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1 Introduction

Abstract

JML is a behavioral interface specification language tailored to Java(TM). Be-
sides pre- and postconditions, it also allows assertions to be intermixed with
Java code; these aid verification and debugging. JML is designed to be used
by working software engineers; to do this it follows Eiffel in using Java expres-
sions in assertions. JML combines this idea from Eiffel with the model-based
approach to specifications, typified by VDM and Larch, which results in greater
expressiveness. Other expressiveness advantages over Eiffel include quantifiers,
specification-only variables, and frame conditions.

This paper discusses the goals of JML, the overall approach, and describes the
basic features of the language through examples. It is intended for readers who
have some familiarity with both Java and behavioral specification using pre-
and postconditions.

JML stands for “Java Modeling Language” [Leavens-Baker-Ruby99]. JML is a behavioral
interface specification language (BISL) [Wing87] designed to specify Java [Arnold-Gosling-
Holmes00] [Gosling-etal00] modules. Java modules are classes and interfaces.

The main goal of our research on JML is to better understand how to make BISLs (and
BISL tools) that are practical and effective for production software environments. In order
to understand this goal, and the more detailed discussion of our goals for JML, it helps
to define more precisely what a behavioral interface specification is. After doing this, we
return to describing the goals of JML, and then give a brief overview of the tool support
for JML and an outline of the rest of the paper.

1.1 Behavioral Interface Specification

As a BISL, JML describes two important aspects of a Java module:

• its interface, which consists of the names and static information found in Java decla-
rations, and

• its behavior, which tells how the module acts when used.

BISLs are inherently language-specific [Wing87], because they describe interface details
for clients written in a specific programming language, For example, a BISL tailored to
C++, such as Larch/C++ [Leavens97c], describes how to use a module in a C++ program. A
Larch/C++ specification cannot be implemented correctly in Java, and a JML specification
cannot be correctly implemented in C++ (except for methods that are specified as native
code).

JML specifications can either be written in separate files or as annotations in Java
code files. To a Java compiler such annotations are comments that are ignored [Luckham-
vonHenke85] [Luckham-etal87] [Rosenblum95] [Tan94] [Tan95]. This allows JML specifi-
cations, such as the specification below, to be embedded in Java code files. Consider the
following simple example of a behavioral interface specification in JML, written as annota-
tions in a Java code file, ‘IntMathOps.java’.
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public class IntMathOps { // 1
// 2

/*@ public normal_behavior // 3
@ requires y >= 0; // 4
@ assignable \nothing; // 5
@ ensures 0 <= \result // 6
@ && \result * \result <= y // 7
@ && y < ((\result + 1) * (\result + 1)); // 8
@*/ // 9

public static int isqrt(int y) //10
{ //11
return (int) Math.sqrt(y); //12

} //13
} //14

The specification above describes a Java class, IntMathOps that contains one static
method (function member) named isqrt. The single-line comments to the far right (which
start with //) give the line numbers in this specification; they are ignored by both Java and
JML. Comments with an immediately following at-sign, //@, or, as on lines 3–10, C-style
comments starting with /*@, are annotations. Annotations are treated as comments by a
Java compiler, but JML reads the text of an annotation. The text of an annotation is either
the remainder of a line following //@ or the characters between the annotation markers /*@
and @*/. In the second form, at-signs (@) at the beginning of lines are ignored; they can be
used to help the reader see the extent of an annotation.

In the above specification, interface information is declared in lines 1 and 11. Line 1
declares a class named IntMathOps, and line 10 declares a method named isqrt. Note that
all of Java’s declaration syntax is allowed in JML, including, on lines 1 and 11, that the
names declared are public, that the method is static (line 11), that its return type is int
(line 11), and that it takes one int argument.

Such interface declarations must be found in a Java module that correctly implements
this specification. This is automatically the case in the file ‘IntMathOps.java’ shown
above, since that file also contains the implementation. In fact, when Java annotations are
embedded in ‘.java’ files, the interface specification is the actual Java source code.

To be correct, an implementation must have both the specified interface and the specified
behavior. In the above specification, the behavioral information is specified in the anno-
tation text on lines 3–10.1 The keywords public normal_behavior are used to say that
the specification is intended for clients (hence “public”), and that when the precondition
is satisfied a call must return normally, without throwing an exception (hence “normal”).
In such a public specification, only names with public visibility may be used.2 On line

1 In JML method specifications must be placed either before the method’s header, as shown above, or
between the method’s header its body. In this document, we always place the specification before the
method header. This convention is followed by many Java tools, in particular by Javadoc; It has the
advantage of working in all cases, even when the method has no body.

2 In a protected specification, both public and protected identifiers can be used. In a specification with
default (i.e., no) visibility specified, which corresponds to Java’s default visibility, public and protected
identifiers can be used, as well as identifiers from the same package with default visibility. A private
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4 is a precondition, which follows the keyword requires.3 On line 5 is frame condition,
which says that this method, when called, does not assign to any locations. On lines 6–9
is a postcondition, which follows the keyword ensures.4 The precondition says what must
be true about the arguments (and other parts of the state); if the precondition is true,
then the method must terminate normally in a state that satisfies the postcondition. This
is a contract between the caller of the method and the implementor [Hoare69] [Jones90]
[Jonkers91] [Guttag-Horning93] [Meyer92a] [Meyer97] [Morgan94]. The caller is obligated
to make the precondition true, and gets the benefit of having the postcondition then be
satisfied. The implementor gets the benefit of being able to assume the precondition, and
is obligated to make the postcondition true in that case.

In general, pre- and postconditions in JML are written using an extended form of Java
expressions. In this case, the only extension visible is the keyword \result, which is used
in the postcondition to denote the value returned by the method. The type of \result
is the return type of the method; for example, the type of \result in isqrt is int. The
postcondition says that the result is an integer approximation to the square root of y. The
first conjuncts on line 6, 0 <= \result say that the result is non-negative. The second
conjunct, \result <= y, also on line 6, is needed to ensure that the approximation does
not simply result from overflow; overflow which can happen in Java when multiplying int
values.5 The third conjunct, on line 7, says that the result squared is no larger than the
argument, y. The fourth conjunct, on lines 8–9, is an implication; it has two expressions
connected by ==>, which means implication in JML. This implication says that if the result
plus one squared is non-negative, then the result plus one squared is strictly larger than y.
(The result plus one squared will become negative if the result is larger than 46340, due
to integer overflow.) Note that the behavioral specification does not give an algorithm for
finding the square root.

Method specifications may also be written in Java’s documentation comments. The
following is an example. The part that JML sees is enclosed within the HTML “tags”
<jml> and </jml>.6 As in this example, one can use surrounding tags <pre> and </pre>
to tell javadoc to ignore what JML sees, and to leave the formatting of it alone. The <pre>
and </pre> tags are not required by JML tools (including jmldoc, which does a better job
of formatting specifications than does javadoc).

specification can use any identifiers that are available. The privacy level of a method specification
cannot allow more access than the method being specified. Thus a public method may have a private
specification, but a private method may not have a public specification.

3 The keyword pre can also be used as a synonym for requires.
4 The keyword post can also be used as a synonym for ensures.
5 This part of the specification is especially tricky because Java integer arithmetic, which JML uses for

expressions of type int, considers one plus the maximum integer to be the minimum integer. Patrice
Chalin pointed out that an earlier version of this specification there were overflow problems [Chalin02].
This specification deals with these problems by limiting the result to be a positive integer and by the
implication on lines 8–9.

6 Since HTML tags are not case sensitive, in this one place JML is also not case sensitive. That is, the
syntax also permits the tags <JML>, </JML>. For compatibility with ESC/Java, JML also supports the
tags <esc>, </esc>, <ESC>, and </ESC>.
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public class IntMathOps4 {

/** Integer square root function.
* @param y the number to take the root of
* @return an integer approximating
* the positive square root of y
* <pre><jml>
* public normal_behavior
* requires y >= 0;
* assignable \nothing;
* ensures 0 <= \result
* && \result * \result <= y
* && y < ((\result + 1) * (\result + 1));
* </jml></pre>
**/
public static int isqrt(int y)
{

return (int) Math.sqrt(y);
}

}

Because we expect most of our users to write specifications in Java code files, most of our
examples will be given as annotations in ‘.java’ files as in the specifications above. However,
it is possible to use JML to write documentation in separate, non-Java files, such as the file
‘IntMathOps2.jml-refined’ below. Since these files are not Java code files, JML requires
the user to omit the code for concrete methods in such a file (except that code for “model”
methods can be present, see Section 2.3.1 [Purity], page 29). The specification below shows
how this is done, using a semicolon (;), as in a Java abstract method declaration.

//@ model import org.jmlspecs.models.*;

public class IntMathOps2 {

/*@ public normal_behavior
@ requires y >= 0;
@ assignable \nothing;
@ ensures -y <= \result && \result <= y;
@ ensures \result * \result <= y;
@ // temporary fix necessary only because the implementation of \bigint in the RAC is not fully supported
@ // ensures y < (JMLMath.abs(\result) + 1) * (JMLMath.abs(\result) + 1);
@ ensures y < (Math.abs(\result) + 1) * (Math.abs(\result) + 1);
@*/
public static int isqrt(int y);

}
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Besides files with suffixes of ‘.jml-refined’ or ‘.jml’, JML also works with files with
the suffixes ‘.spec’ and ‘.spec-refined’. All these files use Java’s syntax, and one must
use annotation markers just as in a ‘.java’ file. However, since these kinds of files files are
not Java files, in such a file one must also omit the code for concrete, non-model methods.

The above specification also demonstrates that ensures clauses can be repeated in a
specification. In IntMathOps2’s specification of isqrt, there are three ensures clauses; all
of them must be satisfied. Thus the meaning is the same as the conjunction of all of the
postconditions specified in the individual ensures clauses. This specification is also more
underspecified than the specifications given previously, as it allows negative numbers to be
returned as results.

The above specification would be implemented in the file ‘IntMathOps2.java’, which is
shown below. This file contains a refine clause, which tells the reader of the ‘.java’ file
what is being refined and the file in which to find its specification.

//@ refine "IntMathOps2.jml-refined";

//@ model import org.jmlspecs.models.*;

public class IntMathOps2 {

public static int isqrt(int y)
{

return (int) Math.sqrt(y);
}

}

To summarize, a behavioral interface specification describes both the interface details of a
module, and its behavior. The interface details are written in the syntax of the programming
language; thus JML uses the Java declaration syntax. The behavioral specification uses pre-
and postconditions.

1.2 Lightweight Specifications

Although we find it best to illustrate JML’s features in this paper using specifications
that are detailed and complete, one can use JML to write less detailed specifications. In
particular, one can use JML to write “lightweight” specifications (as in ESC/Java). The
syntax of JML allows one to write specifications that consist of individual clauses, so that
one can say just what is desired. More precisely, a lightweight specification is one that
does not use a behavior keyword (like normal_behavior). By way of contrast, we call a
specification a heavyweight specification if it uses one of the behavior keywords.

For example, one might wish to specify just that isqrt should be called only on positive
arguments, but not want to be bothered with saying anything formal about the locations
that can be assigned to by the method or about the result. This could be done as shown
below. Notice that the only specification given below is a single requires clause. Since the
specification of isqrt has no behavior keyword, it is a lightweight specification.



Chapter 1: Introduction 6

public class IntMathOps3 {

//@ requires y >= 0;
public static int isqrt(int y)
{
return (int) Math.sqrt(y);

}
}

What is the access restriction, or privacy level, of such a lightweight specification? The
syntax for lightweight specifications does not have a place to specify the privacy level, so
JML assumes that such a lightweight specification has the same level of visibility as the
method itself. (Thus, the specification below is implicitly public.) What about the omitted
parts of the specification, such as the ensures clause? JML assumes nothing about these.
In the example below when the precondition is met, an implementation might either signal
an exception or terminate normally, so this specification technically allows exceptions to be
thrown. However, the gain in brevity often outweighs the need for this level of precision.

JML has a semantics that allows most clauses to be sensibly omitted from a specification.
When the requires clause is omitted, for example, it means that no requirements are placed
on the caller. When the assignable clause is omitted, it means that nothing is promised
about what locations may not be assigned to by the method; that is, the method may
assign to all locations that it can otherwise legally assign to. When the ensures clause is
omitted, it means that nothing is promised about the state resulting from a method call.
See Appendix A [Specification Case Defaults], page 61, for the default meanings of various
other clauses.

1.3 Goals

As mentioned above, the main goal of our research is to better understand how to develop
BISLs (and BISL tools) that are practical and effective. We are concerned with both
technical requirements and with other factors such as training and documentation, although
in the rest of this paper we will only be concerned with technical requirements for the BISL
itself. The practicality and effectiveness of JML will be judged by how well it can document
reusable class libraries, frameworks, and Application Programming Interfaces (APIs).

We believe that to meet the overall goal of practical and effective behavioral interface
specification, JML must meet the following subsidiary goals.
• JML must be able to document the interfaces and behavior of existing software, re-

gardless of the analysis and design methods used to create it.
If JML were limited to only handling certain Java features, certain kinds of software, or
software designed according to certain analysis and design methods, then some APIs
would not be amenable to documentation using JML. This would mean that some
existing software could not be documented using JML. Since the effort put into writing
such documentation will have a proportionally larger payoff for software that is more
widely reused, it is important to be able to document existing software components.
(However, it should be noted that we make some exceptions to this goal. One is that
JML requires that all subtypes be behavioral subtypes [Dhara-Leavens96] [Leavens97c]
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[Wing87] of their supertypes. This is done because otherwise one cannot reason mod-
ularly about programs that use subtyping and dynamic dispatch. Another is that we
specify Object’s method equals as a pure method, which prohibits even benevolent
side effects in any equals method that takes an Object as an argument. This is done
to permit purity checking for collection classes that contain objects as members and
use equals to compare them, as in the collection types found in java.util.)

• The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training.
A preliminary study by Finney [Finney96] indicates that graphic mathematical nota-
tions, such as those found in Z [Hayes93] [Spivey92] [Woodcock-Davies96] may make
such specifications hard to read, even for programmers trained in the notation. This
accords with our experience in teaching formal specification notations to programmers.
Hence, our strategy for meeting this goal has been to shun most special-purpose math-
ematical notations in favor of Java’s own expression syntax.

• The language must be capable of being given a rigorous, formal semantics, and must
also be amenable to tool support.
This goal also helps ensure that the specification language does not suffer from logical
problems, which would make it less useful for static analysis, prototyping, and testing
tools.

We also have in mind a long range goal of a specification compiler, that would produce
prototypes from specifications that happen to be constructive [Wahls-Leavens-Baker00].

Our partners at Compaq SRC and the University of Nijmegen have other goals in mind.
At Compaq SRC, the goal is to make static analysis tools for Java programs that can help
detect bugs. At the University of Nijmegen, the goal is to be able to do full program
verification on Java programs.

As a general strategy for achieving these goals, we have tried to blend the Eiffel
[Meyer92a] [Meyer92b] [Meyer97], Larch [Wing87] [Wing90a] [Guttag-Horning93] [Leav-
ensLarchFAQ], and refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94]
[Morgan94] approaches to specification. From Eiffel we have taken the idea that assertions
can be written in a language that is based on Java expressions. We also adapt the “old”
notation from Eiffel, which appears in JML as \old, instead of the Larch-style annotation
of names with state functions. However, Eiffel specifications, as written by Meyer, are
typically not as detailed as model-based specifications written, for example, in Larch
BISLs or in VDM-SL [Fitzgerald-Larsen98] [ISO96] [Jones90]. Hence, we have combined
these approaches, by using syntactic ideas from Eiffel and semantic ideas from model-based
specification languages.

JML also has some other differences from Eiffel (and its cousins Sather and Sather-K).
The most important is the concept of specification-only declarations. These declarations
allow more abstract and exact specifications of behavior than is typically done in Eiffel;
they allow one to write specifications that are similar to the spirit of VDM or Larch BISLs.
A major difference is that we have extended the syntax of Java expressions with quantifiers
and other constructs that are needed for logical expressiveness, but which are not always
executable. Finally, we ban side-effects and other problematic features of code in assertions.

On the other hand, our experience with Larch/C++ has taught us to adapt the model-
based approach in two ways, with the aim of making it more practical and easy to learn.
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The first adaptation is again the use of specification-only model variables. An object will
thus have (in general) several such model fields, which are used only for the purpose of
describing, abstractly, the values of objects. This simplifies the use of JML, as compared
with most Larch BISLs, since specifiers (and their readers) hardly ever need to know about
algebraic-style specification. It also makes designing a model for a Java class or interface
similar, in some respects, to designing an implementation data structure in Java. We hope
that this similarity will make the specification language easier to understand. (This kind of
model also has some technical advantages that will be described below.)

The second adaptation is hiding the details of mathematical modeling behind a facade
of Java classes. In the Larch approach to behavioral interface specification [Wing87], the
mathematical notation used in assertions is presented directly to the specifier. This allows
the same mathematical notation to be used in many different specification languages. How-
ever, it also means that the user of such a specification language has to learn a notation for
assertions that is different than their programming language’s notation for expressions. In
JML we use a compromise approach, hiding these details behind Java classes. These classes
have objects with many “pure” methods, in the sense that they do not use side-effects (at
least not in any observable way). Such classes are intended to present the underlying math-
ematical concepts using Java syntax. Besides insulating the user of JML from the details
of the mathematical notation, this compromise approach also insulates the design of JML
from the details of the mathematical logic used for theorem proving.

We have generally taken features wholesale from the refinement calculus [Back88] [Back-
vonWright98] [Morgan-Vickers94] [Morgan94]. Our adaptation of it consists in blending it
with the idea of interface specification and adding features for object-oriented programming.
We are using the adaptation of the refinement calculus by Büchi and Weck [Buechi-Weck00],
which helps in specifying callbacks. However, since the refinement calculus is mostly needed
for advanced specifications, in the remainder of this paper we do not discuss the JML
features related to refinement, such as model programs.

1.4 Tool Support

Our partners at Compaq SRC have built a tool, ESC/Java, that does static analysis for
Java programs [Leino-etal00]. ESC/Java uses a subset of the JML specification syntax, to
help detect bugs in Java code. At the University of Nijmegen the LOOP tool [Huisman01]
[Jacobs-etal98] is being adapted to use JML as its input language. This tool would gen-
erate verification conditions that could be checked using a theorem prover such as PVS or
Isabelle/HOL. At the Massachusetts Institute of Technology (MIT), the Daikon invariant
detector project [Ernst-etal01] is using a subset of JML to record invariants detected by
runs of a program. Recent work uses ESC/Java to validate the invariants that are found.

In the rest of the section we concentrate on the tool support found in the JML release
from Iowa State. Iowa State’s JML release has tool support for: static type checking of
specifications, run-time assertion checking, generation of HTML pages, and generation of
unit testing harnesses. Use a web browser on the ‘JML.html’ file in the Iowa State JML
release to access more detailed documentation on these tools.

1.4.1 Type Checking Specifications

Details on how to run the JML checker can be found in its manual page, which is part of
the JML release. Here we only indicate the most basic uses of the checker. Running the
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checker with filenames as arguments will perform type checking on all the specifications
contained in the given files. For example, one could check the specifications in the file
‘UnboundedStack.java’ by executing the following command.

jml UnboundedStack.java

One can also pass several files to the checker. For example, the following shows a handy
pattern to catch all of the JML files in the current directory.

jml *.*j* *.*spec*

One can also pass directories to the JML checker, for example the following will check
all the specifications in the current directory.

jml .

By default, the checker does not recurse into subdirectories, but this can be changed
by using the -R option. For example, the following checks specifications in the current
directory and all subdirectories.

jml -R .

The checker recognizes several filename suffixes. The following are considered to be
“active” suffixes: ‘.refines-java’, ‘.refines-spec’, ‘.refines-jml’, ‘.java’, ‘.spec’,
and ‘.jml’; There are also three “passive” suffixes: ‘.java-refined’, ‘.spec-refined’,
and ‘.jml-refined’. File with passive suffixes can be used in refinements (see Section 1.1
[Behavioral Interface Specification], page 1) but should not normally be passed explicitly
to the checker on its command line. Graphical user interface tools for JML should, by
default, only present the active suffixes for selection. Among files in a directory with the
same prefix, but with different active suffixes, the one whose suffix appears first in the list
of active suffixes above should be considered primary by such a tool.

1.4.2 Generating HTML Documentation

To generate HTML documentation that can be browsed on the web, one uses the jmldoc
tool.7 This tool is a replacement for javadoc that understands JML specifications. In
addition to generating web pages the JML annotated Java and JML files, jmldoc also
generates the indexes and other HTML files that surround these and provide access, in the
same way that javadoc does.

For example, here is how we use jmldoc to generate the HTML pages for the MultiJava
project.

rm -fr $HOME/MJ/javadocs
jmldoc -Q -private -d $HOME/MJ/javadocs \
-link file:/cygwin/usr/local/jdk1.4/docs/api \
-link file:/cygwin/usr/local/antlr/javadocs \
--sourcepath $HOME/MJ \
org.multijava.dis org.multijava.javadoc org.multijava.mjc \
org.multijava.mjdoc org.multijava.util org.multijava.util.backend \
org.multijava.util.classfile org.multijava.util.compiler \
org.multijava.util.jperf org.multijava.util.lexgen \
org.multijava.util.msggen org.multijava.util.optgen \
org.multijava.util.optimize org.multijava.util.testing

7 The jmldoc tool is generously provided by David Cok; thanks David!.
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The options used in the above invocation of jmldoc make jmldoc be quiet (-Q), document
all members (including private ones) of classes and interfaces (-private), write the HTML
files relative to ‘$HOME/MJ/javadocs’ (-d), link to existing HTML files for the JDK and for
ANTLR (-link), and find listed packages relative to ‘$HOME/MJ’ (--sourcepath). More
details on running jmldoc are available from its manual page, which is part of the JML
release.

1.4.3 Run Time Assertion Checking

The JML runtime assertion checking compiler is called jmlc. It type checks assertions (so
there is no need to run jml separately), and then generates a class file with the executable
parts of the specified assertions, invariants, preconditions, and postconditions (and other
JML constructs) checked at run-time. Its basic usage is similar to a Java compiler, as shown
in the following example.

jmlc TestUnboundedStack.java UnboundedStack.java

The script jmlrac runs the resulting code with a CLASSPATH that includes a JAR file
containing code needed for run-time assertion checking.

jmlrac org.jmlspecs.samples.stacks.TestUnboundedStack

More details on invoking jmlc and jmlrac are available from their manual pages, which
are available in the JML release. Details on the implementation of jmlc are found in a
paper by Cheon and Leavens [Cheon-Leavens02b].

1.4.4 Unit Testing with JML

The run time assertion checker is also integrated with a tool, jmlunit that can write
out a JUnit [Beck-Gamma98] test oracle class for given Java files. For example, to
generate the classes UnboundedStack_JML_Test and UnboundedStack_JML_TestData from
UnboundedStack, one would execute the following.

jmlunit UnboundedStack.java

The file ‘UnboundedStack_JML_Test.java’ will then contain code for an abstract class
to drive the tests. This class uses the runtime assertion checker to decide test success or
failure. (Tests are only as good as the quality of the specifications; hence the specifications
must be reasonably complete to permit reasonably complete testing.)

The file ‘UnboundedStack_JML_TestData.java’ will contain code for a concrete subclass
of UnboundedStack_JML_Test that can be used to fill in test data for such testing. You
fill in the test data in the code for this subclass, and then run the test using the script
jml-junit, as in the following example.

jml-junit org.jmlspecs.samples.stacks.UnboundedStack_JML_TestData

More details on invoking these tools can be found in their manual pages which ship with
the JML release. More discussion on this integration of JML and JUnit are explained in
the ECOOP 2002 paper by Cheon and Leavens [Cheon-Leavens02].

JML also provides a tool, jtest, that combines both jmlc and jmlunit. The jtest tool
both compiles a class with run-time assertion checks enabled using jmlc, and also generates
the test oracle and test data classes, using jmlunit.
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1.5 Outline

In the next sections we describe more about JML and its semantics. See Chapter 2 [Class
and Interface Specifications], page 12, for examples that show how Java classes and interfaces
are specified; this section also briefly describes the semantics of subtyping and refinement.
See Chapter 3 [Extensions to Java Expressions], page 52, for a description of the expressions
that can be used in specifications. See Chapter 4 [Conclusions], page 59, for conclusions
from our preliminary design effort. See the JML Reference Manual [Leavens-etal-JMLRef]
for details on the syntax of JML.
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2 Class and Interface Specifications

In this section we give some examples of JML class specifications that illustrate the basic
features of JML.

2.1 Abstract Models

A simple example of an abstract class specification is the ever-popular UnboundedStack
type, which is presented below. It would appear in a file named ‘UnboundedStack.java’.

package org.jmlspecs.samples.stacks;

//@ model import org.jmlspecs.models.*;

public abstract class UnboundedStack {

/*@ public model JMLObjectSequence theStack;
@ public initially theStack != null && theStack.isEmpty();
@*/

//@ public invariant theStack != null;

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@*/

public abstract void pop( );

/*@ public normal_behavior
@ assignable theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@*/

public abstract void push(Object x);

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable \nothing;
@ ensures \result == theStack.first();
@*/

public /*@ pure @*/ abstract Object top( );
}

The above specification contains the declaration of a model field, an invariant, and some
method specifications. These are described below.

2.1.1 Model Fields

In the fourth non-blank line of ‘UnboundedStack.java’, a model data field, theStack, is
declared. Since it is declared using the JML modifier model, such a field does not have to
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be implemented; however, for purposes of the specification we treat much like any other
Java field (i.e., as a variable location). That is, we imagine that each instance of the class
UnboundedStack has such a field.

The type of the model field theStack is a type designed for mathematical modeling,
JMLObjectSequence. Objects of this type are sequences of objects. This type is provided
by JML in the package org.jmlspecs.models, which is imported in the second non-blank
line of the figure. Note that this import declaration does not have to appear in the imple-
mentation, since it is modified by the keyword model. In general, any declaration form in
Java can have this modifier, with the same meaning. That is, a model declaration is only
used for specification purposes, and does not have to appear in an implementation.

At the end of the model field’s declaration above is an initially clause. (Such clauses
are adapted from RESOLVE [Ogden-etal94] and the refinement calculus [Back88] [Back-
vonWright98] [Morgan-Vickers94] [Morgan94].) Model fields cannot be explicitly initialized
(and thus cannot be final), because there is no storage directly associated with them. How-
ever, one can use an initially clause to describe an abstract initialization for a model
field. Initially clauses can be attached to any field declaration, including non-model fields,
and permit one to constrain the initial values of such fields. Knowing something about
the initial value of the field permits data type induction [Hoare72a] [Wing83] for abstract
classes and interfaces. The initially clause must appear to be true of the field’s starting
value. That is, all reachable objects of the type UnboundedStack must appear to have been
created as empty stacks and subsequently modified using the type’s methods.

2.1.2 Invariants

Following the model field declaration is an invariant. An invariant does not have to hold
during the execution of an object’s methods, but it must hold, for each reachable object in
each publicly visible state; i.e., for each state outside of a public method or constructor’s
execution, and at the beginning and end of each public method’s execution.1 The figure’s
invariant just says that the value of theStack should never be null.

2.1.3 Method Specifications

Following the invariant are the specifications of the methods pop, push, and top. We
describe the new aspects of these specifications below.

2.1.3.1 The Assignable Clause

The use of the assignable2 clauses in the behavioral specifications of pop and push is in-
teresting (and another difference from Eiffel). These clauses give frame conditions [Borgida-

1 In JML invariants also apply to non-public methods as well. The only exception is that a private method
or constructor may be marked with the helper modifier; such methods cannot assume and do not need
to establish the invariant.

2 For historical reasons, one can also use the keyword modifiable as a synonym for assignable. Also,
for compatibility with (older versions of) ESC/Java [Leino-etal00], in JML, one can also use the key-
word modifies as a synonym for assignable. In the literature, the most common keyword for such
a clause is modifies, and what JML calls the “assignable clause” is usually referred to as a “modifies
clause”. However, in JML, “assignable” most closely corresponds to the technical meaning, so we use
that throughout this document. Users of JML may write whichever they prefer, and may mix them if
they please.
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Mylopoulos-Reiter95]. In JML, the frame condition given by a method’s assignable clause
only permits the method to assign to a location, loc, if:

• loc is mentioned in the method’s assignable clause,

• loc is a member of a data group mentioned in the method’s assignable clause (see
Section 2.2 [Data Groups], page 18),

• loc was not allocated when the method started execution, or

• loc is local to the method (i.e., a local variable, including the method’s formal param-
eters).

For example, push’s specification says that it may only assign to theStack (and locations
in theStack’s data group). This allows push to assign to theStack (and the members of
its data group), or to call some other method that makes such an assignment. Furthermore,
push may assign to the formal parameter x itself, even though that location is not listed in
the assignable clause, since x is local to the method. However, push may not assign to
fields not mentioned in the assignable clause; in particular it may not assign to fields of
its formal parameter x,3 or call a method that makes such an assignment.

The design of JML is intended to allow tools to statically check the body of a method’s
implementation to determine whether its assignable clause is satisfied. This would be
done by checking each assignment statement in the implementation to see if what is being
assigned to is a location that some assignable clause permits. It is an error to assign to
any other allocated, non-local location. However, to do this, a tool must conservatively
track aliases and changes to objects containing the locations in question. Also, arrays can
only be dynamically checked, in general.4 Furthermore, JML will flag as an error a call to
a method that would assign to locations that are not permitted by the calling method’s
assignable clause. It can do this using the assignable clause of the called method.

In JML, a location is modified by a method when it is allocated in both the pre-state of
the method, reachable in the post-state, and has a value that is different in these two states.
The pre-state of a method call is the state just after the method is called and parameters
have been evaluated and passed, but before execution of the method’s body. The post-state
of a method call is the state just before the method returns or throws an exception; in
JML we imagine that \result and information about exception results is recorded in the
post-state.

Since modification only involves objects allocated in the pre-state, allocation of an ob-
ject, using Java’s new operator, does not itself cause any modification. Furthermore, since
the fields of new objects are locations that were not allocated when the method started
execution, they may be assigned to freely.

The reason assignments to local variables are permitted by the assignable clause is that
a JML specification takes the client’s (i.e., the caller’s) point of view. From the client’s
point of view, the local variables in a method are newly-allocated, and thus assignments
to such variables are invisible to the client. Hence, in JML, it is an error to list formal
parameters, or other local variables, in the assignable clause. Furthermore, when formal
parameters are used in a postcondition, JML interprets these as meaning the value initially

3 Assuming that x is not the same object as this!
4 Thanks to Erik Poll for discussions on checking of assignable clauses.
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given to the formal in the pre-state, since assignments to the formals within the method do
not matter to the client.

JML’s interpretation of the assignable clause does not permit either temporary side
effects or benevolent side effects. A method with a temporary side effect assigns a location,
does some work, and then assigns the original value back to that location. In JML, a
method may not have temporary side effects on locations that it is not permitted to modify
[Ruby-Leavens00]. A method has a benevolent side effect if it assigns to a location in a way
that is not observable by clients. In JML, a method may not have benevolent side effects
on locations that it is not permitted to modify [Leino95] [Leino95a].

Because JML’s assignable clauses give permission to assign to locations, it is safe for
clients to assume that only the listed locations (and locations of their data group members)
may have their values modified. Because locations listed in the assignable clause are the
only ones that can be modified, we often speak of what locations a method can “modify,”
instead of the more precise “can assign to.”

What does the assignable clause say about the modification of locations? In particular,
although the “location” for a model field or model variable cannot be directly assigned to
in JML, its value is determined by the concrete fields and variables that it (ultimately)
depends on, specifically the members of its data group. That is, a model field or variable
can be modified by assignments to the concrete members of its data group (see Section 2.2
[Data Groups], page 18). Thus, a method’s assignable clause only permits the method to
modify a location if the location:

• is mentioned in the method’s assignable clause,

• is a member of a data group mentioned in the assignable clause (see Section 2.2 [Data
Groups], page 18),

• was not allocated when the method started execution, or

• is local to the method.

In the specification of top, the assignable clause says that a call to top that satisfies the
precondition cannot assign to any locations. It does this by using the store-ref “\nothing.”
Unlike some formal specification languages (including Larch BISLs and older versions of
JML), when the assignable clause is omitted in a heavyweight specification, the default
store-ref for the assignable clause is \everything. Thus an omitted assignable clause in
JML means that the method can assign to all locations (that could otherwise be assigned
to by the method). Such an assignable clause plays havoc with formal reasoning, and thus
if one cares about verification, one should give an assignable clause explicitly if the method
is not pure (see Section 2.3.1 [Purity], page 29).

2.1.3.2 Old Values

When a method can modify some locations, they may have different values in the pre-state
and post-state of a call. Often the post-condition must refer to the values held in both
of these states. JML uses a notation similar to Eiffel’s to refer to the pre-state value of
a variable. In JML the syntax is \old(E), where E is an expression. (Unlike Eiffel, we
use parentheses following \old to delimit the expression to be evaluated in the pre-state
explicitly. JML also uses backslashes (\\) to mark the keywords it uses in expressions; this
avoids interfering with Java program identifiers, such as “old”.)
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The meaning of \old(E) is as if E were evaluated in the pre-state and that
value is used in place of \old(E) in the assertion. It follows that, an expression like
\old(myVar).theStack may not mean what is desired, since only the old value of
myVar is saved; access to the field theStack is done in the post-state. If it is the field,
theStack, not the variable, myVar, that is changing, then probably what is desired is
\old(myVar.theStack). To avoid such problems, it is good practice to have the expression
E in \old(E) be such that its type is either the type of a primitive value, such as an int,
or a type with immutable objects, such as JMLObjectSequence.

As another example, in pop’s postcondition the expression \old(theStack.trailer())
has type JMLObjectSequence, so it is immutable. The value of theStack.trailer() is
computed in the pre-state of the method.

Note also that, since JMLObjectSequence is a reference type, one is required to use
equals instead of == to compare them for equality of values. (Using == would be a mistake,
since it would only compare them for object identity, which in combination with new would
always yield false.)

2.1.3.3 Correct Implementation

The specification of push does not have a requires clause. This means that the method
imposes no obligations on the caller. (The meaning of an omitted requires clause is that
the method’s precondition is true, which is satisfied by all states, and hence imposes no
obligations on the caller.) This seems to imply that the implementation must provide a
literally unbounded stack, which is surely impossible. We avoid this problem, by following
Poetzsch-Heffter [Poetzsch-Heffter97] in releasing implementations from their obligations
to fulfill the postcondition when Java runs out of storage. In general, a method specified
with normal_behavior has a correct implementation if, whenever it is called in a state that
satisfies its precondition, either
• the method terminates normally in a state that satisfies its postcondition, having as-

signed to only the locations permitted by its assignable clause, or
• Java signals an error, by throwing an exception that inherits from java.lang.Error.

We discuss the specification of methods with exceptions in the next subsection.

2.1.4 Models and Lightweight Specifications

In specifying existing code, one often does not want to introduce new model fields or think
up new names for them. And sometimes, especially for fields with simple, atomic values, the
field name itself is so “natural” that it would be difficult to think up a second good name for
a model field that would be an abstraction of it. Thus JML provides two modifiers, spec_
public and spec_protected that can used to make existing fields public or protected, for
purposes of specification.

For example, consider the (lightweight) specification of the class Point2D below. In this
specification the private fields, x and y are specified as spec_public, which allows them
to be used in the public invariant clause and in the (implicitly public) specifications of the
constructors and methods of Point2D.

package org.jmlspecs.samples.prelimdesign;

//@ model import org.jmlspecs.models.JMLDouble;
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public class Point2D
{
private /*@ spec_public @*/ double x = 0.0;
private /*@ spec_public @*/ double y = 0.0;

//@ public invariant !Double.isNaN(x) && !Double.isNaN(y);
//@ public invariant !Double.isInfinite(x) && !Double.isInfinite(y);

//@ ensures x == 0.0 && y == 0.0;
public Point2D() { }

/*@ requires !Double.isNaN(xc) && !Double.isNaN(yc);
@ requires !Double.isInfinite(xc) && !Double.isInfinite(yc);
@ assignable x, y;
@ ensures x == xc && y == yc;
@*/

public Point2D(double xc, double yc) {
x = xc;
y = yc;

}

//@ ensures \result == x;
public /*@ pure @*/ double getX() {
return x;

}

//@ ensures \result == y;
public /*@ pure @*/ double getY() {
return y;

}

/*@ requires !Double.isNaN(x+dx);
@ requires !Double.isInfinite(x+dx);
@ assignable x;
@ ensures JMLDouble.approximatelyEqualTo(x, \old(x+dx), 1e-10);
@*/

public void moveX(double dx) {
x += dx;

}

/*@ requires !Double.isNaN(y+dy);
@ requires !Double.isInfinite(y+dy);
@ assignable y;
@ ensures JMLDouble.approximatelyEqualTo(y, \old(y+dy), 1e-10);
@*/

public void moveY(double dy) {
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y += dy;
}

}

Note that these specifications would be illegal without the use of spec_public, since JML
requires that public specifications can only mention publicly-visible names (see Section 1.1
[Behavioral Interface Specification], page 1).

However, spec_public is more than just a way to change the visibility of a name for
specification purposes. When applied to fields it can be considered to be shorthand for the
declaration of a model field with the same name. That is, the declaration of x in Point2D
can be thought of as equivalent to the following declarations, together with a rewrite of the
Java code that uses x to use _x instead (where we assume _x is not used elsewhere).

//@ public model int x;
private int _x; //@ in x;
//@ private represents x <- _x;

So in this way of thinking spec_public is not just an access modifier, but shorthand for
declaration of a model field. This model field declaration is a commitment to readers that
they can understand the specification using these model fields, even if the underlying private
fields are changed, just as if the model field were declared explicitly. The model fields that
are implicit allow such changes to be made with affecting the readers of the specification.

For example, suppose one wanted to change the implementation of Point2D, to use
polar coordinates. To do that while keeping the public specification unchanged, one would
declare the model fields x and y explicitly. One would then declare other fields for the
polar and rectangular coordinates (and perhaps additional model fields as well). One would
then also need to give explicit declarations that the new concrete fields are members of
the model fields data groups, and give appropriate represents clauses. (See Section 2.2.2.1
[Data Groups and Represents Clauses], page 23, for more on data group membership and
represents clauses.) All of this is exactly analogous to what is done implicitly in the the
desugaring described above.

Similar remarks apply to spec_protected. The spec_public and spec_protected
shorthands were borrowed from ESC/Java, but the desugaring described above is novel
with JML.

2.2 Data Groups

In this subsection we present two example specifications. The two example specifications,
BoundedThing and BoundedStackInterface, are used to describe how model (and concrete)
fields can be related to one another, and how dependencies among them affect the meaning
of the assignable clause. Along the way we also demonstrate how to specify methods that
can throw exceptions and other features of JML.

2.2.1 Specification of BoundedThing

The specification in the file ‘BoundedThing.java’, shown below, is an interface specification
with a simple abstract model. In this case, there are two model fields MAX_SIZE and size.

package org.jmlspecs.samples.stacks;

public interface BoundedThing {



Chapter 2: Class and Interface Specifications 19

//@ public model instance int MAX_SIZE;
//@ public model instance int size;

/*@ public instance invariant MAX_SIZE > 0;
public instance invariant

0 <= size && size <= MAX_SIZE;
public instance constraint MAX_SIZE == \old(MAX_SIZE);

@*/

/*@ public normal_behavior
ensures \result == MAX_SIZE;

@*/
public /*@ pure @*/ int getSizeLimit();

/*@ public normal_behavior
ensures \result <==> size == 0;

@*/
public /*@ pure @*/ boolean isEmpty();

/*@ public normal_behavior
ensures \result <==> size == MAX_SIZE;

@*/
public /*@ pure @*/ boolean isFull();

/*@ also
public behavior

assignable \nothing;
ensures \result instanceof BoundedThing

&& size == ((BoundedThing)\result).size;
signals (CloneNotSupportedException) true;

@*/
public Object clone () throws CloneNotSupportedException;

}

After discussing the model fields, we describe the other parts of the specification below.

2.2.1.1 Model Fields in Interfaces

In the specification above, the fields MAX_SIZE and size are both declared using the modifier
instance. Because of the use of the keyword instance, these fields are thus treated
as normal model fields, i.e., as an instance variable in each object that implements this
interface. By default, as in Java, fields are static in interfaces, and so if instance is
omitted, the field declarations would be treated as class variables. The instance keyword
tells the reader that the variable being declared is not static, but has a copy in each instance
of a class that implements this interface.

Java does not allow non-static fields to be declared in interfaces. However, JML allows
non-static model (and ghost) fields in interfaces when one uses instance. The reason for
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this extension is that such fields are essential for defining the abstract values and behavior
of the objects being specified.5

In specifications of interfaces that extend or classes that implement this interface, these
model fields are inherited. Thus, every object that has a type that is a subtype of the
BoundedThing interface is thought of, abstractly, as having two fields, MAX_SIZE and size,
both of type int.

2.2.1.2 Invariant and History Constraint

Three pieces of class-level specification come after the abstract model in the above specifi-
cation.

The first two are invariant clauses. Writing several invariant clauses in a specification,
like this is equivalent to writing one invariant clause which is their conjunction. Both of
these invariants are instance invariants, because they use the instance modifier. By default,
in interfaces, invariants and history constraints are static, unless marked with the instance
modifier. Static invariants may only refer to static fields, while instance invariants can refer
to both instance and static fields.

The first invariant in the figure says that in every publicly visible state, every reachable
object that is a BoundedThing must have a positive MAX_SIZE field. The second invariant
says that, in each publicly visible state, every reachable object that is a BoundedThing must
have a size field that is non-negative and less than or equal to MAX_SIZE.

Following the invariants is a history constraint [Liskov-Wing94]. Like the invariants, it
uses the modifier instance, because it refers to instance fields. A history constraint is used
to say how values can change between earlier and later publicly-visible states, such as a
method’s pre-state and its post-state. This prohibits subtype objects from making certain
state changes, even if they implement more methods than are specified in a given class. The
history constraint in the specification above says that the value of MAX_SIZE cannot change,
since in every pre-state and post-state, its value in the post-state, written MAX_SIZE, must
equal its value in the pre-state, written \old(MAX_SIZE).

2.2.1.3 Details of the Method Specifications

Following the history constraint are the interfaces and specifications for four public methods.
Notice that, if desired, the at-signs (@) may be omitted from the left sides of intermediate
lines, as we do in this specification.

The use of == in the method specifications is okay, since in each case, the things being
compared are primitive values, not references. The notation <==> can be read “if and
only if”. It has the same meaning for Boolean values as ==, but has a lower precedence.
Therefore, the expression “\result <==> size == 0” in the postcondition of the isEmpty
method means the same thing as “\result == (size == 0)”.

2.2.1.4 Adding to Method Specifications

The specification of the last method of BoundedThing, clone, is interesting. Note that it
begins with the keyword also. This form is intended to tell the reader that the specifica-
tion given is in addition to any specification that might have been given in the superclass

5 Furthermore, static model fields must have concrete implementations in the interfaces in which they are
declared, if they are to have any representation at all. See Section 2.2.2.1 [Data Groups and Represents
Clauses], page 23, for more on this subject.
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Object, where clone is declared as a protected method. A form like this must be used
whenever a specification is given for a method that overrides a method in a superclass, or
that implements a method from an implemented interface.

2.2.1.5 Specifying Exceptional Behavior

The specification of clone also uses behavior instead of normal_behavior. In a specifi-
cation that starts this way, one can describe not just the case where the execution returns
normally, but also executions where exceptions are thrown. In such a specification, the
conditions under which exceptions can be thrown can be described by the predicate in the
signals clauses,6 and the conditions under which the method may return without throwing
an exception are described by the ensures clause. In this specification, the clone method
may always throw the exception, because it only needs to make the predicate “true” true
to do so. When the method returns normally, it must make the given postcondition true.

In JML, a normal_behavior specification can be thought of as a syntactic sugar for a
behavior specification to which the following clause is added [Raghavan-Leavens00].

signals (java.lang.Exception) false;

This formalizes the idea that a method with a normal_behavior specification may not
throw an exception when the specification’s precondition is satisfied.

JML also has a specification form exceptional_behavior, which can be used to specify
when a method may not return normally. A specification that uses exceptional_behavior
can be thought of as a syntactic sugar for a behavior specification to which the following
clause is added [Raghavan-Leavens00].

ensures false;

This formalizes the idea that a method with a exceptional_behavior specification may
not return normally when the specification’s precondition is satisfied. Thus, when the
precondition of an such a specification case holds, some exception must be thrown (unless
the execution encounters an error or is permitted to not return to the caller).

Since in the specification of clone, we want to allow the implementation to make a
choice between either returning normally or throwing an exception, and we do not wish
to distinguish the preconditions under which each choice must be made, we cannot use
either of the more specialized forms normal_behavior or exceptional_behavior. Thus
the specification of clone demonstrates the somewhat unusual case when the more general
form of a behavior specification is needed.

The specification of clone also illustrates another aspect the semantics of signals clauses.
This is that a signals clause only describes what must be true when the exceptions it applies
to are thrown; it does not constrain a method’s behavior with respect to exceptions that are
not subtypes of the exceptions named. For example, clone’s specification only says that a
CloneNotSupportedException can always be thrown; it does not prohibit other exceptions
that are not subtypes of CloneNotSupportedException from being thrown. For example,
clone could throw a NullPointerException. In this sense the specification given is an
underspecification, as it permits other behaviors than those it describes. To prohibit other
exceptions from being thrown, one could use a signals clause such as the following.

6 The keyword “exsures” can also be used in place of signals.
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signals (Exception e) e instanceof CloneNotSupportedException;

This takes advantage of the fact that all (non-error) exceptions in Java are subtypes of
java.lang.Exception. If clone were specified with such a signals clause, then, for example
it could not throw a NullPointerException.

Finally note that in the specification of clone, the postcondition says that the result
will be a BoundedThing and that its size will be the same as the model field size. The use
of the cast in this postcondition is necessary, since the type of \result is Object. (This
also adheres to our goal of using Java syntax and semantics to the extent possible.) Note
also that the conjunct \result instanceof BoundedThing “protects” the next conjunct
[Leavens-Wing97a] since if it is false the meaning of the cast does not matter.

2.2.2 Specification of BoundedStackInterface

The specification in the file ‘BoundedStackInterface.java’ below gives an interface for
bounded stacks that extends the interface for BoundedThing. Note that this specification
can refer to the instance fields MAX_SIZE and size inherited from the BoundedThing inter-
face.

package org.jmlspecs.samples.stacks;
//@ model import org.jmlspecs.models.*;
public interface BoundedStackInterface extends BoundedThing {

//@ public initially theStack != null && theStack.isEmpty();
/*@ public model instance JMLObjectSequence theStack;
@ in size;
@*/

//@ public instance represents size <- theStack.int_length();
/*@ public instance invariant theStack != null;
@ public instance invariant_redundantly
@ theStack.int_length() <= MAX_SIZE;
@ public instance invariant
@ (\forall int i; 0 <= i && i < theStack.int_length();
@ theStack.itemAt(i) != null);
@*/

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@ also
@ public exceptional_behavior
@ requires theStack.isEmpty();
@ assignable \nothing;
@ signals (BoundedStackException);
@*/

public void pop( ) throws BoundedStackException;

/*@ public normal_behavior
@ requires theStack.int_length() < MAX_SIZE && x != null;
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@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@ ensures_redundantly theStack != null && top() == x
@ && theStack.int_length() == \old(theStack.int_length()+1);
@ also
@ public exceptional_behavior
@ requires theStack.int_length() >= MAX_SIZE || x == null;
@ assignable \nothing;
@ signals (BoundedStackException)
@ theStack.int_length() == MAX_SIZE;
@ signals (NullPointerException) x == null;
@*/

public void push(Object x )
throws BoundedStackException, NullPointerException;

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ ensures \result == theStack.first() && \result != null;
@ also
@ public exceptional_behavior
@ requires theStack.isEmpty();
@ signals (BoundedStackException e)
@ \fresh(e) && e != null && e.getMessage() != null
@ && e.getMessage().equals("empty stack");
@ signals_redundantly (BoundedStackException);
@*/

public /*@ pure @*/ Object top( ) throws BoundedStackException;
}

The abstract model for BoundedStackInterface adds to the inherited model by declar-
ing a model instance field named theStack. This field is typed as a JMLObjectSequence.

In the following we describe how the new model instance field, theStack, is related to
size from BoundedThing. We also use this example to explain more JML features.

2.2.2.1 Data Groups and Represents Clauses

The in and represents clauses that follow the declaration of theStack are an important
feature in modeling with layers of model fields.7 They also play a crucial role in relating
model fields to the concrete fields of objects, which can be considered to be the final layer
of detail in a design.

When a model field is declared, a data group with the same name is automatically
created; furthermore, this field is always a member of the group it creates. A data group
is a set of fields (locations) referenced by a specific name, i.e., the name of the model field
that created it [Leino98] [Leino-Poetzsch-Heffter-Zhou02].

7 Of course, one could specify BoundedStackInterface without separating out the interface BoundedThing,
and in that case, these layers would be unnecessary. We have made this separation partly to demonstrate
more advanced features of JML, and partly to make the parts of the example smaller.
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When a data group (or field) is mentioned in the assignable clause for a method M,
then all members (i.e., fields) in that group can be assigned to in the body of M. Fields can
become a member of a data group through the data group clauses (i.e., the in and maps-
into clauses) that come immediately after the field declaration, in this case the in clause.
The in clause in BoundedStackInterface says that theStack is a member of the group
created by the declaration of model field size; this means that theStack might change its
value whenever size changes. However, another way of looking at this is that, if one wants
to change size, this can be done by changing theStack. We also say that theStack is a
member of size.

The maps-into clause is another way of adding members to a data group; it allows the
fields of an object to be included in an existing data group. For example, if a field F is a
reference or an array type, then the fields or array elements of F can be included in a data
group using the maps-into clause. The following are examples.

protected ArrayList elems;
//@ maps elems.theList \into theStack;
protected java.lang.Object[] theItems;
//@ maps theItems[*] \into theStack;

In the first example, the maps-into clause says that theList field of elems is a member
of theStack data group. Field elems is a concrete field of the type (i.e., it is not a model
field and thus is part of the implementation). This allows model field theList of elems
to change when theStack changes. Since theList is a model field and data group, this
also allows concrete fields of elems to change as theStack changes. Similarly, the second
example says that the elements of the array theItems can change when theStack changes.

Data groups have the same visibility as the model field that declared it, i.e, public,
protected, private, or package visibility. A field cannot be a member of a group that is less
visible than it is. For example, a public field cannot be a member of a protected group.

The in and maps-into clauses are important in “loosening up” the assignable clause, for
example to permit the fields of an object that implement the abstract model to be changed
[Leino95] [Leino95a]. This “loosening up” also applies to model fields that are members of
other groups. For example, since theStack is a member of size, whenever size is men-
tioned in an assignable clause, then theStack is implicitly allowed to be modified.8 Thus
it is only for rhetorical purposes that we mention both size and theStack in the assignable
clauses of pop and push. Note, however, that just mentioning theStack would not permit
size to be modified, because size is not a member of theStack’s group. Furthermore, it
is redundant to mention theStack when size has already been mentioned (although this
can help clarify the assignable clause, i.e., clarify which fields can be changed).

The represents clause in BoundedStackInterface says how the value of size is related
to the value of theStack. It says that the value of size is theStack.length().

A represents clause gives additional facts that can be used in reasoning about the spec-
ification. It serves the same purpose as an abstraction function in various proof methods
for abstract data types (such as [Hoare72a]).

8 Note that the permission to assign a field goes from the more abstract field to the one in its group
(which in this case is also abstract). Müller points out that this direction is necessary for information
hiding, because concrete fields are often hidden (e.g., they may be private), and as such cannot appear
in public specifications, so the public specification has to mention the more abstract field, which give
assignment rights to its members [Mueller02].
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One can only use a represents clause to state facts about a field and its data group
members. To state relationships among concrete data fields or on fields that are not related
by a data group membership, one should use an invariant.

2.2.2.2 Redundant Specification

The second invariant clause that follows the represents clause in the specification of
BoundedStackInterface above is our first example of checkable redundancy in a specifi-
cation [Leavens-Baker99] [Tan94] [Tan95]. This concept is signaled in JML by the use of
the suffix _redundantly on a keyword (as in ensures_redundantly). It says both that
the stated property is specified to hold and that this property is believed to follow from
the other properties of the specification. In this case the redundant invariant follows from
the given invariant, the invariant inherited from the specification of BoundedThing, and
the fact stated in the represents clause. Even though this invariant is redundant, it is
sometimes helpful to state such properties, to bring them to the attention of the readers of
the specification.

Checking that such claimed redundancies really do follow from other information is also
a good way to make sure that what is being specified is really what is intended. Such
checks could be done manually, during reviews, or with the aid of a theorem prover. JML’s
runtime assertion checker can also check such redundant specifications, but, of course, can
only find examples where they do not hold.

2.2.2.3 Multiple Specification Cases

Following the redundant invariant of BoundedStackInterface are the specifications of the
pop, push, and top methods. These are interesting for several new features that they
present. Each of these has both a normal and exceptional behavior specified. The meaning
of such multiple specification cases is that, when the precondition of one of them is satisfied,
the rest of that specification case must also be obeyed.

A specification with several specification cases is shorthand for one in which the separate
specifications are combined [Dhara-Leavens96] [Leavens97c] [Wing83] [Wills94]. The desug-
aring can be thought of as proceeding in two steps (see [Raghavan-Leavens00] for more
details). First, the public normal_behavior and public exceptional_behavior cases
are converted into public behavior specifications as explained above. This would produce
a specification for pop as shown below. The use of implies_that introduces a redundant
specification that can be used, as is done here, to point out consequences of the specification
to the reader. In this case the specification in question is the one mentioned in the refine
clause. Note that in the second specification case of the figure below, the signals clause has
been expanded to include the implicit predicate “true”; this “true” was omitted from the
original specification, since such a use of the signals clause is common enough for JML to
allow it to be omitted.

//@ refine "BoundedStackInterface.java";

public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
@ requires !theStack.isEmpty();
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@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.trailer()));
@ signals (java.lang.Exception) false;
@ also
@ public behavior
@ requires theStack.isEmpty();
@ assignable \nothing;
@ ensures false;
@ signals (BoundedStackException) true;
@*/

public void pop( ) throws BoundedStackException;
}

The second step of the desugaring is shown below. As can be seen from this example,
public behavior specifications that are joined together using also have a precondition that
is the disjunction of the preconditions of the combined specification cases. The assignable
clause for the expanded specification is the union of all the assignable clauses for the cases,
with each modification governed by the corresponding precondition (which follows the key-
word if). That is, variables are only allowed to be modified if the modification was per-
mitted in the corresponding case, as determined by its precondition. The ensures clauses
of the second desugaring step correspond to the ensures clauses for each specification case;
they say that whenever the precondition for that specification case held in the pre-state,
its postcondition must also hold. As can be seen in the specification below, in logic this
is written using an implication between \old wrapped around the case’s precondition and
its postcondition. Having multiple ensures clauses is equivalent to writing a single ensures
clause that has as its postcondition the conjunction of the given postconditions. Similarly,
the signals clauses in the desugaring correspond to those in the given specification cases;
as for the ensures clauses, each has a predicate that says that signaling that exception can
only happen when the predicate in that case’s precondition holds.

//@ refine "BoundedStackInterface.jml";
public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
@ requires !theStack.isEmpty() || theStack.isEmpty();
@ assignable size, theStack;
@ ensures \old(!theStack.isEmpty())
@ ==> theStack.equals(\old(theStack.trailer()));
@ ensures \old(theStack.isEmpty()) ==>
@ \not_assigned(size) && \not_assigned(theStack);
@ signals (java.lang.Exception)
@ \old(!theStack.isEmpty()) ==> false;
@ signals (BoundedStackException)
@ \old(theStack.isEmpty()) ==> true;
@*/

public void pop( ) throws BoundedStackException;
}
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In the file ‘BoundedStackInterface.refines-java’ above, the precondition of pop re-
duces to true. However, the precondition shown is the general form of the expansion.
Similar remarks apply to other predicates.

Finally, note how, as in the specification of top, one can specify more details about the
exception object thrown. The exceptional behavior for top says that the exception object
thrown, e, must be freshly allocated, non-null, and have the given message.

2.2.2.4 Pitfalls in Specifying Exceptions

A particularly interesting example of multiple specification cases occurs in the specification
of the BoundedStackInterface’s push method. Like the other methods, this example
has two specification cases; one of these is a normal_behavior and one is an exceptional_
behavior. However, the exceptional behavior of push is interesting because it specifies more
than one exception that may be thrown. The requires clause of the exceptional behavior
says that an exception must be thrown when either the stack cannot grow larger, or when
the argument x is null. The first signals clause says that, if a BoundedStackException is
thrown, then the stack cannot grow larger, and the second signals clause says that, if a
NullPointerException is thrown, then x must be null. The specification is written in this
way because it may be that both conditions occur; when that is the case, the specification
allows the implementation to choose (even nondeterministically) which exception is thrown.

Specifiers should be wary of such situations, where two different signals clauses may both
apply simultaneously, because it is impossible in Java to throw more than one exception from
a method call. Thus, for example, if the specification of push had been written as follows,
it would not be implementable.9 The problem is that both exceptional preconditions may
be true, and in that case an implementation cannot throw an exception that is an instance
of both a BoundedStackException and a NullPointerException.

/*@ public normal_behavior
@ requires theStack.length() < MAX_SIZE && x != null;
@ assignable size, theStack;
@ ensures theStack.equals(\old(theStack.insertFront(x)));
@ ensures_redundantly theStack != null && top() == x
@ && theStack.length() == \old(theStack.length()+1);
@ also
@ public exceptional_behavior
@ requires theStack.length() >= MAX_SIZE;
@ assignable \nothing;
@ signals (Exception e) e instanceof BoundedStackException;
@ also // this is wrong!
@ public exceptional_behavior
@ requires x == null;
@ assignable \nothing;
@ signals (Exception e) e instanceof NullPointerException;
@*/

public void push(Object x )
throws BoundedStackException, NullPointerException;

9 Thanks to Erik Poll for pointing this out.
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One could fix the example above by writing one of the requires clauses in the two
exceptional behaviors to exclude the other, although this would make the specification
deterministic about which exception would be thrown when both exceptional conditions
occur. In general, it seems best to avoid this pitfall by writing signals clauses that do not
exclude other exceptions from being thrown whenever there are states in which multiple
exceptions may be thrown. That is, instead of using a signals clause like:

signals (Exception e) e instanceof BoundedStackException;

which only allows a BoundedStackException to be thrown when the precondition is
true, one can write a signals clause like:

signals (BoundedStackException);

which says nothing about what happens when other exceptions are thrown (see Sec-
tion 2.2.1.5 [Specifying Exceptional Behavior], page 21 for more details).

2.2.2.5 Redundant Ensures Clauses

Finally, there is more redundancy in the specifications of push in the original specification
of BoundedStackInterface above, which has a redundant ensures clause in its normal
behavior. For an ensures_redundantly clause, what one checks is that the conjunction of
the precondition, the meaning of the assignable clause, and the (non-redundant) postcon-
dition together imply the redundant postcondition. It is interesting to note that, for push,
the specifications for stacks written in Eiffel (see page 339 of [Meyer97]) expresses just what
we specify in push’s redundant postcondition. This conveys strictly less information than
the non-redundant postcondition for push’s normal behavior, since it says little about the
elements of the stack.10

2.3 Types For Modeling

JML comes with a suite of types with immutable objects and pure methods, that can be
used for defining abstract models. These are found in the package org.jmlspecs.models,
which includes both collection and non-collection types (such as JMLInteger) and a few
auxiliary classes (such as exceptions and enumerators).

The collection types in this package can hold either objects or values; this distinction
determines the notion of equality used on their elements and whether cloning is done on
the elements. The object collections, such as JMLObjectSet and JMLObjectBag, use == and
do not clone. The value collections, such as JMLValueSet and JMLValueBag, use .equals
to compare elements, and clone the objects added to and returned from them. The objects
in a value collection are representatives of equivalence classes (under .equals) of objects;
their values matter, but not their object identities. By contrast an object container contains
object identities, and the values in these objects do not matter.

Simple collection types include the set types, JMLObjectSet and JMLValueSet, and
sequence types JMLObjectSequence and JMLValueSequence. The binary relation and map
types can independently have objects in their domain or range. The binary relation types
are named JMLObjectToObjectRelation, JMLObjectToValueRelation, and so on. For
example, JMLObjectToValueRelation is a type of binary relations between objects (not

10 Meyer’s second specification and implementation of stacks (see page 349 of [Meyer97]) is no better in
this respect, although, of course, the implementation does keep track of the elements properly.
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cloned and compared using ==) and values (which are cloned and compared using .equals).
The four map types are similarly named according to the scheme JML...To...Map.

Users can also create their own types with pure methods for mathematical modeling if
desired. Since pure methods may be used in assertions, they must be declared with the
modifier pure and pass certain conservative checks that make sure there is no possibility of
observable side-effects from their use. We discuss purity and give several examples of such
types below.

2.3.1 Purity

We say a method is pure if it is either specified with the modifier pure or is a non-static
method that appears in the specification of a pure interface or class. Similarly, a constructor
is pure if it is either specified with the modifier pure or appears in the specification of a
pure class.

A pure method that is not a constructor implicitly has a specification that does not
allow any side-effects. That is, its specification refines (i.e., is stronger than) the following,
where V stands for the visibility of the method being specified.11:

V behavior
assignable \nothing;

A pure constructor implicitly has a specification that only allows it to assign to the non-
static fields of the class in which it appears (including those inherited from its superclasses
and model instance fields from the interfaces that implements).

Implementations of pure methods and constructors will be checked to see that they
meet these conditions on what locations they can assign to. To make such checking mod-
ular, a pure method or constructor implementation is prohibited from calling methods or
constructors that are not pure.

A pure method or constructor must also be provably terminating.12 Recursion is permit-
ted, both in the implementation of pure methods and the data structures they manipulate,
and in the specifications of pure methods. When recursion is used in a specification, the
proof of well-formedness for the specification involves the use of JML’s measured_by clause.

Since a pure method may not go into an infinite loop, if it has a non-trivial precondition,
it should throw an exception when its normal precondition is not met. This exceptional
behavior does not have to be specified or programmed explicitly, but technically there is an
obligation to meet the specification that the method never loops forever.

Furthermore, a pure method must be deterministic, in the sense that when called in a
given state, it must always return the same value. Similarly a pure constructor should be
deterministic in the sense that when called in a given state, it always initializes the object
in the same way.

A pure method can be declared in any class or interface, and a pure constructor can be
declared in any class. JML will specify the pure methods and constructors in the standard
Java libraries as pure.

11 For this reason, if one is writing a pure method, it is not necessary to otherwise specify an assignable
clause (see Section 2.1.3.1 [The Assignable Clause], page 13), although doing so may improve the speci-
fication’s clarity.

12 This is already implicit in the specification given above for pure methods, since the default diverges

clause is false (see Appendix A [Specification Case Defaults], page 61).
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As a convenience, instead of writing pure on each method declared in a class and in-
terface, one can use the modifier pure on classes and interfaces and classes. This simply
means that each non-static method and each constructor declared in such a class or inter-
face is pure. Note that this does not mean that all methods inherited (but not declared
in and hence not overridden in) the class or interface are pure. For example, every class
inherits ultimately from java.lang.Object, which has some methods, such as notify and
notifyAll that are manifestly not pure. Thus each class will have some methods that are
not pure. Despite this, it is convenient to refer to classes and interfaces declared with the
pure modifier as pure.

In JML the modifiers model and pure are orthogonal. (Recall something declared with
the modifier model does not have to be implemented, and is used purely for specification
purposes.) Therefore, one can have a model method that is not pure (these might be useful
in JML’s model programs) and a pure method that is not a model method. Nevertheless,
usually a model method (or constructor) should be pure, since there is no way to use
non-pure methods in an assertion, and model methods cannot be used in normal Java code.

By the same reasoning, model classes should, in general, also be pure. Model classes
cannot be used in normal Java code, and hence their methods are only useful in assertions
(and JML’s model programs). Hence it is typical, although not required, that a model class
also be a pure class. We give some examples of pure interfaces, abstract classes, and classes
below.

2.3.2 Money

The following example begins a specification of money that would be suitable for use in
abstract models. Our specification is rather artificially broken up into pieces to allow
each piece to have a specification that fits on a page. This organization is not necessarily
something we would recommend, but it does give us a chance to illustrate more features of
JML.

Consider first the interface Money specified below. The abstract model here is a single
field of the primitive Java type long, which holds a number of pennies. Note that the
declaration of this field, pennies, again uses the JML keyword instance.

package org.jmlspecs.samples.prelimdesign;

import org.jmlspecs.models.JMLType;

public /*@ pure @*/ interface Money extends JMLType
{
//@ public model instance long pennies;

//@ public instance constraint pennies == \old(pennies);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == pennies / 100;
@ for_example
@ public normal_example
@ requires pennies == 703;
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@ assignable \nothing;
@ ensures \result == 7;
@ also
@ public normal_example
@ requires pennies == 799;
@ assignable \nothing;
@ ensures \result == 7;
@ also
@ public normal_example
@ requires pennies == -503;
@ assignable \nothing;
@ ensures \result == -5;
@*/

public long dollars();

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == pennies % 100;
@ for_example
@ requires pennies == 703;
@ assignable \nothing;
@ ensures \result == 3;
@ also
@ requires pennies == -503;
@ assignable \nothing;
@ ensures \result == -3;
@*/

public long cents();

/*@ also
@ public normal_behavior
@ assignable \nothing;
@ ensures \result <==> o2 instanceof Money
@ && pennies == ((Money)o2).pennies;
@*/

public boolean equals(Object o2);

/*@ also
@ public normal_behavior
@ assignable \nothing;
@ ensures \result instanceof Money
@ && ((Money)\result).pennies == pennies;
@*/

public Object clone();
}
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This interface has a history constraint, which says that the number of pennies in an
object cannot change.13

The following explain more aspects of JML related to the above specification.

2.3.2.1 Redundant Examples

The interesting aspect of Money’s method specifications is another kind of redundancy. This
new form of redundancy is examples, which follow the keyword “for_example”.

Individual examples are given by normal_example clauses (adapted from our previous
work on Larch/C++ [Leavens96b] [Leavens-Baker99]). Any number of these14 can be given
in a specification. In the specification of Money above there are three normal examples given
for dollars and two in the specification of cents.

The specification in each example should be such that:

• the example’s precondition implies the precondition of the expanded meaning of the
specified behaviors,

• the example’s assignable clause specifies a subset of the locations that are assignable
according to the expanded meaning of the specified behaviors, and

• the conjunction of the example’s precondition (wrapped by \old()), the precondition
of the expanded meaning of the specified behaviors (also wrapped by \old()), the
assignable clause of the expanded meaning of the specified behaviors, and the postcon-
dition of the expanded meaning of the specified behaviors should be equivalent to the
conjunction of the assignable clause of the expanded meaning of the example and the
example’s postcondition.

Requiring equivalence to the example’s postcondition means that it can serve as a test
oracle for the inputs described by the example’s precondition. If there is only one specified
public normal_behavior clause and if there are no preconditions and assignable clauses,
then the example’s postcondition should the equivalent to the conjunction of the example’s
precondition and the postcondition of the public normal_behavior specification. Typi-
cally, examples are concrete, and serve to make various rhetorical points about the use of
the specification to the reader. (Exercise: check all the examples given!)

2.3.2.2 JMLType and Informal Predicates

The interface Money is specified to extend the interface JMLType. This interface is given
below. Classes that implement this interface must have pure equals and clone methods
with the specified behavior. The methods specified override methods in the class Object,
and so they use the form of specification that begins with the keyword “also”.

13 There is no use of initially in this interface, so data type induction cannot assume any particular
starting value. But this is desirable, since if a particular starting value was specified, then by the history
constraint, all objects would have that value.

14 One may also give exceptional_example clauses, which are analogous to exceptional_behavior speci-
fications, and example clauses, which are analogous tobehavior specifications. There is also a lightweight
form,that is similar to the example form, except that the introductory keywords “public example” are
omitted.
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package org.jmlspecs.models;

/** Objects with a clone and equals method.
* JMLObjectType and JMLValueType are refinements
* for object and value containers (respectively).
* @version $Revision: 1.15 $
* @author Gary T. Leavens
* @author Albert L. Baker
* @see JMLObjectType
* @see JMLValueType
*/
//-@ immutable
//@ pure
public interface JMLType extends Cloneable, java.io.Serializable {

/** Return a clone of this object.
*/

/*@ also
@ public normal_behavior
@ ensures \result != null;
@ ensures \result instanceof JMLType;
@ ensures ((JMLType)\result).equals(this);
@*/

//@ implies_that
/*@ ensures \result != null

@ && \typeof(\result) <: \type(JMLType);
@*/

public /*@ pure @*/ Object clone();

/** Test whether this object’s value is equal to the given argument.
*/

/*@ also
@ public normal_behavior
@ ensures \result ==>
@ ob2 != null
@ && (* ob2 is not distinguishable from this,
@ except by using mutation or == *);
@ implies_that
@ public normal_behavior
@ {|
@ requires ob2 != null && ob2 instanceof JMLType;
@ ensures ((JMLType)ob2).equals(this) == \result;
@ also
@ requires ob2 == this;
@ ensures \result <==> true;
@ |}
@*/

public /*@ pure @*/ boolean equals(Object ob2);

/** Return a hash code for this object.
*/

public /*@ pure @*/ int hashCode();
}
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The specification of JMLType is noteworthy in its use of informal predicates [Leavens96b].
In JML these start with an open parenthesis and an asterisk (‘(*’) and continue until a
matching asterisk and closing parenthesis (‘*)’). In the public specification of equals, the
normal_behavior’s ensures clause uses an informal predicate as an escape from formality.
The use of informal predicates avoids the delicate issues of saying formally what observable
aliasing means, and what equality of values means in general.15

In the implies_that section of the specification of the equals method is a nested case
analysis, between {| and |}. The meaning of this is that each pre- and postcondition pair
has to be obeyed. The first of these nested pairs is essentially saying that equals has to be
symmetric. The second of these is saying that it has to be reflexive.

The implies_that section of the clone method states some implications of the
specification given that are useful for ESC/Java. These repeat, from the first part of
clone’s specification, that the result must not be null, and that the result’s dynamic type,
\typeof(\result), must be a subtype of (written <:) the type JMLType.

ESC/Java understands only annotations written between the annotation markers /*@
and @*/ and on annotation comment lines of that start with //@. It does not understand
annotations written between the annotation markers /*+@ and @+*/ and on annotation
comment lines of that start with //+@.16 This makes it possible for the user of JML to
write specifications that can be read by both JML’s tools and by ESC/Java, since JML
understands (essentially) a superset of the syntax that ESC/Java understands.

2.3.3 MoneyComparable and MoneyOps

The type Money lacks some useful operations. The extensions below provide specifications
of comparison operations and arithmetic, respectively.

The specification in file ‘MoneyComparable.java’ is interesting because each of the
specified preconditions protects the postcondition from undefinedness in the postcondition
[Leavens-Wing97a]. For example, if the argument m2 in the greaterThan method were
null, then the expression m2.pennies would not be defined.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyComparable extends Money
{
/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies > m2.pennies;
@*/

public boolean greaterThan(Money m2);

/*@ public normal_behavior

15 Observable aliasing is a sharing relation between objects that can be detected by a program. Such
a program, might, for example modify one object and read a changed value from the shared object.
Formalizing this in general is beyond the scope of this paper, and probably beyond what JML can
describe.

16 ESC/Java also does not understand annotations written in Javadoc comments between <jml> and
</jml>, <JML> and </JML>, or <ESC> and </ESC>.
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@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies >= m2.pennies;
@*/

public boolean greaterThanOrEqualTo(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies < m2.pennies;
@*/

public boolean lessThan(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies <= m2.pennies;
@*/

public boolean lessThanOrEqualTo(Money m2);
}

The interface specified in the file ‘MoneyOps.java’ below extends the interface specified
above. MoneyOps is interesting for the use of its pure model methods: inRange, can_add,
and can_scaleBy. These methods cannot be invoked by Java programs; that is, they would
not appear in the Java implementation. When, for example inRange is called in a predicate
it is equivalent to using some correct implementation of its specification. The specification
of inRange also makes use of a local specification variable declaration, which follows the
keyword “old”. Such declarations allow one to abbreviate long expressions, or, to make
rhetorical points by naming constants, as is done with epsilon. These old declarations
are treated as locations that are initialized to the pre-state value of the given expression.
Model methods can be normal (instance) methods as well as static (class) methods.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable
{
/*@ public normal_behavior
@ old double epsilon = 1.0;
@ assignable \nothing;
@ ensures \result <==> Long.MIN_VALUE + epsilon < d
@ && d < Long.MAX_VALUE - epsilon;
@ public model boolean inRange(double d);
@
@ public normal_behavior
@ requires m2!= null;
@ assignable \nothing;
@ ensures \result <==> inRange((double) pennies + m2.pennies);
@ public model boolean can_add(Money m2);
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@
@ public normal_behavior
@ ensures \result <==> inRange(factor * pennies);
@ public model boolean can_scaleBy(double factor);
@*/

/*@ public normal_behavior
@ requires m2 != null && can_add(m2);
@ assignable \nothing;
@ ensures \result != null
@ && \result.pennies == this.pennies + m2.pennies;
@ for_example
@ public normal_example
@ requires this.pennies == 300 && m2.pennies == 400;
@ assignable \nothing;
@ ensures \result != null && \result.pennies == 700;
@*/

public MoneyOps plus(Money m2);

/*@ public normal_behavior
@ requires m2 != null
@ && inRange((double) pennies - m2.pennies);
@ assignable \nothing;
@ ensures \result != null
@ && \result.pennies == this.pennies - m2.pennies;
@ for_example
@ public normal_example
@ requires this.pennies == 400 && m2.pennies == 300;
@ assignable \nothing;
@ ensures \result != null && \result.pennies == 100;
@*/

public MoneyOps minus(Money m2);

/*@ public normal_behavior
@ requires can_scaleBy(factor);
@ assignable \nothing;
@ ensures \result != null
@ && \result.pennies == (long)(factor * pennies);
@ for_example
@ public normal_example
@ requires pennies == 400 && factor == 1.01;
@ assignable \nothing;
@ ensures \result != null && \result.pennies == 404;
@*/

public MoneyOps scaleBy(double factor);
}
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Note also that JML uses the Java semantics for mixed-type expressions. For example in
the ensures clause of the above specification of plus, m2.pennies is implicitly coerced to a
double-precision floating point number, as it would be in Java.

2.3.4 MoneyAC

The key to proofs that an implementation of a class or interface specification is correct lies
in the use of in, maps-into, and represents clauses [Hoare72a] [Leino95].

Consider, for example, the abstract class specified in the file ‘MoneyAC.java’ below.
This class is abstract and has no constructors. The class declares a concrete field numCents,
which is related to the model instance field pennies by the represents clause.17 The
represents clause states that the value of pennies is the value of numCents. This allows
relatively trivial proofs of the correctness of the dollars and cents methods, and is key to
the proofs of the other methods.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyAC implements Money {

protected long numCents;
//@ in pennies;

//@ protected represents pennies <- numCents;

//@ protected constraint_redundantly numCents == \old(numCents);

public long dollars() {
return numCents / 100;

}

public long cents() {
return numCents % 100;

}

public boolean equals(Object o2) {
if (o2 instanceof Money) {

Money m2 = (Money)o2;
return numCents == (100 * m2.dollars() + m2.cents());

} else {
return false;

}
}

public int hashCode() {
return (int)numCents;

}

17 This represents clause is implicitly an instance, as opposed to a static, represents clause, because it
appears in a class declaration.
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public Object clone() {
return this;

}
}

2.3.5 MoneyComparableAC

The straightforward implementation of the pure abstract subclass MoneyComparableAC
is given below. Besides extending the class MoneyAC, it implements the interface
MoneyComparable. Note that the model and concrete fields are both inherited by this
class.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ abstract class MoneyComparableAC
extends MoneyAC implements MoneyComparable

{
protected static /*@ pure @*/ long totalCents(Money m2)
{
long res = 100 * m2.dollars() + m2.cents();
//@ assert res == m2.pennies;
return res;

}

public boolean greaterThan(Money m2)
{
return numCents > totalCents(m2);

}

public boolean greaterThanOrEqualTo(Money m2)
{
return numCents >= totalCents(m2);

}

public boolean lessThan(Money m2)
{
return numCents < totalCents(m2);

}

public boolean lessThanOrEqualTo(Money m2)
{
return numCents <= totalCents(m2);

}
}
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An interesting feature of the class MoneyComparableAC is the protected static method
named totalCents. For this method, we give its code with an embedded assertion, written
following the keyword assert.18

Note that the model method, inRange is not implemented, and does not need to be
implemented to make this class correctly implement the interface MoneyComparable.

2.3.6 USMoney

Finally, a concrete class implementation is given in the file ‘USMoney.java’ shown below.
The class USMoney implements the interface MoneyOps. Note that specifications as well as
code are given for the constructors.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ class USMoney
extends MoneyComparableAC implements MoneyOps

{
/*@ public normal_behavior
@ assignable pennies;
@ ensures pennies == cs;
@ implies_that
@ protected normal_behavior
@ assignable pennies, numCents;
@ ensures numCents == cs;
@*/

public USMoney(long cs)
{
numCents = cs;

}

/*@ public normal_behavior
@ assignable pennies;
@ ensures pennies == (long)(100.0 * amt);
@ ensures_redundantly (* pennies holds amt dollars *); @*/

public USMoney(double amt)
{
numCents = (long)(100.0 * amt);

}

public MoneyOps plus(Money m2)
{
//@ assume m2 != null;

18 As of JDK 1.4, assert is also a reserved word in Java. One can thus write assert statements either
in standard Java or in JML annotations. If one writes an assert statement as a JML annotation, all
of the JML extensions to the Java expression syntax see Section 3.1 [Extensions to Java Expressions
for Predicates], page 52 for the predicate can be used, but no side-effects are allowed in this predicate.
Such a JML assert-statement may also refer to model and ghost variables. In a Java assert statement,
i.e., in an assert-statement that is not in an annotation, one cannot use JML’s extensions for assertions,
because such assertions must compile with a Java compiler.
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return new USMoney(numCents + totalCents(m2));
}

public MoneyOps minus(Money m2)
{
//@ assume m2 != null;
return new USMoney(numCents - totalCents(m2));

}

public MoneyOps scaleBy(double factor)
{
return new USMoney(numCents * factor / 100.0);

}

public String toString()
{
return "$" + dollars() + "." + cents();

}
}

The constructors each mention the fields that they initialize in their assignable clause.
This is because the constructor’s job is to initialize these fields. One can think of a new
expression in Java as executing in two steps: allocating an object, and then calling the
constructor. Thus the specification of a constructor needs to mention the fields that it can
initialize in the assignable clause.

The first constructor’s specification also illustrates that redundancy can also be used in
an assignable clause. A redundant assignable clause follows if the meaning of the set of
locations named is a subset of the ones denoted by the non-redundant clause for the same
specification case. In this example the redundant assignable clause follows from the given
assignable clause and the meaning of the in clause inherited from the superclass MoneyAC.

The second constructor above is noteworthy in that there is a redundant ensures clauses
that uses an informal predicate [Leavens96b]. In this instance, the informal predicate is
used as a comment (which could also be used). Recall that informal predicates allow an
escape from formality when one does not wish to give part of a specification in formal detail.

The plus and minus methods use assume statements; these are like assertions, but are
intended to impose obligations on the callers [Back-Mikhajlova-vonWright98]. The main
distinction between a assume statement and a requires clause is that the former is a
statement and can be used within code. These may also be treated differently by different
tools. For example, ESC/Java [Leino-etal00] will require callers to satisfy the requires clause
of a method, but will not enforce the precondition if it is stated as an assumption.

2.4 Use of Pure Classes

Since USMoney is a pure class, it can be used to make models of other classes. An example
is the abstract class specified in the file ‘Account.jml’ below. The first model field in this
class has the type USMoney, which was specified above. (Further explanation follows the
specification below.)
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package org.jmlspecs.samples.prelimdesign;

public class Account {

//@ public model MoneyOps credit;
//@ public model String accountOwner;

/*@ public invariant accountOwner != null && credit != null
@ && credit.greaterThanOrEqualTo(new USMoney(0));
@*/

//@ public constraint accountOwner.equals(\old(accountOwner));

/*@ public normal_behavior
@ requires own != null && amt != null
@ && (new USMoney(1)).lessThanOrEqualTo(amt);
@ assignable credit, accountOwner;
@ ensures credit.equals(amt) && accountOwner.equals(own);
@*/

public Account(MoneyOps amt, String own);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result.equals(credit);
@*/

public /*@ pure @*/ MoneyOps balance();

/*@ public normal_behavior
@ requires 0.0 <= rate && rate <= 1.0
@ && credit.can_scaleBy(1.0 + rate);
@ assignable credit;
@ ensures credit.equals(\old(credit.scaleBy(1.0 + rate)));
@ for_example
@ public normal_example
@ requires rate == 0.05 && (new USMoney(4000)).equals(credit);
@ assignable credit;
@ ensures credit.equals(new USMoney(4200));
@*/

public void payInterest(double rate);

/*@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit;
@ ensures credit.equals(\old(credit.plus(amt)));
@ for_example
@ public normal_example



Chapter 2: Class and Interface Specifications 42

@ requires credit.equals(new USMoney(40000))
@ && amt.equals(new USMoney(1));
@ assignable credit;
@ ensures credit.equals(new USMoney(40001));
@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit);
@ assignable credit;
@ ensures credit.equals(\old(credit.minus(amt)));
@ for_example
@ public normal_example
@ requires credit.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ assignable credit;
@ ensures credit.equals(new USMoney(1));
@*/

public void withdraw(MoneyOps amt);
}

The specification of Account makes good use of examples. It also demonstrates the
various ways of protecting predicates used in the specification from undefinedness [Leavens-
Wing97a]. The principal concern here, as is often the case when using reference types
in a model, is to protect against the model fields being null. As in Java, fields and
variables of reference types can be null. In the specification of Account, the invariant
states that these fields should not be null. Since implementations of public methods must
preserve the invariants, one can think of the invariant as conjoined to the precondition
and postcondition of each public method, and the postcondition of each public constructor.
Hence, for example, method pre- and postconditions do not have to state that the fields
are not null. However, often other parts of the specification must be written to allow the
invariant to be preserved, or established by a constructor. For example, in the specification
of Account’s constructor, this is done by requiring amt and own are not null, since, if they
could be null, then the invariant could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a class Digraph (directed graph).
This gives a more interesting example of how more complex models can be composed in
JML from other classes. In this example we use model classes and the pure containers
provided in the package org.jmlspecs.models.

2.5.1 NodeType

The file ‘NodeType.java’ contains the specification of an abstract class NodeType. NodeType
is an abstract class, as opposed to a model class, because it will require an implementation
and because it does appear in the interface of the model class Digraph. However, we also
declare this abstract class to be pure, since we want to use its methods in the specification
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of other classes. (And we do so appropriately, since all the methods for class NodeType are
side-effect-free.)

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.*;

public /*@ pure @*/ abstract class NodeType implements JMLType {

/*@ also
@ public normal_behavior
@ requires !(o instanceof NodeType);
@ ensures \result == false;
@*/

public abstract boolean equals(Object o);

public abstract int hashCode();

/*@ also
@ public normal_behavior
@ ensures \result instanceof NodeType
@ && ((NodeType)\result).equals(this);
@*/

public abstract Object clone();

} // end of class NodeType

2.5.2 ArcType

ArcType is specified as a pure model class in the file ‘ArcType.jml’ shown below. It is a
model class because it does not appear in the interface to Digraph, and so does not need to
be implemented. We declare ArcType to be a pure class so that its methods can be used in
assertions. The two model fields for ArcType, from and to, are both of type NodeType. We
specify the equals method so that two references to objects of type ArcType are equal if
and only if they have equal values in the from and to model fields. Thus, equals is specified
using NodeType.equals. We also specify that ArcType has a public clone method, fulfilling
the obligations of a type that implements JMLType. ArcType must implement JMLType so
that its objects can be placed in a JMLValueSet. We use such a set for one of the model
fields of Digraph.

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.JMLType;

/*@
@ public pure model class ArcType implements JMLType {
@
@ public model NodeType from;
@ public model NodeType to;
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@ public invariant from != null && to != null;
@
@ public normal_behavior
@ requires from != null && to != null;
@ assignable this.from, this.to;
@ ensures this.from.equals(from) && this.to.equals(to);
@ public ArcType(NodeType from, NodeType to);
@
@ also
@ public normal_behavior
@ {|
@ requires o instanceof ArcType;
@ ensures \result <==> ((ArcType)o).from.equals(from)
@ && ((ArcType)o).to.equals(to);
@ also
@ requires !(o instanceof ArcType);
@ ensures \result == false;
@ |}
@ public boolean equals(Object o);
@
@ also
@ public normal_behavior
@ ensures \result instanceof ArcType
@ && ((ArcType)\result).equals(this);
@ public Object clone();
@ }
@*/

The use of also in the specification of ArcType’s equals method is interesting. It
separates two cases of the normal behavior for that method. This is equivalent to using
two public normal_behavior clauses, one for each case. That is, when the argument is
an instance of ArcType, the method must return true just when this and o have the same
from and to fields. And when o is not an instance of ArcType, the equals method must
return false.

2.5.3 Digraph

Finally, the specification of the class Digraph is given in the file ‘Digraph.jml’ shown below.
This specification demonstrates how to use container classes, like JMLValueSet, combined
with appropriate invariants to specify models that are compositions of other classes. Both
the model fields nodes and arcs are of type JMLValueSet. However, the first invariant
clause restricts nodes so that every object in nodes is, in fact, of type NodeType. Similarly,
the next invariant clause we restrict arcs to be a set of ArcType objects. In both cases,
since the type is JMLValueSet, membership is determined by the equals method for the
type of the elements (rather than reference equality).

package org.jmlspecs.samples.digraph;
//@ model import org.jmlspecs.models.*;
public class Digraph {
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//@ public model JMLValueSet nodes;
//@ public model JMLValueSet arcs;

/*@ public invariant nodes != null
@ && (\forall JMLType n; nodes.has(n); n instanceof NodeType);
@ public invariant arcs != null
@ && (\forall JMLType a; arcs.has(a); a instanceof ArcType);
@ public invariant (\forall ArcType a; arcs.has(a);
@ nodes.has(a.from) && nodes.has(a.to));
@*/

/*@ public normal_behavior
@ assignable nodes, arcs;
@ ensures nodes.isEmpty() && arcs.isEmpty();
@*/

public Digraph();

/*@ public normal_behavior
@ requires n != null;
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.insert(n)));
@*/

public void addNode(NodeType n);

/*@ public normal_behavior
@ requires unconnected(n);
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.remove(n)));
@*/

public void removeNode(NodeType n);

/*@ public normal_behavior
@ requires inFrom != null && inTo != null
@ && nodes.has(inFrom) && nodes.has(inTo);
@ assignable arcs;
@ ensures arcs.equals(
@ \old(arcs.insert(new ArcType(inFrom, inTo))));
@*/

public void addArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
@ requires inFrom != null && inTo != null
@ && nodes.has(inFrom) && nodes.has(inTo);
@ assignable arcs;
@ ensures arcs.equals(
@ \old(arcs.remove(new ArcType(inFrom, inTo))));
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@*/
public void removeArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == nodes.has(n);
@*/

public /*@ pure @*/ boolean isNode(NodeType n);

/*@ public normal_behavior
@ ensures \result == arcs.has(new ArcType(inFrom, inTo));
@
@*/

public /*@ pure @*/ boolean isArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
@ requires nodes.has(start) && nodes.has(end);
@ assignable \nothing;
@ ensures \result == reachSet(new JMLValueSet(start)).has(end);
@*/

public /*@ pure @*/ boolean isAPath(NodeType start, NodeType end);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result <==>
@ !(\exists ArcType a; arcs.has(a);
@ a.from.equals(n) || a.to.equals(n));
@ public pure model boolean unconnected(NodeType n);
@*/

/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall JMLType o; nodeSet.has(o);
@ o instanceof NodeType && nodes.has(o));
@ {|
@ assignable \nothing;
@ also
@ requires nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null && \result.equals(nodeSet);
@ also
@ requires !nodeSet.equals(OneMoreStep(nodeSet));
@ ensures \result != null
@ && \result.equals(reachSet(OneMoreStep(nodeSet)));
@ |}
@ public pure model JMLValueSet reachSet(JMLValueSet nodeSet);
@*/
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/*@ public normal_behavior
@ requires nodeSet != null
@ && (\forall JMLType o; nodeSet.has(o);
@ o instanceof NodeType && nodes.has(o));
@ assignable \nothing;
@ ensures \result != null
@ && \result.equals(nodeSet.union(
@ new JMLValueSet { NodeType n | nodes.has(n)
@ && (\exists ArcType a; a != null && arcs.has(a);
@ nodeSet.has(a.from) && n.equals(a.to))}));
@ public pure model JMLValueSet OneMoreStep(JMLValueSet nodeSet);
@*/

} // end of class Digraph

An interesting use of pure model methods appears at the end of the specification of
Digraph in the pure model method reachSet. This method constructively defines the set
of all nodes that are reachable from the nodes in the argument nodeSet. This specification
uses a nested case analysis, between {| and |}. The meaning of this is again that each pre-
and postcondition pair has to be obeyed, but by using nesting, one can avoid duplication
of the requires clause that is found at the beginning of the specification. The measured_
by clause is needed because this specification is recursive; the measure given allows one to
describe a termination argument, and thus ensure that the specification is well-defined. This
clause defines an integer-valued measure that must always be at least zero; furthermore,
the measure for a call and recursive uses in the specification must strictly decrease [Owre-
etal95]. The recursion in the specification builds up the entire set of reachable nodes by, for
each recursive reference, adding the nodes that can be reached directly (via a single arc)
from the nodes in nodeSet.

2.6 Subtyping

Following Dhara and Leavens [Dhara-Leavens96] [Leavens97c], a subtype inherits the spec-
ifications of its supertype’s public and protected members (fields and methods), as well as
its public and protected invariants and history constraints.19 This ensures that a subclass
specifies a behavioral subtype of its supertypes. This inheritance can be thought of textu-
ally, by copying the public and protected specifications of the methods of a class’s ancestors
and all interfaces that a class implements into the class’s specification and combining the
specifications using also [Raghavan-Leavens00].20 (This is the reason for the use of also at
the beginning of specifications in overriding methods.) By the semantics of method combi-
nation using also, these behaviors must all be satisfied by the method, in addition to any
explicitly specified behaviors.

For example, consider the class PlusAccount, specified in file ‘PlusAccount.jml’ shown
below. It is specified as a subclass of Account (see Section 2.4 [Use of Pure Classes],
page 40). Thus it inherits the fields of Account, and Account’s public invariants, history
constraints, and method specifications. (The specification of Account given above does

19 A subtype also inherits default privacy (package-protected) method specifications, invariants, and history
constraints if it is in the same package as its supertype.

20 However, textual copying shouldn’t be taken literally; if a subclass declares a field that hides the fields
of its superclass, renaming must be done to prevent name capture.



Chapter 2: Class and Interface Specifications 48

not have any protected specification information.) Because it inherits the fields of its
superclass, inherited method specifications of behavior are still meaningful when copied to
the subclass. The trick is to always add new model fields to the subclass and relate them
to the existing ones.

Note that in the represents clause below, instead of a left-facing arrow, <-, the connective
“\such_that” is used to introduce a relationship predicate. This form of the represents
clause allows one to specify abstraction relations, instead of abstraction functions.

package org.jmlspecs.samples.prelimdesign;

public class PlusAccount extends Account {
//@ public model MoneyOps savings, checking; in credit;

/*@ public represents credit \such_that
@ credit.equals(savings.plus(checking));
@*/

//@ public invariant savings != null && checking != null;
/*@ public invariant_redundantly savings.plus(checking)
@ .greaterThanOrEqualTo(new USMoney(0));
@*/

/*@ public normal_behavior
@ requires sav != null && chk != null && own != null
@ && (new USMoney(1)).lessThanOrEqualTo(sav)
@ && (new USMoney(1)).lessThanOrEqualTo(chk);
@ assignable credit, owner;
@ assignable_redundantly savings, checking;
@ ensures savings.equals(sav) && checking.equals(chk)
@ && owner.equals(own);
@ ensures_redundantly credit.equals(sav.plus(chk));
@*/

public PlusAccount(MoneyOps sav, MoneyOps chk, String own);

/*@ also
@ public normal_behavior
@ requires 0.0 <= rate && rate <= 1.0
@ && credit.can_scaleBy(1.0 + rate);
@ assignable credit, savings, checking;
@ ensures checking.equals(\old(checking.scaleBy(1.0 + rate)));
@ for_example
@ public normal_example
@ requires rate == 0.05 && checking.equals(new USMoney(2000));
@ assignable credit, savings, checking;
@ ensures checking.equals(new USMoney(2100));
@*/

public void payInterest(double rate);
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/*@ also
@ public normal_behavior
@ requires amt != null
@ && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(savings);
@ assignable credit, savings;
@ ensures savings.equals(\old(savings.minus(amt)))
@ && \not_modified(checking);
@ also
@ public normal_behavior
@ requires amt != null
@ && (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit)
@ && amt.greaterThan(savings);
@ assignable credit, savings, checking;
@ ensures savings.equals(new USMoney(0))
@ && checking.equals(
@ \old(checking.minus(amt.minus(savings))));
@ for_example
@ public normal_example
@ requires savings.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ assignable credit, savings, checking;
@ ensures savings.equals(new USMoney(1))
@ && \not_modified(checking);
@ also
@ public normal_example
@ requires savings.equals(new USMoney(30001))
@ && checking.equals(new USMoney(10000))
@ && amt.equals(new USMoney(40000));
@ assignable credit, savings, checking;
@ ensures savings.equals(new USMoney(0))
@ && checking.equals(new USMoney(1));
@*/

public void withdraw(MoneyOps amt);

/*@ also
@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit, savings;
@ ensures savings.equals(\old(savings.plus(amt)))
@ && \not_modified(checking);
@ for_example
@ public normal_example
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@ requires savings.equals(new USMoney(20000))
@ && amt.equals(new USMoney(1));
@ assignable credit, savings, checking;
@ ensures savings.equals(new USMoney(20001));
@*/

public void deposit(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null
@ && amt.greaterThanOrEqualTo(new USMoney(0))
@ && credit.can_add(amt);
@ assignable credit, checking;
@ ensures checking.equals(\old(checking.plus(amt)))
@ && \not_modified(savings);
@ for_example
@ public normal_example
@ requires checking.equals(new USMoney(20000))
@ && amt.equals(new USMoney(1));
@ assignable credit, checking;
@ ensures checking.equals(new USMoney(20001));
@*/

public void depositToChecking(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null;
@ {|
@ requires (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(checking);
@ assignable credit, checking;
@ ensures checking.equals(\old(checking.minus(amt)))
@ && \not_modified(savings);
@ also
@ requires (new USMoney(0)).lessThanOrEqualTo(amt)
@ && amt.lessThanOrEqualTo(credit)
@ && amt.greaterThan(checking);
@ assignable credit, checking, savings;
@ ensures checking.equals(new USMoney(0))
@ && savings.equals(
@ \old(savings.minus(amt.minus(checking))));
@ |}
@ for_example
@ public normal_example
@ requires checking.equals(new USMoney(40001))
@ && amt.equals(new USMoney(40000));
@ assignable credit, checking;
@ ensures checking.equals(new USMoney(1))
@ && \not_modified(savings);
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@ also
@ public normal_example
@ requires savings.equals(new USMoney(30001))
@ && checking.equals(new USMoney(10000))
@ && amt.equals(new USMoney(40000));
@ assignable credit, checking, savings;
@ ensures checking.equals(new USMoney(0))
@ && savings.equals(new USMoney(1));
@*/

public void payCheck(MoneyOps amt);
}
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3 Extensions to Java Expressions

JML makes extensions to the Java expression syntax for two purposes. The main set of
extensions are used in predicates. But there are also some extensions used in store-ref s,
which are themselves used in the assignable, accessible, and represents clauses.

3.1 Extensions to Java Expressions for Predicates

The expressions that can be used as predicates in JML are an extension to the side-effect
free Java expressions. Since predicates are required to be side-effect free, the following Java
operators are not allowed within predicates:
• assignment (=), and the various assignment operators (such as +=, -=, etc.)
• all forms of increment and decrement operators (++ and --),
• calls to methods that are not pure, and
• any use of operator new that would call a constructor that is not pure.

Furthermore, within method specification that are not model programs, one cannot use
super to call a pure superclass method, because it is confusing in combination with JML’s
specification inheritance.1

We allow the allocation of storage (e.g., using operator new and pure constructors)
in predicates, because such storage can never be referred to after the evaluation of the
predicate, and because such pure constructors have no side-effects other than initializing
the new objects so created.

Also, expressions with side effects are permitted as arguments to the \duration and
\working_space expressions, because their argument expressions are not evaluated.

JML adds the following new syntax to the Java expression syntax, for use in predi-
cates (see the JML Reference Manual [Leavens-etal-JMLRef] for syntactic details such as
precedence):
• Informal descriptions, which look like

(* some text describing a Boolean-valued predicate *)

have type boolean. Their meaning is either true or false, but is entirely determined
by the reader. Since informal descriptions are not-executable, they may be treated
differently by different tools in different situations.

• ==> and <== for logical implication and reverse implication. For example, the formula
raining ==> getsWet is true if either raining is false or getsWet is true. The formula
getsWet <== raining means the same thing. The ==> operator associates to the right,
but the <== operator associates to the left. The expressions on either side of these
operators must be of type boolean, and the type of the result is also boolean.

• <==> and <=!=> for logical equivalence and logical inequivalence, respectively. The
expressions on either side of these operators must be of type boolean, and the type of
the result is also boolean. Note that <==> means the same thing as == for expressions of

1 Suppose A is the superclass of B, and B is the superclass of C. Suppose B ’s specification used super

to call a method of A. The problem is that when this specification is inherited by C, if we imagine
copying B ’s specification to C, then this use of super no longer refers to A, but to B. Thanks to Arnd
Poetzsch-Heffter for pointing out this problem.
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type boolean, and <=!=> means the same thing as != for boolean expressions; however,
<==> and <=!=> have a much lower precedence, and are also associative and symmetric.

• < and <= to test order of locks. JML extends these two operators, but not > and
>=, as comparisons on Objects. Using synchronized statements, Java programs can
establish monitor locks to permit only one thread at a time to execute given sections
of code. Any object can be used as a lock. In order for ESC/Java to reason about the
possibility of deadlocks among threads, a partial order must be defined on lock objects,
with "larger" objects being objects whose locks should be acquired later. The < and
<= operators represent this partial order.

• \max, to provide the "largest" of a set of lock objects. The ordering used to determine
the max is that defined by the < operator as applied to objects.

• \forall and \exists, which are universal and existential quantifiers (respectively);
for example,

(\forall int i,j; 0 <= i && i < j && j < 10; a[i] < a[j])

says that a is sorted at indexes between 0 and 9. The quantifiers range over all potential
values of the variables declared which satisfy the range predicate, given between the
semicolons (;). If the range predicate is omitted, it defaults to true. Since a quantifier
quantifies over all potential values of the variables, when the variables declared are
reference types, they may be null, or may refer to objects not constructed by the
program; one should use a range predicate to eliminate such cases if they are not
desired. The type of a universal and existential quantifier is boolean.

• \max, \min, \product, and \sum, which are generalized quantifiers that return the
maximum, minimum, product, or sum of the values of the expressions given, where the
variables satisfy the given range. The range predicate must be of type boolean. The
expression in the body must be a built-in numeric type, such as int or double; the type
of the quantified expression as a whole is the type of its body. The body of a quantified
expression is the last top-level expression it contains; it is the expression following the
range predicate, if there is one. As with the universal and existential quantifiers, if the
range predicate is omitted, it defaults to true. For example, the following equations
are all true (see chapter 3 of [Cohen90]):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4
(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4
(\max int i; 0 <= i && i < 5; i) == 4
(\min int i; 0 <= i && i < 5; i-1) == -1

For computing the value of a sum or product, Java’s arithmetic is used. The meaning
thus depends on the type of the expression. For example, in Java, floating point
numbers use the IEEE 754 standard, and thus when an overflow occurs, the appropriate
positive or negative infinity is returned. However, Java integers wrap on overflow.
Consider the following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)
== Float.POSITIVE_INFINITY

(\sum int i; i == Integer.MAX_VALUE || i == 1; i)
== Integer.MAX_VALUE + 1
== Integer.MIN_VALUE
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When the range predicate is not satisfiable, the sum is 0 and the product is 1; for
example:

(\sum int i; false; i) == 0
(\product double d; false; d*d) == 1.0

When the range predicate is not satisfiable for \max the result is the smallest number
with the type of the expression in the body; for floating point numbers, negative infinity
is used. Similarly, when the range predicate is not satisfiable for \min, the result is the
largest number with the type of the expression in the body.

• \num_of, which is “numerical quantifier.” It returns the number of values for its
variables for which the range and the expression in its body are true. Both the range
predicate and the body must have type boolean, and the entire quantified expression
has type long. The meaning of this quantifier is defined by the following equation (see
p. 57 of [Cohen90]).

(\num_of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L)

• Set comprehensions, which can be used to succinctly define sets; for example, the
following is the JMLObjectSet that is the subset of non-null Integer objects found in
the set myIntSet whose values are between 0 and 10, inclusive.

new JMLObjectSet {Integer i | myIntSet.has(i)
&& i != null && 0 <= i.getInteger()
&& i.getInteger() <= 10 }

The syntax of JML (see the JML Reference Manual [Leavens-etal-JMLRef] for details)
limits set comprehensions so that following the vertical bar (‘|’) is always an invocation
of the has method of some set on the variable declared. (This restriction is used to
avoid Russell’s paradox [Whitehead-Russell25].) In practice, one either starts from
some relevant set at hand, or one can start from the sets containing the objects of
primitive types found in org.jmlspecs.models.JMLModelObjectSet and (in the same
Java package) JMLModelValueSet. The type of such an expression is the type named
following new, which must be JMLObjectSet or JMLValueSet.

• \duration, which describes the specified maximum number of virtual machine cycle
times needed to execute the method call or explicit constructor invocation expression
that is its argument; e.g., \duration(myStack.push(o)) is the maximum number of
virtual machine cycles needed to execute the call myStack.push(o), according to the
contract of the static type of myStack’s type’s push method, when passed argument
o. Note that the expression used as an argument to \duration should be thought of
as quoted, in the sense that it is not to be executed; thus the method or constructor
called need not be free of side effects. The argument expression must be a method
call or explicit constructor invocation expression; the type of a \duration expression
is long. For a given Java Virtual Machine, a virtual machine cycle is defined to be the
minimum of the maximum over all Java Virtual Machine instructions, i, of the length of
time needed to execute instruction i. The keyword \duration can only be used in the
spec-expression of a duration-clause; it cannot be used, for example, in postconditions.

• \elemtype, which returns the most-specific static type shared by all elements of its
array argument [Leino-Nelson-Saxe00]. For example, \elemtype(\type(int[])) is
\type(int). The argument to \elemtype must be an expression of type \TYPE, which
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JML considers to be the same as java.lang.Class, and its result also has type \TYPE.
If the argument is not an array type, the result is null.

• \fresh, which asserts that objects were freshly allocated; for example, \fresh(x,y)
asserts that x and y are not null and that the objects bound to these identifiers were
not allocated in the pre-state. The arguments to \fresh can have any reference type,
and the type of the overall expression is boolean.2

• \invariant_for, which is true just when its argument satisfies the invariant of its
static type; for example, \invariant_for((MyClass)o) is true when o satisfies the
invariant of MyClass. The entire \invariant_for expression is of type boolean.

• \is_initialized, which is true just when its reference-type argument is a class that
has finished its static initialization. It is of type boolean.

• \lblneg and \lblpos can be used to attach labels to expressions [Leino-Nelson-
Saxe00]; these labels might be printed in various messages by support tools, for
example, to identify an assertion that failed. Such an expression has a label and a
body ; for example, in

(\lblneg indexInBounds 0 <= index && index < length)

the label is indexInBounds and the body is the expression 0 <= index && index <
length. The value of a labeled expression is the value of its body, hence its type is the
type of its body. The idea is that if this expression is used in an assertion and its value
is false (e.g., when doing run-time checking of assertions), then a warning will be
printed that includes the label indexInBounds. The form using \lblpos has a similar
syntax, but should be used for warnings when the value of the enclosed expression is
true.

• \lockset, which is the set of locks held by the current thread. It is of
type JMLObjectSet. (This is an adaptation from ESC/Java [Leino-etal00]
[Leino-Nelson-Saxe00] for dealing with threads.)

• \nonnullelements, which can be used to assert that an array and its elements are all
non-null. For example, \nonnullelements(myArray), is equivalent to [Leino-Nelson-
Saxe00]

myArray != null &&
(\forall int i; 0 <= i && i < myArray.length;

myArray[i] != null)

• \not_modified, which asserts that the values of objects are the same in the post-state
as in the pre-state; for example, \not_modified(xval,yval) says that xval and yval
have the same value in the pre- and post-states (in the sense of an equals method). The
keyword \not_modified can only be used in an ensures-clause or a signals-clause; it
cannot be used, for example, in preconditions. The type of a \not_modified expression
is boolean.

• \old, which can be used to refer to values in the pre-state; e.g., \old(myPoint.x) is the
value of the x field of the object myPoint in the pre-state. The type of such an expression
is the type of the expression it contains; for example the type of \old(myPoint.x) is

2 Note that it is wrong to use \fresh(this) in the specification of a constructor, because Java’s new

operator allocates storage for the object; the constructor’s job is just to initialize that storage.
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the type of myPoint.x. The keyword \old can only be used in an ensures-clause, a
signals-clause, or a history-constraint; it cannot be used, for example, in preconditions.

• The \reach expression allows one to refer to the set of objects reachable from some
particular object. The syntax \reach(x) denotes the smallest JMLObjectSet contain-
ing the object denoted by x, if any, and all objects accessible through all fields of
objects in this set. That is, if x is null, then this set is empty otherwise it contains x,
all objects accessible through all fields of x, all objects accessible through all fields of
these objects, and so on, recursively. If x denotes a model field (or data group), then
\reach(x) denotes the smallest JMLObjectSet containing the objects reachable from
x or reachable from the objects referenced by fields in that data group.

• \result, which, in an ensures clause is the value or object that is being returned
by a method. Its type is the return type of the method; hence it is a type error to
use \result in a void method or in a constructor. The keyword \result can only be
used in an ensures-clause; it cannot be used, for example, in preconditions or in signals
clauses.

• \space, which describes the amount of heap space, in bytes, allocated to the object
referred to by its argument; e.g., \space(myStack) is number of bytes in the heap used
by myStack, not including the objects it contains. The type of the spec-expression that
is the argument must be a reference type, and the result type of a \space expression
is long. The keyword \space can only be used in the spec-expression of a working-
space-clause; it cannot be used, for example, in postconditions.

• \typeof, which returns the most-specific dynamic type of an expression’s value [Leino-
Nelson-Saxe00]. The meaning of \typeof(E) is unspecified if E is null. If E has
a static type that is a reference type, then \typeof(E) means the same thing as
E.getClass(). For example, if c is a variable of static type Collection that holds
an object of class HashSet, then \typeof(c) is HashSet.class, which is the same
thing as \type(HashSet). If E has a static type that is not a reference type, then
\typeof(E) means the instance of java.lang.Class that represents its static type.
For example, \typeof(true) is Boolean.TYPE, which is the same as \type(boolean).
Thus an expression of the form \typeof(E) has type \TYPE, which JML considers to
be the same as java.lang.Class.

• <:, which compares two reference types and returns true when the type on the left is a
subtype of the type on the right [Leino-Nelson-Saxe00]. Although the notation might
suggest otherwise, this operator is also reflexive; a type will compare as <: with itself.
In an expression of the form E1 <: E2, both E1 and E2 must have type \TYPE; since
in JML \TYPE is the same as java.lang.Class the expression E1 <: E2 means the
same thing as the expression E2.isAssignableFrom(E1).

• \type, which can be used to mark types in expressions. An expression of the form
\type(T) has the type \TYPE. Since in JML \TYPE is the same as java.lang.Class,
an expression of the form \type(T) means the same thing as T.class. For example,
in

\typeof(myObj) <: \type(PlusAccount)

the use of \type(PlusAccount) is used to introduce the type PlusAccount into this
expression context.



Chapter 3: Extensions to Java Expressions 57

• \working_space, which describes the maximum specified amount of heap space, in
bytes, used by the method call or explicit constructor invocation expression that is its
argument; e.g., \working_space(myStack.push(o)) is the maximum number of bytes
needed on the heap to execute the call myStack.push(o), according to the contract of
the static type of myStack’s type’s push method, when passed argument o. Note that
the expression used as an argument to \working_space should be thought of as quoted,
in the sense that it is not to be executed; thus the method or constructor called need
not be free of side effects. The argument expression must be a method call or explicit
constructor invocation expression; the result type of a \working_space expression is
long. The keyword \working_space can only be used in the spec-expression of a
working-space-clause; it cannot be used, for example, in postconditions.

As in Java itself, most types are reference types, and hence many expressions yield
references (i.e., object identities or addresses), as opposed to primitive values. This means
that ==, except when used to compare pure values of primitive types such as boolean or
int, is reference equality. As in Java, to get value equality for reference types one uses the
equals method in assertions. For example, the predicate myString == yourString, is only
true if the objects denoted by myString and yourString are the same object (i.e., if the
names are aliases); to compare their values one must write myString.equals(yourString).

The reference semantics makes interpreting predicates that involve the use of \old in-
teresting. We want to have the semantics suited for two purposes:
• execution of assertions for purposes of debugging and testing, as in Eiffel, and
• generation of mathematical assertions for static analysis and possible theorem proving

(e.g., to verify program correctness).

The key to the semantics of \old is to treat it as an abbreviation for a local definition.
That is, E in \old(E) can be evaluated in the pre-state, and its value bound to a locally
defined name, and then the name can be used in the postcondition.

To avoid referring to the value of uninitialized locations, a constructor’s precondition
can only refer to locations in the object being constructed that are not assignable. This
allows a constructor to refer to instance fields of the object being constructed if they are
not made assignable by the constructor’s assignable clause, for example, if they are declared
with initializers. In particular, the precondition of a constructor may not mention a “blank
final” instance variable that it must assign.

Since we are using Java expressions for predicates, there are some additional problems in
mathematical modeling. We are excluding the possibility of side-effects by limiting the syn-
tax of predicates, and by using type checking [Gifford-Lucassen86] [Lucassen87] [Lucassen-
Gifford88] [Nielson-Nielson-Amtoft97] [Talpin-Jouvelot94] [Wright92] to make sure that only
pure methods and constructors may be called in predicates.

Exceptions in expressions are particularly important, since they may arise in type casts.
JML deals with exceptions by having the evaluation of predicates substitute an arbitrary
expressible value of the normal result type when an exception is thrown during evaluation.
When the expression’s result type is a reference type, an implementation would have to
return null if an exception is thrown while executing such a predicate. This corresponds
to a mathematical model in which partial functions are mathematically modeled by under-
specified total functions [Gries-Schneider95]. However, tools sometimes only approximate
this semantics. In tools, instead of fully catching exceptions for all subexpressions, many
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tools only catch exceptions for the smallest boolean-valued subexpression that may throw an
exception (and for entire expressions used in JML’s measured-clause and variant-function).

JML will check that errors (i.e., exceptions that inherit from Error) are not explicitly
thrown by pure methods. This means that they can be ignored during mathematical mod-
eling. When executing predicates, errors will cause run-time errors.

3.2 Extensions to Java Expressions for Store-Refs

The grammatical production store-ref (see the JML Reference Manual [Leavens-etal-
JMLRef] for the exact syntax) is used to name locations in the assignable, in,
maps-into, and represents clauses. A similar production for object-ref is used in the
accessible clause. A store-ref names a location, not an object; a location is either a
field of an object, or an array element. Besides the Java syntax of names and field and
array references, JML supports the following syntax for store-ref s. See the JML Reference
Manual [Leavens-etal-JMLRef] for more details on the syntax.
• Array ranges, of the form A[E1 .. E2], denote the locations in the array A between

the value of E1 and the value of E2 (inclusive). For example, the clause
assignable myArray[3 .. 5]

can be thought of an abbreviation for the following.
assignable myArray[3], myArray[4], myArray[5]

• One can also name all the indexes in an array A by writing, A[*], which is shorthand
for A[0 .. A.length-1].

• Two notations allow one to refer to the fields in some particular object.
- The syntax x.* names all of the non-static fields of the object referred to by x.

For example, if p is a Point object with two fields, x and y of type BigInteger,
then p.* names the fields p.x and p.y. Notice that the fields of the BigInteger
objects are not named. Also, p.*.* is not allowed.

- If a is an array of type Rocket [], then the store-ref a[*].* means all of the
non-static fields of each Rocket object referred to by the elements of array a.
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4 Conclusions

One area of future work for JML is concurrency. The main feature currently in JML that
supports concurrency is the when clause [Lerner91] [Sivaprasad95]; it says that the caller will
be delayed until the condition given holds. This permits the specification of when the caller
is delayed to obtain a lock, for example. While syntax for this exists in the JML parser,
our exploration of this topic is still in an early stage. JML also has several primitives from
ESC/Java that deal with monitors and locks.

JML is an expressive behavioral interface specification language for Java. It combines
the best features of the Eiffel and Larch approaches to specification. It allows one to write
specifications that are quite precise and detailed, but also allows one to write lightweight
specifications. It has examples and other forms of redundancy to allow for debugging speci-
fications and for making rhetorical points. It supports behavioral subtyping by specification
inheritance.

More information on JML, including software to aid in working with JML specifications,
can be obtained from ‘http://www.jmlspecs.org/’.
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Appendix A Specification Case Defaults

As noted above (see Section 1.2 [Lightweight Specifications], page 5), specifications in JML
do not need to be as detailed as most of the examples given in this document. If a spec-case
does not use one of the behavior keywords (behavior, normal_behavior, or exceptional_
behavior), or if an example does not use one of the example keywords (example, normal_
example, exceptional_example), then it is called a lightweight specification or example.
Otherwise it is a heavyweight specification or example.

When the various clauses of a spec-case or example are omitted, they have the defaults
given in the table below. The table distinguishes between lightweight and heavyweight
specifications and examples. In each case the default for the lightweight form is that no
assumption is made about the omitted clause. However, in a heavyweight specification or ex-
ample, the specifier is assumed to be giving a complete specification or example. Therefore,
in a heavyweight specification the meaning of an omitted clause is given a definite default.
For example, the meaning of an omitted assignable clause is that all locations (that can
otherwise be legally assigned to) can be assigned. Furthermore, in a non-lightweight spec-
ification, the meaning of an omitted diverges clause is that the method may not diverge
in that case. (The diverges clause is almost always omitted; it can be used to say what
should be true, of the pre-state, when the specification is allowed to loop forever or signal
an error.)

Default
Omitted clause lightweight heavyweight
___________________________________________________________
requires \not_specified true
diverges \not_specified false
measured_by \not_specified \not_specified
assignable \not_specified \everything
when \not_specified true
working_space \not_specified \not_specified
duration \not_specified \not_specified
ensures \not_specified true
signals (Exception) \not_specified (Exception) true

A completely omitted specification is taken to be a lightweight specification. If the
default (zero-argument) constructor of a class is omitted because its code is omitted, then
its specification defaults to an assignable clause that allows all the locations that the default
(zero-argument) constructor of its superclass assigns — in essence a copy of the superclass’s
default constructor’s assignable clause. If some other frame is desired, then one has to write
the specification, or at least the code, explicitly. Otherwise, if the method or constructor
whose specification is omitted does not override another method, then its meaning is taken
as that in which all clauses are \not_specified; thus its meaning can be read from the
lightweight column of table above. However, if the method whose specification is omitted
overrides some other method, then its meaning is taken to be the lightweight specification
also requires false;. This somewhat counter-intuitive specification is the unit under
specification conjunction with also; it is used so as not to change the meaning of the
inherited specification.
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It is intended that the meaning of \not_specified may vary between different uses of
a JML specification. For example, a static checker might treat a requires clause that is
\not_specified as if it were true, while a verification logic might treat it as if it were
false. However, a reasonable default for the interpretation for an omitted clause in a
lightweight specification is the most liberal possible (i.e., the one that permits the most
correct implementations); this is generally the same as the heavyweight default, except for
the diverges clause (where the most liberal interpretation would be true).

Note that specification statements (see the JML Reference manual [Leavens-etal-
JMLRef] for details) cannot be lightweight. In addition, a spec-statement can specify
abrupt termination. The additional clauses possible in a spec-statement have the following
defaults.

Default
Omitted clause (heavyweight)
____________________________
continues false
breaks false
returns false
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