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Abstract The development of efficient Weigh In Mo-

tion (WIM) systems with the aim of estimating the

axle loads of railway vehicles in motion is quite inter-

esting both from an industrial and an academic point

of view. This kind of systems is very important for

safety and maintenance purposes in order to verify the

loading conditions of a wide population of vehicles us-

ing a limited number of WIM devices distributed on

the railway network. The evaluation of the axle load

conditions is fundamental especially for freight wag-

ons, more subjected to the risk of unbalanced loads

which may be extremely dangerous both for the vehi-

cle safety and the infrastructure maintenance.

In this work the authors present the development,

the simulation and the validation of an innovative

WIM algorithm with the aim of estimating the axle

loads N̂ of railway vehicles (the axle loads include the

wheelset weights). The new estimation algorithm is a

general purpose one; theoretically it could be applied

by considering as input different kinds of track mea-

surements (rail shear, rail bending, sleepers with sen-

sors, etc.) and could be easily customized for differ-

ent kinds of signals. In the paper a benchmark case

based on rail bending measurements is proposed in
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which the longitudinal deformations εxx measured on

the rail foot through strain sensitive elements are used

as input. The considered input is affected by noise

and bandwidth limitations and, consequently, is a good

benchmark to test the robustness of the new algorithm.

To estimate the axle loads, the algorithm approxi-

mates the measured physical input through a set of el-

ementary functions calculated by means of a single fic-

titious load moving on the track. Starting from the set

of elementary functions, the measured signal is then

reproduced through Least Square Optimization (LSO)

techniques: in more detail, the measured signal is con-

sidered as a linear combination of the elementary func-

tions, the coefficients of which are the axle loads to be

estimated.

Authors have also developed a physical model of

the railway track. The model consists of the planar

FEM (finite elements method) model of the infras-

tructure and of the two-dimensional (2D) multibody

model of the vehicle (the effects of lateral dynamics

are treated as disturbances) and takes into account both

the coupling between adjacent loads moving on the

track and the vehicle dynamics. The physical model

of the track and the innovative WIM algorithm (both

considering possible measurement errors) have been

validated by means of the experimental data kindly

provided by Ansaldo STS and have been implemented

in the Matlab and Comsol Multiphysics environments.

In particular the model of the railway track has been

developed expressly to test the WIM algorithm with a

suitable simulation campaign when experimental data
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are not available; in other words it provides simulated

inputs to test the WIM algorithm when there are no

experimental inputs.

Keywords Railway vehicles · Weigh in motion ·

Axle load identification

Acronyms:

WIM: Weigh in motion

FEM: Finite elements method

DOF: Degree of freedom

ODE: Ordinary differential equations

QLH: Quasi-linearity hypothesis

LSO: Least squares optimization

WLSO: Weighted least squares optimization

NLSO: Nonlinear least squares optimization

1 Introduction

The development of efficient WIM systems with the

aim of estimating the axle loads of railway vehicles

in motion is quite interesting both from an industrial

and an academic point of view. This kind of systems is

very important for safety and maintenance purposes in

order to verify the loading conditions of a wide popu-

lation of vehicles using a limited number of WIM de-

vices distributed on the railway network. The evalua-

tion of the axle load conditions is fundamental espe-

cially for freight wagons, more subjected to the risk

of unbalanced loads which may be extremely danger-

ous both for the vehicle safety and the infrastructure

maintenance. Some examples of engineering solutions

usually employed for WIM applications are shown in

Fig. 1:

– rail shear measurements [1–3]: shear stress σ and

deformation ε are evaluated on the rail by means

of a circular notch/slot drilled over the rail web

on the mean-neutral line where approximately pure

shear stresses are present. Stress-deformations con-

centrations arising in the notch are measured us-

ing conventional strain gage sensors or piezo-

electric/piezo-resistive systems in order to estimate

the rail shear efforts and consequently the vertical

force N̂ due to axle load.

– rail bending measurements [4, 5]: strain sensitive

elements are used to evaluate stress σ and defor-

mation ε due to the bending (typically on the rail

foot) and then to estimate the vertical load N̂ . Con-

tactless measurements may be also performed using

laser Doppler sensors.

– sleepers with sensors [6]: force sensitive elements

placed over the sleepers in the section correspond-

ing to the rail baseplate/pads allow the measurement

of the force on the sleeper NS and, starting from

that, the estimation of the axle load N̂ .

– sensitive bridge/slab track systems [7]: in this so-

lution sleepers and rails are constrained over an in-

strumented structure which works as spring element

permitting the measurement of the force NS on the

structure and thus the estimation of the axle load N̂ .

WIM systems based on rail stress σ and deformation ε

measurements (rail shear and bending measurements)

are the most diffused mainly since they usually assure

higher performances in terms of bandwidth, precision

and linearity. Moreover, with respect to other measure-

ment solutions, they are less affected by different con-

struction methods of the infrastructure (ballasted, with

slab track, etc.).

Both shear and bending measurements on the rail

may be optimized in order to reject as much as pos-

sible spurious signals due to the lateral forces and to

the longitudinal tensile components coming from the

thermally induced coaction loads. Lateral dynamics of

the vehicle may also produce load transfers between

the left and right wheels of the same axle. In order to

measure the total load on each axle, the stress and de-

formation measurements on the left and right sides of

the same measurement section should be averaged.

In this work the authors present the development,

the simulation and the validation of an innovative

WIM algorithm with the aim of estimating the axle

loads N̂ of railway vehicles (especially freight wag-

ons); the weights of the wheelsets are included into

the loads N̂ . The estimation algorithm proposed in

this work can be applied to a generic set of input sig-

nals derived from track measurements (rail shear, rail

bending, sleepers with sensors, etc.) because it is not

designed for a specific sensor layout. The benchmark

case studied in this paper is based on rail bending mea-

surements performed through strain sensitive elements

used to evaluate the longitudinal deformations εxx on

the rail foot mainly for two reasons:

– availability of experimental data: thanks to the

cooperation with our industrial partner (Ansaldo

STS);

Author's personal copy
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Fig. 1 Engineering solutions for WIM applications

– verification of algorithm robustness: bending mea-

surements are often affected by noise and band-

width limitations (if compared to shear measure-

ments) and consequently the chosen input is a good

benchmark to verify the robustness of the proposed

approach.

To estimate the axle loads, the algorithm approximates

the measured physical input (in this case the longitu-

dinal deformation) through a set of elementary func-

tions (a basis of functions, mathematically speaking).

To evaluate the elementary functions, a single ficti-

tious moving load is simulated (see Fig. 15). This ele-

mentary model has necessary to be very simple and de-

pend on few significant parameters that can be easily

tuned, for example, by performing the estimation on a

known train travelling through the measure station. In

particular the simple model for the basis construction

cannot depend on the vehicle geometrical and physical

parameters, obviously unknown. Starting from the set

of elementary functions, the measured signal is then

approximated by means of Least Square Optimization

(LSO) techniques: in more detail, the measured signal

is considered as a linear combination of the elemen-

tary functions, the coefficients of which are the axle

loads to be estimated [20–22].

Finally it is worth noting that the new WIM algo-

rithm can be quite useful not only to estimate the axle

loads N̂ but also to different purposes like the control

and the prediction of the axle loads during the design

process of railway vehicles. This interesting feature of

the procedure is mainly due to general structure of the

algorithm and, at the same time, to its simplicity.

2 General architecture of the system

The general architecture of the system is schematically

shown in Fig. 2. The main element of the whole system

is the innovative WIM algorithm for the estimation of

the vertical axle loads N̂ on railway vehicles (espe-

cially freight wagons); the weights of the wheelsets are

included into the loads N̂ . The algorithm is based on

rail bending measurements performed through strain

sensitive elements used to evaluate the longitudinal de-

formations on the rail foot. These deformations (sim-

ulated εxx if provided by a physical model of the rail-

way track or real ε
sp
xx if coming from experimental

data; see Fig. 2) represent the physical inputs of the

WIM algorithm that, starting from the knowledge of

these physical quantities, estimates the axle loads N̂ .

Author's personal copy
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Fig. 2 General architecture of the system

Besides the longitudinal deformations on the rail

foot εxx , the WIM algorithm also needs some addi-

tional information (external inputs) concerning the ve-

hicle speed, the axle number and the axle positions

inside the railway vehicle (V , n, xa in case of simu-

lated external inputs and V sp , nsp , x
sp
a in case of ex-

perimental external inputs; see Fig. 2). These further

physical quantities can be identified using by example

additional sensors or transmitted by the vehicle itself

using low cost technologies.

The WIM system consists of various measure

points (few if possible to reduce both the measure sta-

tion dimensions and the economic costs) distributed

along the railway track on the rail foot between two

contiguous sleepers to amplify the longitudinal defor-

mations εxx . On both the sides of the track measure

points are present to reject the effect of spurious sig-

nals and of the load transfers produced by the lateral

dynamics (see Fig. 3). The innovative architecture of

the WIM algorithm allows also the exploitation of dif-

ferent inputs like generic stresses σ , σ sp and defor-

mations ε, εsp and the forces on the sleepers NS , N
sp

S

(both simulated and experimental) as well as a combi-

nation of such physical quantities.

During the research activity, the authors have also

employed a physical model of the whole railway track.

Since the measurement layout is designed to reject the

effects of lateral dynamics as disturbances, all the sys-

tem is studied using simplified planar models of the

track. In particular the railway track model consists of

a planar FEM model of the infrastructure and of a 2D

Fig. 3 Measure station: a possible layout of the measure points

multibody model of the vehicle and takes into account

both the coupling between the adjacent loads mov-

ing on the track and the vehicle dynamics (see Figs. 4

and 8). The physical model of the track and the innova-

tive WIM algorithm (both considering possible mea-

surement errors) have been then validated by means

of the experimental data kindly provided by Ansaldo

STS [19] and have been implemented in the Matlab

and Comsol Multiphysics environments [8, 18]. In the

study case the model of the railway track has been de-

veloped expressly to test the WIM algorithm with a

suitable simulation campaign when experimental data

are not available; in other words it provides simulated

inputs to test the WIM algorithm when there are no

experimental inputs. Obviously this model is not used

inside the WIM algorithm because the geometrical and

physical train parameters are unknown.

Author's personal copy
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Fig. 4 The physical model of the railway track

3 Physical model of the railway track

The physical model of the railway track is briefly de-

scribed in Fig. 4. Since the effects of the lateral dy-

namics are treated as disturbances, the whole model

consists of a planar FEM model of the infrastructure

(rail, sleepers and ballast), a 2D multibody model of

the vehicle and a simplified contact model between

the vehicle wheels and the rails. In the rest of the

paper xaij will indicate the initial position of the ith

axle of the j th wagon of the vehicle while Nij will

be the generic vertical axle loads, the estimate N̂ij of

which will be evaluated by the presented WIM algo-

rithm; the weights of the wheelsets are included into

the loads N̂ij , Nij . As previously said, the longitudinal

deformations have to be averaged on the left and right

rails before being considered as input of the WIM al-

gorithm; coherently also the generic vertical axle loads

Nij and their estimations N̂ij will indicate the average

loads on the left and right wheels. Anyway the pro-

posed approach can be easily used both for axle and

wheel loads measurements. In fact, in case of wheel

load estimation, a similar procedure can be applied by

considering N̂ij , Nij as the vertical loads on the single

wheels (without average).

3.1 The infrastructure model

Rail and underlying infrastructures are modelled as a

continuous beam representing the rail supported by an

elastic foundation which simulates sleepers and bal-

last. For the rail both Eulero–Bernoulli and Raleigh–

Timoshenko models can be used [9]. In particular the

Eulero–Bernoulli beam model neglects the shear de-

formability considering only the contribution of the

Fig. 5 Beam model of the rail

bending (see Fig. 5):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
= q(x, t) (1)

where x ∈ [LI ,LF ] is the longitudinal abscissa,

t ∈ [TI , TF ] is the time, E and ρ are the Young mod-

ulus and the density of the beam, A and I are the

area and the momentum of the beam section, q(x, t)

is the distributed load and v(x, t) is the vertical dis-

placement. The initial conditions associated to Eq. (1)

are v(x,TI ) = 0 ∀x ∈ [LI ,LF ] and ∂v
∂t

(x, TI ) = 0

∀x ∈ [LI ,LF ] respectively while there are no bound-

ary conditions because the beam is connected only to

the sleepers as it will be better clarified in the fol-

lowing sections. The contribution of shear deforma-

bility mainly affects higher frequency modes where

the Eulero–Bernoulli model is more likely to over-

estimate the corresponding eigen-frequencies. Since

the bandwidth of the real system (infrastructure and

measurement chain) is unknown and anyway much

lower than 100 Hz, authors prefer to use the Eulero–

Bernoulli model to simulate the rails because it assures

a good accuracy up to 100–200 Hz in terms band-

width (frequencies much higher than the characteris-

tic bandwidth of the whole system in realistic condi-
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Table 1 Main characteristics of the rail beam model

Parameter Units Value

Young modulus E Pa 2.1 ∗ 1011

Density ρ kg/m3 7.8 ∗ 103

Area of the beam section A m2 7.686 ∗ 10−3

Momentum of the beam section I m4 3.055 ∗ 10−5

Rayleigh damping coefficient αr s−1 30

Rayleigh damping coefficient βr s 0.003

Distance between neutral section

and rail foot yf

m −0.081

Fig. 6 The Kisilowski model of the sleepers-ballast ensemble

tions); moreover higher frequency modes are heavily

affected by damping and by other non-linear phenom-

ena that would have to be calibrated on experimen-

tal data [9, 10, 13–17]. In particular in this work the

structural damping of the rail is modelled using the so-

called “proportional” or Rayleigh damping; the damp-

ing matrix C is calculated as a linear combination of

the inertia M and stiffness K matrices of the structure:

C = αrM + βrK (2)

where the matrices M and K derive from the FEM dis-

cretization of the rail beam. The coefficients αr and βr

are calibrated in order to fit the typical behaviour ex-

pected from experimental results and physical consid-

erations available in literature [9, 13, 17].

The main physical characteristics of the rail beam

model are reported in Table 1; in this work the UIC60

rail profile has been adopted.

The stiffness and damping constants associated to

the pth sleepers-ballast system are Ktp and Ctp while

mtp are the concentrated masses (see Fig. 6). The lon-

gitudinal position xtp of the pth 1DOF system mod-

elling the sleepers-ballast ensemble and the vertical

position ytp of the pth mass mt rigidly connected to

Table 2 Main characteristics of the sleepers-ballast system

Parameter Units Value

Lumped mass associated to the

sleeper-ballast system mt

kg 10

Stiffness associated to the

sleepers-ballast system Kt

N/m 5 ∗ 107

Damping associated to the

sleepers-ballast system Ct

Ns/m 2.5 ∗ 105

Sleepers distance l m 0.6

Sleepers total number Nt – 201

Beginning of the track LI m 0

End of the track LF m 120

the rail beam can be expressed as follows:

xtp = LI + (p − 1)l, ytp(t) = v(xtp, t),

p = 1,2, . . . ,Nt (3)

where xt1 = LI , xtNt = LF (LI and LF are the be-

ginning and the end of the track respectively), l is the

distance between two contiguous sleepers and Nt is

the total number of sleepers. Table 2 summarizes the

main physical quantities relative to the sleepers-ballast

system.

In order to model the contribution of the deforma-

bility of sleepers and ballast different models of in-

creasing complexity may be adopted. One of the sim-

plest formulations may be the so called “Winkler con-

tinuous supported beam” [10, 24, 25] that models bal-

last and sleepers as a continuous visco-elastic soil to

which the rail is constrained. The Winkler model ne-

glects the discrete nature of the sleepers-ballast sys-

tem and introduces approximations that are too large

for the study of a WIM algorithm. To consider the

discrete nature of the sleepers-ballast ensemble, the

sleepers have to be modelled as lumped systems of

springs, masses and dampers which try to reproduce/fit

the modal behaviour of the infrastructure. Increasing

the number of degrees of freedom used to model sleep-

ers and ballast usually leads to an improvement of the

model accuracy. In particular one of the most accurate

models is introduced by Dahlberg [9, 13].

For the simulation and the validation of the pro-

posed WIM algorithm authors preferred to use the

simplified model proposed by Kisilowski [11] which

is often used in literature for the simulation and the

development of this kind of applications [1, 2, 12]. In

the considered model the sleepers-ballast ensemble is

Author's personal copy



Meccanica (2013) 48:2541–2565 2547

simulated by means of single degree of freedom sys-

tems resulting a good compromise between accuracy

and efficiency (see Fig. 6). The lumped parameters as-

sociated to the sleepers-ballast system and described

in Table 2 (such as the lumped mass mt , the stiffness

Kt and the damping Ct of the sleeper-ballast system)

do not represent any physical property (like the real

mass of the sleepers) but are simple modal-numerical

parameters that have to be tuned to obtain the desired

modal and dynamical behaviour of the sleeper-ballast

system.

As regards the longitudinal deformations on the rail

foot εxx representing the main physical inputs of the

WIM algorithm, they are measured on various mea-

sure points (few if possible to reduce both the measure

station dimensions and the economic costs) distributed

along the railway track and placed between two con-

tiguous sleepers to amplify the longitudinal deforma-

tions (see Figs. 3 and 7). On both the sides of the track

measure points are present to reject the effect of spu-

rious signals and of the load transfers produced by the

lateral dynamics. The longitudinal position xmk of the

kth couple of measure points and the mean value εxxk

of longitudinal deformation measured in those points

will be

xmk = PI + (k − 1)l, εxxk(t) = ε(xmk, t),

k = 1,2, . . . ,Nm (4)

Fig. 7 Measurement of the longitudinal deformations εxx on

the rail foot between two contiguous sleepers

where xm1 = PI and xtNm = PF are the positions of

the initial and final points of the measure station (ob-

viously placed exactly between two contiguous sleep-

ers) and Nm is the total number of measure points. It

has to be noticed that the measure points xmk may also

not be consecutive; however they always have to be

placed between two contiguous sleepers. In this case

the first part of Eq. (4) becomes xmk = PI + (k − 1)lk
where lk (a multiple of l) is the distance between two

consecutive sleepers.

Finally, according to the Eulero–Bernoulli beam

model, the longitudinal deformations εxxk in each

measure point can be calculated starting from the

knowledge of the vertical displacement v(x, t):

εxxk(t) = −yf

∂2v(xmk, t)

∂x2
(5)

where yf < 0 is the distance of rail foot from the neu-

tral line of the rail section.

3.2 The vehicle model

The benchmark train configuration adopted in this pa-

per is briefly described in Fig. 4 and in Table 3. The

planar 2D multibody model considered by the authors

is illustrated in Fig. 8; for the sake of simplicity only

the third wagon is described.

The degrees of freedom (DOF) taken into account

in the model include the vertical displacements of all

the bodies (ycj , ybij , ywij ) and the pitch angles of

carbody and bogies (ϕcj , ϕbij ). The inertial proper-

ties of carbody, bodies and wheels are respectively

mcj Icj , mbij Ibij and mwij Iwij while Ksij Csij , Kpij

Cpij and Kcij Ccij indicate the stiffness and damping

constants of the suspension stages and of the contact

model between wheels and rails. Since the longitudi-

nal deformations εxxk and the vertical axle loads Nij

are averaged on the left and right rails and on the left

and right wheels respectively, for symmetry reasons

only one half of the body masses and inertial tensors

Table 3 Benchmark train composition

Vehicle Wheelset Prim. susp. Sec. susp. Axle load (t) Bogie dist. (m) Wheelbase (m)

Locomotive b-b-b yes yes 17.7 5.25 2.15

Second wagon 1-1 yes no 8.0 − 9

Third wagon 2-2 yes yes 7.8 15.8 1.8
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Fig. 8 Complete 2D multibody model of the railway vehicle

has to be considered while the stiffness and damping

constants have not to be modified.

The simplified contact model is based on the hy-

potheses that wheel and rail interact to each other on a

contact segment of length β (having the same magni-

tude order of the contact patch longitudinal axis) and

that the vertical contact load qij (x, t) is uniformly dis-

tributed on the contact segment (see Figs. 8 and 9).

Starting from the position of the generic train axle

xij = xaij + tV (V is the longitudinal train speed sup-

posed to be constant within the measure station), the

mean vertical displacement fij on the contact segment

β correspondent to the axle xij can be evaluated as fol-

lows

fij (t) =
1

β

∫ Lf

Li

v(x, t)oq

(
x − xij

β

)
dx (6)

where the square wave oq is defined as

oq(u) =

{
1 −1/2 ≤ u ≤ 1/2,

0 otherwise.
(7)

At this point it is possible to evaluate both the vertical

load on the rail beam qij and the vertical force on the

train wheel Fij :

qij (x, t)

=
1

β

[
Kcij (ywij − fij − rij ) + Ccij

( •
ywij −

•

f ij

)]

× oq

(
x − xij

β

)
(8)

Fig. 9 Simplified contact model

Fij (t)

= −
[
Kcij (ywij − fij − rij ) + Ccij

( •
ywij −

•

f ij

)]

(9)

where ywij (t) is the vertical displacement of the center

of mass of the axle xij and rij is the wheel radius.

In Table 4 the main characteristics of the vehicle

model are reported in terms of inertial quantities, sus-

pensions data, geometry, nominal total loads and con-

sidered speed range while Table 5 summarizes the

main contact characteristics at the wheel-rail interface.

3.3 Measurement errors

In order to improve the accuracy of the physical model

of the railway track (infrastructure model and vehicle

model) fhe following disturbances have been consid-

ered:
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Table 4 Main characteristics of the vehicle model

Parameter Units Value

Axle numbers ntot , n, n1, n2, n3 − 12, 3, 6, 2, 4

Axle init. positions (locomotive: xa11, . . . , xa61) m 52.15, 50, 46.9, 44.75, 41.65, 39.5

Axle init. positions (second wagon: xa12, xa22) m 33.8, 24.8

Axle init. positions (third wagon: xa13, . . . , xa43) m 19.6, 17.8, 3.8, 2

Inertial prop. (loc. car body: mc1, Ic1) kg, kg m2 84400, 1125000

Inertial prop. (loc. bogies: mb11, Ib11, . . . ,mb31, Ib31) kg, kg m2 3000, 3100

Inertial prop. (loc. wheelsets: mw11, Iw11, . . . ,mw61, Iw61) kg, kg m2 2100, 120

Inertial prop. (2nd wagon car body: mc2, Ic2) kg, kg m2 12400, 84000

Inertial prop. (2nd wagon wheelsets: mw12, Iw12, mw22, Iw22) kg, kg m2 1800, 112

Inertial prop. (3rd wagon car body: mc3, Ic3) kg, kg m2 18600, 480000

Inertial prop. (3rd wagon bogies: mb13, Ib13, mb23, Ib23) kg, kg m2 2600, 1500

Inertial prop. (3rd wagon wheelsets: mw13, Iw13, . . . ,mw43, Iw43) kg, kg m2 1800, 112

Prop. of primary susp. (loc.: Kp11, Cp11, . . . ,Kp61, Cp61) N/m, Ns/m 2050000, 7000

Prop. of secondary susp. (loc.: Ks11, Cs11, . . . ,Ks31, Cs31) N/m, Ns/m 710000, 50000

Prop. of primary susp. (2nd wagon: Kp12, Cp12, Kp22, Cp22) N/m, Ns/m 815000, 4000

Prop. of primary susp. (3rd wagon: Kp13, Cp13, . . . ,Kp43, Cp43) N/m, Ns/m 780000, 3000

Prop. of secondary susp. (3rd wagon: Ks13, Cs13, Ks23, Cs23) N/m, Ns/m 235000, 18000

Wheel radius (loc.: r11, . . . , r61) m 0.625

Wheel radius (2nd wagon: r12, r22) m 0.46

Wheel radius (3rd wagon: r13, . . . , r43) m 0.46

Nom. total loads on the wheels (locomotive: N11, . . . ,N61) N 86655

Nom. total loads on the wheels (second wagon: N12, N22) N 39240

Nom. total loads on the wheels (locomotive: N13, . . . ,N43) N 38014

Considered speed range for freight trains V m/s 10–40

Table 5 Main contact characteristics at the wheel-rail interface

Parameter Units Value

Contact stiffnesses Kc11, . . . ,Kc61,Kc12,Kc22,Kc13, . . . ,Kc43 N/m 1 ∗ 108

Contact dampings Cc11, . . . ,Cc61,Cc12,Cc22,Cc13, . . . ,Cc43 Ns/m 45000

Contact segment β m 0.01

– numerical disturbances and bias errors on the lon-

gitudinal axle positions xij : the imperfect knowl-

edge of the positions xij is simulated by adding

a suitable numerical noise to the original physical

quantity

xr
ij (t) = xij (t) + Uxij [μx, δx/2] (10)

where Uxij is a uniform distribution of mean μx and

amplitude δx .

– frequency effects on the signal εxxk due to the

limited band of physical system and measurement

chain: the frequency effects due to the limited band

of the real system and the rail measurement chain

have been modelled through a second order low

pass filter directly applied to the considered phys-

ical signal εxxk

ε
f

xxk(t) = B2,ωn(s)εxxk(t) (11)
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Table 6 Disturbances and errors

Parameter Units Value

Mean of the disturbance on the

longitudinal axle positions μx

m 0.001

Amplitude of the disturbance on

the longitudinal axle positions δx

m 0.01

Mean of the disturbance on the

longitudinal deformations με

strain 1 ∗ 10−6

Amplitude of the disturbance on

the longitudinal deformations δε

strain 2.5 ∗ 10−5

Cut frequency considered range

fn of the filter

Hz 10–40

where B2,ωn(s) is the second order Butterworth fil-

ter and ωn = 2πfn is the cut frequency (ωn in rad/s

and fn in Hz).

– numerical disturbances and bias errors on the sig-

nal ε
f

xxk : besides the frequency effects, also numer-

ical disturbances and bias errors on the signal ε
f

xxk

have been modelled

ε
f r

xxk(t) = ε
f

xxk(t) + Uεk[με, δε/2] (12)

where this time με and δε are the mean and the

amplitude of the disturbance distribution Uεk . The

aim of numerical disturbances and bias errors on

the signal ε
f
xxk is to properly reproduce the numeri-

cal noise affecting the measurement; therefore they

have to be applied to the signal only after the low

pass filter.

The values of the disturbances taken into account are

visible in Table 6 together with the cut frequency con-

sidered range of the filter.

By way of example the comparison between the

original deformation εxx1(t) = εxx(xm1, t) and the de-

formation ε
f r

xx1(t) = ε
f r
xx (xm1, t) taking into account

the numerical disturbances (both evaluated on the sin-

gle measure point xm1 = 60.3 m) is shown in Fig. 10.

The simulation has been performed at a speed of

V = 50 km/h (TI = 0, TF = 5 s) with the vehicle

multibody model (see Sect. 3.2) while the cut fre-

quency of the system is equal to fn = 20 Hz.

In Fig. 10 the numerical disturbances both on the

longitudinal axle positions xr
ij (t) and on the deforma-

tion ε
f r

xx1(t) are visible. Moreover the time history of

ε
f r

xx1(t) also highlights the frequency effects due to the

limited band of the physical system in terms of signal

amplitude and phase.

In the following of the paper the measurement er-

rors will be not considered during the model and WIM

algorithm validation (see Sects. 3.4 and 5.1) because

of the high quality of the experimental data and the

low train speed V . However the measurement errors

will play a fundamental role when the physical model

of the railway track will be employed to test the ac-

curacy and the robustness of the WIM algorithm in

absence of experimental data (Section 5.2).

3.4 Validation of the railway track model

The physical model of the railway track (infrastruc-

ture model and vehicle model) has been validated

by means of experimental data provided by Ansaldo

STS [19]. In particular the experimental data con-

sist in the longitudinal deformations on the rail foot

ε
sp

xx1(t) = ε
sp
xx(xm1, t) and ε

sp

xx2(t) = ε
sp
xx(xm2, t) mea-

sured in two measure points xm1 = PI = 60.3 m,

xm2 = PF = 65.1 m (with Nm = 2). The experimental

data have been compared with the analogous quanti-

ties εxx1(t) = εxx(xm1, t), εxx2(t) = εxx(xm2, t) sim-

ulated through the railway track model (in the bench-

mark case V = 15.4 km/h, TI = 0 s, TF = 15.3 s).

Figures 11 and 12 show the comparison between

the measured deformations ε
sp

xx1, ε
sp

xx2 and the simu-

lated ones εxx1, εxx2 in the measure points xm1, xm2.

As visible in the figures, the comparison highlights a

good agreement between experimental and simulated

quantities.

In particular, considering a general comparison be-

tween the global shape of the simulated solution and

the corresponding experimental behavior, the match-

ing is encouraging; on the other hand higher errors

are clearly appreciable on the peak values. This is a

very interesting feature considering that the aim of this

work is to demonstrate the robustness of the proposed

approach with respect to this kind of errors and distur-

bances.

The numerical results have been obtained by using

the variable order and variable step ODE integrator

ODE15s (specifically designed for stiffness problems)

for the time integration; the algorithm PARDISO has

been employed to solve the linear systems arising form

the FEM discretization of the rail beam. Table 7 sum-

marizes the values of the main parameters of the ODE

integrator like the maximum step size MaxStep, the ab-

solute and relative tolerances AbsTol, RelTol and the

maximum dimension hmax of the elements used in the

FEM discretization of the rail beam [20–22].
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Fig. 10 Original longitudinal deformation εxx1(t) and longitudinal deformation ε
f r

xx1(t) with numerical disturbances in the measure

point xm1 = 60.3 m (cut frequency equal to fn = 20 Hz)

Fig. 11 Measured and simulated longitudinal deformations ε
sp

xx1 and εxx1 in the measure point xm1 = 60.3 m
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Fig. 12 Measured and simulated longitudinal deformations ε
sp

xx2 and εxx2 in the measure point xm2 = 65.1 m

Table 7 Main parameters of the ODE integrator

Parameter Units Value

MaxStep s 10−4

AbsTol – 10−5

RelTol – 10−6

hmax m 0.001

4 WIM algorithm

In this section the innovative WIM algorithm for the

estimation of the vertical axle loads N̂ on railway ve-

hicles is described (the weights of the wheelsets are

included into the loads N̂ ).

4.1 Architecture of the WIM algorithm

The general architecture of the system is schematically

reported in the diagram in Fig. 13.

The developed WIM algorithm evaluates the esti-

mation N̂ij of the vertical axle loads Nij starting from

the knowledge of all the deformations ε
f r

xxk relative

to the measure points xmk of the measure station; in

absence of numerical disturbances (circumstance indi-

cated by authors) the deformations ε
f r

xxk will be equal

to the original signal εxxk . Moreover the WIM algo-

rithm also needs some additional information (external

inputs) concerning the vehicle speed V , the axle num-

ber n and the axle positions inside the railway vehi-

cle xaij . These further physical quantities can be iden-

tified using by example additional sensors or transmit-

ted by the vehicle itself using low cost technologies.

Obviously the WIM algorithm can work both with

synthetic inputs provided by the numerical model (see

Sect. 3.2) and with experimental data directly mea-

sured on the railway track; in this second case the algo-

rithm inputs (ε
sp
xxk , V sp , nsp , and x

sp
a ) will be marked

with the apex sp.

The main idea behind the new WIM algorithm con-

sists in approximating the measured physical input (in

this case the longitudinal deformation) through a set of

elementary functions (a basis of functions). To evalu-

ate the elementary functions a single fictitious load Nf

moving on the track is simulated (see Figs. 14 and 15).

This elementary model must be very simple and de-

pend on few significant parameters that can be easily

tuned (for example by performing the estimation on a

known train travelling through the measure station). In

particular the simple model for the basis construction

cannot depend on the vehicle geometrical and physical

parameters, obviously unknown.
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Because of the global structure of the physical sig-

nals considered as inputs, it is quite intuitive to sup-

pose the system approximatively linear with respect

to the vertical loads Nij (the so-called quasi-linearity

hypothesis (QLH)); in other words the effect of the

generic load Nij on the longitudinal deformations ε
f r
xxk

is assumed not to be affected by the presence of the

other loads (especially the contiguous ones).

Under this assumption, by applying the superpo-

sition of effects principle, it is possible to estimate

both the simulated longitudinal deformations ε
f r
xxk and

the experimental ones ε
sp
xxk produced by the whole

train through a linear combination of ntot deforma-

tions εxxkij produced by ntot single fictitious loads Nf

(one for each vehicle axle) properly shifted in the time

of a delay tij (Section 4.2). A schematic simplified il-

lustration of the quasi-linearity hypothesis is reported

in Fig. 14. The elementary deformations εxxkij repre-

sent the set of elementary functions (the basis of func-

tions) needed to approximate the original physical in-

puts (ε
f r
xxk or ε

sp
xxk). In this case the linear combination

coefficients are equal to N̂ij/Nf .

Fig. 13 Architecture of the WIM algorithm

Fig. 14 Schematic representation of the quasi-linearity hypothesis (QLH)
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Fig. 15 Fictitious load

Table 8 Fictitious contact characteristics at the wheel-rail in-

terface

Parameter Units Value

Contact stiffness Kf N/m 1 ∗ 108

Contact damping Cf Ns/m 45000

Contact segment βf m 0.01

Wheelset mass mwf kg 2000

Fictitious load Nf N 65000

Evidently, in order to correctly apply the superposi-

tion of effects principle, the quasi-linearity hypothesis

(QLH) must hold within the whole range of velocities

V and cut frequencies fn considered for freight trains.

Finally, since the system can be considered only ap-

proximately linear, a least squares optimization (LSO)

is needed to minimize the approximation error and, at

the same time, to optimize the values of N̂ij .

4.2 The quasi-linearity hypothesis

As previously stated, if the quasi-linearity hypothesis

holds, by applying the superposition of effects prin-

ciple it is possible to estimate both the simulated lon-

gitudinal deformations ε
f r

xxk and the experimental ones

ε
sp
xxk produced by the whole train through a linear com-

bination of ntot deformations εxxkij produced by ntot

single fictitious loads Nf (one for each vehicle axle)

properly shifted in the time of a delay tij . The ficti-

tious contact variables are reported in Fig. 15 and Ta-

ble 8 (only one half of the fictitious mass mwf has to

be considered).

The adopted values of the fictitious contact vari-

ables are of first attempt and have to be optimized to

improve the accuracy of the WIM algorithm. To prop-

erly highlight how the whole WIM algorithm could be

Table 9 Tuning parameters of the WIM algorithm

Parameter Units Value

Lumped mass associated to the

sleeper-ballast system mt

kg 10

Stiffness associated to the

sleepers-ballast system Kt

N/m 5 ∗ 107

Damping associated to the

sleepers-ballast system Ct

Ns/m 2.5 ∗ 105

Contact stiffness Kf N/m 1 ∗ 108

Contact damping Cf Ns/m 45000

Wheelset mass mwf kg 2000

easily tuned, in Table 9 all the tuning parameters of the

elementary model are summarized.

As previously said, this elementary model has nec-

essary to be very simple and depend on few physical

parameters that can be easily estimated during the tun-

ing process (for example, by performing the estima-

tion on a known benchmark train travelling through

the measure station). In this case the tuning parame-

ters comprise the lumped quantities associated to the

sleeper-ballast system mt , Kt , Ct (see Sect. 3.1) and

the fictitious parameters mwf , Kf , Cf . All the previ-

ous quantities can be easily optimized to obtain a good

approximation of the desired modal and dynamical be-

haviour of the system.

In particular the position of the fictitious load Nf

along the track and the relative longitudinal deforma-

tion εxxf k are defined as

εxxf k(t) = εxxf (xmk, t), xf = xaf + t ∗ V (13)

where xaf = 0 m and t ∈ [TI , TF ]. In this way the ntot

deformations εxxkij produced by the ntot single ficti-

tious loads Nf and their positions xf ij can be evalu-

ated by introducing suitable time delays tij

tij =
xaij − xaf

V
(14)

and by applying such delays to the deformation εxxf k

and the position xf :

εxxf kij (t) = εxxf k(t − tij ),

xf ij = xaf + (t + tij ) ∗ V = xaij + t ∗ V = xij

(15)

where t ∈ [TI , TF − tij ]. At this point, thanks to the

superposition of effects principle, both the simulated

longitudinal deformations ε
f r

xxk and the experimental

Author's personal copy



Meccanica (2013) 48:2541–2565 2555

Fig. 16 Comparison between the deformations obtained with the multibody vehicle model ε
f r

xx1(t) and with the fictitious vertical loads

ε
f r

xx1ap(t) according to the quasi-linearity hypothesis

ones ε
sp
xxk produced by the whole train can be approx-

imated as follows:

ε
f r
xxk(t) ≃ ε

f r
xxkap(t) =

n∑

j=i

nj∑

i=1

αsim
ij εxxf kij (t),

αsim
ij =

N̂ sim
ij

Nf

, k = 1,2, . . . ,Nm (16)

ε
sp

xxk(t) ≃ ε
sp

xxkap(t) =

n∑

j=i

nj∑

i=1

α
sp

ij εxxf kij (t),

α
sp

ij =
N̂

sp
ij

Nf

, k = 1,2, . . . ,Nm (17)

where, as said before, the linear combination coeffi-

cients αsim
ij , α

sp

ij are proportional to the estimated ver-

tical loads N̂ sim
ij and N̂mis

ij .

By way of example, to confirm the validity of the

quasi-linearity hypothesis (see Fig. 14), a compari-

son between the results obtained with the multibody

vehicle model (see Sect. 3.2) and those obtained by

means of fictitious vertical loads is reported in Fig. 16.

The simulations have been performed at a speed of

V = 50 km/h (TI = 0, TF = 5 s) while the longitu-

dinal deformations on the rail foot (the original one

ε
f r

xx1 and the approximate one ε
f r

xx1ap) have been mea-

sured on one single measure point xm1 = 60.3 m with-

out adding numerical disturbances (see Sect. 3.3). As

it can be seen in the figure, the differences between

the plotted quantities are quite negligible, confirming

the accuracy of the quasi-linearity hypothesis. Quasi-

linearity hypothesis involves no mutual interactions

between the elementary solutions associated to the

fictitious loads. However, as shown by the results in

Fig. 16, the passing of an axle is correctly influenced

by the adiacent ones; this effect is mainly due to the

overlapping among the adiacent traveling elementary

solutions.

Despite its simplicity, the choice of the elementary

model (employed to calculate the elementary func-

tions needed for the axle load estimation, see Fig. 15)

turnes out to be quite effective in approximating the

real physical signal and then in estimating the real axle

loads (thanks also to the LSO). The good behavior is

confirmed by the experimental results (reported in this

section and in Sect. 5.1), especially if we consider that

they are produced by a real train in motion composed

by three different wagons.
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4.3 Least squares estimation

Since the studied system is only approximatively lin-

ear, a least squares optimization (LSO) is needed to

minimize the approximation errors between ε
f r
xxk , ε

sp
xxk

and ε
f r
xxkap , ε

sp
xxkap and, at the same time, to opti-

mize the values of N̂ sim
ij , N̂

sp
ij . In this specific case

linear not-weighted least squares have been consid-

ered [20–22].

To simulate the sampling due to the measurement

process, the time domain t ∈ [TI , T̄F ], T̄F = TF − t11

(the shortest one among the domains t ∈ [TI , T̂F ],

T̂F = TF − tij ) has been discretized with the a sam-

ple time equal to �t = 0.001 s. Therefore both

the simulated deformations ε
f r

xxk(th) and the exper-

imental ones ε
sp
xxk(th) are known only at the times

th with h = 1,2, . . . ,Ns (Ns is the samples num-

ber while t1 = TI and tNs = T̄F ); the same time

discretization holds also for the fictitious deforma-

tions εxxf kij (th) employed to estimate ε
f r

xxk , ε
sp

xxk (see

Eqs. (16) and (17)). The sampled quantities can be

written as

ε
f r
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε
f r

xxk(t1)
...

ε
f r
xxk(th)

...

ε
f r
xxk(tNs )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ RNs ,

ε
sp
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε
sp

xxk(t1)
...

ε
sp
xxk(th)

...

ε
sp

xxk(tNs )

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RNs (18)

εkij =

⎡
⎢⎢⎢⎢⎢⎢⎣

εxxf kij (t1)
...

εxxf kij (th)
...

εxxf kij (tNs )

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ RNs .

Taking into account the time sampling, Eqs. (16)

and (17) become

ε
f r

xxk(th) ≃

n∑

j=i

nj∑

i=1

αsim
ij εxxf kij (th)

h = 1,2, . . . ,Ns, k = 1,2, . . . ,Nm (19)

ε
sp

xxk(th) ≃

n∑

j=i

nj∑

i=1

α
sp

ij εxxf kij (th)

h = 1,2, . . . ,Ns, k = 1,2, . . . ,Nm. (20)

At this point, defining the matrix A ∈ RNsNm×ntot and

the vectors bf r ∈ RNsNm , bsp ∈ RNsNm as follows

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε111 . . . ε1n11 . . . ε11j . . . ε1nj j . . . ε11n . . . ε1nnn

...

εk11 . . . εkn11 . . . εk1j . . . εknj j . . . εk1n . . . εknnn

...

εNm11 . . . εNmn11 . . . εNm1j . . . εNmnj j . . . εNm1n . . . εNmnnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

bf r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε
f r

1
...

ε
f r
k
...

ε
f r

Nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, bsp =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε
sp

1
...

ε
sp

k
...

ε
sp

Nm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (22)

the matrix form of Eqs. (19) and (20) can be obtained:

bf r ≃ Aαsim (23)

bsp ≃ Aαsp (24)

where

αsp =
[
α

sp

11 . . . α
sp

n11 . . . α
sp

1j . . . α
sp

nj j . . .

α
sp

1n . . . α
sp
nnn

]T
∈ Rntot (25)
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αsim =
[
αsim

11 . . . αsim
n11 . . . αsim

1j . . . αsim
nj j . . .

αsim
1n . . . αsim

nnn

]T
∈ Rntot . (26)

By means of a least squares optimization (LQO) (in

this case linear and not-weighted), it is now possible

to minimize the squared 2-norms Ef r2 = ‖Ef r‖2
2 and

Esp2 = ‖Esp‖2
2 of the approximation errors

Ef r = Aαsim − bf r , Esp = Aαsp − bsp present in

Eqs. (23) and (24):

αsim =
(
AT A

)−1
AT bf r (27)

αsp =
(
AT A

)−1
AT bsp (28)

where the matrix AT A is invertible if and only if the

rank of A is maximum. Finally the values of the esti-

mated vertical loads N̂ sim
ij , N̂

sp

ij can be evaluated start-

ing from the knowledge of αsim and αsp:

N̂
sim

= Nf αsim (29)

N̂
sp

= Nf αsp (30)

in which

N̂
sim

=
[
N̂ sim

11 . . . N̂ sim
n11 . . . N̂ sim

1j . . . N̂ sim
nj j . . .

N̂ sim
1n . . . N̂ sim

nnn

]T
∈ Rntot (31)

N̂
sp

=
[
N̂

sp

11 . . . N̂
sp

n11 . . . N̂
sp

1j . . . N̂
sp

nj j . . .

N̂
sp

1n . . . N̂
sp
nnn

]T
∈ Rntot . (32)

5 Performance of the WIM algorithm

In this section the performance of the WIM algorithm

for the estimation of the vertical axle loads N̂ starting

from the longitudinal deformations εxx on the rail foot

will be tested. As previously said, the algorithm can

use as input both the experimental quantities measured

on the track and the simulated quantities calculated by

the model of the railway track.

First of all the innovative WIM algorithm has been

validated be means of the experimental data kindly

provided by Ansaldo STS [19]. In this phase no distur-

bances have been considered because of the high qual-

ity of the experimental data and the low train speed V .

Subsequently the WIM algorithm has been tested

with a suitable simulations campaign to verify the ac-

curacy of the procedure when experimental data are

not available; the whole physical model of the railway

track has been developed and validated (see Sect. 3)

just to provide the simulated inputs needed to test the

WIM algorithm when there are no experimental data.

In particular the attention will focus especially on the

vehicle velocity V and on the cut frequency fn of the

physical system. In this second phase the measurement

errors will play a fundamental role to evaluate the ro-

bustness of the WIM algorithm in any operating con-

dition.

5.1 WIM algorithm validation

In order to validate the WIM algorithm, the

experimental deformations on the rail foot

ε
sp

xx1(t) = ε
sp
xx(xm1, t) and ε

sp

xx2(t) = ε
sp
xx(xm2, t) mea-

sured in two measure points xm1 = PI = 60.3 m,

xm2 = PF = 65.1 m (with Nm = 2) have been consid-

ered. The experimental data have been compared with

the analogous quantities ε
sp

xx1ap(t) = ε
sp
xxap(xm1, t),

ε
sp

xx2ap(t) = ε
sp
xxap(xm2, t) estimated by means of the

WIM algorithm (see Eq. (17)) (in the benchmark case

V = 15.4 km/h, TI = 0 s, TF = 15.3 s).

The comparison between the measured deforma-

tions ε
sp

xx1, ε
sp

xx2 and the estimated ones ε
sp

xx1ap , ε
sp

xx2ap

in the measure points xm1, xm2 are represented in

Figs. 17 and 18 (see also Fig. 14).

As visible in the figures, the comparison shows a

good agreement between experimental and estimated

quantities and confirms the accuracy of the WIM pro-

cedure. The choice of the elementary model (em-

ployed to calculate the elementary functions needed

for the axle load estimation, see Fig. 15) turned out

to be quite effective in approximating the real phys-

ical signal and then in estimating the real axle loads

(thanks also to the LSO). Furthermore it is worth not-

ing that the considered experimental results (reported

in this section and in Sect. 4.2) are produced by a real

train in motion composed by three different wagons.

The values of the nominal and estimated vertical loads

on the vehicle wheels Nij , N̂
sp
ij are summarized in Ta-

ble 10 together with the relative errors e
sp

ij =
N̂

sp
ij −Nij

Nij
.

The algorithm accuracy in estimating the vertical

loads (relative errors equal to 1–2 %) is mainly due to

the capability of correctly describing the global shape
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Fig. 17 Measured and estimated longitudinal deformations ε
sp

xx1 and ε
sp

xx1ap in the measure point xm1 = 60.3 m

Fig. 18 Measured and estimated longitudinal deformations ε
sp

xx2 and ε
sp

xx2ap in the measure point xm2 = 65.1 m
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Table 10 Nominal and estimated vertical loads on the vehicle wheels Nij , N̂
sp

ij

Parameter Units Value Parameter Units Value Parameter Units Value

N11 N 86655 N̂
sp

11 N 86707 e
sp

11 – +0.1 %

N21 N 86655 N̂
sp

21 N 86717 e
sp

21 – +0.1 %

N31 N 86655 N̂
sp

31 N 86699 e
sp

31 – +0.1 %

N41 N 86655 N̂
sp

41 N 86701 e
sp

41 – +0.1 %

N51 N 86655 N̂
sp

51 N 86710 e
sp

51 – +0.1 %

N61 N 86655 N̂
sp

61 N 86712 e
sp

61 – +0.1 %

N12 N 39240 N̂
sp

12 N 38093 e
sp

12 – −2.9 %

N22 N 39240 N̂
sp

22 N 39407 e
sp

22 – +0.4 %

N13 N 38014 N̂
sp

13 N 39061 e
sp

13 – +2.8 %

N23 N 38014 N̂
sp

23 N 39070 e
sp

23 – +2.8 %

N33 N 38014 N̂
sp

33 N 37519 e
sp

33 – −1.3 %

N43 N 38014 N̂
sp

43 N 37533 e
sp

43 – −1.3 %

of the solutions (both in the space and in the time) de-

spite the errors in terms of peak values (sometimes

greater than 10 %). These peak errors are caused by

not modeled dynamics and disturbances and by the

cross-effects between adjacent axles present in partic-

ular operating conditions involving low distances be-

tween the axles and high train speeds; in fact, since the

system is only approximately linear, the cross-effect

cannot be completely overcome.

The good description of the global solution shape

(less affected by errors on the peak values) is the most

interesting feature of the proposed algorithm and it is

possible because the new procedure is based on a Least

Squares approach taking into account the whole shape

of the solutions instead of its peak values. Moreover

the considered strategy further reduces the bandwidth

required by the algorithm to correctly estimate the ver-

tical loads on the wheels.

The values of the main parameters of the ODE in-

tegrator like the maximum step size MaxStep, the ab-

solute and relative tolerances AbsTol, RelTol and the

maximum dimension hmax of the elements used in the

FEM discretization of the rail beam are the same re-

ported in Table 7 [20–22].

5.2 The numerical simulations campaign

In this section the longitudinal deformations

ε
f r

xxk(t) = ε
f r
xx (xmk, t) evaluated through the physical

model of the railway track (see Sect. 3) are compared

with the deformations ε
f r
xxkap(t) = ε

f r
xxap(xmk, t) esti-

mated by means of the WIM algorithm (see Eq. (16)).

The comparison between the deformations calcu-

lated by the physical model and those estimated by

the WIM procedure is quite important to test the algo-

rithm accuracy when experimental data are not avail-

able. Furthermore in this case also the measurement

errors will be considered (according to Sect. 3.3) in

order to evaluate the algorithm robustness in presence

of disturbances.

To perform the comparison between simulated and

estimated deformations (ε
f r
xxk , ε

f r
xxkap respectively), an

extensive simulations campaign has been carried out.

In particular in this work the dependence of the rela-

tive errors esim
ij =

N̂ sim
ij −Nij

Nij
on the vehicle speed V and

the cut frequency fn of the physical system is anal-

ysed. In Table 11 the considered variation ranges for

the previous quantities are reported together with the

resolutions adopted for the range discretization (�V ,

�fn respectively); the range boundaries take into ac-

count both the usual traveling velocity of the freight

wagons and at the same time the typical cut frequency

of the studied physical system and measurement chain.

The global performance of the WIM algorithm

have been studied by considering the maximum rel-

ative error esim
max(V ,fn):

esim
max =

∥∥esim
∥∥

∞
= max

1≤i≤nj , 1≤j≤n

∣∣esim
ij

∣∣ (33)
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Table 11 Variation ranges of V and fn adopted for the simulations campaign and their discretization

Velocity Unit Value Cut frequency Units Value

Min. train velocity Vmin m/s 10 Min cut off freq. fnmin Hz 10

Max. train velocity Vmax m/s 40 Max cut off freq. fnmax Hz 40

Sim. number Nv − 100 Sim. number Nfn – 100

�V = (Vmax − Vmin)/(Nv − 1),

VI = Vmin + (I − 1)�V ,

I = 1, . . . ,Nv

m/s 0.303 �fn = (fnmax − fnmin)/(Nfn − 1),

fnJ = fnmin + (J − 1)�fn,

J = 1, . . . ,Nfn

Hz 0.303

Fig. 19 Comparison between the considered measure station layouts

where

esim =
[
esim

11 . . . esim
n11 . . . esim

1j . . . esim
nj j . . .

esim
1n . . . esim

nnn

]T
∈ Rntot (34)

and analysing the behaviour of the error surface

esim
max(V ,fn).

Two different layouts of measure station with a dif-

ferent number Nm of measure points and distance lk
between two consecutive points (as visible in Fig. 19)

are taken into account with the aim of investigating the

error sensibility with respect to the choice of the mea-

sure points. Table 12 summarizes the measure point

positions xmk of each measure station layout together

with the values of Nm and lk (the initial and final

points of the measure station are always PI = 60.3,

PF = 65.1).

The error surfaces esim
max(V ,fn) relative to the two

different measure station layouts (2 and 9 measure

points on the railway track) are illustrated in Figs. 20

and 21. In particular for all the studied cases both a

three-dimensional and a two-dimensional (from the

top, parallel to the plane V − fn) view of the surface

esim
max(V ,fn) are reported to better highlight the error

behaviour.

The numerical noise present on the error surfaces

visible in the previous figures is mainly due to distur-

bances characterising the physical model of the rail-

way tracks and always different in each numerical sim-
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Table 12 Measure point positions xmk , total number of points Nm and distance lk between two consecutive points of the considered

measure station layouts

Meas. st. layout Points Nm Points distance lk (m) Meas. point positions xmk (m)

1st meas. layout 2 4.8 xm1 = 60.3, xm2 = 65.1

3rd meas. layout 9 0.6 xm1 = 60.3, xm2 = 60.9, . . . , xm8 = 64.5, xm9 = 65.1

ulation (see Sect. 3.3). For the sake of clearness, for all

the studied measure station layout, the domain of the

plane V − fn where the WIM algorithm shows a bet-

ter accuracy is highlighted (see Figs. 20 and 21). By

convention the accuracy zone is defined as the domain

where the error esim
max(V ,fn) is minor or equal to 0.1.

As it can be seen in the previous figures, all the

considered measure station layouts show a quite large

accuracy zone even for relatively low values of fn

and relatively high values of V (always with respect

to the range of velocities V and cut frequencies fn

considered for freight trains). Moreover an increase

of the number Nm of measure points xmk on the rail-

way track leads to a better accuracy of the WIM algo-

rithm and consequently to an enlargement of the ac-

curacy zone (see Figs. 20 and 21). The improvement

of the WIM algorithm performance is mainly due to

the better accuracy of the least squares optimization

(LSO), on which the algorithm is based, obtainable

with an higher number of measure points. Moreover,

with more measure points, the global shape of the

signal can be better reproduced by the algorithm in-

side the measure station. At the same time an higher

number of measure points increases the dimensions of

the measure station and involves higher economical

costs; therefore a compromise between these two as-

pects is always needed. The values of the main param-

eters of the ODE integrator like the maximum step size

MaxStep, the absolute and relative tolerances AbsTol,

RelTol and the maximum dimension hmax of the ele-

ments used in the FEM discretization of the rail beam

are always the same reported in Table 7 [20–22].

6 Conclusions and further developments

In this paper the authors presented an innovative WIM

algorithm with the aim of estimating the vertical axle

loads N̂ of railway vehicles. The algorithm is tested by

assuming as input a perturbed and bandwidth limited

rail bending measurements (performed through strain

sensitive elements used to evaluate the longitudinal de-

formations εxx on the rail foot) in order to verify as

much as possible the robustness of the proposed esti-

mation algorithm. In order to estimate the axle loads,

the algorithm tries to approximate the measured physi-

cal input through a set of elementary functions. The el-

ementary functions are evaluated by simulating a sin-

gle fictitious load moving on the track (see Fig. 15).

This elementary model is very simple and depends on

few significant parameters; in this way it can be easily

tuned, for example, by performing the estimation on

a benchmark known train travelling through the mea-

sure station. In particular the simple model employed

for the basis construction cannot depend on the vehicle

geometrical and physical parameters since they are ob-

viously unknown. The measured signal is then approx-

imated by means of Least Square Optimization (LSO)

techniques starting from the set of elementary func-

tions: more particularly, the measured signal is rebuilt

through a linear combination of the elementary func-

tions, the coefficients of which are the axle loads to be

estimated.

The authors have also developed a physical model

of the railway track; the model consists of the pla-

nar FEM model of the infrastructure and of the two-

dimensional multibody model of the vehicle (the ef-

fects of lateral dynamics are treated as disturbances)

and naturally considers the coupling between the ad-

jacent loads moving on the track and the vehicle dy-

namics. The physical model of the track and the inno-

vative WIM algorithm (both taking into account possi-

ble measurement errors) have been validated be means

of the experimental data kindly provided by Ansaldo

STS [19] and have been implemented in the Matlab

and Comsol Multiphysics environments [8, 18]. In par-

ticular the model of the railway track has been devel-

oped expressly to test the WIM algorithm with a suit-

able simulation campaign when experimental data are

not available and provides synthetic simulated inputs

to test the WIM algorithm in absence of experimen-

tal inputs. Obviously this model is not used inside the
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Fig. 20 Error surface for the first measure layout: two measure points xm1 = 60.3 m, xm2 = 65.1 m
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Fig. 21 Error surface for the second measure layout: nine measure points xm1 = 60.3 m, xm2 = 60.9 m, . . . , xm8 = 64.5 m,

xm9 = 65.1 m
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WIM algorithm because the geometrical and physical

train parameters are unknown.

The validation of the new WIM algorithm (see

Sect. 5.1 on the WIM algorithm validation) high-

lighted a good agreement between the estimated quan-

tities and the experimental data, confirming the good

accuracy of the procedure. At the same time the com-

parison between the data obtained by means of the

physical model of the railway track and those esti-

mated by the WIM algorithm (see Sect. 5.2 on the nu-

merical simulations campaign) showed a good accu-

racy and robustness of the estimation procedure in any

operating condition (within the whole range of veloc-

ities V and cut frequencies fn considered for freight

trains).

Concerning the future developments, the improve-

ments will regard first of all the WIM algorithm. In

particular other estimation procedures (like weighted

least square optimization (WLSO) and nonlinear least

square optimization (NLSO)) and other possible phys-

ical inputs of the algorithm besides the longitudinal

deformations εxx (like generic stresses σ and defor-

mations ε and the forces on the sleepers NS as well

as a combination of such physical quantities) will be

considered for estimating the vertical axle loads N̂ .

As regards the new physical inputs, also inertial

measurements will be taken into account to further

increase the bandwidth of the system and to identify

specific defects of the rolling surfaces like wheelflats.

At the same time radio frequency identification tech-

niques employed to identify the main characteristics

of the train composition [23].

The goal of the improved algorithms will be also

the estimation of other geometrical and physical char-

acteristics of the railway vehicle besides the vertical

axle loads like center of mass positions, masses and

inertial tensors of the wagons.

From an experimental point of view further experi-

mental tests are scheduled for the future by Ansaldo

STS. The new experimental data will concern wag-

ons travelling at higher speeds than that considered in

the paper, wagons characterized by different geome-

tries and wagons subjected to unbalanced loads (both

in longitudinal and in lateral direction). Moreover

the authors are currently waiting for receiving from

Ansaldo STS more extensive experimental data con-

cerning measurement campaigns performed on differ-

ent railway tracks with different measurement layouts

and different measured physical quantities as inputs of

the WIM algorithm.

Finally a real prototype of the measure station is

being currently designed and will be soon assembled

on a suitable railway track. The prototype will aim to

test the accuracy and the robustness of the WIM al-

gorithms together with the effectiveness of the various

measure station layouts.
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