotonically to 10
degrees. By analysing the control parameters in Figure 10(a)

one can see that this time the amplitude of the perigee arcs
is in general larger than the apogee ones, even if, like in the
coplanar case, the increase in perigee is much larger than
that of the apogee. This fact is explained by the fact that the
out-of-plane component at perigee βp is close to 90◦ (see
Figure 10(b)), meaning that the thrusting action at perigee
is mostly devoted to the plane change. In contrast, βa is
smaller in magnitude, around −70◦ (the opposite sign is due
to the fact that it is advantageous to invert the out-of-plane
component twice per revolution), therefore, with a higher in
plane component devoted to perigee raising.

4. Multiobjective Optimisation

The aim is now that of optimising the timing and sequence
of a removal mission by means of a single IBS spacecraft. It
is assumed that the spacecraft departs from an LEO with a
250 km semi-major axis altitude and coplanar with respect
to the first piece of debris in the sequence. The five target
objects have the orbital parameters and mass reported in
Table 3. The mass and orbital parameters have been chosen
arbitrarily while adhering to the observations in [9, 12] that
the most dangerous debris are located in LEO and generally
weigh a few hundred kilos. Different values for i and Ω are
also taken in order to consider the fact that the pieces of
debris, in principle, will be orbiting on different planes. Note
that TDo,min has been computed with the procedure detailed
in Section 3.1, and therefore, depends on the characteristics
of the IBS spacecraft. Moreover, it is also important to
remark that these are only best case figures values which
were computed with a minimum hypothetical wet mass of
350 kg (much lower than the actual launch mass of 1000 kg).
The surrogate models in (19) can in general consider wet
masses between 350 kg and 1000 kg, as shown, for example
in Figures 5(a) and 5(b).

Table 4 reports the relative inclination change between
the orbit planes of the 5 different objects, as computed from
(20).

The de-orbit sequence is defined by the order according
to which the five pieces of debris are removed, the time
needed to rendezvous with TRV and the time to de-orbit TDO

each of them. The order is defined by the integer vector:

ord =
[

i1 i2 i3 i4 i5
]

, (34)

which collects the indexes of the objects in the a single
debris removal sequence. Since there are five objects, there
are 120 possible de-orbit sequences. The other parameters
are contained in the vector x:

x =
[

TRV,i1 TDO,i1 TRV,i2 TDO,i2 TRV,i3 TDO,i3 TRV,i4 TDO,i4 TRV,i5 TDO,i5

]

, (35)

The performance of each sequence is assessed according to
its total ∆VTot cost and time of flight TOFTot. The latter is
computed simply as

TOFTot =
∑

x, (36)
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Figure 7: (a) Variation of semi-major axis, (b) eccentricity, (c) perigee, and apogee radiuses for multi-revolution orbital transfer (coplanar
case).

Table 3: Mass, initial orbit parameters, and minimum de-orbit time of the debris.

Debris nr. mass (kg) a (km) e i (deg) Ω (deg)
TDO,min

(days)

1 500 6828.16 0 1 65 2.67

2 120 7128.16 0 2 150 3.36

3 300 6978.16 0 −2 200 3.68

4 400 7478.16 0 −1 90 11.12

5 800 7178.16 0 0 45 12.25

The total ∆V cost is calculated sequentially by adding up the
costs of each of the ten phases (rendezsvous and de-orbit
for each debris). In particular, the cost of the rendezvous
∆VRV is computed by solving the optimisation problem
(33) and the de-orbit cost ∆VDO is calculated from the
surrogated model in (19). The final conditions after de-orbit

are also computed from (19) since they will be the departure
conditions for the following rendezvous step. The propellant
mass consumption is also taken into account and updated
throughout the entire sequence computation. In order to
have only a real-valued optimisation problem, it is chosen
here to treat each of the 120 sequences as a biobjective
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Figure 8: Control parameters for multi-revolution orbital transfer (coplanar case): (a) thrust arc length; (b) azimuth and elevation.

Table 4: Relative inclination change |∆i| (deg) between orbit planes
of the debris.

Debris
number

2 3 4 5

1 2.16 1.47 1.95 1

2 — 3.63 2.65 2

3 — — 2.52 2

4 — — — 1

optimisation problem with ord fixed and ten design variables
defined in x. Therefore, optimisation problem becomes

min
x∈D

[

TOFTot (x) ∆VTot(x)
]

. (37)

The domain D is defined by the upper and lower bound-
aries defined in Table 5. Note that the lower boundaries for
de-orbit time are set according to the sequence and the
minimum times reported in Table 3.

Each biobjective optimisation problem is solved with
MACS, a hybrid-memetic stochastic optimisation algorithm
[22]. MACS was run for 40000 function evaluations with
30 agents. Each of the 120 optimisation instances required
roughly 6 days of computational time to complete. The
outputs are represented by the Pareto optimal solutions
w.r.t. ∆VTot and ToFTot. Figure 11 to Figure 15 collect the
Pareto fronts according to the number of the first object in
the sequence, that is, the first index in the vector ord, as
introduced in (34). In each figure, each colour represents the
Pareto front corresponding to one of the 24 debris removal

sequences starting with the same object. For example,
Figure 11 includes the Pareto fronts of sequences 12345,
13245, 14235, 15234, 12435, and so forth.

From a visual inspection of the fronts, it is possible to
see that sequences starting from debris number 1 seem to
present the best ∆VTot-TOFTot combination, since for most of
them the ∆V cost is comprised between 2 and 2.5 km/s. The
corresponding times of flight are comprised roughly between
100 and 500 days. The sequences starting with debris nr. 3
and nr. 2 also have a good ∆V while those starting with nr.
4 and nr. 5 appear to be worst. By combining all the partial
Pareto fronts, one obtains the globally optimal solutions, as
reported in Figure 16.

One can see that the global Pareto front is composed
by individual solutions belonging exclusively to sequence
13452, which is, therefore, globally dominant. In order to
rank the degree of optimality of each sequence, it is proposed
to use an approach inspired by the performance metrics
for optimisation algorithms proposed in [23]. Define PFg
as the set of the points of the globally optimal Pareto front
while PFord is the set of points belonging to the Pareto front
corresponding to sequence ord. Define then the ranking
parameter of sequence ord as

Conv(ord) =
100

∑Nord

i=1 ming j∈PFg

((

fi − g j

)

/δ
)

Nord

fi ∈ PFord, ∀i = 1, . . . ,Nord.

(38)

Conv is given by averaging the distance of each point of
PFord from the closest point of PFg . The closest PFord is to
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Figure 9: (a) variation of semi-major axis, (b) eccentricity, (c) plane change, (d) perigee, and apogee radiuses for multirevolution orbital
transfer (10◦ plane change).

Table 5: Optimisation boundaries.

Parameter TRV,i1 TDO,i1 TRV,i2 TDO,i2 TRV,i3 TDO,i3 TRV,i4 TDO,i4 TRV,i5 TDO,i5

Lower
Bound

5 TDO,min,i1 5 TDO,min,i2 5 TDO,min,i3 5 TDO,min,i4 5 TDO,min,i5

Upper
Bound

100 50 100 50 100 50 100 50 100 50

PFg and the lower Conv will be. Table 6 reports the ranking
of the sequences according to Conv.

As one would expect, sequence 13452 has the lowest
Conv since it coincides with part of the global Pareto front.
Sequences 13524, 13542 and 12543 have also a low Conv

index and thus they are quite close to the globally optimal
solution, as shown in Figure 17. In general, as already noted
before, there is a strong dependence of the quality of the
sequence from its first element. One can see that the first
ranks are occupied mostly by sequences starting with debris
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Figure 10: Control parameters for multirevolution orbital transfer (10◦ plane change): (a) thrust arc length; (b) azimuth and elevation.
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Figure 11: Pareto fronts for sequences starting with debris nr. 1.

nr. 1 and 3, while those with nr. 4 and 5 have highest
Conv and, therefore, occupy predominantly the worst ones.
Those starting with nr. 2 are somewhat in the middle. The
fact that solutions with nr. 1 and 3 are privileged as first
elements in the sequence might be explained from the fact
that they lie in the two lowest orbits (see Table 3), and
therefore, are easier to reach (please keep in mind that for
the rendezvous with the first debris there is no plane change
since it is assumed to depart from a coplanar orbit). Another
interesting observation is that the best sequences tend to
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Figure 12: Pareto fronts for sequences starting with debris nr. 2.

avoid the largest plane changes. For example, in 13452 the
plane changes are 1.47◦, 2.52◦, 1◦, and 2◦. On the contrary,
in the worst one according to Conv, that is, 32415, they are
3.63◦, 2.65◦, 1.95◦, and 1◦.

Table 7 reports the minimum values for the performance
parameters associated to each sequence, that is, the extreme
points of the Pareto fronts. Similar considerations to those
made previously also apply to this case, with best values given
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Table 6: Ranking of the de-orbit sequences.

Rank ord Conv(ord) Rank ord Conv(ord) Rank ord Conv(ord)

1 13452 0 41 42513 21.18 81 52143 31.43

2 13542 5.14 42 15234 21.26 82 32145 31.62

3 13524 6.61 43 32451 21.46 83 54123 31.72

4 12453 6.78 44 52134 21.46 84 54132 31.83

5 12543 7.25 45 34521 21.52 85 42135 32.43

6 31542 9.41 46 35142 21.79 86 52314 32.70

7 31452 9.85 47 35214 21.99 87 42531 33.05

8 34512 11.59 48 34251 22.02 88 21435 33.96

9 24513 12.15 49 52431 22.04 89 54231 34.05

10 15243 12.16 50 45132 22.13 90 23145 34.31

11 12534 12.33 51 54312 23.39 91 23514 34.56

12 31254 12.37 52 21543 23.60 92 53421 34.67

13 15432 13.24 53 24315 23.62 93 25341 34.71

14 35124 13.87 54 41352 23.81 94 14325 34.91

15 13254 14.22 55 43152 23.90 95 41253 35.20

16 31524 14.36 56 12435 24.40 96 32514 35.42

17 15342 14.48 57 34125 24.53 97 14235 35.65

18 13425 16.30 58 15324 24.89 98 32541 36.42

19 24531 16.53 59 53142 24.90 99 51234 36.81

20 14523 16.65 60 23154 25.61 100 42153 36.91

21 14352 16.69 61 53124 25.67 101 51423 38.10

22 34152 17.16 62 51243 25.80 102 54321 38.25

23 25134 17.17 63 43512 25.83 103 45231 40.16

24 12354 17.47 64 31425 25.95 104 51432 40.98

25 14253 17.63 65 12345 25.96 105 41523 41.91

26 31245 17.81 66 21453 26.01 106 45321 44.72

27 15423 17.85 67 52413 26.09 107 32415 45.05

28 51342 17.88 68 51324 26.56 108 42351 45.38

29 14532 18.05 69 35241 26.68 109 43521 45.43

30 25413 18.07 70 25143 26.77 110 53214 45.72

31 54213 18.17 71 24153 26.93 111 43251 45.87

32 35412 18.48 72 34215 27.52 112 23541 46.11

33 21345 19.32 73 21534 28.00 113 52341 46.89

34 25431 19.43 74 32154 29.65 114 41325 47.14

35 13245 19.55 75 43125 30.17 115 41532 47.50

36 35421 19.56 76 23451 30.40 116 53241 48.31

37 25314 19.97 77 24351 30.97 117 23415 48.84

38 45213 19.98 78 45123 31.07 118 42315 48.85

39 45312 20.07 79 24135 31.18 119 43215 52.91

40 21354 20.07 80 53412 31.22 120 41235 65.42

by sequences starting with nr. 1 and 3 and the worst ones with
nr. 4 and 5.

Table 8 shows details about the best VTot solution, with
sequence 13452. Note that, in general, the ∆V cost of each
phase is relatively low, thus leading to the minimum total
cost of 1.98 km/s. Correspondingly, their duration is long,
meaning that slow but more efficient transfers are preferred.
This behaviour is also confirmed by the fact that the de-orbit

conditions have nonnegligible eccentricities, which means
also that the amplitude of the apogee thrusting arcs during
de-orbit (see Figure 2) is kept to a minimum. In this way,
propellant is devoted to lowering the perigee only with
minimum variation of the apogee altitude.

By analysing in more detail the ∆V cost breakdown, one
can see, for example, that the highest figures 0.476 km/s are
given by the rendezvous with debris nr. 4 from the de-orbit
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Table 7: Best ∆VTot and ToFTot for each sequence. Best values are in bold. Worst values are underlined.

ord
min(∆VTot)

(km/s)
min(ToFTot)

(days)
ord

min(∆VTot)
(km/s)

min(ToFTot)
(days)

ord
min(∆VTot)

(km/s)
min(TOFTot)

(days)

12345 2.30 108.17 24513 2.17 106.64 42315 2.53 116.99

12354 2.26 107.81 24531 2.26 105.94 42351 2.63 114.24

12435 2.27 106.25 25134 2.24 102.96 42513 2.28 104.48

12453 2.13 100.63 25143 2.41 109.53 42531 2.36 109.50

12534 2.18 105.81 25314 2.30 107.66 43125 2.42 109.26

12543 2.13 103.26 25341 2.49 107.22 43152 2.34 107.36

13245 2.22 102.72 25413 2.26 104.36 43215 2.67 116.73

13254 2.11 103.03 25431 2.27 107.97 43251 2.56 113.93

13425 2.15 103.12 31245 2.20 100.73 43512 2.43 108.12

13452 1.98 96.35 31254 2.10 103.46 43521 2.53 111.63

13524 2.07 101.03 31425 2.30 106.79 45123 2.46 106.61

13542 2.02 100.08 31452 2.12 97.810 45132 2.33 102.12

14235 2.45 115.10 31524 2.15 104.32 45213 2.25 102.99

14253 2.21 104.45 31542 2.12 100.52 45231 2.42 110.85

14325 2.42 112.87 32145 2.44 111.30 45312 2.27 101.57

14352 2.21 105.30 32154 2.35 107.73 45321 2.55 111.39

14523 2.25 107.07 32415 2.51 115.31 51234 2.49 110.19

14532 2.27 105.43 32451 2.33 107.85 51243 2.38 107.21

15234 2.29 107.13 32514 2.38 107.70 51324 2.36 106.79

15243 2.14 102.56 32541 2.40 109.14 51342 2.25 103.38

15324 2.27 106.71 34125 2.42 109.68 51423 2.53 113.27

15342 2.17 102.45 34152 2.33 104.78 51432 2.55 112.77

15423 2.26 109.45 34215 2.36 112.19 52134 2.29 106.29

15432 2.24 106.63 34251 2.30 107.17 52143 2.44 108.36

21345 2.31 103.98 34512 2.18 101.86 52314 2.46 116.72

21354 2.24 103.07 34521 2.24 104.80 52341 2.61 112.97

21435 2.58 115.15 35124 2.27 103.81 52413 2.30 106.23

21453 2.38 106.26 35142 2.30 105.62 52431 2.37 108.24

21534 2.40 113.76 35214 2.32 109.19 53124 2.29 103.32

21543 2.32 110.97 35241 2.37 111.19 53142 2.36 108.06

23145 2.47 113.45 35412 2.28 101.50 53214 2.60 114.17

23154 2.36 107.94 35421 2.29 108.91 53241 2.62 116.59

23415 2.63 114.64 41235 2.70 116.91 53412 2.45 106.79

23451 2.48 111.27 41253 2.47 107.83 53421 2.46 112.91

23514 2.55 114.91 41325 2.55 113.15 54123 2.49 112.69

23541 2.54 111.22 41352 2.37 108.25 54132 2.38 105.83

24135 2.42 107.59 41523 2.54 111.57 54213 2.24 104.67

24153 2.43 108.50 41532 2.57 112.14 54231 2.42 115.17

24315 2.38 110.73 42135 2.44 115.59 54312 2.22 107.06

24351 2.42 108.28 42153 2.47 108.75 54321 2.50 116.42

conditions of debris nr. 3. This high value is justified by the
fact that reaching the final orbit radius of 7478.16 requires
an apogee raise of 501 km from 6977 km and a perigee
raise of 800 km from 6678 km. At the same time, there is
also a rotation of the orbit plane of 2.52◦. By comparison,
the rendezvous with nr. 5 after the de-orbit of nr. 4 is
comparatively cheaper even if the radius of the target orbit is

still high. In this case, the perigee raise is 500 km while the
apogee on the other hand needs to be lowered by 252 km
from 7430 km since piece of debris nr. 4 is released on a
relatively eccentric orbit with e = 0.053. Plane rotation in
this case is only 1◦.

Table 9 reports details about the minimum ToFTot solu-
tion, again with sequence 13452. In contrast to what has been
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Table 8: Debris removal sequence and timing for minimum ∆VTot.

Phase
Final Keplerian elements Duration

(days)
∆V (km/s) mass (kg)

a (km) e i (deg) Ω (deg)

Departure 6628.16 0.010 1 65 — — 1000

Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11

Nr. 1 de-orbited 6752.69 0.011 1 65 22.06 0.043 993.21

Nr. 3 reached 6978.16 0 −2 200 88.10 0.239 985.17

Nr. 3 de-orbited 6826.44 0.022 −2 200 25.96 0.084 980.63

Nr. 4 reached 7478.16 0 −1 90 66.71 0.476 964.88

Nr. 4 de-orbited 7055.54 0.053 −1 90 34.33 0.221 951.69

Nr. 5 reached 7178.16 0 0 45 55.89 0.241 943.91

Nr. 5 de-orbited 6912.18 0.034 0 45 30.77 0.144 931.48

Nr. 2 reached 7128.16 0 2 150 56.98 0.297 922.12

Nr. 2 de-orbited 6901.39 0.032 2 150 33.99 0.124 917.24

Table 9: Debris removal sequence and timing for minimum TOFTot.

Phase
Final Keplerian elements Duration

(days)
∆V (km/s) Mass (kg)

a (km) e i (deg) Ω (deg)

Departure 6628.16 0.010 1 65 — — 1000

Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11

Nr. 1 de-orbited 6685.24 0.001 1 65 4.04 0.081 990.61

Nr. 3 reached 6978.16 0 −2 200 8.59 0.312 980.14

Nr. 3 de-orbited 6701.87 0.004 −2 200 6.29 0.154 971.87

Nr. 4 reached 7478.16 0 −1 90 14.79 0.664 950.17

Nr. 4 de-orbited 6789.06 0.016 −1 90 17.13 0.362 928.76

Nr. 5 reached 7178.16 0 0 45 7.99 0.281 919.92

Nr. 5 de-orbited 6715.72 0.006 0 45 15.9 0.252 898.39

Nr. 2 reached 7128.16 0 2 150 9.87 0.466 884.28

Nr. 2 de-orbited 6725.90 0.007 2 150 6.75 0.221 875.87
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Figure 13: Pareto fronts for sequences starting with debris nr. 3.
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Figure 14: Pareto fronts for sequences starting with debris nr. 4.
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Figure 15: Pareto fronts for sequences starting with debris nr. 5.
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Figure 16: Global Pareto front.

remarked for the previous case, here obviously the duration
of each phase is kept to a minimum. For example, values
for de-orbit times are very close to the minima reported
in Table 3. Conversely, ∆V costs are higher than those in
Table 8. Moreover, one can see that the de-orbit trajectories
are quasicircular, which suggests that the thrusting arcs are
not restricted to apogee passages but cover almost entirely
each revolution (i.e., with reference to Figure 2, La ≈ 180◦).

A final note is devoted to the assumption mentioned in
Section 3.2 that the delay due to phasing will be relatively
negligible compared to the total transfer time. First of all,
one has to consider that each de-orbit-rendezvous couplet is
actually a transfer between two circular orbits with different
altitude, phasing and orbit plane. In this sense, the related
transfer strategy first lowers the perigee down to 300 km;
then, in the second phase the apogee, and perigee altitudes
are adjusted to match those of the target orbit and at the
same time the orbit plane is rotated around the line of
nodes. In order to obtain a worst-case estimation of the delay,
it is chosen to decompose the latter into the contribution
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Figure 17: Pareto fronts corresponding to the four best sequences
according to Conv.
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determined by the inclination change twait,∆i and the one
given by in-plane phasing twait,∆φ. The former stems from
the assumption made in Section 3.2 that the perigee lowering
phase from the initial circular orbit is started such that the
lines of apses is perpendicular to the line of nodes defined
by the intersection of the orbit planes of the current piece of
debris and the next one in the sequence. The maximum wait
time is obtained when the line of nodes is aligned with the
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line of apses and is, therefore, given by half the orbit period
of the departure circular orbit:

max
(

twait,∆i

)

= πn0, (39)

where n0 is the angular velocity of the initial circular orbit.
After the line of apses is properly aligned in order to reach
the target orbit plane, there remains, however, the problem
of in-plane phasing. As a first step, the case of a quasicircular
transfer is considered, noting that this is actually the case
for minimum ∆V sequences as the one reported in Table 8.
If one considers the case of a transfer between two circular
coplanar orbits, the phasing of the departure and arrival ones
can by expressed as

φ0 = n0twait,∆φ + ∆φtransf(ttransf),

φ f = n f

(

twait,∆φ + ttransf

)

+ ∆φ0,
(40)

where n is the angular velocity of the current orbit, n f is
the one of the arrival orbit and is introducing along the
transfer in order to match the phase of the arrival orbit. ∆φ0

is the nominal phase difference between the two orbits at
time of departure, computed simply from the initial and final
argument of perigee and true anomaly:

∆φ0 =
(

ω f − ω0

)

+
(

θ f − θ0

)

, (41)

φ0 and φ f can differ by multiples of 2π, therefore, by
combining (40):

twait,∆φ

(

n− n f

)

= ∆φ0 + ∆φtransf + n f ttransf + 2kπ, k ∈ Z.

(42)

One can see that, once the transfer type is defined, the
left side of (42) is constant and since k is an arbitrary integer,
one can write

twait,∆φ =
∆φTot

∣

∣

∣n− n f

∣

∣

∣

∆φTot ∈ [0 2π], (43)

and thus the worst-case value for the delay twait is obtained
obviously for ∆φTot = 2π. Since we are dealing with a LT
transfer in which the semimajor axis is continuously varied,
also the angular velocity n at a certain point of the transfer is
varying accordingly. Also, since it is assumed that the transfer
is quasicircular, one can insert a coasting arc of duration
twait,∆φ at the point in which the ratio 1/|n − n f | (which
depends on the radii of the current and target orbits) is at
its lowest. This condition typically occurs when the end of
the de-orbit phase is reached.

If the transfer type is not quasicircular but involves
spirals with nonnegligible eccentricity, then an arbitrary
delay cannot be introduced without altering the position of
the lines of nodes. However, it is still possible to introduce
an arbitrary number of coasting arcs of duration equal
to the orbital period of the osculating orbit, that is, one
full revolution. The phase variation obtained by one such
revolution is

∆φ2π(n) =
2π
∣

∣

∣n− n f

∣

∣

∣

n
. (44)

Note that, given the orbits involved in the transfer, ∆φ2π

will be generally a fraction of 2π. If a worst-case phase
variation ∆φTot = 2π is to be achieved, the following simple
strategy can be used to estimate the corresponding delay:
first, k coasting revolutions are performed when the quantity
|n− n f | is maximum. In this sense, one can write:

k =

⌊

∆φ2π(nk)

2π

⌋

,

nk = arg min
n

∆φ2π(n).

(45)

This will bring the phase difference to a quantity which
is lower than the maximum phase variation per revolution
achievable, leaving a residual phase difference:

∆φres = 2π − k∆φ2π(nk). (46)

A last coasting revolution is inserted to delete the residual
when the semi-major axis which gives the proper angular
velocity nres is reached:

nres = arg
(

∆φ2π(n) = ∆φres

)

. (47)

The total delay introduced in the worst case is, therefore,
given by the sum of the periods of the coasting revolutions:

max
(

twait,∆φ

)

= 2π

(

k

nk
+

1

nres

)

. (48)

By applying the above strategies to the minimum ∆V and
minimum time of flight sequences, we can obtain a worst-
case estimation of the additional time introduced by phasing.
The maximum delay introduced by the apses alignment
in both cases would be 0.14 days. For the minimum time
of flight case in Table 9 (i.e., quasicircular sequence), the
worst-case delay due to ∆φ is 2.68 days, leading to a total
delay of 2.82 days. This value equates to a 2.93% increase
compared to the nominal time of flight of 96.35 days, which
can be considered acceptable for a preliminary study. On the
contrary, in the case of minimum time of flight sequence
as in Table 8, the delay due to ∆φ would be 4.58 days, and
the total delay 4.72 days, corresponding to a 1.12% increase
on the nominal time of flight of 419.79 days. For these
reasons, neglecting the phasing appears to be an acceptable
approximation in this preliminary study.

5. Conclusions

This work presented a novel computational approach for the
preliminary design of multispiral trajectories. The approach
was applied to the design of an orbit debris removal mission
by means of an IBS spacecraft. The models proposed here for
the computation of low-thrust many-revolution transfers,
allowed for a considerable reduction in control parameters
and at the same time for a fast propagation of low-thrust
motions thanks to the analytical propagation with FPET.
Thanks to the reduced computational cost for the evaluation
of a single fetch and deorbit operation, a multiobjective
optimisation problem could be solved in which thousands
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of different debris removal sequences were examined to
find the optimal ones with respect to ∆V cost and total
removal duration. As a result, a considerable number of
optimal candidate solutions were found. Analysis of the
results showed that the particular removal sequence 13452
is globally optimal. A ranking criterion was proposed to
grade all the candidate sequences and identify those that are
suboptimal. From the analysis, it was found that there is a
dependency of the quality of the sequence on the first target
object. Among the open issues for future developments, there
is, for example, the possibility of integrating the problem
of the sequence choice directly into a single multi-objective
optimisation instance, thus obtaining a mixed continuous
and discrete optimisation problem. This can be crucial when
missions with more than 5–10 debris are considered since the
decomposition in fixed-sequence continuous optimisation
problems becomes less computationally tractable.

Future work will deal with comparing the proposed
approach with similar methods like orbit averaging. In
addition, although the proposed method has been applied to
the special case of a debris removal mission, it is suitable to be
extended and applied to more general trajectory design prob-
lems which involve many-revolution transfers from elliptical
to circular or from elliptical to elliptical orbits. Current
developments are incorporating gravity perturbations in
the analytical solution to allow the computation of more
accurate solutions.

Appendix

In the following, the first-order solution for perturbed
Keplerian motion is reported (see also [19, 21]). The
equinoctial elements at a longitude L f with respect to a
reference longitude L0 are given by a zero-order term plus
a first-order term multiplied by the magnitude ε of the
perturbing acceleration:

a
(

L f

)

= a0(L0) + ε a1

(

L0,∆L,α,β
)

,

P1

(

L f

)

= P10(L0) + ε P11

(

L0,∆L,α,β
)

,

P2

(

L f

)

= P20(L0) + ε P21

(

L0,∆L,α,β
)

,

Q1

(

L f

)

= Q10(L0) + ε Q11

(

L0,∆L,α,β
)

,

Q2

(

L f

)

= Q20(L0) + ε Q21

(

L0,∆L,α,β
)

,

t
(

L f

)

= t00(L0,∆L) + ε t11

(

L0,∆L,α,β
)

,

(A.1)

where

∆L = L f − L0, (A.2)

α and β are, respectively, thrust azimuth and elevation in the
radial-transverse reference frame as in Figure 18.

For a,P1,P2,Q1, and Q2 the zero-order term is simply the
value at L0. For the time instead, this is given by the reference

time t0 at L0 plus the variation due to unperturbed Keplerian
motion, where I12 is an integral in L as reported in (A.5).

a0(L0) = a0,

P10(L0) = P10,

P20(L0) = P20,

Q10(L0) = Q10,

Q20(L0) = Q20,

t00

(

L0,L f

)

= t0 + h0
3I12.

(A.3)

The first-order terms are

a1 = 2

(

h0a0

µ

)2

cosβ(cosα(P20Is2 − P10Ic2) + sinαI11),

P11 =
h0

4

µ3

(

cosβ(− cosαIc2 + sinα(P10I13 + Is2 + Is3))

+ sinβP20(−Q10Ic3 + Q20Is3)
)

,

P21 =
h0

4

µ3

(

cosβ(cosαIs2 + sinα(P20I13 + Ic2 + Ic3))

+ sinβP10(Q10Ic3 −Q20Is3)
)

,

Q11 = 2
h0

4

µ3
sinβIs3

(

1 + Q10
2 + Q20

2
)

,

Q21 = 2
h0

4

µ3
sinβIc3

(

1 + Q10
2 + Q20

2
)

,

t1 =

√

a0

(

1− P10
2 − P20

2
)

2

×
(

Ic3
(

2a0

(

−3P10P20P1 + P2

(

2P10
2 − P20

2 − 2
))

−3a1P20

(

P10
2 + P20

2 − 1
))

+ Is3
(

2a0

(

−3P10P20P2 + P1

(

2P20
2 − P10

2 − 2
))

−3a1P10

(

P10
2 + P20

2 − 1
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−3I13

(

2a0(P10P1 + P20P2) + a1

(

P10
2 + P20

2 − 1
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.

(A.4)

The terms I11, I12, I13, Ic2, Ic3, Is2, Is3 are integrals in L, as

I11

(

L f

)

=

∫ L f

L0

1

1 + P10 sinL + P20 cosL
dL,

I12

(

L f

)

=

∫ L f

L0

1

(1 + P10 sinL + P20 cosL)2 dL,

I13

(

L f

)

=

∫ L f

L0

1

(1 + P10 sinL + P20 cosL)3 dL,

Ic2
(

L f

)

=

∫ L f

L0

cosL

(1 + P10 sinL + P20 cosL)2 dL,

Ic3
(

L f

)

=

∫ L f

L0

cosL

(1 + P10 sinL + P20 cosL)3 dL,

Is2
(

L f

)

=

∫ L f

L0

sinL

(1 + P10 sinL + P20 cosL)2 dL,

Is3
(

L f

)

=

∫ L f

L0

sinL

(1 + P10 sinL + P20 cosL)3 dL.

(A.5)
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Finally (A.6) report the complete analytical expressions for
these integrals

I11 = −

2atanh

(

(P10 − (P20 − 1) tan(L/2))/
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∣

∣
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