

5

Memory-Hierarchy
Design 5
uch

.

 the
Ideally one would desire an indefinitely large memory capacity s

that any particular . . . word would be immediately available. . .

We are . . . forced to recognize the possibility of constructing a

hierarchy of memories, each of which has greater capacity than

preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (1946)

5.1 Introduction 373

5.2 The ABCs of Caches 375

5.3 Reducing Cache Misses 390

5.4 Reducing Cache Miss Penalty 411

5.5 Reducing Hit Time 422

5.6 Main Memory 427

5.7 Virtual Memory 439

5.8 Protection and Examples of Virtual Memory 447

5.9 Crosscutting Issues in the Design of Memory Hierarchies 457

5.10 Putting It All Together:
The Alpha AXP 21064 Memory Hierarchy 461

5.11 Fallacies and Pitfalls 466

5.12 Concluding Remarks 471

5.13 Historical Perspective and References 472

Exercises 476
ited

ory
at
 page
 the
ory is
aller,
ide a
 and
subset
ta in
ttom
y to a
ping,
Computer pioneers correctly predicted that programmers would want unlim
amounts of fast memory. An economical solution to that desire is a memory hier-
archy, which takes advantage of locality and cost/performance of mem
technologies. The principle of locality, presented in the first chapter, says th
most programs do not access all code or data uniformly (see section 1.6,
38). This principle, plus the guideline that smaller hardware is faster, led to
hierarchy based on memories of different speeds and sizes. Since fast mem
expensive, a memory hierarchy is organized into several levels—each sm
faster, and more expensive per byte than the next level. The goal is to prov
memory system with cost almost as low as the cheapest level of memory
speed almost as fast as the fastest level. The levels of the hierarchy usually
one another; all data in one level is also found in the level below, and all da
that lower level is found in the one below it, and so on until we reach the bo
of the hierarchy. Note that each level maps addresses from a larger memor
smaller but faster memory higher in the hierarchy. As part of address map

5.1 Introduction

374

Chapter 5 Memory-Hierarchy Design

 pro-
rchy.
 per-
n de-
hes.
year
 pro-
cess
rchi-

ory
mem-

the memory hierarchy is given the responsibility of address checking; hence
tection schemes for scrutinizing addresses are also part of the memory hiera

The importance of the memory hierarchy has increased with advances in
formance of processors. For example, in 1980 microprocessors were ofte
signed without caches, while in 1995 they often come with two levels of cac
As noted in Chapter 1, microprocessor performance improved 55% per
since 1987, and 35% per year until 1986. Figure 5.1 plots CPU performance
jections against the historical performance improvement in main memory ac
time. Clearly there is a processor-memory performance gap that computer a
tects must try to close.

In addition to giving us the trends that highlight the importance of the mem
hierarchy, Chapter 1 gives us a formula to evaluate the effectiveness of the
ory hierarchy:

Memory stall cycles = Instruction count × Memory references per instruction × Miss rate × Miss penalty

FIGURE 5.1 Starting with 1980 performance as a baseline, the performance of mem-
ory and CPUs are plotted over time. The memory baseline is 64-KB DRAM in 1980, with
three years to the next generation and a 7% per year performance improvement in latency
(see Figure 5.30 on page 429). The CPU line assumes a 1.35 improvement per year until
1986, and a 1.55 improvement thereafter. Note that the vertical axis must be on a logarithmic
scale to record the size of the CPU-DRAM performance gap.

10,000

1000

100

10

1

Performance

Year

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

20
00

19
98

19
99

Memory CPU

5.2 The ABCs of Caches

375

g the
tem

ffs of
ns on

show
 the
e the
ms.

e,

 en-
pplies
s so

se

tions
nd

where Miss rate is the fraction of accesses that are not in the cache and Miss
penalty is the additional clock cycles to service the miss. Recall that a block is the
minimum unit of information that can be present in the cache (hit in the cache) or
not (miss in the cache).

This chapter uses a related formula to evaluate many examples of usin
principle of locality to improve performance while keeping the memory sys
affordable. This common principle allows us to pose four questions aboutany
level of the hierarchy:

Q1: Where can a block be placed in the upper level? (Block placement)

Q2: How is a block found if it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

The answers to these questions help us understand the different trade-o
memories at different levels of a hierarchy; hence we ask these four questio
every example.

To put these abstract ideas into practice, throughout the chapter we
examples from the four levels of the memory hierarchy in a computer using
Alpha AXP 21064 microprocessor. Toward the end of the chapter we evaluat
impact of these levels on performance using the SPEC92 benchmark progra

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Languag
Second College Edition (1976)

Cache is the name generally given to the first level of the memory hierarchy
countered once the address leaves the CPU. Since the principle of locality a
at many levels, and taking advantage of locality to improve performance i
popular, the term cache is now applied whenever buffering is employed to reu
commonly occurring items; examples include file caches, name caches, and so
on. We start our description of caches by answering the four common ques
for the first level of the memory hierarchy; you’ll see similar questions a
answers later.

5.2 The ABCs of Caches

376

Chapter 5 Memory-Hierarchy Design

 cate-

aid to

Q1: Where can a block be placed in a cache?
Figure 5.2 shows that the restrictions on where a block is placed create three
gories of cache organization:

■ If each block has only one place it can appear in the cache, the cache is s
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

FIGURE 5.2 This example cache has eight block frames and memory has 32 blocks.
Real caches contain hundreds of block frames and real memories contain millions of blocks.
The set-associative organization has four sets with two blocks per set, called two-way set as-
sociative. Assume that there is nothing in the cache and that the block address in question
identifies lower-level block 12. The three options for caches are shown left to right. In fully
associative, block 12 from the lower level can go into any of the eight block frames of the
cache. With direct mapped, block 12 can only be placed into block frame 4 (12 modulo 8).
Set associative, which has some of both features, allows the block to be placed anywhere in
set 0 (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
0 or block 1 of the cache.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block
no.

Block
no.

Block
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block

Block frame address

no.

Cache

Memory

5.2 The ABCs of Caches

377

che is

st
at set.

uum
ative

are di-
ns we

ss. The
ed to
s are

rma-

r
match

CPU
t divi-

he tag
e on

set to
 index

ent or
■ If a block can be placed anywhere in the cache, the cache is said to befully
associative.

■ If a block can be placed in a restricted set of places in the cache, the ca
said to be set associative. A set is a group of blocks in the cache. A block is fir
mapped onto a set, and then the block can be placed anywhere within th
The set is usually chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a contin
of levels of set associativity: Direct mapped is simply one-way set associ
and a fully associative cache with m blocks could be called m-way set associa-
tive; equivalently, direct mapped can be thought of as having m sets and fully
associative as having one set. The vast majority of processor caches today
rect mapped, two-way set associative, or four-way set associative, for reaso
shall see shortly.

Q2: How is a block found if it is in the cache?
Caches have an address tag on each block frame that gives the block addre
tag of every cache block that might contain the desired information is check
see if it matches the block address from the CPU. As a rule, all possible tag
searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid info
tion. The most common procedure is to add a valid bit to the tag to say whether o
not this entry contains a valid address. If the bit is not set, there cannot be a
on this address.

Before proceeding to the next question, let’s explore the relationship of a
address to the cache. Figure 5.3 shows how an address is divided. The firs
sion is between the block address and the block offset. The block frame address
can be further divided into the tag field and the index field. The block offset field
selects the desired data from the block, the index field selects the set, and t
field is compared against it for a hit. While the comparison could be mad
more of the address than the tag, there is no need because of the following:

■ Checking the index would be redundant, since it was used to select the
be checked; an address stored in set 0, for example, must have 0 in the
field or it couldn’t be stored in set 0.

■ The offset is unnecessary in the comparison since the entire block is pres
not, and hence all block offsets must match.

378

Chapter 5 Memory-Hierarchy Design

s the
asing

o the
hes

d with
isions
e is
e or
 There

ly
 repro-

n
laced

a cor-
 the

 the
 ex-

ce in

 reads,
hap-
king
nd

If the total cache size is kept the same, increasing associativity increase
number of blocks per set, thereby decreasing the size of the index and incre
the size of the tag. That is, the tag-index boundary in Figure 5.3 moves t
right with increasing associativity, with the end case of fully associative cac
having no index field.

Q3: Which block should be replaced on a cache miss?
When a miss occurs, the cache controller must select a block to be replace
the desired data. A benefit of direct-mapped placement is that hardware dec
are simplified—in fact, so simple that there is no choice: Only one block fram
checked for a hit, and only that block can be replaced. With fully associativ
set-associative placement, there are many blocks to choose from on a miss.
are two primary strategies employed for selecting which block to replace:

■ Random—To spread allocation uniformly, candidate blocks are random
selected. Some systems generate pseudorandom block numbers to get
ducible behavior, which is particularly useful when debugging hardware.

■ Least-recently used (LRU)—To reduce the chance of throwing out informatio
that will be needed soon, accesses to blocks are recorded. The block rep
is the one that has been unused for the longest time. LRU makes use of
ollary of locality: If recently used blocks are likely to be used again, then
best candidate for disposal is the least-recently used block.

A virtue of random replacement is that it is simple to build in hardware. As
number of blocks to keep track of increases, LRU becomes increasingly
pensive and is frequently only approximated. Figure 5.4 shows the differen
miss rates between LRU and random replacement.

Q4: What happens on a write?
Reads dominate processor cache accesses. All instruction accesses are
and most instructions don’t write to memory. Figure 2.26 on page 105 in C
ter 2 suggests a mix of 9% stores and 26% loads for DLX programs, ma
writes 9%/(100% + 26% + 9%) or about 7% of the overall memory traffic a

FIGURE 5.3 The three portions of an address in a set-associative or direct-mapped
cache. The tag is used to check all the blocks in the set and the index is used to select the
set. The block offset is the address of the desired data within the block.

Tag Index
Block
offset

Block address

5.2 The ABCs of Caches

379

on
 tradi-
aw
 can-

ck can
so the
it, the

miss,

g is
 paral-
ces-
y that
s than

tions

ory

ture

ock

9%/(26% + 9%) or about 25% of the data cache traffic. Making the comm
case fast means optimizing caches for reads, especially since processors
tionally wait for reads to complete but need not wait for writes. Amdahl’s L
(section 1.6, page 29) reminds us, however, that high-performance designs
not neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The blo
be read from cache at the same time that the tag is read and compared,
block read begins as soon as the block address is available. If the read is a h
requested part of the block is passed on to the CPU immediately. If it is a
there is no benefit—but also no harm; just ignore the value read.

Such is not the case for writes. Modifying a block cannot begin until the ta
checked to see if the address is a hit. Because tag checking cannot occur in
lel, writes normally take longer than reads. Another complexity is that the pro
sor also specifies the size of the write, usually between 1 and 8 bytes; onl
portion of a block can be changed. In contrast, reads can access more byte
necessary without fear.

The write policies often distinguish cache designs. There are two basic op
when writing to the cache:

■ Write through (or store through)—The information is written to both the block
in the cache and to the block in the lower-level memory.

■ Write back (also called copy back or store in)—The information is written only
to the block in the cache. The modified cache block is written to main mem
only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a fea
called the dirty bit is commonly used. This status bit indicates whether the bl
is dirty (modified while in the cache) or clean (not modified). If it is clean, the

Associativity

Two-way Four-way Eight-way

Size LRU Random LRU Random LRU Random

16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

FIGURE 5.4 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. These data were collected for a block size of 16 bytes
using one of the VAX traces containing user and operating system code. There is little differ-
ence between LRU and random for larger-size caches in this trace. Although not included in
the table, a first-in, first-out order replacement policy is worse than random or LRU.

380

Chapter 5 Memory-Hierarchy Design

n to

ck,
lock

o to
ve in
 the
rite
t copy
ine

 they
write
hy.
the

to the
 we

 on a

s.

ck,
to that
write

e data
000
locks
nd

 (The
), the

or tag
e 29-
 into
block is not written on a miss, since the lower level has identical informatio
the cache.

Both write back and write through have their advantages. With write ba
writes occur at the speed of the cache memory, and multiple writes within a b
require only one write to the lower-level memory. Since some writes don’t g
memory, write back uses less memory bandwidth, making write back attracti
multiprocessors. With write through, read misses never result in writes to
lower level, and write through is easier to implement than write back. W
through also has the advantage that the next lower level has the most curren
of the data. This is important for I/O and for multiprocessors, which we exam
in Chapters 6 and 8. As we shall see, I/O and multiprocessors are fickle:
want write back for processor caches to reduce the memory traffic and
through to keep the cache consistent with lower levels of the memory hierarc

When the CPU must wait for writes to complete during write through,
CPU is said to write stall. A common optimization to reduce write stalls is a write
buffer, which allows the processor to continue as soon as the data is written
buffer, thereby overlapping processor execution with memory updating. As
shall see shortly, write stalls can occur even with write buffers.

Since the data are not needed on a write, there are two common options
write miss:

■ Write allocate (also called fetch on write)—The block is loaded on a write
miss, followed by the write-hit actions above. This is similar to a read mis

■ No-write allocate (also called write around)—The block is modified in the
lower level and not loaded into the cache.

Although either write-miss policy could be used with write through or write ba
write-back caches generally use write allocate (hoping that subsequent writes
block will be captured by the cache) and write-through caches often use no-
allocate (since subsequent writes to that block will still have to go to memory).

An Example: The Alpha AXP 21064 Data Cache
and Instruction Cache

To give substance to these ideas, Figure 5.5 shows the organization of th
cache in the Alpha AXP 21064 microprocessor that is found in the DEC 3
Model 800 workstation. The cache contains 8192 bytes of data in 32-byte b
with direct-mapped placement, write through with a four-block write buffer, a
no-write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure 5.5.
four steps are shown as circled numbers.) As we shall see later (Figure 5.41
21064 microprocessor presents a 34-bit physical address to the cache f
comparison. The address coming into the cache is divided into two fields: th
bit block address and 5-bit block offset. The block address is further divided
an address tag and cache index. Step 1 shows this division.

5.2 The ABCs of Caches

381

 in the
ociativ-
nd we

lows
d and

f the
 con-

The cache index selects the tag to be tested to see if the desired block is
cache. The size of the index depends on cache size, block size, and set ass
ity. The 21064 cache is direct mapped, so set associativity is set to one, a
calculate the index as follows:

Hence the index is 8 bits wide, and the tag is 29 – 8 or 21 bits wide.
Index selection is step 2 in Figure 5.5. Remember that direct mapping al

the data to be read and sent to the CPU in parallel with the tag being rea
checked.

After reading the tag from the cache, it is compared to the tag portion o
block address from the CPU. This is step 3 in the figure. To be sure the tag

FIGURE 5.5 The organization of the data cache in the Alpha AXP 21064 microproces-
sor. The 8-KB cache is direct mapped with 32-byte blocks. It has 256 blocks selected by the
8-bit index. The four steps of a read hit, shown as circled numbers in order of occurrence,
label this organization. Although we show a 4:1 multiplexer to select the desired 8 bytes, in
reality the data RAM is organized 8 bytes wide and the multiplexer is unnecessary: 2 bits of
the block offset join the index to supply the RAM address to select the proper 8 bytes (see
Figure 5.8). Although not exercised in this example, the line from memory to the cache is
used on a miss to load the cache.

Block address
Block
offset

CPU
address
Data
in

Data
out

<21>

 Tag Index

<8> <5>

Valid
<1>

Data
<256>

=?

4

3

(256
blocks)

2

1

Write
buffer

Lower level memory

Tag
<21>

4:1 Mux

2
index Cache size

Block size Set associativity×
-- 8192

32 1×
--------------- 256 2

8
= = ==

382

Chapter 5 Memory-Hierarchy Design

pari-

d the
s, so
se

 it is
re the
n 5.5
tion

data
 hold
 are
 the
 to
cked
buffer

the
rite
rite
PU)

s on a
 wait,
 next
sev-
 clock
hoice
e ad-
ache
lows

y
single
 load
y re-

ld
e way
 and
luding
l to
tains valid information, the valid bit must be set or else the results of the com
son are ignored.

Assuming the tag does match, the final step is to signal the CPU to loa
data from the cache. The 21064 allows two clock cycles for these four step
the instructions in the following two clock cycles would stall if they tried to u
the result of the load.

Handling writes is more complicated than handling reads in the 21064, as
in any cache. If the word to be written is in the cache, the first three steps a
same. After the tag comparison indicates a hit, the data are written. (Sectio
shows how the 21064 avoids the extra time on write hits that this descrip
implies.)

Since this is a write-through cache, the write process isn’t yet over. The
are also sent to a write buffer that can contain up to four blocks that each can
four 64-bit words. If the write buffer is empty, the data and the full address
written in the buffer, and the write is finished from the CPU’s perspective;
CPU continues working while the write buffer prepares to write the word
memory. If the buffer contains other modified blocks, the addresses are che
to see if the address of this new data matches the address of the valid write
entry; if so, the new data are combined with that entry, called write merging.
Without this optimization, four stores to sequential addresses would fill
buffer, even though these four words easily fit within a single block of the w
buffer when merged. Figure 5.6 shows a write buffer with and without w
merging. If the buffer is full and there is no address match, the cache (and C
must wait until the buffer has an empty entry.

So far we have assumed the common case of a cache hit. What happen
miss? On a read miss, the cache sends a stall signal to the CPU telling it to
and 32 bytes are read from the next level of the hierarchy. The path to the
lower level is 16 bytes wide in the DEC 3000 model 800 workstation, one of
eral models that use the 21064. That takes 5 clock cycles per transfer, or 10
cycles for all 32 bytes. Since the data cache is direct mapped, there is no c
on which block to replace. Replacing a block means updating the data, th
dress tag, and the valid bit. On a write miss, the CPU writes “around” the c
to lower-level memory and does not affect the cache; that is, the 21064 fol
the no-write-allocate rule.

We have seen how it works, but the data cache cannot supply all the memor
needs of the processor: the processor also needs instructions. Although a
cache could try to supply both, it can be a bottleneck. For example, when a
or store instruction is executed, the pipelined processor will simultaneousl
quest both a data word and an instruction word. Hence a single cache wou
present a structural hazard for loads and stores, leading to stalls. One simpl
to conquer this problem is to divide it: one cache is dedicated to instructions
another to data. Separate caches are found in most recent processors, inc
the Alpha AXP 21064. It has an 8-KB instruction cache that is nearly identica
its 8-KB data cache in Figure 5.5.

5.2 The ABCs of Caches

383

ress,
tween
nity of
socia-

n

 data
tween
voted
epa-
size to
 data
 miss
rcent-

sts the

The CPU knows whether it is issuing an instruction address or a data add
so there can be separate ports for both, thereby doubling the bandwidth be
the memory hierarchy and the CPU. Separate caches also offer the opportu
optimizing each cache separately: different capacities, block sizes, and as
tivities may lead to better performance. (In contrast to the instruction caches and
data caches of the 21064, the terms unified or mixed are applied to caches that ca
contain either instructions or data.)

Figure 5.7 shows that instruction caches have lower miss rates than
caches. Separating instructions and data removes misses due to conflicts be
instruction blocks and data blocks, but the split also fixes the cache space de
to each type. Which is more important to miss rates? A fair comparison of s
rate instruction and data caches to unified caches requires the total cache
be the same. For example, a separate 1-KB instruction cache and 1-KB
cache should be compared to a 2-KB unified cache. Calculating the average
rate with separate instruction and data caches necessitates knowing the pe
age of memory references to each cache. Figure 2.26 on page 105 sugge

FIGURE 5.6 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. Each buffer has four entries, and each entry holds four
64-bit words. The address for each entry is on the left, with valid bits (V) indicating whether
or not the next sequential four bytes are occupied in this entry. The four writes are merged
into a single buffer entry with write merging; without it, all four entries are used. Without write
merging, the blocks to the right in the upper drawing would only be used for instructions that
wrote multiple words at the same time. (The Alpha is a 64-bit architecture so its buffer is really
8 bytes per word.)

100

104

108

112

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

384

Chapter 5 Memory-Hierarchy Design

% +
rfor-
e in a

valu-
 such
. The
 con-
dware.
better
mory:

 be-
bsolute
 CPU
r that
ough

.

split is 100%/(100% + 26% + 9%) or about 75% instruction references to (26
9%)/(100% + 26% + 9%) or about 25% data references. Splitting affects pe
mance beyond what is indicated by the change in miss rates, as we shall se
little bit.

Cache Performance

Because instruction count is independent of the hardware, it is tempting to e
ate CPU performance using that number. As we saw in Chapter 1, however,
indirect performance measures have waylaid many a computer designer
corresponding temptation for evaluating memory-hierarchy performance is to
centrate on miss rate, because it, too, is independent of the speed of the har
As we shall see, miss rate can be just as misleading as instruction count. A
measure of memory-hierarchy performance is the average time to access me

Average memory access time = Hit time + Miss rate × Miss penalty

where Hit time is the time to hit in the cache; we have seen the other two terms
fore. The components of average access time can be measured either in a
time—say, 2 nanoseconds on a hit—or in the number of clock cycles that the
waits for the memory—such as a miss penalty of 50 clock cycles. Remembe
average memory access time is still an indirect measure of performance; alth
it is a better measure than miss rate, it is not a substitute for execution time.

This formula can help us decide between split caches and a unified cache

E X A M P L E Which has the lower miss rate: a 16-KB instruction cache with a 16-KB
data cache or a 32-KB unified cache? Use the miss rates in Figure 5.7 to
help calculate the correct answer. Assume a hit takes 1 clock cycle and
the miss penalty is 50 clock cycles, and a load or store hit takes 1 extra
clock cycle on a unified cache since there is only one cache port to satisfy

Size Instruction cache Data cache Unified cache

1 KB 3.06% 24.61% 13.34%

2 KB 2.26% 20.57% 9.78%

4 KB 1.78% 15.94% 7.24%

8 KB 1.10% 10.19% 4.57%

16 KB 0.64% 6.47% 2.87%

32 KB 0.39% 4.82% 1.99%

64 KB 0.15% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

FIGURE 5.7 Miss rates for instruction, data, and unified caches of different sizes. The
data are for a direct-mapped cache with 32-byte blocks for an average of SPEC92 bench-
marks on the DECstation 5000 [Gee et al. 1993]. The percentage of instruction references is
about 75%.

5.2 The ABCs of Caches

385

at all
ically
 using
ount

s for
rt of
ost
two simultaneous requests. Using the pipelining terminology of the previ-
ous chapter, the unified cache leads to a structural hazard. What is the av-
erage memory access time in each case? Assume write-through caches
with a write buffer and ignore stalls due to the write buffer.

A N S W E R As stated above, about 75% of the memory accesses are instruction
references. Thus, the overall miss rate for the split caches is

(75% × 0.64%) + (25% × 6.47%) = 2.10%

According to Figure 5.7, a 32-KB unified cache has a slightly lower miss
rate of 1.99%.

The average memory access time formula can be divided into
instruction and data accesses:

So the time for each organization is

Hence the split caches in this example—which offer two memory ports
per clock cycle, thereby avoiding the structural hazard—have a better av-
erage memory access time than the single-ported unified cache even
though their effective miss rate is higher. ■

In Chapter 1 we saw another formula for the memory hierarchy:

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume th
memory stalls are due to cache misses since the memory hierarchy typ
dominates other reasons for stalls, such as contention due to I/O devices
memory. We use this simplifying assumption here, but it is important to acc
for all memory stalls when calculating final performance!

The CPU time formula above raises the question whether the clock cycle
a cache hit should be considered part of CPU execution clock cycles or pa
memory stall clock cycles. Although either convention is defensible, the m
widely accepted is to include hit clock cycles in CPU execution clock cycles.

Average memory access time

% instructions Hit time Instruction miss rate Miss penalty×+() +×=

% data Hit time Data miss rate Miss penalty×+()×

Average memory access timesplit

75% 1 0.64% 50×+() 25% 1 6.47% 50×+()×+×=

75% 1.32×() 25% 4.235×()+ 0.990 1.059+ 2.05= = =

Average memory access timeunified

75% 1 1.99% 50×+() 25% 1 1 1.99% 50×+ +()×+×=

75% 1.995×() 25% 2.995×()+ 1.496 0.749+ 2.24= = =

386 Chapter 5 Memory-Hierarchy Design

em-
 reads

and

re of-

les,
ction,

ple-
eated
e the
uction
dent;

e very
ular
ion
Memory stall clock cycles can then be defined in terms of the number of m
ory accesses per program, miss penalty (in clock cycles), and miss rate for
and writes:

Memory stall clock cycles = Reads × Read miss rate × Read miss penalty

+ Writes × Write miss rate × Write miss penalty

We often simplify the complete formula by combining the reads and writes
finding the average miss rates and miss penalty for reads and writes:

Memory stall clock cycles = Memory accesses × Miss rate × Miss penalty

This formula is an approximation since the miss rates and miss penalties a
ten different for reads and writes.

Factoring instruction count (IC) from execution time and memory stall cyc
we now get a CPU time formula that includes memory accesses per instru
miss rate, and miss penalty:

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference:

The advantage of this measure is that it is independent of the hardware im
mentation. For example, the 21064 instruction prefetch unit can make rep
references to a single word (see section 5.10), which can artificially reduc
miss rate if measured as misses per memory reference rather than per instr
executed. The drawback is that misses per instruction is architecture depen
for example, the average number of memory accesses per instruction may b
different for an 80x86 versus DLX. Thus misses per instruction is most pop
with architects working with a single computer family. They then use this vers
of the CPU time formula:

We can now explore the impact of caches on performance.

E X A M P L E Let’s use a machine similar to the Alpha AXP as a first example. Assume
the cache miss penalty is 50 clock cycles, and all instructions normally take
2.0 clock cycles (ignoring memory stalls). Assume the miss rate is 2%, and

CPU time IC CPIexecution
Memory accesses

Instruction
--+

× Miss rate Miss penalty×× 
 Clock cycle time×=

Misses
Instruction
-------------------------- Memory accesses Miss rate×

Instruction
---=

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction
---+

× 
 Clock cycle time×

5.2 The ABCs of Caches 387

 per-
 CPU

s are
lock

thus
vior in

l and
uce
there is an average of 1.33 memory references per instruction. What is the
impact on performance when behavior of the cache is included?

A N S W E R

The performance, including cache misses, is

CPU timewith cache = IC × (2.0 + (1.33 × 2% × 50)) × Clock cycle time

= IC × 3.33 × Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 2.0 for a “perfect cache” to
3.33 with a cache that can miss. Hence, including the memory hierarchy
in the CPI calculations stretches the CPU time by a factor of 1.67. Without
any memory hierarchy at all the CPI would increase to 2.0 + 50 × 1.33 or
68.5—a factor of over 30 times longer! ■

As this example illustrates, cache behavior can have enormous impact on
formance. Furthermore, cache misses have a double-barreled impact on a
with a low CPI and a fast clock:

1. The lower the CPIexecution, the higher the relative impact of a fixed number of
cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in CPU clock
cycles for a miss. Therefore, even if memory hierarchies for two computer
identical, the CPU with the higher clock rate has a larger number of c
cycles per miss and hence the memory portion of CPI is higher.

The importance of the cache for CPUs with low CPI and high clock rates is
greater, and, consequently, greater is the danger of neglecting cache beha
assessing performance of such machines. Amdahl’s Law strikes again!

Although minimizing average memory access time is a reasonable goa
we will use it in much of this chapter, keep in mind that the final goal is to red
CPU execution time. The next example shows how these two can differ.

E X A M P L E What is the impact of two different cache organizations on the perfor-
mance of a CPU? Assume that the CPI with a perfect cache is 2.0 and the
clock cycle time is 2 ns, that there are 1.3 memory references per instruc-
tion, and that the size of both caches is 64 KB and both have a block size
of 32 bytes. One cache is direct mapped and the other is two-way set as-
sociative. Figure 5.8 shows that for set-associative caches we must add
a multiplexer to select between the blocks in the set depending on the tag

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction
---+

× 
 Clock cycle time×

388 Chapter 5 Memory-Hierarchy Design
match. Since the speed of the CPU is tied directly to the speed of a cache
hit, assume the CPU clock cycle time must be stretched 1.10 times to ac-
commodate the selection multiplexer of the set-associative cache. To the
first approximation, the cache miss penalty is 70 ns for either cache orga-
nization. (In practice it must be rounded up or down to an integer number
of clock cycles.) First, calculate the average memory access time, and
then CPU performance. Assume the hit time is one clock cycle. Assume
that the miss rate of a direct-mapped 64-KB cache is 1.4%, and the miss
rate for a two-way set-associative cache of the same size is 1.0%.

A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

FIGURE 5.8 A two-way set-associative version of the 8-KB cache of Figure 5.5, show-
ing the extra multiplexer in the path. Unlike the prior figure, the data portion of the cache
is drawn more realistically, with the two leftmost bits of the block offset combined with the in-
dex to address the desired 64-bit word in memory, which is then sent to the CPU.

Block address
Block
offset

CPU
address
Data
in

Data
out

<22>

 Tag Index

<7> <5>

Valid
<1>

Data
<64>

=?

=?

Write
buffer

Lower level memory

Tag
<22>

2:1
M
u
x

5.2 The ABCs of Caches 389

re 5.1
years
s. Your
hile,
ir es-
tail!
rk to
Thus, the time for each organization is

Average memory access time1-way = 2.0 + (.014 × 70) = 2.98 ns
Average memory access time2-way = 2.0 × 1.10 + (.010 × 70) = 2.90 ns

The average memory access time is better for the two-way set-associative
cache.

CPU performance is

Substituting 70 ns for (Miss penalty × Clock cycle time), the performance
of each cache organization is

and relative performance is

In contrast to the results of average memory access time comparison, the
direct-mapped cache leads to slightly better average performance be-
cause the clock cycle is stretched for all instructions for the two-way case,
even if there are fewer misses. Since CPU time is our bottom-line evalua-
tion, and since direct mapped is simpler to build, the preferred cache is
direct mapped in this example. ■

Improving Cache Performance

The increasing gap between CPU and main memory speeds shown in Figu
has attracted the attention of many architects. A bibliographic search for the
1989 –95 revealed more than 1600 research papers on the subject of cache
authors’ job was to survey all 1600 papers, decide what is and is not worthw
translate the results into a common terminology, reduce the results to the
sence, write in an intriguing fashion, and provide just the right amount of de
Fortunately, the average memory access time formula gave us a framewo
present cache optimizations as well as the techniques for improving caches:

Average memory access time = Hit time + Miss rate × Miss penalty

CPU time IC CPIExecution
Misses

Instruction
-------------------------- Miss penalty× 

 Clock cycle time×+
×=

IC CPIExecution(Clock cycle time)××=

Memory accesses
Instruction

-- Miss rate Miss penalty Clock cycle time××× 
 +

CPU time1-way IC 2 2.0 1.3 0.014 70××()+×()× 5.27 IC×= =

CPU time2-way IC 2 2.0 1.10× 1.3 0.010 70××()+×()× 5.31 IC×= =

CPU time2-way
CPU time1-way
------------------------------------- 5.31 Instruction count×

5.27 Instruction count×
--- 5.31

5.27
---------- 1.01===

390 Chapter 5 Memory-Hierarchy Design

com-

 where
 start

tion
d and

ped,
 be-
 to its

n by
raph

ses by
 con-
. Here

s)

ur-

ay

ay
Hence we organize 15 cache optimizations into three categories:

■ Reducing the miss rate (Section 5.3)

■ Reducing the miss penalty (Section 5.4)

■ Reducing the time to hit in the cache (Section 5.5)

Figure 5.29 on page 427 concludes with a summary of the implementation
plexity and the performance benefits of the 15 techniques presented.

Most cache research has concentrated on reducing the miss rate, so that is
we start our exploration. To gain better insights into the causes of misses, we
with a model that sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold start misses or
first reference misses.

■ Capacity—If the cache cannot contain all the blocks needed during execu
of a program, capacity misses will occur because of blocks being discarde
later retrieved.

■ Conflict—If the block placement strategy is set associative or direct map
conflict misses (in addition to compulsory and capacity misses) will occur
cause a block can be discarded and later retrieved if too many blocks map
set. These are also called collision misses or interference misses.

Figure 5.9 shows the relative frequency of cache misses, broken dow
the “three C’s.” Figure 5.10 presents the same data graphically. The top g
shows absolute miss rates; the bottom graph plots percentage of all the mis
type of miss as a function of cache size. To show the benefit of associativity,
flict misses are divided into misses caused by each decrease in associativity
are the four divisions:

■ Eight-way—conflict misses due to going from fully associative (no conflict
to eight-way associative

■ Four-way—conflict misses due to going from eight-way associative to fo
way associative

■ Two-way—conflict misses due to going from four-way associative to two-w
associative

■ One-way—conflict misses due to going from two-way associative to one-w
associative (direct mapped)

5.3 Reducing Cache Misses

5.3 Reducing Cache Misses 391
Cache size
Degree

associative
Total

miss rate

Miss rate components (relative percent)
(Sum = 100% of total miss rate)

Compulsory Capacity Conflict

1 KB 1-way 0.133 0.002 1% 0.080 60% 0.052 39%

1 KB 2-way 0.105 0.002 2% 0.080 76% 0.023 22%

1 KB 4-way 0.095 0.002 2% 0.080 84% 0.013 14%

1 KB 8-way 0.087 0.002 2% 0.080 92% 0.005 6%

2 KB 1-way 0.098 0.002 2% 0.044 45% 0.052 53%

2 KB 2-way 0.076 0.002 2% 0.044 58% 0.030 39%

2 KB 4-way 0.064 0.002 3% 0.044 69% 0.018 28%

2 KB 8-way 0.054 0.002 4% 0.044 82% 0.008 14%

4 KB 1-way 0.072 0.002 3% 0.031 43% 0.039 54%

4 KB 2-way 0.057 0.002 3% 0.031 55% 0.024 42%

4 KB 4-way 0.049 0.002 4% 0.031 64% 0.016 32%

4 KB 8-way 0.039 0.002 5% 0.031 80% 0.006 15%

8 KB 1-way 0.046 0.002 4% 0.023 51% 0.021 45%

8 KB 2-way 0.038 0.002 5% 0.023 61% 0.013 34%

8 KB 4-way 0.035 0.002 5% 0.023 66% 0.010 28%

8 KB 8-way 0.029 0.002 6% 0.023 79% 0.004 15%

16 KB 1-way 0.029 0.002 7% 0.015 52% 0.012 42%

16 KB 2-way 0.022 0.002 9% 0.015 68% 0.005 23%

16 KB 4-way 0.020 0.002 10% 0.015 74% 0.003 17%

16 KB 8-way 0.018 0.002 10% 0.015 80% 0.002 9%

32 KB 1-way 0.020 0.002 10% 0.010 52% 0.008 38%

32 KB 2-way 0.014 0.002 14% 0.010 74% 0.002 12%

32 KB 4-way 0.013 0.002 15% 0.010 79% 0.001 6%

32 KB 8-way 0.013 0.002 15% 0.010 81% 0.001 4%

64 KB 1-way 0.014 0.002 14% 0.007 50% 0.005 36%

64 KB 2-way 0.010 0.002 20% 0.007 70% 0.001 10%

64 KB 4-way 0.009 0.002 21% 0.007 75% 0.000 3%

64 KB 8-way 0.009 0.002 22% 0.007 78% 0.000 0%

128 KB 1-way 0.010 0.002 20% 0.004 40% 0.004 40%

128 KB 2-way 0.007 0.002 29% 0.004 58% 0.001 14%

128 KB 4-way 0.006 0.002 31% 0.004 61% 0.001 8%

128 KB 8-way 0.006 0.002 31% 0.004 62% 0.000 7%

FIGURE 5.9 Total miss rate for each size cache and percentage of each according to the “three C’s.” Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses decrease
as associativity increases. Gee et al. [1993] calculated the average D-cache miss rate for the SPEC92 benchmark suite with
32-byte blocks and LRU replacement on a DECstation 5000. Figure 5.10 shows the same information graphically. The com-
pulsory rate was calculated as the miss rate of a fully associative 1-MB cache. Note that the 2:1 cache rule of thumb (inside
front cover) is supported by the statistics in this table: a direct-mapped cache of size N has about the same miss rate as a
2-way set-associative cache of size N/2.

392 Chapter 5 Memory-Hierarchy Design

 pro-

em?
s all
may
verall

f the
nd a
As we can see from the figures, the compulsory miss rate of the SPEC92
grams is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about th
Conceptually, conflicts are the easiest: Fully associative placement avoid
conflict misses. Full associativity is expensive in hardware, however, and
slow the processor clock rate (see the example above), leading to lower o
performance.

There is little to be done about capacity except to enlarge the cache. I
upper-level memory is much smaller than what is needed for a program, a

FIGURE 5.10 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache according to three C’s for the data in Figure 5.9. The top diagram is the
actual D-cache miss rates, while the bottom diagram is scaled to the direct-mapped miss
ratios.

2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 8 16 32 64 128

Compulsory

1-way

Cache size (KB)

2-way

4-way

8-way

Capacity

2
0%

Miss rate per type

Miss rate per type

100%

1 4 8 16 32 64 128

CompulsoryCache size (KB)

80%

60%

40%

20%

1-way

2-way

4-way 8-way

Capacity

5.3 Reducing Cache Misses 393

n the
ts
lower-

 re-
an in-

l has
ndi-
ell as
. Thus,
nges.
t to
e re-
 miss

e or
iques
aking
nced

 5.11
cache
curs

 spa-

duce
s and
rease
o
e; the
significant percentage of the time is spent moving data between two levels i
hierarchy, the memory hierarchy is said to thrash. Because so many replacemen
are required, thrashing means the machine runs close to the speed of the
level memory, or maybe even slower because of the miss overhead.

Another approach to improving the three C’s is to make blocks larger to
duce the number of compulsory misses, but, as we shall see, large blocks c
crease other kinds of misses.

The three C’s give insight into the cause of misses, but this simple mode
its limits; it gives you insight into average behavior but may not explain an i
vidual miss. For example, changing cache size changes conflict misses as w
capacity misses, since a larger cache spreads out references to more blocks
a miss might move from a capacity miss to a conflict miss as cache size cha
Note that the three C’s also ignore replacement policy, since it is difficul
model and since, in general, it is less significant. In specific circumstances th
placement policy can actually lead to anomalous behavior, such as poorer
rates for larger associativity, which is contradictory to the three C’s model.
 Alas, many of the techniques that reduce miss rates also increase hit tim
miss penalty. The desirability of reducing miss rates using the seven techn
presented in the rest of this section must be balanced against the goal of m
the whole system fast. This first example shows the importance of a bala
perspective.

First Miss Rate Reduction Technique: Larger Block Size

This simplest way to reduce miss rate is to increase the block size. Figure
shows the trade-off of block size versus miss rate for a set of programs and
sizes. Larger block sizes will reduce compulsory misses. This reduction oc
because the principle of locality has two components: temporal locality and
tial locality. Larger blocks take advantage of spatial locality.

At the same time, larger blocks increase the miss penalty. Since they re
the number of blocks in the cache, larger blocks may increase conflict misse
even capacity misses if the cache is small. Clearly there is little reason to inc
the block size to such a size that it increases the miss rate, but there is also n
benefit to reducing miss rate if it increases the average memory access tim
increase in miss penalty may outweigh the decrease in miss rate.

394 Chapter 5 Memory-Hierarchy Design
E X A M P L E Figure 5.12 shows the actual miss rates plotted in Figure 5.11. Assume
the memory system takes 40 clock cycles of overhead and then delivers
16 bytes every 2 clock cycles. Thus, it can supply 16 bytes in 42 clock
cycles, 32 bytes in 44 clock cycles, and so on. Which block size has the
minimum average memory access time for each cache size in
Figure 5.12?

FIGURE 5.11 Miss rate versus block size for five different-sized caches. Each line rep-
resents a cache of different size. Figure 5.12 shows the data used to plot these lines. This
graph is based on the same measurements found in Figure 5.10.

Cache size

Block size 1K 4K 16K 64K 256K

16 15.05% 8.57% 3.94% 2.04% 1.09%

32 13.34% 7.24% 2.87% 1.35% 0.70%

64 13.76% 7.00% 2.64% 1.06% 0.51%

128 16.64% 7.78% 2.77% 1.02% 0.49%

256 22.01% 9.51% 3.29% 1.15% 0.49%

FIGURE 5.12 Actual miss rate versus block size for five different-sized caches in
Figure 5.11. Note that for a 1-KB cache, 64-byte, 128-byte, and 256-byte blocks have a high-
er miss rate than 32-byte blocks. In this example, the cache would have to be 256 KB in order
for a 256-byte block to decrease misses.

5%

16

Block size

32

10%

15%

20%

25%

64 128 256

Miss
rate

0%

1k 4k 16k

64k 256k

5.3 Reducing Cache Misses 395

 the
th the
nd-
iss for
 en-
ck—
wice

pul-
ity to
A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

If we assume the hit time is one clock cycle independent of block size,
then the access time for a 16-byte block in a 1-KB cache is

Average memory access time = 1 + (15.05% × 42) = 7.321 clock cycles

and for a 256-byte block in a 256-KB cache the average memory access
time is

Average memory access time = 1 + (0.49% × 72) = 1.353 clock cycles

Figure 5.13 shows the average memory access time for all block and
cache sizes between those two extremes. The boldfaced entries show the
fastest block size for a given cache size: 32 bytes for 1-KB, 4-KB, and 16-
KB caches and 64 bytes for the larger caches. These sizes are, in fact,
popular block sizes for processor caches today.

■

As in all of these techniques, the cache designer is trying to minimize both
miss rate and the miss penalty. The selection of block size depends on bo
latency and bandwidth of the lower-level memory: high latency and high ba
width encourage large block size since the cache gets many more bytes per m
a small increase in miss penalty. Conversely, low latency and low bandwidth
courage smaller block sizes since there is little time saved from a larger blo
twice the miss penalty of a small block may be close to the penalty of a block t
the size—and the larger number of small blocks may reduce conflict misses.

After seeing the positive and negative impact of larger block size on com
sory and capacity misses, we next look at the potential of higher associativ
reduce conflict misses.

Cache size

Block size Miss penalty 1K 4K 16K 64K 256K

16 42 7.321 4.599 2.655 1.857 1.458

32 44 6.870 4.186 2.263 1.594 1.308

64 48 7.605 4.360 2.267 1.509 1.245

128 56 10.318 5.357 2.551 1.571 1.274

256 72 16.847 7.847 3.369 1.828 1.353

FIGURE 5.13 Average memory access time versus block size for five different-sized
caches in Figure 5.11. The smallest average time per cache size is boldfaced.

396 Chapter 5 Memory-Hierarchy Design

tivity.
s. The
duc-

vation,
a

set-

ry ac-
iss rate
 of in-
 or
irect-
re of a

easing
Second Miss Rate Reduction Technique:
Higher Associativity

Figures 5.9 and 5.10 above show how miss rates improve with higher associa
There are two general rules of thumb that can be gleaned from these figure
first is that eight-way set associative is for practical purposes as effective in re
ing misses for these sized caches as fully associative. The second obser
called the 2:1 cache rule of thumb and found on the front inside cover, is that
direct-mapped cache of size N has about the same miss rate as a 2-way
associative cache of size N/2.

Like many of these examples, improving one aspect of the average memo
cess time comes at the expense of another. Increasing block size reduced m
while increasing miss penalty, and greater associativity can come at the cost
creased hit time. Hill [1988] found about a 10% difference in hit times for TTL
ECL board-level caches and a 2% difference for custom CMOS caches for d
mapped caches versus two-way set-associative caches. Hence the pressu
fast processor clock cycle encourages simple cache designs, but the incr
miss penalty rewards associativity, as the following example suggests.

E X A M P L E Assume that going to higher associativity would increase the clock cycle
as suggested below:

Clock cycle time2-way = 1.10 × Clock cycle time1-way

Clock cycle time4-way = 1.12 × Clock cycle time1-way

Clock cycle time8-way = 1.14 × Clock cycle time1-way

Assume that the hit time is 1 clock cycle, that the miss penalty for the
direct-mapped case is 50 clock cycles, and that the miss penalty need not
be rounded to an integral number of clock cycles. Using Figure 5.9 for
miss rates, for which cache sizes are each of these three statements
true?

Average memory access time8-way < Average memory access time4-way

Average memory access time4-way < Average memory access time2-way

Average memory access time2-way < Average memory access time1-way

A N S W E R Average memory access time for each associativity is

Average memory access time8-way = Hit time8-way + Miss rate8-way × Miss penalty1-way = 1.14 + Miss rate8-way × 50
Average memory access time4-way = 1.12 + Miss rate4-way × 50
Average memory access time2-way = 1.10 + Miss rate2-way × 50
Average memory access time1-way = 1.00 + Miss rate1-way × 50

5.3 Reducing Cache Misses 397

duce
. Start-
 rate
The miss penalty is the same time in each case, so we leave it as 50 clock
cycles. For example, the average memory access time for a 1-KB direct-
mapped cache is

Average memory access time1-way = 1.00 + (0.133 × 50) = 7.65

and the time for a 128-KB, eight-way set-associative cache is

Average memory access time8-way = 1.14 + (0.006 × 50) = 1.44

Using these formulas and the miss rates from Figure 5.9, Figure 5.14
shows the average memory access time for each cache and associativity.
The figure shows that the formulas in this example hold for caches less
than or equal to 16 KB. Starting with 32 KB, the average memory access
time of four-way is less than two-way, and two-way is less than one-way,
but eight-way cache is not less than four-way.

Note that we did not account for the slower clock rate on the rest of
the program in this example, thereby understating the advantage of direct-
mapped cache.

■

Third Miss Rate Reduction Technique: Victim Caches

Larger block size and higher associativity are two classic techniques to re
miss rates that have been considered by architects since the earliest caches
ing with this subsection, we see more recent inventions to reduce miss
without affecting the clock cycle time or the miss penalty.

Associativity

Cache size (KB) One-way Two-way Four-way Eight-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

FIGURE 5.14 Average memory access time using miss rates in Figure 5.9 for param-
eters in the example. Boldface type means that this time is higher than the number to the
left; that is, higher associativity increases average memory access time.

398 Chapter 5 Memory-Hierarchy Design

s to
path.

 on a
-level
ed.
t re-
pend-
the

he hit

 miss,
ther
One solution that reduces conflict misses without impairing clock rate i
add a small, fully associative cache between a cache and its refill
Figure 5.15 shows the organization. This victim cache contains only blocks that

are discarded from a cache because of a miss—“victims”—and are checked
miss to see if they have the desired data before going to the next lower
memory. If it is found there, the victim block and cache block are swapp
Jouppi [1990] found that victim caches of one to five entries are effective a
ducing conflict misses, especially for small, direct-mapped data caches. De
ing on the program, a four-entry victim cache removed 20% to 95% of
conflict misses in a 4-KB direct-mapped data cache.

Fourth Miss Rate Reduction Technique:
Pseudo-Associative Caches

Another approach to getting the miss rate of set-associative caches and t
speed of direct mapped is called pseudo-associative or column associative. A
cache access proceeds just as in the direct-mapped cache for a hit. On a
however, before going to the next lower level of the memory hierarchy, ano

FIGURE 5.15 Placement of victim cache in the memory hierarchy.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

Tag

Data

Victim cache

=?

=?

5.3 Reducing Cache Misses 399

t the
t.”
corre-
alty.
es of
cache,
por-
 and
f the
cache entry is checked to see if it matches there. A simple way is to inver
most significant bit of the index field to find the other block in the “pseudo se

Pseudo-associative caches then have one fast and one slow hit time—
sponding to a regular hit and a pseudo hit—in addition to the miss pen
Figure 5.16 shows the relative times. The danger is if many of the fast hit tim
the direct-mapped cache became slow hit times in the pseudo-associative
then the performance would be degraded by this optimization. Hence it is im
tant to be able to indicate for each set which block should be the fast hit
which should be the slow one; one way is simply to swap the contents o
blocks.

Let’s do an example to see how well pseudo-associativity works.

E X A M P L E Assume that it takes two extra cycles to find the entry in the alternative
location if it is not found in the direct-mapped location: one cycle to check
and one cycle to swap. Using the parameters from the previous example,
which of direct-mapped, two-way set-associative, and pseudo-associative
organizations is fastest for 2-KB and 128-KB sizes?

A N S W E R The average memory access time for pseudo-associative caches starts
with the standard formula:

Average memory access timepseudo = Hit timepseudo + Miss ratepseudo × Miss penaltypseudo

Let’s start with the last part of the equation. The pseudo miss penalty is
one cycle more than a normal miss penalty, to account for the time to
check the alternative location.To determine the miss rate we need to see
when misses occur. As long as we invert the most significant bit of the in-
dex to find the other block, the two blocks in the “pseudo set” are selected
using the same index that would be used in a two-way set-associative
cache and hence have the same miss rates. Thus the last part of the
equation is

Miss ratepseudo × Miss penaltypseudo = Miss rate2-way × Miss penalty1-way

FIGURE 5.16 Relationship between a regular hit time, pseudo hit time, and miss pen-
alty.

Hit time

Pseudo hit time Miss penalty

Time

400 Chapter 5 Memory-Hierarchy Design

ipe-
udo-
n of

with-
 they
tched,
Returning to the beginning of the equation, the hit time for a pseudo-
associative cache is the time to hit in a direct-mapped cache plus the
fraction of accesses that are found in the pseudo-associative search
times the extra time it takes to find the hit:

Hit timepseudo = Hit time1-way + Alternate hit ratepseudo × 2

The hit rate for the pseudo-associative search is the difference between
the hits that would occur in a two-way set-associative cache and the num-
ber of hits in a direct-mapped cache:

But it is slightly more complex. The miss rate is of a direct-mapped cache
half the size—since half of the cache is reserved for alternate locations—
while the whole cache has the contents of a two-way set-associative
cache. Putting the pieces back together:

Average memory access timepseudo = Hit time1-way + (Miss rate1-way – Miss rate2-way) × 2 + Miss rate2-way × Miss penalty1-way

Figure 5.9 supplies the values we need to plug into our formulas:

Average memory access timepseudo 2 KB = 1 + (0.113 – 0.076) × 2 + (0.076 × (50 + 1)) = 1 + 0.074 + 3.876 = 4.950

Average memory access timepseudo 128 KB = 1 + (0.014 – 0.007) × 2 + (0.007 × (50+ 1)) = 1 + 0.014 + 0.357 = 1.371

From Figure 5.14 in the last example we know these results for 2-KB
caches:

Average memory access time1-way = 5.90 clock cycles
Average memory access time2-way = 4.90 clock cycles

For 128-KB caches the times are

Average memory access time
1-way

 = 1.50 clock cycles

Average memory access time2-way = 1.45 clock cycles

The pseudo-associative cache is fastest for the 128-KB cache while the
two-way set associative is fastest for the 2-KB cache. ■

Although an attractive idea on paper, variable hit times can complicate a p
lined CPU design. Hence the authors expect the most likely use of pse
associativity is with caches further from the processor (see the descriptio
second-level caches in the next section).

Fifth Miss Rate Reduction Technique:
Hardware Prefetching of Instructions and Data

Victim caches and pseudo-associativity both promise to improve miss rates
out affecting the processor clock rate. A third way is to prefetch items before
are requested by the processor. Both instructions and data can be prefe

Alternate hit ratepseudo Hit rate2-way Hit rate1-way–=

1 Miss rate2-way–() 1 Miss rate1-way–()–=

Miss rate1-way Miss rate2-way–=

5.3 Reducing Cache Misses 401

ickly

. For
: the

ced in
o the
tion
 the

e than
und
sses
cks
h 16

single
pped
uffers
d that
essler
 that
ffers
our-
either directly into the caches or into an external buffer that can be more qu
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache
example, the Alpha AXP 21064 microprocessor fetches two blocks on a miss
requested block and the next consecutive block. The requested block is pla
the instruction cache when it returns, and the prefetched block is placed int
instruction stream buffer. If the requested block is present in the instruc
stream buffer, the original cache request is canceled, the block is read from
stream buffer, and the next prefetch request is issued. There is never mor
one 32-byte block in the 21064 instruction stream buffer. Jouppi [1990] fo
that a single instruction stream buffer would catch 15% to 25% of the mi
from a 4-KB direct-mapped instruction cache with 16-byte blocks. With 4 blo
in the instruction stream buffer the hit rate improves to about 50%, and wit
blocks to 72%.

A similar approach can be applied to data accesses. Jouppi found that a
data stream buffer caught about 25% of the misses from the 4-KB direct-ma
cache. Instead of having a single stream, there could be multiple stream b
beyond the data cache, each prefetching at different addresses. Jouppi foun
four data stream buffers increased the data hit rate to 43%. Palacharla and K
[1994] looked at a set of scientific programs and considered stream buffers
could handle either instructions or data. They found that eight stream bu
could capture 50% to 70% of all misses from a processor with two 64-KB f
way set-associative caches, one for instructions and the other for data.

E X A M P L E What is the effective miss rate of the Alpha AXP 21064 using instruction
prefetching? How much bigger an instruction cache would be needed in
the Alpha AXP 21064 to match the average access time if prefetching
were removed?

A N S W E R We assume it takes 1 extra clock cycle if the instruction misses the cache
but is found in the prefetch buffer. Here is our revised formula:

Average memory access timeprefetch = Hit time + Miss rate × Prefetch hit rate × 1 + Miss rate ×
(1– Prefetch hit rate) × Miss penalty

Let's assume the prefetch hit rate is 25%. Figure 5.7 on page 384 gives
the miss rate for an 8-KB instruction cache as 1.10%. Using the parame-
ters from the Example on page 386, the hit time is 2 clock cycles, and the
miss penalty is 50 clock cycles:

Average memory access timeprefetch = 2 + (1.10% × 25% × 1) + (1.10% × (1 – 25%) × 50) = 2 + 0.00275 + 0.413 = 2.415

To find the effective miss rate with the equivalent performance, we start
with the original formula and solve for the miss rate:

402 Chapter 5 Memory-Hierarchy Design

 un-
ses.

 in-
vors of

ot
 this

ster
ey
nti-
em-
lting

 the
struc-
ble

ith
es to
 the
 miss
Our calculation suggests that the effective miss rate of prefetching with an
8-KB cache is 0.83%. Figure 5.7 on page 384 gives the miss rate of a
16-KB instruction cache as 0.64%, so 8 KB with prefetching is midway be-
tween the 1.10% and 0.64% miss rates of the 8-KB and 16-KB caches. ■

Prefetching relies on utilizing memory bandwidth that otherwise would be
used, and can actually lower performance if it interferes with demand mis
Help from compilers can reduce useless prefetching.

Sixth Miss Rate Reduction Technique:
Compiler-Controlled Prefetching

An alternative to hardware prefetching is for the compiler to insert prefetch
structions to request the data before they are needed. There are several fla
prefetch:

■ Register prefetch will load the value into a register.

■ Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does n
cause an exception for virtual address faults and protection violations. Using
terminology, a normal load instruction could be considered a “faulting regi
prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if th
would normally result in an exception. The most effective prefetch is “sema
cally invisible” to a program: it doesn't change the contents of registers or m
ory and it cannot cause virtual memory faults. This section assumes nonfau
cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while
prefetched data are being fetched; that is, the caches continue to supply in
tions and data while waiting for the prefetched data to return. Such a nim
cache is called a nonblocking cache or lockup-free cache; we'll discuss it in more
detail later.

Like hardware-controlled prefetching, the goal is to overlap execution w
the prefetching of data. Loops are the key targets, as they lend themselv
prefetch optimizations. If the miss penalty is small, the compiler just unrolls
loop once or twice and it schedules the prefetches with the execution. If the

Average memory access time Hit time Miss rate Miss penalty×+=

Miss rate
Average memory access time – Hit time

Miss penalty
--=

Miss rate
2.415 2–

50
---------------------- 0.415

50
------------- 0.83%= = =

5.3 Reducing Cache Misses 403

rolls

 care
y con-
id un-

ntly.
penalty is large, it uses software pipelining (page 290 in Chapter 4) or un
many times to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so
must be taken to ensure that such overheads do not exceed the benefits. B
centrating on references that are likely to be cache misses, programs can avo
necessary prefetches while improving average memory access time significa

E X A M P L E For the code below, determine which accesses are likely to cause data
cache misses. Next, insert prefetch instructions to reduce misses. Finally,
calculate the number of prefetch instructions executed and the misses
avoided due to prefetching. Let's assume we have an 8-KB direct-mapped
data cache with 16-byte blocks, it is a write-back cache that does write al-
locate, and that the elements of a and b are 8 bytes long as they are dou-
ble-precision floating-point arrays with 3 rows and 100 columns for a and
101 rows and 3 columns for b. Let’s also assume they are not in the cache
at the start of the program.

for (i = 0; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1)

a[i][j] = b[j][0] * b[j+1][0];

A N S W E R The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for
data that would be hits. Elements of a are written in the order that they are
stored in memory, so a will benefit from spatial locality: the even values of
j will miss and the odd values will hit. Since a has 3 rows and 100 col-
umns, its accesses will lead to or 150 misses. The array b does
not benefit from spatial locality since the accesses are not in the order it
is stored. The array b does benefit twice from temporal locality: the same
elements are accessed for each iteration of i , and each iteration of j
uses the same value of b as the last iteration. Ignoring potential conflict
misses, the misses due to b will be for b[j+1][0] accesses when i = 0,
and also the first access to b[j][0] when j = 0. Since j goes from 0 to
99 when i = 0, accesses to b lead to 100 + 1 or 101 misses. Thus this
loop will miss the data cache approximately 150 + 101 or 251 times.

To simplify our optimization, we will not worry about prefetching the
first accesses of the loop nor suppressing the prefetches at the end of the
loop; if these were faulting prefetches, we could not take this luxury. Given
our analysis of misses, we split the loop so the first loop will prefetch b as
well as a, and the second loop will just prefetch a, since b will have already
been prefetched. Let's assume that the miss penalty is so large we need
to prefetch at least seven iterations in advance.

3 100×
2

404 Chapter 5 Memory-Hierarchy Design
for (j = 0; j < 100; j = j+1) {

prefetch(b[j+7][0]);

/* b(j,0) for 7 iterations later */

prefetch(a[0][j+7]);

/* a(0,j) for 7 iterations later */

a[0][j] = b[j][0] * b[j+1][0];};

for (i = 1; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1) {

prefetch(a[i][j+7]);

/* a(i,j) for +7 iterations */

a[i–1][j] = b[j][0] *b[j+1][0];}

This revised code prefetches a[i][7] through a[i][99] and b[7][0]
through b[99][0] , reducing the number of nonprefetched misses to

The cost of avoiding 232 cache misses is executing 400 prefetch instruc-
tions, very likely a good trade-off. ■

E X A M P L E Calculate the time saved in the example above. Ignore instruction cache
misses and assume there are no conflict or capacity misses in the data
cache. Assume that prefetches can overlap with each other and with
cache misses, thereby transferring at the maximum memory bandwidth.
Here are the key loop times ignoring cache misses: the original loop takes
7 clock cycles per iteration, the first prefetch loop takes 9 clock cycles per
iteration, and the second prefetch loop takes 8 clock cycles per iteration
(including the overhead of the outer for loop). A miss takes 50 clock
cycles.

A N S W E R The original doubly nested loop executes the multiply 3 × 100 or 300
times. Since the loop takes 7 clock cycles per iteration, the total is
300 × 7 or 2100 clock cycles plus cache misses. Cache misses add
251 × 50 or 12,550 clock cycles, giving a total of 14,650 clock cycles. The
first prefetch loop iterates 100 times; at 9 clock cycles per iteration the
total is 900 clock cycles plus cache misses. They add 11 × 50 or 550 clock
cycles for cache misses, giving a total of 1450. The second loop executes
2 × 100 or 200 times, and at 8 clock cycles per iteration it takes 1600 clock
cycles plus 8 × 50 or 400 clock cycles for cache misses. This gives a total
of 2000 clock cycles. From the prior example we know that this code
executes 400 prefetch instructions during the 1450 + 2000 or 3450 clock
cycles to execute these two loops. If we assume that the prefetches are
completely overlapped with the rest of the execution, then the prefetch
code is 14,650/3450 or 4.2 times faster. ■

3 7×
2

------------ 8 11 8 19=+=+

5.3 Reducing Cache Misses 405

ions to
ware
with-

 de-
ssors
hier-
gain
ents

ple,
by re-
 to
e in-
ache
rfor-
g the
pped
 set-

such
ata.
a in a
ram-

s,
s the

 the

rams
t the

, lead-
dent
ntain
Seventh Miss Rate Reduction Technique:
Compiler Optimizations

Thus far our techniques to reduce misses have required changes to or addit
the hardware: larger blocks, higher associativity, pseudo-associativity, hard
prefetching, or prefetch instructions. This final technique reduces miss rates
out any hardware changes!

This magical reduction comes from optimized software—the hardware
signer’s favorite solution. The increasing performance gap between proce
and main memory has inspired compiler writers to scrutinize the memory
archy to see if compile time optimizations can improve performance. Once a
research is split between improvements in instruction misses and improvem
in data misses.

Code can easily be rearranged without affecting correctness; for exam
reordering the procedures of a program might reduce instruction miss rates
ducing conflict misses. McFarling [1989] looked at using profiling information
determine likely conflicts between groups of instructions, and reordered th
structions to reduce misses by 50% for a 2-KB direct-mapped instruction c
with 4-byte blocks, and by 75% in an 8-KB cache. McFarling got the best pe
mance when it was possible to prevent some instructions from ever enterin
cache, but even without that feature, optimized programs on a direct-ma
cache had lower miss rates than unoptimized programs on an eight-way
associative cache of the same size.
 Data have even fewer restrictions on location than code. The goal of
transformations is to try to improve the spatial and temporal locality of the d
For example, array calculations can be changed to operate on all the dat
cache block rather than blindly striding through arrays in the order the prog
mer happened to place the loop.

To give a feeling of this type of optimization, we will show four example
transforming the C code by hand to reduce cache misses. Figure 5.17 show
performance improvement in using these optimizations on a subset of
SPEC92 floating-point benchmarks.

Merging Arrays
This first technique reduces misses by improving spatial locality. Some prog
reference multiple arrays in the same dimension with the same indices a
same time. The danger is that these accesses will interfere with each other
ing to conflict misses. This danger is removed by combining these indepen
matrices into a single compound array so that a single cache block can co
the desired elements.

/* Before */

int val[SIZE];

int key[SIZE];

406 Chapter 5 Memory-Hierarchy Design

e of
on.

uential
ss the
uces
ache
/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

An interesting characteristic of this example is that the proper coding practic
using an array of records would achieve the same benefits as this optimizati

Loop Interchange
Some programs have nested loops that access data in memory in nonseq
order. Simply exchanging the nesting of the loops can make the code acce
data in the order it is stored. Like the prior example, this technique red
misses by improving spatial locality; reordering maximizes use of data in a c
block before it is discarded.

FIGURE 5.17 Lebeck and Wood [1994] performed the four optimizations in this section by hand on
three SPEC92 programs and five separate portions of the nasa7 benchmark.

1

compress

cholesky (nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

1.5

Performance improvement

Merged arrays Loop
interchange

Loop
fusion

Blocking

2 2.5 3

5.3 Reducing Cache Misses 407

 the
e next
um-

ys with
. By
 can

st two
tem-

 state-
/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while
revised version accesses all the words in the cache block before going to th
one. This optimization improves cache performance without affecting the n
ber of instructions executed, unlike the prior example.

Loop Fusion
Some programs have separate sections of code that access the same arra
the same loops, performing different computations on the common data
“fusing” the code into a single loop, the data that are fetched into the cache
be used repeatedly before being swapped out. Hence, in contrast to our fir
techniques, the target of this optimization is reducing misses via improved
poral locality.

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{

a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];

}

The original code would take all the misses to access arrays a and c twice, once
in the first loop and then again in the second. In the fused loop, the second
ment freeloads on the cache accesses of the first statement.

408 Chapter 5 Memory-Hierarchy Design

gain
 with
mns.

 used
trans-

hms
ata
below,
Blocking
This optimization, perhaps the most famous of the cache optimizations, a
tries to reduce misses via improved temporal locality. We are again dealing
multiple arrays, with some arrays accessed by rows and some by colu
Storing the arrays row by row (row major order) or column by column (column
major order) does not solve the problem because both rows and columns are
in every iteration of the loop. Such orthogonal accesses mean the earlier
formations, such as loop interchange, are not helpful.

Instead of operating on entire rows or columns of an array, blocked algorit
operate on submatrices or blocks. The goal is to maximize accesses to the d
loaded into the cache before the data are replaced. The code example
which performs matrix multiplication, helps motivate the optimization:

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

The two inner loops read all N by N elements of z, access the same N elements in a
row of y repeatedly, and write one row of N elements of x. Figure 5.18 gives a

FIGURE 5.18 A snapshot of the three arrays x, y, and z when i = 1. The age of accesses to the array elements is
indicated by shade: white means not yet touched, light means older accesses and dark means newer accesses. The vari-
ables i , j , and k are shown along the rows or columns used to access the arrays.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

5.3 Reducing Cache Misses 409

 recent
ot yet

.
o

nd

riginal

 only

 used
 can
 the

r the
e re-
words
 than
w of

ache-
d and

.

snapshot of the accesses to the three arrays, with a dark shade indicating a
access, a light shade indicating an older access, and white meaning n
accessed.

The number of capacity misses clearly depends on N and the size of the cache
If it can hold all three N by N matrices, then all is well, provided there are n
cache conflicts. If the cache can hold one N by N matrix and one row of N, then at
least the i th row of y and the array z may stay in the cache. Less than that a
misses may occur for both x and z. In the worst case, there would be 2N3 + N2

words read from memory for N3 operations.
To ensure that the elements being accessed can fit in the cache, the o

code is changed to compute on a submatrix of size B by B by having the two inner
loops compute in steps of size B rather than going from beginning to end of x and
z. B is called the blocking factor. (Assume x is initialized to zero.)

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

Figure 5.19 illustrates the accesses to the three arrays using blocking. Looking
at capacity misses, the total number of memory words accessed is 2N3/B + N2,
which is an improvement by about a factor of B. Thus blocking exploits a combi-
nation of spatial and temporal locality, since y benefits from spatial locality and z

benefits from temporal locality.
Although we have aimed at reducing cache misses, blocking can also be

to help register allocation. By taking a small blocking size such that the block
be held in registers, we can minimize the number of loads and stores in
program.

Traditionally blocking has been aimed at reducing capacity misses, unde
simplifying assumption that conflict misses are either not significant or can b
moved by more associative caches. Since blocking reduces the number of
that are active in a cache at a given time, choosing a blocking size smaller
capacity can also reduce conflict misses. Figure 5.20 gives a qualitative vie
this trade-off.

These last two subsections have concentrated on the potential benefit of c
aware compilers and programs. Given that increasing gap in processor spee
memory access times, this benefit will only increase in importance over time

410 Chapter 5 Memory-Hierarchy Design
FIGURE 5.19 The age of accesses to the arrays x, y, and z. Note in contrast to
Figure 5.18 the smaller number of elements accessed.

FIGURE 5.20 The impact of conflict misses in caches that aren’t fully associative on
block size. For example, Lam, Rothberg, and Wolf [1991] found one case where a blocking
factor of 24 had a fifth the number of misses of a blocking factor of 48, despite both fitting into
the cache.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

Fully associative cache

0%

Miss rate 5%

10%

0 50 100 150

Direct mapped cache

Blocking factor

5.4 Reducing Cache Miss Penalty 411

 cache
mory

but the
an be

s that
AMs,
timi-
tion is

ffer
Write
e up-
Now that we have spent more than 20 pages on techniques that reduce
misses, it is time to look at reducing the next component of average me
access time.

Reducing cache misses has been the traditional focus of cache research,
cache performance formula assures us that improvements in miss penalty c
just as beneficial as improvements in miss rate. Moreover, Figure 5.1 show
technology trends have improved the speed of processors faster than DR
making the relative cost of miss penalties increase over time. We give five op
zations here to address this problem. Perhaps the most interesting optimiza
the final one, which adds another level of cache to reduce miss penalty.

First Miss Penalty Reduction Technique:
Giving Priority to Read Misses over Writes

With a write-through cache the most important improvement is a write bu
(page 380) of the proper size (see the pitfall on page 470 in section 5.11).
buffers, however, do complicate memory accesses in that they might hold th
dated value of a location needed on a read miss.

E X A M P L E Look at this code sequence:

SW 512(R0),R3 ; M[512] ← R3 (cache index 0)

LW R1,1024(R0) ; R1 ← M[1024] (cache index 0)

LW R2,512(R0) ; R2 ← M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024
to the same block, and a four-word write buffer. Will the value in R2 always
be equal to the value in R3?

A N S W E R Using the terminology from Chapter 3, this is a read-after-write data haz-
ard in memory. Let’s follow a cache access to see the danger. The data in
R3 are placed into the write buffer after the store. The following load uses
the same cache index and is therefore a miss. The second load instruction
tries to put the value in location 512 into register R2; this also results in a
miss. If the write buffer hasn’t completed writing to location 512 in memo-
ry, the read of location 512 will put the old, wrong value into the cache
block, and then into R2. Without proper precautions, R3 would not be
equal to R2! ■

5.4 Reducing Cache Miss Penalty

412 Chapter 5 Memory-Hierarchy Design

the
ill
 miss

our-
 by a
 read
 read

uced.
 the
ock
,
sit-
buffer

 that
 they
rage
. Of
ould

n
rts as
ache,
ple.

e re-
hich

t not
t one
full
CPU.
The simplest way out of this dilemma is for the read miss to wait until
write buffer is empty. A write buffer of a few words in a write-through cache w
almost always have data in the buffer on a miss, thereby increasing the read
penalty. The designers of the MIPS M/1000 estimated that waiting for a f
word buffer to empty would have increased the average read miss penalty
factor of 1.5. The alternative is to check the contents of the write buffer on a
miss, and if there are no conflicts and the memory system is available, let the
miss continue.

The cost of writes by the processor in a write-back cache can also be red
Suppose a read miss will replace a dirty memory block. Instead of writing
dirty block to memory, and then reading memory, we could copy the dirty bl
to a buffer, then read memory, and then write memory. This way the CPU read
for which the processor is probably waiting, will finish sooner. Similar to the
uation above, if a read miss occurs, the processor can either stall until the
is empty or check the addresses of the words in the buffer for conflicts.

Second Miss Penalty Reduction Technique:
Sub-block Placement for Reduced Miss Penalty

Suppose you are designing a cache that must fit on the chip. You may find
your tags are too large, either because they don’t fit on the chip or because
are too slow. A simple solution is to go to large blocks, which reduces tag sto
without decreasing the amount of information you can store in the cache
course the miss rate will likely improve, but the increase in miss penalty c
make the larger blocks a bad decision.

One solution is called sub-block placement. A valid bit is added to units small-
er than the full block, called sub-blocks. Only a single sub-block need be read o
a miss. The valid bits specify some parts of the block as valid and some pa
invalid, so a match of the tag doesn’t mean the word is necessarily in the c
as the valid bit for that word must also be on. Figure 5.21 gives an exam
Clearly sub-blocks will have a smaller miss penalty than full blocks.

Figure 5.21 shows the reduction in tag storage; if the valid bits had to b
placed by full tags, there would be much more memory dedicated to tags, w
is the reason sub-block placement was invented.

Third Miss Penalty Reduction Technique:
Early Restart and Critical Word First

The first two techniques require extra hardware to reduce miss penalty, bu
this third technique. It is based on the observation that the CPU needs jus
word of the block at a time. This strategy is impatience: Don’t wait for the
block to be loaded before sending the requested word and restarting the
Here are two specific strategies:

5.4 Reducing Cache Miss Penalty 413

it to

t to
 the

ocks,
■ Early restart—As soon as the requested word of the block arrives, send
the CPU and let the CPU continue execution.

■ Critical word first—Request the missed word first from memory and send i
the CPU as soon as it arrives; let the CPU continue execution while filling
rest of the words in the block. Critical-word-first fetch is also called wrapped
fetch and requested word first.

Generally these techniques only benefit designs with very large cache bl
since the benefit is low unless blocks are large.

E X A M P L E Let’s assume a machine has a 32-byte cache block and the memory sys-
tem takes five clock cycles to fetch bytes over a 16-byte wide path to
memory, as in the case of the Alpha AXP 21064. Calculate the average
miss penalty for critical word first, assuming that there will be no other
accesses to the other half of the block until it is completely fetched. Then
calculate assuming the following instruction reads data from the other half
of the block.

FIGURE 5.21 In this example there are four sub-blocks per block in a direct-mapped
cache. Sub-blocks can be thought of as an extra level of addressing beyond the address tag.
In the first block (top), all the valid bits are on, equivalent to the valid bit being on for a block
in a normal cache. In the last block (bottom), the opposite is true; no valid bits are on. In the
second block, locations 300 and 301 are valid and will be hits, while locations 302 and 303
will be misses. For the third block, locations 201 and 203 are hits. If, instead of this organiza-
tion, there were 16 blocks the size of the sub-block, 16 tags would be needed instead of 4.
Note that for caches with sub-block placement, a block can no longer be defined as the min-
imum unit transferred between cache and memory. For such caches a block is defined as the
unit of information associated with an address tag.

100

300

200

204

1

1

0

0

1

1

1

0

1

0

0

0

Sub-blocks

1

0

1

0

414 Chapter 5 Memory-Hierarchy Design

tart
ortion

enalty

con-
sing
 need
truc-
 the
l
cache
iss

f the
ffec-
 or

em-
under
an be

or an
point
t al-
A N S W E R The average miss penalty is five clock cycles for critical word first. For
back-to-back reads of both halves of the cache block, only one cycle is
saved since the pipeline will only move one instruction further until it must
stall on the missing data. ■

As this example illustrates, the benefits of critical word first and early res
depend on the size of the block and the likelihood of another access to the p
of the block that has not yet been fetched.

The next technique takes overlap between the CPU and cache miss p
even further to reduce the average miss penalty.

Fourth Miss Penalty Reduction Technique:
Nonblocking Caches to Reduce Stalls on Cache Misses

Early restart still waits for the requested word to arrive before the CPU can
tinue execution. For pipelined machines that allow out-of-order completion u
a scoreboard or Tomasulo-style control (section 4.2 in Chapter 4), the CPU
not stall on a cache miss. For example, the CPU could continue fetching ins
tions from the instruction cache while waiting for the data cache to return
missing data. A nonblocking cache or lockup-free cache escalates the potentia
benefits of such a scheme by allowing the data cache to continue to supply
hits during a miss. This “hit under miss” optimization reduces the effective m
penalty by being helpful during a miss instead of ignoring the requests o
CPU. A subtle and complex option is that the cache may further lower the e
tive miss penalty if it can overlap multiple misses: a “hit under multiple miss”
“miss under miss” optimization. The second option is beneficial only if the m
ory system can service multiple misses (see page 434). Be aware that hit
miss significantly increases the complexity of the cache controller as there c
multiple outstanding memory accesses.

Figure 5.22 shows the average time in clock cycles for cache misses f
8-KB data cache as the number of outstanding misses is varied. Floating-
programs benefit from increasing complexity, while integer programs ge
most all of the benefit from a simple hit-under-one-miss scheme.

5.4 Reducing Cache Miss Penalty 415
E X A M P L E For the cache described in Figure 5.22, which is more important for
floating-point programs: two-way set associativity or hit under one miss?
What about for integer programs? Assume the following average miss
rates for 8-KB data caches: 11.4% for floating-point programs with a
direct-mapped cache, 10.7% for these programs with a two-way set-
associative cache, 7.4% for integer programs with a direct-mapped
cache, and 6.0% for integer programs with a two-way set-associative
cache. Assume the average memory stall time is just the product of the
miss rate and the miss penalty.

FIGURE 5.22 Ratio of the average memory stall time for a blocking cache to hit-un-
der-miss schemes as the number of outstanding misses is varied for 18 SPEC92 pro-
grams. The hit-under-64-misses line allows one miss for every register in the machine. The
first 14 programs are floating-point programs: the average for hit under 1 miss is 76%, for 2
misses is 51%, and for 64 misses is 39%. The final four are integer programs, and the three
averages are 81%, 78%, and 78%, respectively. These data were collected for an 8-KB di-
rect-mapped data cache with 32-byte blocks and a 16-clock-cycle miss penalty. These data
were generated using the VLIW Multiflow Compiler, which scheduled loads away from use
[Farkas and Jouppi 1994].

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ratio of the
average
memory
stall time

Benchmarks

sw
m

25
6

fp
pp

p

hy
dr

o2
d

na
sa

7

wav
e5

m
dlj

dp
2

sp
ice

2g
6

xli
sp

co
m

pr
es

s

to
m

ca
tv

su
2c

or

m
dlj

sp
2

do
du

c
ea

r

alv
inn or

a

es
pr

es
so

eq
nt

ot
t

Hit under 1 miss Hit under 2 misses Hit under 64 misses

416 Chapter 5 Memory-Hierarchy Design

is fi-
cache

tect to
ed of
 CPU
ache
ough
 can
ereby

ard,
e are
A N S W E R The numbers for Figure 5.22 were based on a miss penalty of 16 clock cy-
cles. Although this is low for a miss penalty, let’s stick with it for consisten-
cy. For floating-point programs the average memory stall times are

Miss rateDM × Miss penalty = 11.4% × 16 = 1.84

Miss rate2-way × Miss penalty = 10.7% × 16 = 1.71

The memory stalls of two-way are thus 1.71/1.84 or 93% of direct-
mapped cache. The caption of Figure 5.22 says hit under one miss
reduces the average memory stall time to 76% of a blocking cache, so for
floating-point programs the direct-mapped data cache supporting hit un-
der one miss gives better performance than a two-way set-associative
cache that blocks on a miss.

For integer programs the calculation is

Miss rateDM × Miss penalty = 7.4% × 16 = 1.18

Miss rate2-way × Miss penalty = 6.0% × 16 = 0.96

The memory stalls of two-way are thus 0.96/1.18 or 81% of direct-
mapped cache. The caption of Figure 5.22 says hit under one miss
reduces the average memory stall time to 81% of a blocking cache, so the
two options give about the same performance for integer programs. One
potential advantage of hit under miss is that it cannot affect the hit time,
as associativity can. ■

Fifth Miss Penalty Reduction Technique:
Second-Level Caches

The first four techniques to reduce miss penalty have impact on the CPU. Th
nal technique ignores the CPU, concentrating on the interface between the
and main memory.

The performance gap between processors and memory leads the archi
this question: Should I make the cache faster to keep pace with the spe
CPUs, or make the cache larger to overcome the widening gap between the
and main memory? One answer is, both. By adding another level of c
between the original cache and memory, the first-level cache can be small en
to match the clock cycle time of the fast CPU, while the second-level cache
be large enough to capture many accesses that would go to main memory, th
lessening the effective miss penalty.

While the concept of adding another level in the hierarchy is straightforw
it complicates performance analysis. Definitions for a second level of cach

5.4 Reducing Cache Miss Penalty 417

ec-

 the
-level

m-

m-
e, the

of the
 mea-
go all

write-

ed.
ange
e can
 the
not always straightforward. Let’s start with the definition of average memory
access time for a two-level cache. Using the subscripts L1 and L2 to refer, resp
tively, to a first-level and a second-level cache, the original formula is

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1

and

Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2

so

Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss rateL2 × Miss penaltyL2)

In this formula, the second-level miss rate is measured on the leftovers from
first-level cache. To avoid ambiguity, these terms are adopted here for a two
cache system:

■ Local miss rate—The number of misses in the cache divided by the total nu
ber of memory accesses to this cache; this is Miss rateL2 above for the second-
level cache.

■ Global miss rate—The number of misses in the cache divided by the total nu
ber of memory accesses generated by the CPU; using the terms abov
global miss rate of the second-level cache is Miss rateL1 × Miss rateL2.

This local miss rate is large because the first-level cache skims the cream
memory accesses, and this is why the global miss rate is the more useful
sure: it indicates what fraction of the memory accesses that leave the CPU
the way to memory.

E X A M P L E Suppose that in 1000 memory references there are 40 misses in the first-
level cache and 20 misses in the second-level cache. What are the vari-
ous miss rates?

A N S W E R The miss rate (either local or global) for the first-level cache is 40/1000 or
4%. The local miss rate for the second-level cache is 20/40 or 50%. The
global miss rate of the second-level cache is 20/1000 or 2%. ■

Note that these formulas are for combined reads and writes, assuming a
back first-level cache. Obviously, a write-through first-level cache will sendall
writes to the second level, not just the misses, and a write buffer would be us

Figures 5.23 and 5.24 show how miss rates and relative execution time ch
with the size of a second-level cache for one design. From these figures w
gain two insights. The first is that the global cache miss rate is very similar to

418 Chapter 5 Memory-Hierarchy Design

-level
owl-
cache
single cache miss rate of the second-level cache, provided that the second
cache is much larger than the first-level cache. Hence our intuition and kn
edge about the first-level caches apply. The second insight is that the local

FIGURE 5.23 Miss rates versus cache size for reads and writes. The top graph shows the results
plotted on a linear scale as we have done with earlier figures, while the bottom graph shows the results
plotted on a log scale. As miss rates shrink, the log scale makes the differences easier to follow. The
miss rate of a single-level cache versus size is plotted against the local miss rate and global miss rate
of a second-level cache using a 32-KB first-level cache. Second-level caches smaller than the 32-KB
first level make little sense, as reflected in the high miss rates. After 256 KB the single cache and global
miss rates are virtually identical. Przybylski [1990] used four traces from the VAX system and four user
programs from the MIPS R2000 that were randomly interleaved to duplicate the effect of process
switches.

80.0%

70.0%

60.0%

50.0%

Miss
rate

40.0%

30.0%

20.0%

10.0%

4

72% 72% 71%

53%

38%

28%
22%

18% 16% 15% 15%

1%1%1%1%1%1%2%3%4%6%8%

3% 3% 3% 2%
8 16 32 64 128

Cache size (KB)

256 512 1024 2048 4096

100.0%

Miss
rate

10.0%

1.0%

0.1%
4 8 16 32 64 128

Cache size (KB)

256 512 1024 2048 4096

Single cache miss rate
Global miss rate

Local miss rate

Single cache miss rate
Global miss rate

Local miss rate

5.4 Reducing Cache Miss Penalty 419

te of
Thus,
hes.
ond-
ed of

f the
s, we
osen

cond-
, and

n the
ache

igger,
ond-
eans
ing a
r set
rate is not a good measure of secondary caches; it is a function of the miss ra
the first-level cache, and hence can vary by changing the first-level cache.
the global cache miss rate should be used when evaluating second-level cac

With these definitions in place, we can consider the parameters of sec
level caches. The foremost difference between the two levels is that the spe
the first-level cache affects the clock rate of the CPU, while the speed o
second-level cache only affects the miss penalty of the first-level cache. Thu
can consider many alternatives in the second-level cache that would be ill ch
for the first-level cache. There are but two questions for the design of the se
level cache: Will it lower the average memory access time portion of the CPI
how much does it cost?

The initial decision is the size of a second-level cache. Since everything i
first-level cache is likely to be in the second-level cache, the second-level c
should be much bigger than the first. If second-level caches are just a little b
the local miss rate will be high. This observation inspires design of huge sec
level caches—the size of main memory in older computers! Large size m
that the second-level cache may have practically no capacity misses, leav
few compulsory and conflict misses for our attention. One question is whethe
associativity makes more sense for second-level caches.

FIGURE 5.24 Relative execution time by second-level cache size. Przybylski [1990] col-
lected these data using a 32-KB first-level write-back cache, varying the size of the second-
level cache. The two bars are for different clock cycles for a level two cache hit. The reference
execution time of 1.00 is for a 4096-KB second-level cache with a one-clock-cycle latency on
a second-level hit. These data were collected the same way as in Figure 5.23.

1

4096

2048

1024

512

256

128

64

1.5 2 2.5

Level two cache size (KB)

Level two hit = 8 clock cycles

Level two hit = 4 clock cycles

Relative execution time

1.24
1.62

1.62

1.62

1.25

1.25

1.27
1.64

1.32
1.68

1.38
1.75

1.49
1.84

420 Chapter 5 Memory-Hierarchy Design

cond-
udo-
ct on

 is due
-level
also

-level
 since
e. Be-
emory
E X A M P L E Given the data below, what is the impact of second-level cache as-
sociativity on the miss penalty?

■ Two-way set associativity increases hit time by 10% of a CPU clock
cycle

■ Hit timeL2 for direct mapped = 10 clock cycles

■ Local miss rateL2 for direct mapped = 25%

■ Local miss rateL2 for two-way set associative = 20%

■ Miss penaltyL2 = 50 clock cycles

A N S W E R For a direct-mapped second-level cache, the first-level cache miss
penalty is

Miss penalty1- way L2 = 10 + 25% × 50 = 22.5 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock
cycles, making the new first-level cache miss penalty

Miss penalty2- way L2 = 10.1 + 20% × 50 = 20.1 clock cycles

In reality, second-level caches are almost always synchronized with the
first-level cache and CPU. Accordingly, the second-level hit time must be
an integral number of clock cycles. If we are lucky, we can shave the
second-level hit time to 10 cycles; if not, we can round up to 11 cycles.
Either choice is an improvement over the direct-mapped second-level
cache:

Miss penalty2- way L2 = 10 + 20% × 50 = 20.0 clock cycles

Miss penalty2- way L2 = 11 + 20% × 50 = 21.0 clock cycles

■

Now we can reduce the miss penalty by reducing the miss rate of the se
level caches using techniques from section 5.3. Higher associativity or pse
associativity (page 398) are worth considering because they have small impa
the second-level hit time and because so much of the average access time
to misses in the second-level cache. Although the larger size of the second
cache eliminates conflict misses by distributing data over more blocks, it
eliminates most of the capacity misses; thus the percentage of conflict misses is
still significant in direct-mapped second-level caches.

Another approach to reducing misses is increasing block size in second
caches. Increasing block size can increase conflict misses with small caches
there may not be enough places to put data, therefore increasing miss rat
cause this is not an issue in large second-level caches, and because m

5.4 Reducing Cache Miss Penalty 421

 occa-
e as

bits.
re al-
ve the
en

just by

ory
 larg-

 with
te all
ing a
ates.
iza-

hes
en a
write
 as a
access time is relatively longer, block sizes of 64 bytes, 128 bytes, and even
sionally 256 bytes are popular. Figure 5.25 shows the variation in execution tim
the second-level block size changes for a relatively narrow memory bus of 32

Another consideration concerns whether all data in the first-level cache a
ways in the second-level cache. If so, the second-level cache is said to ha
multilevel inclusion property. Inclusion is desirable because consistency betwe
I/O and caches (or between caches in a multiprocessor) can be determined
checking the second-level cache (see section 8.7).

The drawback to this natural inclusion is that the lower average mem
access times can suggest smaller blocks for the smaller first-level cache and
er blocks for the larger second-level cache. Inclusion can still be maintained
more work on a second-level miss: The second-level cache must invalida
first-level blocks that map onto the second-level block to be replaced, caus
slightly higher first-level miss rate. It can also cause unneeded cache invalid
Inclusion escalates in complexity when combined with performance optim
tions, such as a nonblocking secondary cache.

Finally, although a novice might design the first- and second-level cac
independently, the designer of the first-level cache has a simpler job giv
second-level cache to back up the first. It is less of a gamble to use a
through, for example, if there is a write-back cache at the next level to act
backstop for repeated writes.

FIGURE 5.25 Relative execution time by block size for a two-level cache. Przybylski
[1990] collected these data using a 512-KB second-level cache. These data were collected
the same way as in Figure 5.23. The path to memory was basically 32 bits wide in this study:
one clock cycle to send the address, six clock cycles to access the data, and one word per
clock cycle to transfer the data.

2.00

1.75

1.50Relative CPU execution time

1.25

1.36

1.28 1.27

1.34

1.54

1.95

1.00
16 32 64

Block size of second-level cache (bytes)

128 256 512

422 Chapter 5 Memory-Hierarchy Design

he de-
 hurt
t-level
aches

cing
 are

any
n for
st hit

mula
 then

ress
 from
rtainly
 the
e de-
chip,
mory
 direct
e de-
ffec-

 small

dress
ow in
ry hi-
st be
Summarizing the second-level cache considerations, the essence of cac
sign is balancing fast hits and few misses. Most optimizations that help one
the other. For second-level caches, there are many fewer hits than in the firs
cache, so the emphasis shifts to fewer misses. This insight leads to larger c
with higher associativity and larger blocks.

Now that we have examined ways to improve cache performance by redu
misses (in section 5.3) and by reducing miss penalty (in section 5.4), we
ready to reduce the third component of the average memory access time.

Hit time is critical because it affects the clock rate of the processor; on m
machines today the cache access time limits the clock cycle rate, eve
machines that take multiple clock cycles to access the cache. Hence a fa
time is multiplied in importance beyond the average memory access time for
because it helps everything. This section gives two general techniques and
one optimization for write hits.

First Hit Time Reduction Technique:
Small and Simple Caches

A time-consuming portion of a cache hit is using the index portion of the add
to read the tag memory and then compare it to the address. Our guideline
Chapter 1 suggests that smaller hardware is faster, and a small cache ce
helps the hit time. It is also critical to keep the cache small enough to fit on
same chip as the processor to avoid the time penalty of going off-chip. Som
signs strike a compromise by keeping the tags on-chip and the data off-
promising a fast tag check, yet providing the greater capacity of separate me
chips. The second suggestion is to keep the cache simple, such as using
mapping (see page 396). A main benefit of direct-mapped caches is that th
signer can overlap the tag check with the transmission of the data. This e
tively reduces hit time. Hence the pressure of a fast clock cycle encourages
and simple cache designs for first-level caches.

Second Hit Time Reduction Technique:
Avoiding Address Translation During Indexing of the Cache

Even a small and simple cache must cope with the translation of a virtual ad
from the CPU to a physical address to access memory. As described bel
section 5.7, processors treat main memory as just another level of the memo
erarchy, and thus the address of the virtual memory that exists on disk mu
mapped onto the main memory.

5.5 Reducing Hit Time

5.5 Reducing Hit Time 423

irtual
. Such

ddress
 ad-
 virtual
ushed.
is to
The guideline of making the common case fast suggests that we use v
addresses for the cache, since hits are much more common than misses
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. Virtual addressing eliminates a
translation time from a cache hit. Then why doesn’t everyone build virtually
dressed caches? One reason is that every time a process is switched, the
addresses refer to different physical addresses, requiring the cache to be fl
Figure 5.26 shows the impact on miss rates of this flushing. One solution

FIGURE 5.26 Miss rate versus virtually addressed cache size of a program measured
three ways: without process switches (uniprocess), with process switches using a
process-identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs
increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3% over
purging. Agarwal [1987] collected these statistics for the Ultrix operating system running on
a VAX, assuming direct-mapped caches with a block size of 16 bytes. Note that the miss rate
goes up from 128K to 256K. Such nonintuitive behavior can occur in caches because chang-
ing size changes the mapping of memory blocks onto cache blocks, which can change the
conflict miss rate.

20%

18%

16%

14%

12%

10%
Miss
rate

8%

6%

4%

2%

0%
2K

0.6%
0.4%

18.8%

1.1%

0.5%

13.0%

1.8%

0.6%

8.7%

2.7%

0.6%

3.9%

3.4%

0.4%

2.7%

3.9%

0.4%
0.9%

4.1%

0.3%
0.4%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4K 8K

Uniprocess PIDs Purge

16K 32K

Cache size

64K 128K 256K 512K 1024K

424 Chapter 5 Memory-Hierarchy Design

 cache
ta in
 rates

 sys-
same

 oth-
ince
rdware
cal

some
ires

on is
ing

is re-

hys-
teract
w in

ache
is in-
reater

 of the

e the
while
on to
dress
ive
an ad-
 is 8

rt of
at the
increase the width of the cache address tag with a process-identifier tag (PID). If
the operating system assigns these tags to processes, it only need flush the
when a PID is recycled; that is, the PID distinguishes whether or not the da
the cache are for this program. Figure 5.26 shows the improvement in miss
by using PIDs to avoid cache flushes.

Another reason why virtual caches are not more popular is that operating
tems and user programs may use two different virtual addresses for the
physical address. These duplicate addresses, called synonyms or aliases, could
result in two copies of the same data in a virtual cache; if one is modified, the
er will have the wrong value. With a physical cache this wouldn’t happen, s
the accesses would first be translated to the same physical cache block. Ha
solutions, called anti-aliasing, guarantee every cache block a unique physi
address.

Software can make this problem much easier by forcing aliases to share
address bits. The version of UNIX from Sun Microsystems, for example, requ
all aliases to be identical in the last 18 bits of their addresses; this restricti
called page coloring. Note that page coloring is simply set-associative mapp
applied to virtual memory: the 4-KB (212) pages are mapped using 64 (26) sets to
ensure that the physical and virtual addresses match in the last 18 bits. Th
striction means a direct-mapped cache that is 218 (256K) bytes or smaller can
never have duplicate physical addresses for blocks.

The final area of concern with virtual addresses is I/O. I/O typically uses p
ical addresses and thus would require mapping to virtual addresses to in
with a virtual cache. (The impact of I/O on caches is further discussed belo
section 5.9.)

Another technique to get fast hits is to break address translation and c
access into separate pipeline stages, giving fast cycle time and slow hits. Th
creases the number of pipeline stages for a memory access, leading to g
penalty on mispredicted branches and more clock cycles between the issue
load and the use of the data (see section 3.9).

One alternative to get the best of both virtual and physical caches is to us
page offset—the part unaffected by address translation—to index the cache
sending the virtual part to be translated. This alternative allows the comparis
be with physical addresses and yet overlap the time to read the tags with ad
translation. The limitation of this virtually indexed, physically tagged alternat
is that a direct-mapped cache can be no bigger than the page size. This is
vantage of the 8-KB caches of the Alpha AXP 21064; the minimum page size
KB, so the 8-bit index can be taken from the physical part of the address.

One way to keep the index small enough to be taken from the physical pa
the address and still have a large cache is to use high associativity. Recall th
size of the index is controlled by this formula:

2
index Cache size

Block size Set associativity×
--=

5.5 Reducing Hit Time 425

 even
 asso-
th a
re.

ple-
hysi-
n first

are
al ad-
al ad-
x the
hybrid
 data
bits of
 de-

dress
 con-

ed be-
ech-
rites.
 and
 cache
omes
The IBM 3033 cache, as an extreme example, is 16-way set associative,
though studies show there is little benefit to miss rates above eight-way set
ciativity. This high associativity allows a 64-KB cache to be addressed wi
physical index despite the limitation of 4-KB pages in the IBM architectu
Figure 5.27 shows the relationship of index to page offset.

One alternative to higher associativity is for the operating system to im
ment page coloring by guaranteeing that the last few bits of the virtual and p
cal page address are identical. Such cooperating allows a larger index tha
with the page offset and still compares physical addresses.

Another alternative to higher associativity is to have a small piece of hardw
that guesses the mapping of the last few bits of virtual address bits to physic
dress. This might be a small table that uses a hashing function on the virtu
dress. This guess is used with the physical portion of the address to inde
cache, with the translated address used to match the tag selected by this
index. If the tag matches, we have a hit. If the tag doesn’t match, either the
were not in the cache or we had a bad guess of the mapping of the last few
virtual address. The cache would presumably retry with the correct index to
cide whether the access was a hit or a real miss.

Keeping caches small and simple and techniques to avoid delays of ad
translation will make both read hits and write hits faster. The next subsection
centrates only on writes.

Third Hit Time Reduction Technique: Pipelining
Writes for Fast Write Hits

Write hits usually take longer than read hits because the tag must be check
fore writing the data; otherwise the wrong address would be written. One t
nique, used by the Alpha AXP 21064 and other machines, pipelines the w
Figure 5.28 shows the hardware organization of pipelined writes. First, tags
data are split so that they can be addressed independently. On a write, the
compares the tag with the current write address, as usual. The difference c

FIGURE 5.27 Relationship of index field and page offset in the IBM 3033 cache. The
4-KB page means the last 12 bits of the address are not translated, and hence some of it can
be used to index the cache.

Page address
Address tag Index Block offset

Page offset

0111231

426 Chapter 5 Memory-Hierarchy Design

pari-
is still
e
ipe-

stage
med
for the
eady

nd hit
 equa-
rizes
at the
ning
 none
with the write to the data portion of the cache that occurs during the tag com
son; it must be using some other address since the current write address
being checked. The trick is that the cache uses the address and data from thpre-
vious write, which has already been determined to be a hit. Thus the logical p
line is between writes—the second stage of the write occurs during the first
of the next write (or during a cache miss). Therefore, writes can be perfor
back to back at one per clock cycle because the CPU does not have to wait
tag check before writing. Reads play no part in this pipeline since they alr
operate in parallel with the tag check, and so no help is needed.

Cache Optimization Summary

The techniques in sections 5.3 to 5.5 to improve miss rate, miss penalty, a
time generally impact the other components of the average memory access
tion as well as the complexity of the memory hierarchy. Figure 5.29 summa
these techniques and estimates the impact on complexity, with + meaning th
technique improves the factor, – meaning it hurts that factor, and blank mea
it has no impact. Note that few techniques help more than one category, and
help all three.

FIGURE 5.28 The hardware organization of pipelined writes. It is possible to find the de-
sired data in the delayed write buffer. In that case, either the write buffer supplies the newer
data or the write buffer could complete and then the new data are read from the cache.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

=?

Delayed write buffer

=?

M
u
x

Tag

Data

5.6 Main Memory 427

ntion
on-
ade

e
… the one single development that put computers on their feet was the inve
of a reliable form of memory, namely, the core memory. … Its cost was reas
able, it was reliable and, because it was reliable, it could in due course be m
large. [p. 209]

Maurice Wilkes, Memoirs of a Computer Pioneer (1985)

Technique
Miss
rate

Miss
penalty

Hit
time

Hardware
complexity Comment

Larger block size + – 0 Trivial; RS/6000 550 uses 128

Higher associativity + – 1 e.g., MIPS R10000 is 4-way

Victim caches + 2 Similar technique in HP 7200

Pseudo-associative caches + 2 Used in L2 of MIPS R10000

Hardware prefetching of
instructions and data

+ 2 Data are harder to prefetch; tried in a
few machines; Alpha 21064

Compiler-controlled prefetching + 3 Needs nonblocking cache too;
several machines support it

Compiler techniques to reduce
cache misses

+ 0 Software is challenge; some ma-
chines give compiler option

Giving priority to read misses
over writes

+ 1 Trivial for uniprocessor, and widely
used

Subblock placement + 1 Used primarily to reduce tags

Early restart and critical
word first

+ 2 Used in MIPS R10000, IBM 620

Nonblocking caches + 3 Used in Alpha 21064, R10000

Second-level caches + 2 Costly hardware; harder if block siz
L1 ≠ L2; widely used

Small and simple caches – + 0 Trivial; widely used

Avoiding address translation
during indexing of the cache

+ 2 Trivial if small cache; used in Alpha
21064

Pipelining writes for fast write
hits

+ 1 Used in Alpha 21064

FIGURE 5.29 Summary of cache optimizations and impact on the three aspects of cache performance and on
cache complexity. + means that the technique improves the factor, – means it hurts that factor, and blank means it has no
impact. The complexity measure is subjective, with 0 being the easiest and 3 being a challenge.

5.6 Main Memory

428 Chapter 5 Memory-Hierarchy Design

 the
f input

pha-
ytes
cts
mory
vel
rtant
emo-

 I/O

d cy-
 the

to
emo-

sary
 there-
t first,
-
e
atrix

 its
ut
h bit
shed
sys-
nds.

ilable

M.
teps
ers

ing
well as
infor-
 no
efresh
 are
Main memory is the next level down in the hierarchy. Main memory satisfies
demands of caches and serves as the I/O interface, as it is the destination o
as well as the source for output. Performance measures of main memory em
size both latency and bandwidth. (Memory bandwidth is the number of b
read or written per unit time.) Traditionally, main memory latency (which affe
the cache miss penalty) is the primary concern of the cache, while main me
bandwidth is the primary concern of I/O. With the popularity of second-le
caches and their larger block sizes, main memory bandwidth becomes impo
to caches as well. In fact, cache designers may take advantage of the high m
ry bandwidth by increasing block size. The relationship of main memory and
is discussed in Chapter 6.

Memory Technology

Memory latency is traditionally quoted using two measures—access time an
cle time. Access time is the time between when a read is requested and when
desired word arrives, while cycle time is the minimum time between requests
memory. One reason that cycle time is greater than access time is that the m
ry needs the address lines to be stable between accesses.

As early DRAMs grew in capacity, the cost of a package with all the neces
address lines was an issue. The solution was to multiplex the address lines,
by cutting the number of address pins in half. One half of the address is sen
called the row access strobe or RAS. It is followed by the other half of the ad
dress, sent during the column access strobe or CAS. These names come from th
internal chip organization, since the memory is organized as a rectangular m
addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by
first letter, D, for dynamic. DRAMs use only a single transistor to store a bit, b
reading that bit can disturb the information. To prevent loss of information, eac
must be “refreshed” periodically. Fortunately, all the bits in a row can be refre
simultaneously just by reading that row. Hence every DRAM in the memory
tem must access every row within a certain time window, such as 8 milliseco
Memory controllers include hardware to periodically refresh the DRAMs.

This requirement means that the memory system is occasionally unava
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRA
Since the memory matrix in a DRAM is conceptually square, the number of s
in a refresh is usually the square root of the DRAM capacity. DRAM design
try to keep time spent refreshing to be less than 5% of the total time.

In contrast to DRAMs are SRAMs—the first letter standing for static. The dy-
namic nature of the circuits in DRAM require data to be written back after be
read, hence the difference between the access time and the cycle time as
the need to refresh. SRAMs use four to six transistors per bit to prevent the
mation from being disturbed when read. Thus, unlike DRAMs, there is
difference between access time and cycle time, and there is no need to r
SRAM. In DRAM designs the emphasis is on capacity, while SRAM designs

5.6 Main Memory 429

d-
hnol-
cle
 16

d of
that
M for

arly
igners
t in
ately,
ows
n, or

p is
ore
ious
erfor-

s may
main
s for
ec-
concerned with both speed and capacity. (Because of this concern, SRAM a
dress lines are not multiplexed.) For memories designed in comparable tec
ogies, the capacity of DRAMs is roughly 4 to 8 times that of SRAMs. The cy
time of SRAMs is 8 to 16 times faster than DRAMs, but they are also 8 to
times as expensive.

The main memory of virtually every computer sold since 1975 is compose
semiconductor DRAMs (and virtually all caches use SRAM); the exception
proves the rule is Cray supercomputers such as the C-90, which use SRA
main memory.

Amdahl suggested a rule of thumb that memory capacity should grow line
with CPU speed to keep a balanced system (see section 1.4), and CPU des
rely on DRAMs to supply that demand: they expect a four-fold improvemen
capacity every three years in the base technology, or 60% per year. Unfortun
the performance of DRAMs is growing at a much slower rate. Figure 5.30 sh
a performance improvement in row access time of about 22% per generatio
7% per year.

As we saw in Figure 5.1 on page 374, the CPU-DRAM performance ga
clearly a problem today—Amdahl’s Law warns us what will happen if we ign
one portion of the computation while trying to speed up the rest. The prev
sections describe what can be done with cache organization to reduce this p
mance gap, but simply making caches larger or adding more levels of cache
not be a cost-effective way to eliminate the gap. Innovative organizations of
memory are needed as well. In the next section we examine technique
organizing memory to improve bandwidth, concluding with techniques esp
ially for DRAMs.

Row access strobe (RAS)

Year of
introduction Chip size

Slowest
DRAM

Fastest
DRAM

Column
access strobe

(CAS)
Cycle
time

1980 64 Kbit 180 ns 150 ns 75 ns 250 ns

1983 256 Kbit 150 ns 120 ns 50 ns 220 ns

1986 1 Mbit 120 ns 100 ns 25 ns 190 ns

1989 4 Mbit 100 ns 80 ns 20 ns 165 ns

1992 16 Mbit 80 ns 60 ns 15 ns 120 ns

1995 64 Mbit 65 ns 50 ns 10 ns 90 ns

FIGURE 5.30 Times of fast and slow DRAMs with each generation. The improvement
by a factor of two in column access accompanied the switch from NMOS DRAMs to CMOS
DRAMs. With three years per generation, the performance improvement of row access time
is about 7% per year. Data in the last row represent predicted performance for 64-Mbit
DRAMs.

430 Chapter 5 Memory-Hierarchy Design

er to
ncy.
 size

iss.

 next
ific
Organizations for Improving Main Memory Performance

Although caches are interested in low latency memory, it is generally easi
improve memory bandwidth with new organizations than it is to reduce late
Caches benefit from bandwidth improvement by allowing each cache block
to increase without a large increase in the miss penalty.

Let’s illustrate these organizations with the case of satisfying a cache m
Assume the performance of the basic memory organization is

■ 4 clock cycles to send the address

■ 24 clock cycles for the access time per word

■ 4 clock cycles to send a word of data

Given a cache block of four words, the miss penalty is 4 × (4 + 24 + 4) or 128 clock
cycles, with a memory bandwidth of one-eighth byte (16/128) per clock cycle.

Figure 5.31 shows some of the options to faster memory systems. The
four solutions assume generic memory, either DRAM or SRAM. DRAM-spec
solutions form the last subsection.

FIGURE 5.31 Three examples of bus width, memory width, and memory interleaving
to achieve higher memory bandwidth. (a) is the simplest design, with everything the width
of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and
cache with an interleaved memory.

Memory
bank 0

Memory
bank 1

Memory
bank 2

Memory
bank 3

Bus

Cache

CPU

(c) Interleaved
 memory organization

Bus

Cache

CPU

(a) One-word-wide
 memory organization

Bus

Cache

CPU

(b) Wide memory organization

Multiplexor

Memory

Memory

5.6 Main Memory 431

e the

ause
ten de-
 the
em-
our

 per

cally
ere
multi-
e the
itical
le by
idth

cul-
 rest
ulated
e full
ify-
signs
rites

ond-
mers
lder
the

van-
em.
 time
to try
The simplest approach to increasing memory bandwidth, then, is to mak
memory wider; we examine this first.

First Technique for Higher Bandwidth: Wider Main Memory

First-level caches are often organized with a physical width of one word bec
most CPU accesses are that size. Systems without second-level caches of
sign main memory to match the width of the cache. Doubling or quadrupling
width of the cache and the memory will therefore double or quadruple the m
ory bandwidth. With a main memory width of two words, the miss penalty in
example would drop from 4 × 32 or 128 clock cycles to 2 × 32 or 64 clock cycles.
At four words wide the miss penalty is just 1 × 32 clock cycles. The bandwidth is
then one-quarter byte per clock cycle at two words wide and one-half byte
clock cycle when the memory is four words wide.

There is cost in the wider connection between the CPU and memory, typi
called a memory bus. CPUs will still access the cache a word at a time, so th
now needs to be a multiplexer between the cache and the CPU—and that
plexer may be on the critical timing path. Second-level caches can help sinc
multiplexing can be between first- and second-level caches, not on the cr
path. Another drawback is that since main memory is traditionally expandab
the customer, the minimum increment is doubled or quadrupled when the w
is doubled or quadrupled. Finally, memories with error correction have diffi
ties with writes to a portion of the protected block (e.g., a write of a byte); the
of the data must be read so that the new error correction code can be calc
and stored when the data are written. If the error correction is done over th
width, the wider memory will increase the frequency of such “read-mod
write” sequences because more writes become partial block writes. Many de
of wider memory have separate error correction every 32 bits since most w
are that size.

One example of wide main memory is the Alpha AXP 21064 whose sec
level cache, memory bus, and memory are all 256 bits wide. To allow custo
to purchase small amounts of memory without sacrificing width, DEC sells o
generations of DRAM for small memories as well as current DRAMs for
larger memory systems (see section 5.10).

Second Technique for Higher Bandwidth:
Simple Interleaved Memory

Increasing width is one way to improve bandwidth, but another is to take ad
tage of the potential parallelism of having many DRAMs in a memory syst
Memory chips can be organized in banks to read or write multiple words at a
rather than a single word. In general, the purpose of interleaved memory is
to take advantage of the potential memory bandwidth of all the DRAMs in the

432 Chapter 5 Memory-Hierarchy Design

ining

ache
to read
g an

 miss
.4
back
ne

bank.

 sys-
rleaved
1 has
inter-

ter-
 ideal
tially.
re ef-
system; in contrast, most memory systems activate only the DRAMs conta
the needed words.

The banks are often one word wide so that the width of the bus and the c
need not change, but sending addresses to several banks permits them all
simultaneously. Figure 5.31(c) shows this organization. For example, sendin
address to four banks (with access times shown on page 430) yields a
penalty of 4 + 24 + 4 × 4 or 44 clock cycles, giving a bandwidth of about 0
bytes per clock cycle. Banks are also valuable on writes. Although back-to-
writes would normally have to wait for earlier writes to finish, banks allow o
clock cycle for each write, provided the writes are not destined to the same
Such a memory organization is especially important for write through.

The mapping of addresses to banks affects the behavior of the memory
tem. The example above assumes the addresses of the four banks are inte
at the word level—bank 0 has all words whose address modulo 4 is 0, bank
all words whose address modulo 4 is 1, and so on. Figure 5.32 shows this
leaving. This mapping is referred to as the interleaving factor; interleaved
memory normally means banks of memory that are word interleaved. This in
leaving optimizes sequential memory accesses. A cache read miss is an
match to word-interleaved memory, as the words in a block are read sequen
Write-back caches make writes as well as reads sequential, getting even mo
ficiency from word-interleaved memory.

E X A M P L E What can interleaving and a wide memory buy? Consider the following
description of a machine and its cache performance:

Block size = 1 word

Memory bus width = 1 word

Miss rate = 3%

FIGURE 5.32 Four-way interleaved memory. This example assumes word addressing:
with byte addressing and four bytes per word, each of these addresses would be multiplied
by four.

0

4

8

12

Bank 0Address

1

5

9

13

Bank 1Address

2

6

10

14

Bank 2Address

3

7

11

15

Bank 3Address

5.6 Main Memory 433

ory,
es—the

uters
Memory accesses per instruction = 1.2

Cache miss penalty = 32 cycles (as above)

Average cycles per instruction (ignoring cache misses) = 2

If we change the block size to two words, the miss rate falls to 2%, and a
four-word block has a miss rate of 1%. What is the improvement in perfor-
mance of interleaving two ways and four ways versus doubling the width
of memory and the bus, assuming the access times on page 430?

A N S W E R The CPI for the base machine using one-word blocks is

2 + (1.2 × 3% × 32) = 3.15

Since the clock cycle time and instruction count won’t change in this ex-
ample, we can calculate performance improvement by just comparing
CPI.

Increasing the block size to two words gives the following options:

32-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 2 × 32) = 3.54

32-bit bus and memory, interleaving = 2 + (1.2 × 2% × (4 + 24 + 8)) = 2.86

64-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 1 × 32) = 2.77

Thus, doubling the block size slows down the straightforward im-
plementation (3.54 versus 3.15), while interleaving or wider memory is
1.10 or 1.14 times faster, respectively. If we increase the block size to four,
the following is obtained:

32-bit bus and memory, no interleaving = 2 + (1.2 × 1% × 4 × 32) = 3.54

32-bit bus and memory, interleaving = 2 + (1.2 × 1% × (4 + 24 + 16)) = 2.53

64-bit bus and memory, no interleaving = 2 + (1.2 × 1% × 2 × 32) = 2.77

Again, the larger block hurts performance for the simple case, although
the interleaved 32-bit memory is now fastest—1.25 times faster versus
1.14 for the wider memory and bus. ■

This subsection has shown that interleaved memory is logically a wide mem
except that accesses to banks are staged over time to share internal resourc
bus in this example.

How many banks should be included? One metric, used in vector comp
(Appendix B), is as follows:

Number of banks ≥ Number of clock cycles to access word in bank

434 Chapter 5 Memory-Hierarchy Design

lock
 were
ith an
ord

s the
 18
ord.
nce

wing
ce of

n the
. For

ahl/
 mem-
t to
r of
rga-

em-
ns of
 to,

 by
since
 bank
is to
llow
 bank
e, an in-
nother,
 CPU
 to be
anks;
 get
sors
The memory system goal is to deliver information from a new bank each c
cycle for sequential accesses. To see why this formula holds, imagine there
fewer banks than clock cycles to access a word in a bank; say, 8 banks w
access time of 10 clock cycles. After 10 clock cycles the CPU could get a w
from bank 0, and then bank 0 would begin fetching the next desired word a
CPU received the following 7 words from the other 7 banks. At clock cycle
the CPU would be at the door of bank 0, waiting for it to supply the next w
The CPU would have to wait until clock cycle 20 for the word to appear. He
we want more banks than clock cycles to access a bank to avoid waiting.

We will discuss conflicts on nonsequential accesses to banks in the follo
subsections. For now, we note that having many banks reduces the chan
these bank conflicts.

Ironically, as capacity per memory chip increases, there are fewer chips i
same-sized memory system, making multiple banks much more expensive
example, a 64-MB main memory takes 512 memory chips of 1 M × 1 bit, easily
organized into 16 banks of 32 memory chips. But it takes only eight 64-M × 1-bit
memory chips for 64 MB, making one bank the limit. Even though the Amd
Case rule of thumb for balanced computer systems recommends increasing
ory capacity with increasing CPU performance, many manufacturers will wan
have a small memory option in the baseline model. This shrinking numbe
DRAMs is the main disadvantage of interleaved memory banks. DRAMs o
nized with wider paths, such as 16 M × 4 bits or 8 M × 8 bits, will postpone this
weakness.

A second disadvantage of memory banks is again the difficulty of main m
ory expansion. Either the memory system must support multiple generatio
DRAM, as in the DEC 3000 model 800, or the minimum increment will be
say, double main memory.

Third Technique for Higher Bandwidth:
Independent Memory Banks

The original motivation for memory banks was higher memory bandwidth
interleaving sequential accesses. This hardware is not much more difficult
the banks can share address lines with a memory controller, enabling each
to use the data portion of the memory bus. A generalization of interleaving
allow multiple independent accesses, where multiple memory controllers a
banks (or sets of word-interleaved banks) to operate independently. Each
needs separate address lines and possibly a separate data bus. For exampl
put device may use one controller and one bank, the cache read may use a
and a cache write may use a third. Nonblocking caches (page 414) allow the
to proceed beyond a cache miss, potentially allowing multiple cache misses
serviced simultaneously. Such a design only makes sense with memory b
otherwise the multiple reads will be serviced by a single memory port and
only a small benefit of overlapping access with transmission. Multiproces

5.6 Main Memory 435

 (see

e
rm
.33
erm

dent
/O that
ontig-
puters
ency
 work
ber.

r. One
 hav-

 not
vided.
xecute

e in
r how
that share a common memory provide further motivation for memory banks
Chapter 8).

Thus the term memory bank has potentially two conflicting definitions. We us
the term superbank to mean all memory active on one block transfer and the te
bank for the portion within a superbank that is word interleaved. Figure 5
shows this relationship. If there is no confusion, we’ll just use the shorter t
bank to mean a collection of memory.

Fourth Technique for Higher Bandwidth:
Avoiding Memory Bank Conflicts

If the memory system is being designed to support multiple indepen
requests—as in the case of miss-under-miss caches, direct memory access I
can read data from noncontiguous addresses (“gather”) or write data to nonc
uous addresses (“scatter”), multiprocessors (see Chapter 8), or vector com
(see Appendix B)—the effectiveness of the system will depend on the frequ
that independent requests will go to different banks. Sequential accesses
well with traditional interleaving, as do any accesses that differ by an odd num
The problem is when this difference between addresses is an even numbe
solution, used by larger computers, is to statistically reduce the chances by
ing many banks; the NEC SX/3, for instance, has up to 128 banks.

The problem with such a solution is that data memory references are
random, and may go to the same bank no matter how many banks are pro
Suppose we have 128 memory banks, interleaved on a word basis, and e
this code:

int x[256][512];

for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];

Since the 512 is an even multiple of 128, all the elements of a column will b
the same memory bank and code will stall on data cache misses no matte
sophisticated a CPU or memory system.

FIGURE 5.33 The relationship of superbanks and banks.

Bank offset
Superbank offset

Bank number
Superbank number

436 Chapter 5 Memory-Hierarchy Design

lem.
void
r the
reby

nks
e ex-

nt of

ve a
are to
ove.

ickly,
f two
mple

 re-

s that
e fol-
There are both software and hardware solutions to the bank conflict prob
The compiler could do the loop interchange optimization (see page 407) to a
accessing the same bank. A simpler solution would be for the programmer o
compiler to expand the size of the array so that it is not a power of two, the
forcing the addresses above to go to different banks.

Before describing a hardware solution, let’s review how addressing of ba
works. The mapping of an address to a location in a memory bank can b
pressed as two problems:

Bank number = Address MOD Number of banks

Address within bank =

Traditional memory systems keep both the number of banks and the amou
memory per bank a power of two to make this calculation trivial.

One hardware solution to reduce the number of bank conflicts is to ha
prime number of banks! Such a number would seem to demand more hardw
perform a complex calculation: the modulo and the division mentioned ab
Furthermore, this complex calculation would lengthen each memory access.

Fortunately, there are several hardware schemes to calculate modulo qu
especially if the prime number of memory banks is one less than a power o
(see Exercise 5.10). In this case division can be replaced by the following si
calculation:

Address within bank = Address MOD Number of words in bank

Since the number of words in a bank is very likely a power of two, we have
placed division by a prime number by bit selection.

The proof of this simplification is based on the Chinese Remainder Theorem.
This 2000-year-old observation states that as long as two sets of integers ai and bi
follow these rules:

bi = x MOD ai, 0 ≤ bi < ai, 0 ≤ x < a0 × a1 × a2 ×. . .

and that ai and aj are co-prime if i ≠ j, then the integer x has only one solution of
each pair of integers ai and bi (two integers are co-prime if they have no common
prime number as a factor). The Chinese Remainder Theorem guarantee
there is no ambiguity with this mapping of addresses to banks because th
lowing conditions hold:

■ Bank number = Address MOD Number of banks (b0 = x MOD a0).

■ Address within bank = Address MOD Number of words in bank (b1 = x MOD a1).

■ Bank number < Number of banks (0 ≤ b0 < a0).

■ Address within a bank < Number of words in bank (0 ≤ b1 < a1).

■ Address < Number of banks × Number of words in a bank (0 ≤ x < a0 × a1).

Address / Number of banks

5.6 Main Memory 437

next

eater

g the
 new

ider
nce.
r dis-
s that

umn
mn
r 64
Ms
t an-
■ The number of banks and the number of words in a bank are co-prime (a0 and
a1 are co-prime).

The first two conditions above are simply the definition of the mapping. The
three conditions are trivially true because an N-word address goes from 0 to N –1.
The last condition is true since the number of banks is a prime number gr
than two and the number of words in a bank is a power of two.

Figure 5.34 shows three memory modules, each with eight words, showin
traditional sequentially interleaved mapping of addresses on the left and the
mapping on the right.

Fifth Technique for Higher Bandwidth:
DRAM-Specific Interleaving

Thus far we have seen four techniques that improve memory bandwidth: w
memory, interleaved memory, banked memory, and bank conflict avoida
These techniques work with any memory technology, and have been used o
cussed since before DRAMs were invented. This section presents technique
take advantage of the nature of DRAMs.

As mentioned earlier, DRAM access is divided into row access and col
access. DRAMs must buffer a row of bits inside the DRAM for the colu
access, and this row is usually the square root of the DRAM size—8 Kbits fo
Mbits, 16 Kbits for 256 Mbits, and so on. To improve performance, all DRA
come with timing signals that allow repeated accesses to the buffer withou
other row access time. There are three versions for this optimization:

Address
within
bank

Memory bank

Sequentially interleaved Modulo interleaved

0 1 2 0 1 2

0 0 1 2 0 16 8

1 3 4 5 9 1 17

2 6 7 8 18 10 2

3 9 10 11 3 19 11

4 12 13 14 12 4 20

5 15 16 17 21 13 5

6 18 19 20 6 22 14

7 21 22 23 15 7 23

FIGURE 5.34 Three memory banks with sequentially interleaved addressing on the
left, requiring a division as part of addressing of the word within a module, and the new
mapping, which requires only modulo to a power of two. For example, address 5 is
mapped to the second word of memory bank 2 on the left and to the sixth word of memory
bank 2 on the right.

438 Chapter 5 Memory-Hierarchy Design

a-

ss,
fresh

 to
ges.

ree
oos-
time
eed

y on
old
e ad-
ads 4
ed
, the
rol.
aving

ate
de
■ Nibble mode—The DRAM can supply three extra bits from sequential loc
tions for every row access strobe.

■ Page mode—The buffer acts like a SRAM; by changing column addre
random bits can be accessed in the buffer until the next row access or re
time.

■ Static column—Very similar to page mode, except that it’s not necessary
toggle the column access strobe line every time the column address chan

Starting with the 1-Mbit generation, most DRAMs can perform any of the th
options, with the optimization selected at the time the die is packaged by ch
ing which pads to wire up. These operations change the definition of cycle
for DRAMs. Figure 5.35 shows the traditional cycle time plus the fastest sp
between accesses in the optimized mode.

The advantage of such optimizations is that they use the circuitry alread
the DRAMs, adding little cost to the system while achieving almost a fourf
improvement in bandwidth. For example, nibble mode was designed to tak
vantage of the same program behavior as interleaved memory. The chip re
bits at a time internally, supplying 4 bits externally in the time of four optimiz
cycles. Unless the bus transfer time is faster than the optimized cycle time
cost of four-way interleaved memory is only more complicated timing cont
Page mode and static column could also be used to get even higher interle
with slightly more complex control. DRAMs also tend to have weak trist
buffers, implying traditional interleaving with more memory chips must inclu
buffer chips for each memory bank.

Row access
Optimized time

nibble, page, static
columnChip size

Slowest
DRAM

Fastest
DRAM

Column
access

Cycle
time

64 Kbits 180 ns 150 ns 75 ns 250 ns 150 ns

256 Kbits 150 ns 120 ns 50 ns 220 ns 100 ns

1 Mbits 120 ns 100 ns 25 ns 190 ns 50 ns

4 Mbits 100 ns 80 ns 20 ns 165 ns 40 ns

16 Mbits 80 ns 60 ns 15 ns 120 ns 30 ns

64 Mbits 65 ns 50 ns 10 ns 90 ns 25 ns

FIGURE 5.35 DRAM cycle time for the optimized accesses. This figure is the same as
Figure 5.30 (page 429), with a column added to show the optimized cycle time for the three
modes. Starting with the 1-Mbit DRAM, optimized cycle time is about four times faster than un-
optimized cycle time. It is so much faster that page mode was renamed fast page mode. The
optimized cycle time is the same no matter which of the three optimized modes is selected.

5.7 Virtual Memory 439

ize
US.
face,
nent.
 ac-
e data.

 chip
rm its
that
pipe-

ce the
ere
ity. On
pre-
ater
Ms
rice

 fast

h its
 be too
s, es-
ence,

mong

n ap-
ng-
e to
fore a
Recently new breeds of DRAMs have been produced that further optim
the interface between the DRAM and CPU. One example is from RAMB
This company takes the standard DRAM core and provides a new inter
making a single chip act more like a memory system than a memory compo
RAMBUS has dropped RAS/CAS, replacing it with a bus that allows other
cesses over the bus between the sending of the address and return of th
(Such a bus is called a packet-switched bus or split-transaction bus, described in
Chapters 6 and 7.) This bus allows a single chip to act as a memory bank. A
can return a variable amount of data from a single request, and even perfo
own refresh. RAMBUS offers a byte-wide interface, and a clock signal so
the chip can be tightly synchronized to the CPU clock. Once the address
line is full, a single chip can deliver one byte every 2 ns.

Most main memory systems use techniques such as page mode to redu
CPU-DRAM performance gap. Unlike traditional interleaved memories, th
are no disadvantages using such a mode as DRAMs scale upward in capac
the other hand, the new breed of DRAMs such as RAMBUS might cost a
mium of, say, 20% per megabyte over traditional DRAMs to provide the gre
bandwidth. The marketplace will determine whether the more radical DRA
such as RAMBUS will become popular for main memory, or whether the p
premium restricts them to niche markets.

One example niche market is computer graphics, where a DRAM with a
serial output line is used to drive displays. This special DRAM is called a video
RAM or VRAM; RAMBUS is challenging VRAMs in this market.

… a system has been devised to make the core drum combination appear to
the programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al. [1962]

At any instant in time computers are running multiple processes, each wit
own address space. (Processes are described in the next section.) It would
expensive to dedicate a full-address-space worth of memory for each proces
pecially since many processes use only a small part of their address space. H
there must be a means of sharing a smaller amount of physical memory a
many processes. One way to do this, virtual memory, divides physical memory
into blocks and allocates them to different processes. Inherent in such a
proach must be a protection scheme that restricts a process to the blocks belo
ing only to that process. Most forms of virtual memory also reduce the tim
start a program, since not all code and data need be in physical memory be
program can begin.

5.7 Virtual Memory

440 Chapter 5 Memory-Hierarchy Design

t the
sical
pro-
, and
n.
ysical
ed at
mer
ur-
pre-
pping

ging
 for
 in
 any-
em.

tion
Although virtual memory is essential for current computers, sharing is no
reason virtual memory was invented. If a program became too large for phy
memory, it was the programmer’s job to make it fit. Programmers divided
grams into pieces, then identified the pieces that were mutually exclusive
loaded or unloaded these overlays under user program control during executio
The programmer ensured that the program never tried to access more ph
main memory than was in the machine and that the proper overlay was load
the proper time. As one can well imagine, this responsibility eroded program
productivity. Virtual memory was invented to relieve programmers of this b
den; it automatically manages the two levels of the memory hierarchy re
sented by main memory and secondary storage. Figure 5.36 shows the ma
of virtual memory to physical memory for a program with four pages.

In addition to sharing protected memory space and automatically mana
the memory hierarchy, virtual memory also simplifies loading the program
execution. Called relocation, this mechanism allows the same program to run
any location in physical memory. The program in Figure 5.36 can be placed
where in physical memory or disk just by changing the mapping between th
(Prior to the popularity of virtual memory, machines would include a reloca

FIGURE 5.36 The logical program in its contiguous virtual address space is shown
on the left: it consists of four pages A, B, C, and D. The physical location of three of the
blocks is physical memory and one is located on disk.

0

4K

8K

12K

16K

20K

24K

28K

Physical
address:

Physical
main memory

Disk
D

0

4K

8K

12K

Virtual
address:

Virtual memory

A

B

C

D

C

A

B

5.7 Virtual Memory 441

 be

mo-

c-
are

d
ical

yond

 vir-
 the
ision
 more

ut the

 the
mally
by the

mory
called

ported

)

register just for that purpose.) An alternative to a hardware solution would
software that changed all addresses in a program each time it was run.

Several general memory-hierarchy terms from Chapter 1 apply to virtual me
ry, while some other terms are different. Page or segment is used for block, and
page fault or address fault is used for miss. With virtual memory, the CPU produ
es virtual addresses that are translated by a combination of hardware and softw
to physical addresses, which access main memory. This process is called memory
mapping or address translation. Today, the two memory-hierarchy levels controlle
by virtual memory are DRAMs and magnetic disks. Figure 5.37 shows a typ
range of memory-hierarchy parameters for virtual memory.

There are further differences between caches and virtual memory be
those quantitative ones mentioned in Figure 5.37:

■ Replacement on cache misses is primarily controlled by hardware, while
tual memory replacement is primarily controlled by the operating system;
longer miss penalty means it’s more important to make a really good dec
and also that the operating system can afford to get involved and spend
time deciding what to replace.

■ The size of the processor address determines the size of virtual memory, b
cache size is independent of the processor address size.

■ In addition to acting as the lower-level backing store for main memory in
hierarchy, secondary storage is also used for the file system that is not nor
part of the address space; most of secondary storage is in fact taken up
file system.

Virtual memory also encompasses several related techniques. Virtual me
systems can be categorized into two classes: those with fixed-size blocks,
pages, and those with variable-size blocks, called segments. Pages are fixed at
4096 to 65,536 bytes, while segment size varies. The largest segment sup

Parameter First-level cache Virtual memory

Block (page) size 16–128 bytes 4096–65,536 bytes

Hit time 1–2 clock cycles 40–100 clock cycles

Miss penalty 8–100 clock cycles 700,000–6,000,000 clock cycles

 (Access time) (6–60 clock cycles) (500,000–4,000,000 clock cycles

 (Transfer time) (2–40 clock cycles) (200,000–2,000,000 clock cycles)

Miss rate 0.5–10% 0.00001– 0.001%

Data memory size 0.016–1MB 16–8192 MB

FIGURE 5.37 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10 to 100,000 times over cache parameters.

442 Chapter 5 Memory-Hierarchy Design

1
.

mory
d into
single
nts re-

 seg-
r the

ted in
use of

on any machine ranges from 216 bytes up to 232 bytes; the smallest segment is
byte. Figure 5.38 shows how the two approaches might divide code and data

The decision to use paged virtual memory versus segmented virtual me
affects the CPU. Paged addressing has a single fixed-size address divide
page number and offset within a page, analogous to cache addressing. A
address does not work for segmented addresses; the variable size of segme
quires one word for a segment number and one word for an offset within a
ment, for a total of two words. An unsegmented address space is simpler fo
compiler.

The pros and cons of these two approaches have been well documen
operating systems textbooks; Figure 5.39 summarizes the arguments. Beca

FIGURE 5.38 Example of how paging and segmentation divide a program.

Page Segment

Words per address One Two (segment and offset)

Programmer visible? Invisible to application programmer May be visible to application programmer

Replacing a block Trivial (all blocks are the same size) Hard (must find contiguous, variable-size,
unused portion of main memory)

Memory use
inefficiency

Internal fragmentation (unused portion
of page)

External fragmentation (unused pieces of main
memory)

Efficient disk traffic Yes (adjust page size to balance access
time and transfer time)

Not always (small segments may transfer just a
few bytes)

FIGURE 5.39 Paging versus segmentation. Both can waste memory, depending on the block size and how well the seg-
ments fit together in main memory. Programming languages with unrestricted pointers require both the segment and the
address to be passed. A hybrid approach, called paged segments, shoots for the best of both worlds: segments are com-
posed of pages, so replacing a block is easy, yet a segment may be treated as a logical unit.

Code Data

Paging

Segmentation

5.7 Virtual Memory 443

 use

 re-
s need
iple
e size.

rtual

stor-
 or a
wer
 allow
y in

 page
f the

ess to
ted to

es the
 is
ress,

uld be
shing
gth of
ch

nly
er

 these

zing
ry to
the replacement problem (the third line of the figure), few machines today
pure segmentation. Some machines use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies
placement because memory need not be contiguous, and the full segment
not be in main memory. A more recent hybrid is for a machine to offer mult
page sizes, with the larger sizes being powers of two times the smallest pag
The Alpha AXP 21064, for example, allows 8 KB, 64 KB (23 × 8 KB), 512 KB
(26 × 8 KB), and 4096 KB (29 × 8 KB) to act as a single page.

We are now ready to answer the four memory-hierarchy questions for vi
memory.

Q1: Where can a block be placed in main memory?
The miss penalty for virtual memory involves access to a rotating magnetic
age device and is therefore quite high. Given the choice of lower miss rates
simpler placement algorithm, operating systems designers normally pick lo
miss rates because of the exorbitant miss penalty. Thus, operating systems
blocks to be placed anywhere in main memory. According to the terminolog
Figure 5.2 (page 376), this strategy would be labeled fully associative.

Q2: How is a block found if it is in main memory?
Both paging and segmentation rely on a data structure that is indexed by the
or segment number. This data structure contains the physical address o
block. For segmentation, the offset is added to the segment’s physical addr
obtain the final physical address. For paging, the offset is simply concatena
this physical page address (see Figure 5.40).

This data structure, containing the physical page addresses, usually tak
form of a page table. Indexed by the virtual page number, the size of the table
the number of pages in the virtual address space. Given a 28-bit virtual add
4-KB pages, and 4 bytes per page table entry, the size of the page table wo
256 KB. To reduce the size of this data structure, some machines apply a ha
function to the virtual address so that the data structure need only be the len
the number of physical pages in main memory; this number could be mu
smaller than the number of virtual pages. Such a structure is called an inverted
page table. Using the example above, a 64-MB physical memory would o
need 128 KB (8 × 64 MB/4 KB) for an inverted page table; the extra 4 bytes p
page table entry is for the virtual address.

To reduce address translation time, computers use a cache dedicated to
address translations, called a translation look-aside buffer, or simply translation
buffer. They are described in more detail shortly.

Q3: Which block should be replaced on a virtual memory miss?
As mentioned above, the overriding operating system guideline is minimi
page faults. Consistent with this guideline, almost all operating systems t

444 Chapter 5 Memory-Hierarchy Design

ely to
vide a
ting
rmine
k in
cently

ions
no one
ain
t be
ne!)

ssary
lude
tered
replace the least-recently used (LRU) block, because that is the one least lik
be needed. To help the operating system estimate LRU, many machines pro
use bit or reference bit, which is set whenever a page is accessed. The opera
system periodically clears the use bits and later records them so it can dete
which pages were touched during a particular time period. By keeping trac
this way, the operating system can select a page that is among the least-re
referenced.

Q4: What happens on a write?
The level below main memory contains rotating magnetic disks that take mill
of clock cycles to access. Because of the great discrepancy in access time,
has yet built a virtual memory operating system that can write through m
memory straight to disk on every store by the CPU. (This remark should no
interpreted as an opportunity to become famous by being the first to build o
Thus, the write strategy is always write back. Since the cost of an unnece
access to the next-lower level is so high, virtual memory systems usually inc
a dirty bit so that the only blocks written to disk are those that have been al
since they were loaded from the disk.

FIGURE 5.40 The mapping of a virtual address to a physical address via a page table.

Main
memory

Page
table

Virtual address

Virtual page number Page offset

Physical address

5.7 Virtual Memory 445

some-
kes at
 and a

ess is
re gen-
e lo-

y
rely re-
n cache

tual
ection
age
stem
t be-

 the

ach
, the
s. Of
 type
n in-

de the
nds
 The
-bit

diffi-
 in-

cache
e ad-

n be-
cache

lock
st be

ache-
 cache
Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory, and
times paged themselves. This means that every memory access logically ta
least twice as long, with one memory access to obtain the physical address
second access to get the data. This cost is far too dear.

One remedy is to remember the last translation, so that the mapping proc
skipped if the current address refers to the same page as the last one. A mo
eral solution is to again rely on the principle of locality; if the accesses hav
cality, then the address translations for the accesses must also have locality. B
keeping these address translations in a special cache, a memory access ra
quires a second access to translate the data. This special address translatio
is referred to as a translation look-aside buffer or TLB, also called a translation
buffer or TB.

A TLB entry is like a cache entry where the tag holds portions of the vir
address and the data portion holds a physical page frame number, prot
field, valid bit, and usually a use bit and dirty bit. To change the physical p
frame number or protection of an entry in the page table, the operating sy
must make sure the old entry is not in the TLB; otherwise, the system won’
have properly. Note that this dirty bit means the corresponding page is dirty, not
that the address translation in the TLB is dirty nor that a particular block in
data cache is dirty.

Figure 5.41 shows the Alpha AXP 21064 data TLB organization, with e
step of a translation labeled. The TLB uses fully associative placement; thus
translation begins (steps 1 and 2) by sending the virtual address to all tag
course, the tag must be marked valid to allow a match. At the same time, the
of memory access is checked for a violation (also in step 2) against protectio
formation in the TLB.

For reasons similar to those in the cache case, there is no need to inclu
13 bits of the Alpha AXP 21064 page offset in the TLB. The matching tag se
the corresponding physical address through the 32:1 multiplexer (step 3).
page offset is then combined with the physical page frame to form a full 34
physical address (step 4).

As mentioned on page 422, one architectural challenge stems from the
culty of combining caches with virtual memory. Small caches can restrict the
dex to the page offset so that the index can proceed immediately. While the
address tags are being read, the virtual portion of the address (the page fram
dress) is sent to the TLB to be translated. The address comparison is the
tween the physical address from the TLB and the cache tag; hence the
index is virtual but the tags are physical.

Address translation can easily be on the critical path determining the c
cycle of the processor, since even in the simplest cache the TLB values mu
read and compared. Thus the TLB is usually smaller and faster than the c
address-tag memory, so that simultaneous TLB reading does not stretch the

446 Chapter 5 Memory-Hierarchy Design

 and
some-

ge is a
ring a

mory
 mak-

 fast

 net-
hit time. For example, in the Alpha AXP 21064, the data TLB has 32 blocks
the data cache has 256 blocks. Because of its critical nature, TLB access is
times pipelined.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the pa
question of balancing forces that favor a larger page size versus those favo
smaller size. The following favor a larger size:

■ The size of the page table is inversely proportional to the page size; me
(or other resources used for the memory map) can therefore be saved by
ing the pages bigger.

■ As mentioned on page 424 in section 5.5, a larger page size simplifies
cache hit times.

■ Transferring larger pages to or from secondary storage, possibly over a
work, is more efficient than transferring smaller pages.

FIGURE 5.41 Operation of the Alpha AXP 21064 data TLB during address translation.
The four steps of a TLB hit are shown as circled numbers. The three left fields of an entry are
valid (V), read permissions (R), and write permissions (W). Note that there is no specific ref-
erence, use bit, or dirty bit. Hence, a page replacement algorithm such as LRU must rely on
disabling reads and writes occasionally to record reads and writes to pages to measure us-
age and whether or not pages are dirty. The advantage of these omissions is that the TLB
need not be written during normal memory accesses.

Page-frame
address

<30>

Page
offset
<13>

V Physical address
<1><2><2> <21>

R W Tag
<30>

<21>

<13>
34-bit
physical
address

43

21

(Low-order 13 bits
 of address)

(High-order 21 bits of address)

32:1 Mux

5.8 Protection and Examples of Virtual Memory 447

t more
ses.

t mul-
PI as

mall
irtual
 un-
s
ge per
with
urse,
 (both
ern is
would

 by
 and
uters
ual

gram
ulti-

ers at
s, at
is is

start
e re-
uter
 saved
t pro-

rotect
on to
ime-
ning
 at the
m the
■ The number of TLB entries are restricted, so a larger page size means tha
memory can be mapped efficiently, thereby reducing the number of TLB mis

It is for this final reason that recent microprocessors have decided to suppor
tiple page sizes; for some programs, TLB misses can be as significant on C
the cache misses.

The main motivation for a smaller page size is conserving storage. A s
page size will result in less wasted storage when a contiguous region of v
memory is not equal in size to a multiple of the page size. The term for this
used memory in a page is internal fragmentation. Assuming that each process ha
three primary segments (text, heap, and stack), the average wasted stora
process will be 1.5 times the page size. This is negligible for machines
megabytes of memory and page sizes in the range of 4 KB to 8 KB. Of co
when the page sizes become very large (more than 32 KB), lots of storage
main and secondary) may be wasted, as well as I/O bandwidth. A final conc
process start-up time; many processes are small, so larger page sizes
lengthen the time to invoke a process.

The invention of multiprogramming, where a computer would be shared
several programs running concurrently, led to new demands for protection
sharing among programs. These are closely tied to virtual memory in comp
today, and so we cover the topic here along with two examples of virt
memory.

Multiprogramming leads to the concept of a process. Metaphorically, a pro-
cess is a program’s breathing air and living space—that is, a running pro
plus any state needed to continue running it. Time-sharing is a variation of m
programming that shares the CPU and memory with several interactive us
the same time, giving the illusion that all users have their own machines. Thu
any instant it must be possible to switch from one process to another. Th
called a process switch or context switch.

A process must operate correctly whether it executes continuously from
to finish, or is interrupted repeatedly and switched with other processes. Th
sponsibility for maintaining correct process behavior is shared by the comp
designer, who must ensure that the CPU portion of the process state can be
and restored, and the operating system designer, who must guarantee tha
cesses do not interfere with each others’ computations. The safest way to p
the state of one process from another would be to copy the current informati
disk. But a process switch would then take seconds—far too long for a t
sharing environment. This problem is solved by operating systems partitio
main memory so that several different processes have their state in memory
same time. This means that the operating system designer needs help fro

5.8 Protection and Examples of Virtual Memory

448 Chapter 5 Memory-Hierarchy Design

y an-
 data

 mem-

y ad-

always

s, then
ust be
mputer
signer

 user
 called

write.
nd the
 be-
hange

isable

rvisor

ated
 sys-
ode

e.

tual
have
l ad-

rther
computer designer to provide protection so that one process cannot modif
other. Besides protection, the computers also provide for sharing of code and
between processes, to allow communication between processes or to save
ory by reducing the number of copies of identical information.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks ever
dress to be sure that it falls between the two limits, traditionally called base and
bound. An address is valid if

Base ≤ Address ≤ Bound

In some systems the address is considered an unsigned number that is
added to the base, so the limit test is just

(Base + Address) ≤ Bound

If user processes are allowed to change the base and bounds register
users can’t be protected from each other. The operating system, however, m
able to change the registers so that it can switch processes. Hence, the co
designer has three more responsibilities in helping the operating system de
protect processes from each other:

1. Provide at least two modes, indicating whether the running process is a
process or an operating system process. This latter process is sometimes
a kernel process, a supervisor process, or an executive process.

2. Provide a portion of the CPU state that a user process can use but not
This includes the base/bound registers, a user/supervisor mode bit(s), a
exception enable/disable bit. Users are prevented from writing this state
cause the operating system cannot control user processes if users can c
the address range checks, give themselves supervisor privileges, or d
exceptions.

3. Provide mechanisms whereby the CPU can go from user mode to supe
mode and vice versa. The first direction is typically accomplished by a system
call, implemented as a special instruction that transfers control to a dedic
location in supervisor code space. The PC is saved from the point of the
tem call, and the CPU is placed in supervisor mode. The return to user m
is like a subroutine return that restores the previous user/supervisor mod

Base and bound constitute the minimum protection system, while vir
memory offers a more fine-grained alternative to this simple model. As we
seen, the CPU address must go through a mapping from virtual to physica
dress. This mapping provides the opportunity for the hardware to check fu

5.8 Protection and Examples of Virtual Memory 449

plest
xam-
ting
n to
rotec-
o the
ignal,
es be-
 and

page
 must
um-

puter
xpand
 Like
assi-
ng,
nd so
 the

ces of
 point
s, is

rove-

s may
uires
stem
s the
s-

hout
al of

ging,
ace

ys-
mory
divid-
 from
for errors in the program or to protect processes from each other. The sim
way of doing this is to add permission flags to each page or segment. For e
ple, since few programs today intentionally modify their own code, an opera
system can detect accidental writes to code by offering read-only protectio
pages. This page-level protection can be extended by adding user/kernel p
tion to prevent a user program from trying to access pages that belong t
kernel. As long as the CPU provides a read/write signal and a user/kernel s
it is easy for the address translation hardware to detect stray memory access
fore they can do damage. Such reckless behavior simply interrupts the CPU
invokes the operating system.

Processes are thus protected from one another by having their own
tables, each pointing to distinct pages of memory. Obviously, user programs
be prevented from modifying their page tables or protection would be circ
vented.

Protection can be escalated, depending on the apprehension of the com
designer or the purchaser. Rings added to the CPU protection structure e
memory access protection from two levels (user and kernel) to many more.
a military classification system of top secret, secret, confidential, and uncl
fied, concentric rings of security levels allow the most trusted to access anythi
the second most trusted to access everything except the innermost level, a
on until the “civilian” programs, which are the least trusted and, hence, have
most limited range of accesses. There may also be restrictions on what pie
memory can contain code—execute protection—and even on the entrance
between the levels. The Intel Pentium protection structure, which uses ring
described later in this section. It is not clear today whether rings are an imp
ment in practice over the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple ring
not suffice. Restricting the freedom given a program in the inner sanctum req
a new classification system. Instead of a military model, the analogy of this sy
is to keys and locks: A program can’t unlock access to the data unless it ha
key. For these keys, or capabilities, to be useful, the hardware and operating sy
tem must be able to explicitly pass them from one program to another wit
allowing a program itself to forge them. Such checking requires a great de
hardware support if time for checking keys is to be kept low.

A Paged Virtual Memory Example:
The Alpha AXP Memory Management and the 21064 TLB

The Alpha AXP architecture uses a combination of segmentation and pa
providing protection while minimizing page table size. The 64-bit address sp
is first divided into three segments: seg0 (bits 63 – 41 = 0...00), kseg (bits 63 – 41
= 0...01), and seg1 (bits 63 to 41 = 1...11). kseg is reserved for the operating s
tem kernel, has uniform protection for the whole space, and does not use me
management. User processes use seg0, which is mapped into pages with in
ual protection. Figure 5.42 shows the layout of seg0 and seg1. seg0 grows

450 Chapter 5 Memory-Hierarchy Design

 some
vides
ge table

ce is
p the
se page
l3.

ation
d then
table.
mem-
l3 ad-
um to
ss is
 table
 all
.
.
 half
address 0 upward, while seg1 grows downward to 0. Many systems today use
such combination of predivided segments and paging. This approach pro
many advantages: segmentation divides the address space and conserves pa
space, while paging provides virtual memory, relocation, and protection.

Even with this division, the size of page tables for the 64-bit address spa
alarming. Hence the Alpha uses a three-level hierarchical page table to ma
address space to keep the size reasonable. The addresses for each of the
tables come from three “level” fields, labeled level1, level2, and leve
Figure 5.43 shows address translation in the Alpha AXP. Address transl
starts with adding the level1 address field to the page table base register an
reading memory from this location to get the base of the second-level page
The level2 address field is in turn added to this newly fetched address, and
ory is accessed again to determine the base of the third page table. The leve
dress field is added to this base address, and memory is read using this s
(finally) get the physical address of the page being referenced. This addre
concatenated with the page offset to get the full physical address. Each page
in the Alpha AXP architecture is constrained to fit within a single page, so
page table addresses are physical addresses that need no further translation

The Alpha uses a 64-bit page table entry (PTE) in each of these page tables
The first 32 bits contain the physical page frame number, and the other
includes the following five protection fields:

■ Valid—Says that the page frame number is valid for hardware translation

■ User read enable—Allows user programs to read data within this page

■ Kernel read enable—Allows the kernel to read data within this page

■ User write enable—Allows user programs to write data within this page

■ Kernel write enable—Allows the kernel to write data within this page

FIGURE 5.42 The organization of seg0 and seg1 in the Alpha. User processes live in
seg0, while seg1 is used for portions of the page tables. seg0 includes a downward growing
stack, text and data, and an upward growing heap.

seg0
Address space

seg1
Address space

5.8 Protection and Examples of Virtual Memory 451

eases.
 three
hird-

g, and
ach of
aves
ost-

 bits
In addition, the PTE has fields reserved for systems software to use as it pl
Since the Alpha goes through three levels of tables on a TLB miss, there are
potential places to check protection restrictions. The Alpha obeys only the t
level PTE, checking the first two only to be sure the valid bit is set.

Since the PTEs are 8 bytes long, the page tables are exactly one page lon
the Alpha AXP 21064 has 8-KB pages, each page table has 1024 PTEs. E
the three level fields are 10 bits long and the page offset is 13 bits, which le
64 – (3 × 10 + 13) or 21 bits to be defined. If this is a seg0 address, the m
significant bit is a 0, and for seg1 the two most-significant bits are 11two. Alpha
requires all bits to the left of the level1 field to be identical. For seg0 these 21

FIGURE 5.43 The mapping of an Alpha virtual address. Each page table is exactly one
page long, so each level field is n bits wide where 2n = page size/8. The Alpha AXP architec-
ture document allows the page size to grow from 8 KB in the current implementations to 16
KB, 32 KB, or 64 KB in the future. The virtual address for each page size grows from the cur-
rent 43 bits to 47, 51, or 55 bits and the maximum physical address size grows from the cur-
rent 41 bits to 45, 47, or 48 bits. The 21064 uses 8-KB pages, but it implements just 34 bits
of the maximum 41-bit physical address possible in this scheme.

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

452 Chapter 5 Memory-Hierarchy Design

dress-
ysi-

cture
21064

page
um

ill be
ansion

 user
e ta-
, the

 oper-
ry be-
ddress

ich
esses
f each
 se-
e mini-
match
ust be
are all zeros and for seg1 they are all ones. This means the 21064 virtual ad
es are really 43 bits long instead of the full 64 bits found in registers. The ph
cal addresses would appear to be 32 + 13 or 45 bits, but Alpha AXP archite
requires that the physical address be smaller than the virtual address. The
saves space on the chip by further limiting the physical address to 34 bits.

The maximum virtual address and physical address is then tied to the
size. The architecture document allows for the Alpha to expand the minim
page size from 8 KB up to 64 KB, thereby increasing the virtual address to 3× 13
+ 16 or 55 bits and the maximum physical address to 32 + 16 or 48 bits; it w
interesting to see whether or not operating systems accommodate such exp
plans over the life of the Alpha.

While we have explained translation of legal addresses, what prevents the
from creating illegal address translations and getting into mischief? The pag
bles themselves are protected from being written by user programs. Thus
user can try any virtual address, but by controlling the page table entries the
ating system controls what physical memory is accessed. Sharing of memo
tween processes is accomplished by having a page table entry in each a
space point to the same physical memory page.

The first implementation of this architecture was the Alpha AXP 21064, wh
employs two TLBs to reduce address translation time, one for instruction acc
and another for data accesses. Figure 5.44 shows the key parameters o
TLB. The Alpha allows the operating system to tell the TLB that contiguous
quences of pages can act as one: the options are 8, 64, and 512 times th
mum page size. Thus the variable page size of a PTE mapping makes the
more challenging, as the size of the space being mapped in the PTE also m
checked to determine the match. Figure 5.41 above describes the data TLB.

Parameter Description

Block size 1 PTE (8 bytes)

Hit time 1 clock cycle

Miss penalty
(average)

20 clock cycles

TLB size Instruction: 8 PTE for 8-KB pages, 4 PTE for 4-MB pages
(96 bytes total)
Data: 32 PTE for 8-KB, 64-KB, 512-KB, or 4-MB pages
(256 bytes total)

Block selection Random, but not last used

Write strategy (Not applicable)

Block placement Fully associative

FIGURE 5.44 Memory-hierarchy parameters of the Alpha AXP 21064 TLB.

5.8 Protection and Examples of Virtual Memory 453

day,
ating
imary
n the
t the

he
 frills

r vir-
regis-
ed the
rtual
fields
, with

 few
ult,

del:
ds to
ode.

es be-
 tables
 to be

pace,
. The
ss pa-

on,
ore-
el of
hole
ating
ccess

 sys-
mple
Memory management in the Alpha 21064 is typical of most computers to
relying on page-level address translation and correct operation of the oper
system to provide safety to multiple processes sharing the computer. The pr
difference is that Alpha has extended the virtual address beyond 32 bits. I
next section we see a protection scheme for individuals who want to trus
operating system as little as possible.

A Segmented Virtual Memory Example:
Protection in the Intel Pentium

The second system is the most dangerous system a man ever designs… . T
general tendency is to over-design the second system, using all the ideas and
that were cautiously sidetracked on the first one.

F. P. Brooks, Jr., The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing fo
tual memory or for protection. Segments had base registers but no bound
ters and no access checks, and before a segment register could be load
corresponding segment had to be in physical memory. Intel’s dedication to vi
memory and protection is evident in the successors to the 8086, with a few
extended to support larger addresses. This protection scheme is elaborate
many details carefully designed to try to avoid security loopholes. The next
pages highlight a few of the Intel safeguards; if you find the reading diffic
imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection mo
the Pentium has four levels of protection. The innermost level (0) correspon
Alpha kernel mode and the outermost level (3) corresponds to Alpha user m
The Pentium has separate stacks for each level to avoid security breach
tween the levels. There are also data structures analogous to Alpha page
that contain the physical addresses for segments, as well as a list of checks
made on translated addresses.

The Intel designers did not stop there. The Pentium divides the address s
allowing both the operating system and the user access to the full space
Pentium user can call an operating system routine in this space and even pa
rameters to it while retaining full protection. This safe call is not a trivial acti
since the stack for the operating system is different from the user’s stack. M
over, the Pentium allows the operating system to maintain the protection lev
the called routine for the parameters that are passed to it. This potential loop
in protection is prevented by not allowing the user process to ask the oper
system to access something indirectly that it would not have been able to a
itself. (Such security loopholes are called Trojan horses.)

The Intel designers were guided by the principle of trusting the operating
tem as little as possible, while supporting sharing and protection. As an exa

454 Chapter 5 Memory-Hierarchy Design

s and
ents.

-date
hall
ction,

iva-

dress-
s in the
 data

es

lid

ical

t is

for

the
s of

d ad-
escrip-
by the
ing.

l pro-

ro-
lobal
local

 the
of the use of such protected sharing, suppose a payroll program writes check
also updates the year-to-date information on total salary and benefits paym
Thus, we want to give the program the ability to read the salary and year-to
information, and modify the year-to-date information but not the salary. We s
see the mechanism to support such features shortly. In the rest of this subse
we will look at the big picture of the Pentium protection and examine its mot
tion.

Adding Bounds Checking and Memory Mapping
The first step in enhancing the Intel processor was getting the segmented ad
ing to check bounds as well as supply a base. Rather than a base address, a
8086, segment registers in the Pentium contain an index to a virtual memory
structure called a descriptor table. Descriptor tables play the role of page tabl
in the Alpha. On the Pentium the equivalent of a page table entry is a segment
descriptor. It contains fields found in PTEs:

■ A present bit—equivalent to the PTE valid bit, used to indicate this is a va
translation

■ A base field—equivalent to a page frame address, containing the phys
address of the first byte of the segment

■ An access bit—like the reference bit or use bit in some architectures tha
helpful for replacement algorithms

■ An attributes field—specifies the valid operations and protection levels
operations that use this segment

There is also a limit field, not found in paged systems, which establishes
upper bound of valid offsets for this segment. Figure 5.45 shows example
Pentium segment descriptors.

Pentium provides an optional paging system in addition to this segmente
dressing, where the upper portion of the 32-bit address selects the segment d
tor and the middle portion is used as an index into the page table selected
descriptor. We describe below the protection system that does not rely on pag

Adding Sharing and Protection
To provide for protected sharing, half of the address space is shared by al
cesses and half is unique to each process, called global address space and local
address space, respectively. Each half is given a descriptor table with the app
priate name. A descriptor pointing to a shared segment is placed in the g
descriptor table, while a descriptor for a private segment is placed in the
descriptor table.

A program loads a Pentium segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to

5.8 Protection and Examples of Virtual Memory 455

e off-
n the

legal
se a

 up-
pro-
field
en be
rip-
attributes in the descriptor, the physical address being formed by adding th
set in the CPU to the base in the descriptor, provided the offset is less tha
limit field. Every segment descriptor has a separate 2-bit field to give the
access level of this segment. A violation occurs only if the program tries to u
segment with a lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned above to
date the year-to-date information without allowing it to update salaries. The
gram could be given a descriptor to the information that has the writable
clear, meaning it can read but not write the data. A trusted program can th
supplied that will only write the year-to-date information and is given a desc

FIGURE 5.45 The Pentium segment descriptors are distinguished by bits in the at-
tributes field. Base, limit, present, readable, and writable are all self-explanatory. D gives
the default addressing size of the instructions: 16 bits or 32 bits. G gives the granularity of the
segment limit: 0 means in bytes and 1 means in 4-KB pages. G is set to 1 when paging is
turned on to set the size of the page tables. DPL means descriptor privilege level—this is
checked against the code privilege level to see if the access will be allowed. Conforming says
the code takes on the privilege level of the code being called rather than the privilege level of
the caller; it is used for library routines. The expand-down field flips the check to let the base
field be the high-water mark and the limit field be the low-water mark. As one might expect,
this is used for stack segments that grow down. Word count controls the number of words
copied from the current stack to the new stack on a call gate. The other two fields of the call
gate descriptor, destination selector and destination offset, select the descriptor of the desti-
nation of the call and the offset into it, respectively. There are many more than these three
segment descriptors in the Pentium.

Attributes Base Limit

8 bits 4 bits 32 bits 24 bits

Present

Code segment

DPL 11 Conforming Readable Accessed

Present

Data segment

DPL 10 Expand down Writable Accessed

Attributes Destination selector Destination offset

8 bits 16 bits 16 bits

Word
count

8 bits

Present

Call gate

DPL 0 00100

GD

456 Chapter 5 Memory-Hierarchy Design

the
 This
alled
read
et the
sys-
o up-
 that

, can
ng the
estrict
 proper
of the

ment
e-
offset
nt the
ode
l pro-
on is

ither
 de-
, the
local
s the
dware
 will
 stack.
me-

ting
ystem’s
lem

ction
f the
ed into
tor with the writable field set (Figure 5.45). The payroll program invokes
trusted code using a code segment descriptor with the conforming field set.
means the called program takes on the privilege level of the code being c
rather than the privilege level of the caller. Hence, the payroll program can
the salaries and call a trusted program to update the year-to-date totals, y
payroll program cannot modify the salaries. If a Trojan horse exists in this
tem, to be effective it must be located in the trusted code whose only job is t
date the year-to-date information. The argument for this style of protection is
limiting the scope of the vulnerability enhances security.

Adding Safe Calls from User to OS Gates and Inheriting Protection
Level for Parameters
Allowing the user to jump into the operating system is a bold step. How, then
a hardware designer increase the chances of a safe system without trusti
operating system or any other piece of code? The Pentium approach is to r
where the user can enter a piece of code, to safely place parameters on the
stack, and to make sure the user parameters don’t get the protection level
called code.

To restrict entry into others’ code, the Pentium provides a special seg
descriptor, or call gate, identified by a bit in the attributes field. Unlike other d
scriptors, call gates are full physical addresses of an object in memory; the
supplied by the CPU is ignored. As stated above, their purpose is to preve
user from randomly jumping anywhere into a protected or more-privileged c
segment. In our programming example, this means the only place the payrol
gram can invoke the trusted code is at the proper boundary. This restricti
needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that ne
trusts the other? The solution is found in the word count field in the bottom
scriptor in Figure 5.45. When a call instruction invokes a call gate descriptor
descriptor copies the number of words specified in the descriptor from the
stack onto the stack corresponding to the level of this segment. This allow
user to pass parameters by first pushing them onto the local stack. The har
then safely transfers them onto the correct stack. A return from a call gate
pop the parameters off both stacks and copy any return values to the proper
Note that this model is incompatible with the current practice of passing para
ters in registers.

This scheme still leaves open the potential loophole of having the opera
system use the user’s address, passed as parameters, with the operating s
security level, instead of with the user’s level. The Pentium solves this prob
by dedicating 2 bits in every CPU segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instru
that sets this 2-bit field in all address parameters with the protection level o
user that called the routine. Thus, when these address parameters are load

5.9 Crosscutting Issues in the Design of Memory Hierarchies 457

roper
revent
 those

del,
 en-
o, the
n of
spe-
me
on-

any
ld ac-
 infor-

sid-
on of
n its
ased

amen-

tions
eak
ere is
ove,
s on

 CPU
the segment registers, they will set the requested protection level to the p
value. The Pentium hardware then uses the requested protection level to p
any foolishness: No segment can be accessed from the system routine using
parameters if it has a more-privileged protection level than requested.

Summary: Protection on the Alpha versus the Pentium

If the Pentium protection model looks harder to build than the Alpha mo
that’s because it is. This effort must be especially frustrating for the Pentium
gineers, since few customers use the elaborate protection mechanism. Als
fact that the protection model is a mismatch for the simple paging protectio
UNIX means it will be used only by someone writing an operating system e
cially for this computer. NT from Microsoft is the best candidate, but only ti
will tell whether the performance cost of such protection is justified for a pers
al computer operating system.

One wild card is the increasing popularity of the Internet, where virtually
machine can become an information provider, and hence almost anyone cou
cess the desktop computer. This openness leads to extraordinary sharing of
mation, but it also gives a powerful opportunity for malicious behavior.

We conclude this section with questions rather than answers: Will the con
erable protection engineering effort, which must be borne by each generati
the 80x86 family, be put to good use? Will it prove any safer in practice tha
paging system? Will the popularity of the Internet lead to demands of incre
support for protection in all computers?

This section describes four topics discussed in other chapters that are fund
tal to memory-hierarchy design.

Superscalar CPU and Number of Ports to the Cache

One complexity of the advanced designs of Chapter 4 is that multiple instruc
can be issued within a single clock cycle. Clearly, if there is not sufficient p
bandwidth from the cache to match the peak demands of the instructions, th
little benefit to designing such parallelism in the processor. As mentioned ab
similar reasoning applies to CPUs that want to continue executing instruction
a cache miss: clearly the memory hierarchy must also be nonblocking or the
benefits little.

5.9 Crosscutting Issues in the Design of
Memory Hierarchies

458 Chapter 5 Memory-Hierarchy Design

truc-
s per

 data
rtainly

ns is
pec-
ere
ption
d in-
pond-

he to
ts of
s (see

aral-

isses.
op
For example, the IBM RS/6000 Power 2 model 900 can issue up to six ins
tions per clock cycle, and its data cache can supply two 128-bit accesse
clock cycle. The RS/6000 does this by making the instruction cache and
cache wide and by making two reads to the data cache each clock cycle, ce
likely to be the critical path in the 71.5-MHz machine.

Speculative Execution and the Memory System

Inherent in CPUs that support speculative execution or conditional instructio
the possibility of generating invalid addresses that would not occur without s
ulative execution. Not only would this be incorrect behavior if exceptions w
taken, the benefits of speculative execution would be swamped by false exce
overhead. Hence the memory system must identify speculatively execute
structions and conditionally executed instructions and suppress the corres
ing exception.

By similar reasoning, we cannot allow such instructions to cause the cac
stall on a miss, for again unnecessary stalls could overwhelm the benefi
speculation. Hence these CPUs must be matched with nonblocking cache
page 414).

Compiler Optimization: Instruction-Level Parallelism
versus Reducing Cache Misses

Sometimes the compiler must choose between improving instruction-level p
lelism and improving cache performance. For example, the code below,

for (i = 0; i < 512; i = i+1)

for (j = 1; j < 512; j = j+1)

x[i][j] = 2 * x[i][j-1];

accesses the data in the order they are stored, thereby minimizing cache m
Unfortunately, the dependency limits parallel execution. Unrolling the lo
shows this dependency:

for (i = 0; i < 512; i = i+1)

for (j = 1; j < 512; j = j+4){

x[i][j] = 2 * x[i][j-1];

x[i][j+1] = 2 * x[i][j];

x[i][j+2] = 2 * x[i][j+1];

x[i][j+3] = 2 * x[i][j+2];

};

5.9 Crosscutting Issues in the Design of Memory Hierarchies 459

ment.

lism
cache

 as the
etween

e in-
s the

n the
input
nd the
roach
cess
is-

y the
 words
were
rated

tale-
ms,

ory
Each of the last three statements has a RAW dependency on the prior state
We can improve parallelism by interchanging the two loops:

for (j = 1; j < 512; j = j+1)

for (i = 0; i < 512; i = i+1)

x[i][j] = 2 * x[i][j-1];

Unrolling the loop shows this parallelism:

for (j = 1; j < 512; j = j+1)

for (i = 0; i < 512; i = i+4) {

x[i][j] = 2 * x[i][j-1];

x[i+1][j] = 2 * x[i+1][j-1];

x[i+2][j] = 2 * x[i+2][j-1];

x[i+3][j] = 2 * x[i+3][j-1];

};

Now all four statements in the loop are independent! Alas, increasing paralle
leads to accesses that hop through memory, reducing spatial locality and
hit rates.

I/O and Consistency of Cached Data

Because of caches, data can be found in memory and in the cache. As long
CPU is the sole device changing or reading the data and the cache stands b
the CPU and memory, there is little danger in the CPU seeing the old or stale
copy. I/O devices give the opportunity for other devices to cause copies to b
consistent or for other devices to read the stale copies. Figure 5.46 illustrate
problem, generally referred to as the cache-coherency problem.

The question is this: Where does the I/O occur in the computer—betwee
I/O device and the cache or between the I/O device and main memory? If
puts data into the cache and output reads data from the cache, both I/O a
CPU see the same data, and the problem is solved. The difficulty in this app
is that it interferes with the CPU. I/O competing with the CPU for cache ac
will cause the CPU to stall for I/O. Input will also interfere with the cache by d
placing some information with the new data that is unlikely to be accessed b
CPU soon. For example, on a page fault the CPU may need to access a few
in a page, but a program is not likely to access every word of the page if it
loaded into the cache. Given the integration of caches onto the same integ
circuit, it is also difficult for that interface to be visible.

The goal for the I/O system in a computer with a cache is to prevent the s
data problem while interfering with the CPU as little as possible. Many syste
therefore, prefer that I/O occur directly to main memory, with main mem

460 Chapter 5 Memory-Hierarchy Design

n up-
(This
work.
ated
cach-

ch, the
ut oc-
y are
mes a
l with
he, the
acting as an I/O buffer. If a write-through cache is used, then memory has a
to-date copy of the information, and there is no stale-data issue for output.
is a reason many machines use write through.) Input requires some extra
The software solution is to guarantee that no blocks of the I/O buffer design
for input are in the cache. In one approach, a buffer page is marked as non
able; the operating system always inputs to such a page. In another approa
operating system flushes the buffer addresses from the cache after the inp
curs. A hardware solution is to check the I/O addresses on input to see if the
in the cache; to avoid slowing down the cache to check addresses, someti
duplicate set of tags are used to allow checking of I/O addresses in paralle
processor cache accesses. If there is a match of I/O addresses in the cac

FIGURE 5.46 The cache-coherency problem. A' and B' refer to the cached copies of A
and B in memory. (a) shows cache and main memory in a coherent state. In (b) we assume
a write-back cache when the CPU writes 550 into A. Now A' has the value but the value in
memory has the old, stale value of 100. If an output used the value of A from memory, it would
get the stale data. In (c) the I/O system inputs 440 into the memory copy of B, so now B' in
the cache has the old, stale data.

CPU CPU CPU

100

200

A'

B'

B

A

Cache Cache Cache

Memory Memory Memory

550

200

A'

B'

200

I/O
output A
gives 100

B

A

100

100 100 100

200

A'

B'

440

I/O
input

440 to B

(a) Cache and
memory coherent:
A' = A & B' = B

(b) Cache and
memory incoherent:
A' ≠ A (A stale)

(c) Cache and
memory incoherent:
B' ≠ B (B' stale)

B

A

I/O

200

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 461

lso be
.

. Un-
hen-
ave
r pro-

proto-

chy;
nents
.

e on
tion
alid
nter-
 set to
hereby

 en-
ts of
 TLB

s are
l likely
ure
ine
cess
led,
tions,

it sets

 la-
ss is
 the
ully
ween
s, the
n. An
 or if
cache entries are invalidated to avoid stale data. All these approaches can a
used for output with write-back caches. More about this is found in Chapter 6

The cache-coherency problem applies to multiprocessors as well as I/O
like I/O, where multiple data copies are a rare event—one to be avoided w
ever possible—a program running on multiple processors will want to h
copies of the same data in several caches. Performance of a multiprocesso
gram depends on the performance of the system when sharing data. The
cols to maintain coherency for multiple processors are called cache-coherency
protocols, and are described in Chapter 8.

Thus far we have given glimpses of the Alpha AXP 21064 memory hierar
this section unveils the full design and shows the performance of its compo
for the SPEC92 programs. Figure 5.47 gives the overall picture of this design

Let's really start at the beginning, when the Alpha is turned on. Hardwar
the chip loads the instruction cache from an external PROM. This initializa
allows the 8-KB instruction cache to omit a valid bit, for there are always v
instructions in the cache; they just might not be the ones your program is i
ested in. The hardware does clear the valid bits in the data cache. The PC is
the kseg segment so that the instruction addresses are not translated, t
avoiding the TLB.

One of the first steps is to update the instruction TLB with valid page table
tries (PTEs) for this process. Kernel code updates the TLB with the conten
the appropriate page table entry for each page to be mapped. The instruction
has eight entries for 8-KB pages and four for 4-MB pages. (The 4-MB page
used by large programs such as the operating system or data bases that wil
touch most of their code.) A miss in the TLB invokes the Privileged Architect
Library (PAL code) software that updates the TLB. PAL code is simply mach
language routines with some implementation-specific extensions to allow ac
to low-level hardware, such as the TLB. PAL code runs with exceptions disab
and instruction accesses are not checked for memory management viola
allowing PAL code to fill the TLB.

Once the operating system is ready to begin executing a user process,
the PC to the appropriate address in segment seg0.

We are now ready to follow memory hierarchy in action: Figure 5.47 is
beled with the steps of this narrative. The page frame portion of this addre
sent to the TLB (step 1), while the 8-bit index from the page offset is sent to
direct-mapped 8-KB (256 32-byte blocks) instruction cache (step 2). The f
associative TLB simultaneously searches all 12 entries to find a match bet
the address and a valid PTE (step 3). In addition to translating the addres
TLB checks to see if the PTE demands that this access result in an exceptio
exception might occur if either this access violates the protection on the page

5.10 Putting It All Together:
The Alpha AXP 21064 Memory Hierarchy

462 Chapter 5 Memory-Hierarchy Design
FIGURE 5.47 The overall picture of the Alpha AXP 21064 memory hierarchy. Individual components can be seen in
greater detail in Figures 5.5 (page 381), 5.28 (page 426), and 5.41 (page 446). While the data TLB has 32 entries, the in-
struction TLB has just 12.

V Data
<1>

D
<1> <13> <256>

=?

(65,536
blocks)

<13>

 Tag Index

<16>

Main
memory

Tag

Victim buffer

Write buffer

Block
offset

Index

<8> <5>

1

1

2

2

3

5

5

6

7

8
9

10

11 12

12

12

13

14

15

16

17

18

18

19

19

19

20

17

21

22

23

23

23

24

25

26

27

28

28

 Page-frame
 address <30>

Instruction <64> Data in <64>Data Out <64>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

<64>

<64>

<29>
<29>

<64>

(High-order 21 bits of
 physical address)

Page
offset<13>

Block
offset

Index

<8> <5>

Data page-frame
 address <30>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

(High-order 21 bits of
 physical address)

Page
offset<13>

I
T
L
B

I
C
A
C
H
E

L2
C
A
C
H
E

D
C
A
C
H
E

D
T
L
B

PC

CPU

Alpha AXP 21064

=?

Instruction prefetch stream buffer

Tag <29> Data <256>
=?

Tag <29> Data <256>

Data
<21> <64>

=?

2

4

5

9

12
(256
blocks)

Tag Valid Data
<1> <21> <64>

=?

(256
blocks)

Tag

Delayed write buffer

12:1 Mux

4:1 Mux

32:1 Mux

Magnetic
disk

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 463

lated
proper
f the

-level
e de-
 sent
uc-
teps 6

che
d to
iss

y sys-
yte
it tag
 if it
ycles
n the

 a re-
e in-

n. It
make
dress

sical
mory
ght
s

 are
.

ge
ycles
ata 16

 some
ck
 are
ta are

im
the page is not in main memory. If there is no exception, and if the trans
physical address matches the tag in the instruction cache (step 4), then the
8 bytes of the 32-byte block are furnished to the CPU using the lower bits o
page offset (step 5), and the instruction stream access is done.

A miss, on the other hand, simultaneously starts an access to the second
cache (step 6) and checks the prefetch instruction stream buffer (step 7). If th
sired instruction is found in the stream buffer (step 8), the critical 8 bytes are
to the CPU, the full 32-byte block of the stream buffer is written into the instr
tion cache (step 9), and the request to the second-level cache is canceled. S
to 9 take just a single clock cycle.

If the instruction is not in the prefetch stream buffer, the second-level ca
continues trying to fetch the block. The 21064 microprocessor is designe
work with direct-mapped second-level caches from 128 KB to 8 MB with a m
penalty between 3 and 16 clock cycles. For this section we use the memor
tem of the DEC 3000 model 800 Alpha AXP. It has a 2-MB (65,536 32-b
blocks) second-level cache, so the 29-bit block address is divided into a 13-b
and a 16-bit index (step 10). The cache reads the tag from that index and
matches (step 11), the cache returns the critical 16 bytes in the first 5 clock c
and the other 16 bytes in the next 5 clock cycles (step 12). The path betwee
first- and second-level cache is 128 bits wide (16 bytes). At the same time,
quest is made for the next sequential 32-byte block, which is loaded into th
struction stream buffer in the next 10 clock cycles (step 13).

The instruction stream does not rely on the TLB for address translatio
simply increments the physical address of the miss by 32 bytes, checking to
sure that the new address is within the same page. If the incremented ad
crosses a page boundary, then the prefetch is suppressed.

If the instruction is not found in the secondary cache, the translated phy
address is sent to memory (step 14). The DEC 3000 model 800 divides me
into four memory mother boards (MMB), each of which contains two to ei
SIMMs (single inline memory modules). The SIMMs come with eight DRAM
for information plus one DRAM for error protection per side, and the options
single- or double-sided SIMMs using 1-Mbit, 4-Mbit, or 16-Mbit DRAMs
Hence the memory capacity of the model 800 is 8 MB (4 × 2 × 8 × 1 × 1/8) to
1024 MB (4 × 8 × 8 × 16 × 2/8), always organized 256 bits wide. The avera
time to transfer 32 bytes from memory to the secondary cache is 36 clock c
after the processor makes the request. The second-level cache loads this d
bytes at a time.

Since the second-level cache is a write-back cache, any miss can lead to
old block being written back to memory. The 21064 places this "victim" blo
into a victim buffer to get out of the way of new data (step 15). The new data
loaded into the cache as soon as they arrive (step 16), and then the old da
written from the victim buffer (step 17). There is a single block in the vict
buffer, so a second miss would need to stall until the victim buffer empties.

464 Chapter 5 Memory-Hierarchy Design

data
 the

iative
 to 4

 In
e page
age
hing

e tag
g the

o the

ion of
18 and
. The
he data
 write
5, the
atch,
ache
laced

uffer

hole
ten
e ad-
 if the
an be
idth

 is a
 cache
lock
of 16
 write

ed to
the
ty. A
level
Suppose this initial instruction is a load. It will send the page frame of its
address to the data TLB (step 18) at the same time as the 8-bit index from
page offset is sent to the data cache (step 19). The data TLB is a fully assoc
cache containing 32 PTEs, each of which represents page sizes from 8 KB
MB. A TLB miss will trap to PAL code to load the valid PTE for this address.
the worst case, the page is not in memory, and the operating system gets th
from disk (step 20). Since millions of instructions could execute during a p
fault, the operating system will swap in another process if there is somet
waiting to run.

Assuming that we have a valid PTE in the data TLB (step 21), the cach
and the physical page frame are compared (step 22), with a match sendin
desired 8 bytes from the 32-byte block to the CPU (step 23). A miss goes t
second-level cache, which proceeds exactly like an instruction miss.

Suppose the instruction is a store instead of a load. The page frame port
the data address is again sent to the data TLB and the data cache (steps
19), which checks for protection violations as well as translates the address
physical address is then sent to the data cache (steps 21 and 22). Since t
cache uses write through, the store data are simultaneously sent to the
buffer (step 24) and the data cache (step 25). As explained on page 42
21064 pipelines write hits. The data address of this store is checked for a m
and at the same time the data from the previous write hit are written to the c
(step 26). If the address check was a hit, then the data from this store are p
in the write pipeline buffer. On a miss, the data are just sent to the write b
since the data cache does not allocate on a write miss.

The write buffer takes over now. It has four entries, each containing a w
cache block. If the buffer is full, then the CPU must stall until a block is writ
to the second-level cache. If the buffer is not full, the CPU continues and th
dress of the word is presented to the write buffer (step 27). It checks to see
word matches any block already in the buffer so that a sequence of writes c
stitched together into a full block, thereby optimizing use of the write bandw
between the first- and second-level cache.

All writes are eventually passed on to the second-level cache. If a write
hit, then the data are written to the cache (step 28). Since the second-level
uses write back, it cannot pipeline writes: a full 32-byte block write takes 5 c
cycles to check the address and 10 clock cycles to write the data. A write
bytes or less takes 5 clock cycles to check the address and 5 clock cycles to
the data. In either case the cache marks the block as dirty.

If the access to the second-level cache is a miss, the victim block is check
see if it is dirty; if so, it is placed in the victim buffer as before (step 15). If
new data are a full block, then the data are simply written and marked dir
partial block write results in an access to main memory since the second-
cache policy is to allocate on a write miss.

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 465

per-
ma-
LBs,
n time

%

%

%

%

%

Performance of the 21064 Memory Hierarchy

How well does the 21064 work? The bottom line in this evaluation is the
centage of time lost while the CPU is waiting for the memory hierarchy. The
jor components are the instruction and data caches, instruction and data T
and the secondary cache. Figure 5.48 shows the percentage of the executio

CPI Miss rates

Program I cache D cache L2
Total
cache

Instr.
issue

Other
stalls

Total
CPI I cache D cache L2

TPC-B (db1) 0.57 0.53 0.74 1.84 0.79 1.67 4.30 8.10% 41.00% 7.40%

TPC-B (db2) 0.58 0.48 0.75 1.81 0.76 1.73 4.30 8.30% 34.00% 6.20%

AlphaSort 0.09 0.24 0.50 0.83 0.70 1.28 2.81 1.30% 22.00% 17.40%

Avg comm 0.41 0.42 0.66 1.49 0.75 1.56 3.80 5.90% 32.33% 10.33%

espresso 0.06 0.13 0.01 0.20 0.74 0.57 1.51 0.84% 9.00% 0.33

li 0.14 0.17 0.00 0.31 0.75 0.96 2.02 2.04% 9.00% 0.21%

eqntott 0.02 0.16 0.01 0.19 0.79 0.41 1.39 0.22% 11.00% 0.55%

compress 0.03 0.30 0.04 0.37 0.77 0.52 1.66 0.48% 20.00% 1.19

sc 0.20 0.18 0.04 0.42 0.78 0.85 2.05 2.79% 12.00% 0.93%

gcc 0.33 0.25 0.02 0.60 0.77 1.14 2.51 4.67% 17.00% 0.46%

Avg SPECint92 0.13 0.20 0.02 0.35 0.77 0.74 1.86 1.84% 13.00% 0.61

spice 0.01 0.68 0.02 0.71 0.83 0.99 2.53 0.21% 36.00% 0.43%

doduc 0.16 0.26 0.00 0.42 0.77 1.58 2.77 2.30% 14.00% 0.11%

mdljdp2 0.00 0.31 0.01 0.32 0.83 2.18 3.33 0.06% 28.00% 0.21%

wave5 0.04 0.39 0.04 0.47 0.68 0.84 1.99 0.57% 24.00% 0.89%

tomcatv 0.00 0.42 0.04 0.46 0.67 0.79 1.92 0.06% 20.00% 0.89%

ora 0.00 0.10 0.00 0.10 0.72 1.25 2.07 0.05% 7.00% 0.10%

alvinn 0.03 0.49 0.00 0.52 0.62 0.25 1.39 0.38% 18.00% 0.01%

ear 0.01 0.15 0.00 0.16 0.65 0.24 1.05 0.11% 9.00% 0.01%

mdljsp2 0.00 0.09 0.00 0.09 0.80 1.67 2.56 0.05% 5.00% 0.11%

swm256 0.00 0.24 0.01 0.25 0.68 0.37 1.30 0.02% 13.00% 0.32%

su2cor 0.03 0.74 0.01 0.78 0.66 0.71 2.15 0.41% 43.00% 0.16%

hydro2d 0.01 0.54 0.01 0.56 0.69 1.23 2.48 0.09% 32.00% 0.32%

nasa7 0.01 0.68 0.02 0.71 0.68 0.64 2.03 0.19% 37.00% 0.25

fpppp 0.52 0.17 0.00 0.69 0.70 0.97 2.36 7.42% 7.00% 0.01%

Avg SPECfp92 0.06 0.38 0.01 0.45 0.71 0.98 2.14 0.85% 20.93% 0.27

FIGURE 5.48 Percentage of execution time due to memory latency and miss rates for three commercial programs
and the SPEC92 benchmarks (see Chapter 1) running on the Alpha AXP 21064 in the DEC 3000 model 800. The first
two commercial programs are pieces of the TP1 benchmark and the last is a sort of 100-byte records in a 100-MB database.

466 Chapter 5 Memory-Hierarchy Design

ercial
avily,
ution

int92
te, and
, 21%,

ory
igure

imary
esult
pen-

em-
t the
due to the memory hierarchy for the SPEC92 programs and three comm
programs. The three commercial programs tax the memory much more he
with secondary cache misses alone responsible for 20% to 28% of the exec
time.

Figure 5.48 also shows the miss rates for each component. The SPEC
programs have about a 2% instruction miss rate, a 13% data cache miss ra
a 0.6% second-level cache miss rate. For SPECfp92 the averages are 1%
and 0.3%, respectively. The commercial workloads really exercise the mem
hierarchy; the averages of the three miss rates are 6%, 32%, and 10%. F
 5.49 shows the same data graphically. This figure makes clear that the pr
performance limits of the superscalar 21064 are instruction stalls, which r
from branch mispredictions, and the other category, which includes data de
dencies.

As the most naturally quantitative of the computer architecture disciplines, m
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Ye
authors were limited here not by lack of warnings, but by lack of space!

FIGURE 5.49 Graphical representation of the data in Figure 5.48, with programs in
each of the three classes sorted by total CPI.

5.11 Fallacies and Pitfalls

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

CPI

Commercial Integer Floating point

L2

TPC-B
 (d

b2
)

TPC-B
 (d

b1
)

Alph
aS

or
t

gc
c sc li

co
m

pr
es

s

es
pr

es
so

eq
nt

ot
t

ea
r

sw
m

25
6

alv
inn

to
m

ca
tv

wav
e5

fp
pp

p

hy
dr

o2
d

m
dlj

sp
2

do
du

c

m
dlj

dp
2

or
a

I$ D$ I Stall Other

5.11 Fallacies and Pitfalls 467

sign
 fatal

d
P-11

to the
ram
ogram
e is

ress:
an to
ng ad-
. Bell

ult to
mem-
very

k of
 Intel
-

d the
s be-

 pro-
on the
12%,
ither
 such
ache,
eral-

to an-
iss

hine
ts 10%
Pitfall: Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to de
the new PDP-11 computer family, it was apparent that their creation had a
flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticize
for including unnecessary functions, has sold 100,000 units since the PD
went out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses as compared
address sizes of the IBM 360 and the VAX. Address size limits the prog
length, since the size of a program and the amount of data needed by the pr
must be less than 2address size. The reason the address size is so hard to chang
that it determines the minimum width of anything that can contain an add
PC, register, memory word, and effective-address arithmetic. If there is no pl
expand the address from the start, then the chances of successfully changi
dress size are so slim that it normally means the end of that computer family
and Strecker [1976] put it like this:

There is only one mistake that can be made in computer design that is diffic
recover from—not having enough address bits for memory addressing and
ory management. The PDP-11 followed the unbroken tradition of nearly e
known computer. [p. 2]

A partial list of successful machines that eventually starved to death for lac
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086,
80186, Intel 80286, Motorola AMI 6502, Zilog Z80, CRAY-1, and CRAY X
MP. A few companies already offer computers with 64-bit flat addresses, an
authors expect that the rest of the industry will offer 64-bit address machine
fore the third edition of this book!

Fallacy: Predicting cache performance of one program from another.

Figure 5.50 shows the instruction miss rates and data miss rates for three
grams from the SPEC92 benchmark suite as cache size varies. Depending
program, the data miss rate for a direct-mapped 4-KB cache is either 28%,
or 8%, and the instruction miss rate for a direct-mapped 1-KB cache is e
10%, 3%, or 0%. Figure 5.48 on page 465 shows that commercial programs
as databases will have significant miss rates even in a 2-MB second-level c
which is not the case for the SPEC92 programs. Clearly it is not safe to gen
ize cache performance from one of these programs to another.

Nor is it safe to generalize cache measurements from one architecture
other. Figure 5.48 for the DEC Alpha with 8-KB caches running gcc shows m
rates of 17% for data and 4.67% for instructions, yet the DEC MIPS mac
running the same program and cache size measured in Figure 5.48 sugges
for data and 4% for instructions.

468 Chapter 5 Memory-Hierarchy Design

ures

arge
 is not
e av-
f in-
e first
cess
lf of
mory
 finish

he
g too
ning

 hun-
Pitfall: Simulating enough instructions to get accurate performance meas
of the memory hierarchy.

There are really two pitfalls here. One is trying to predict performance of a l
cache using a small trace, and the other is that a program's locality behavior
constant over the run of the entire program. Figure 5.51 shows the cumulativ
erage memory access time for four programs over the execution of billions o
structions. For these programs, the average memory access times for th
billion instructions executed is very different from their average memory ac
times for the second billion. While two of the programs need to execute ha
the total number of instructions to get a good estimate of the average me
access time, SOR needs to get to the three-quarters mark, and TV needs to
completely before the accurate measure appears.

The first edition of this book included another example of this pitfall. T
compulsory miss ratios were erroneously high (e.g., 1%) because of tracin
few memory accesses. A program with an infinite cache miss ratio of 1% run
on a machine accessing memory 10 million times per second would touch
dreds of megabytes of new memory every minute:

FIGURE 5.50 Instruction and data miss rates for direct-mapped caches with 32-byte
blocks for running three programs for DEC 5000 as cache size varies from 1 KB to 128
KB. The programs espresso, gcc, and tomcatv are from the SPEC92 benchmark suite.

35%

30%

25%

20%

Miss
rate 15%

10%

5%

0%
1 2 4 8 16

Cache size (KB)

D: tomcatv

I: gcc

D: gcc

I: espresso

D: espresso

I: tomcatv

32 64 128

10,000,000 accesses
Second

-- 0.01 misses
Access

----------------------------× 32 bytes
Miss

--------------------× 60 seconds
Minute

-------------------------- 192,000,000 bytes
Minute

--=×

5.11 Fallacies and Pitfalls 469

lusion

 the

nt on
n the
se of
Data on typical page fault rates and process sizes do not support the conc
that memory is touched at this rate.

Pitfall: Ignoring the impact of the operating system on the performance of
memory hierarchy.

Figure 5.52 shows the memory stall time due to the operating system spe
three large workloads. About 25% of the stall time is either spent in misses i
operating system or results from misses in the application programs becau
interference with the operating system.

FIGURE 5.51 Average memory access times for four programs over execution time
of billions of instructions. The assumed memory hierarchy was a 4-KB instruction cache
and 4-KB data cache with 16-byte blocks, and a 512-KB second-level cache with 128-byte
blocks using the Titan RISC instruction set. The first-level data cache is write through with a
four-entry write buffer, and the second-level cache is write back. The miss penalty for the first-
level cache to second-level cache is 12 clock cycles, and the miss penalty from the second-
level cache to main memory is 200 clock cycles. SOR is a FORTRAN program for successive
over-relaxation, Tree is a Scheme program that builds and searches a tree, Mult is a multi-
programmed workload consisting of six smaller programs, and TV is a Pascal program for
timing verification of VLSI circuits. (This figure taken from Figure 3-5 on page 276 of the paper
by Borg, Kessler, and Wall [1990].)

Tree

1.5

SOR

Instructions executed (billions)

Mult

TV

1

2

2.5

3

4

3.5

4.5

0 1 2 10 11 123 6 94 5 7 8

erage
s time

470 Chapter 5 Memory-Hierarchy Design

 av-

nces
uffer

until
word
 is

ation
he

ith a

%

%

Pitfall: Basing the size of the write buffer on the speed of memory and the
erage mix of writes.

This seems like a reasonable approach:

If there is one memory reference per clock cycle, 10% of the memory refere
are writes, and writing a word of memory takes 10 cycles, then a one-word b
is added (1 × 10% × 10 = 1). Calculating for the Alpha AXP 21064,

Thus, a one-word buffer seems sufficient.
The pitfall is that when writes come close together, the CPU must stall

the prior write is completed. Hence the calculation above says that a one-
buffer would be utilized 100% of the time. Queuing theory tells us if utilization
close to 100%, then writes will normally stall the CPU.

The proper question to ask is how large a buffer is needed to keep utiliz
low so that the buffer rarely fills, thereby keeping CPU write stall time low. T
impact of write buffer size can be established by simulation or estimated w
queuing model.

Time

Misses
% time due to appl.

misses % time due directly to OS misses
% time OS
misses &

appl.
conflictsWorkload

% in % in
appl OS

Inherent
appl.

misses

OS
conflicts
w. appl.

OS
instr

misses

Data
misses for
migration

Data misses
in block

operations

Rest
of OS
misses

Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8

Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%

Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8

FIGURE 5.52 Misses and time spent in misses for applications and operating system. Collected on Silicon Graphics
POWER station 4D/340, a multiprocessor with four 33-MHz R3000 CPUs running three application workloads under a UNIX
System V—Pmake: a parallel compile of 56 files; Multipgm: the parallel numeric program MP3D running concurrently with
Pmake and five-screen edit session; and Oracle: running a restricted version of the TP-1 benchmark using the Oracle data-
base. Each CPU has a 64-KB instruction cache and a two-level data cache with 64 KB in the first level and 256 KB in the
second level; all caches are direct mapped with 16-byte blocks. Data from Torrellas, Gupta, and Hennessy [1992].

Write buffer size
Memory references

Clock cycle
-- Write percentage×=

Clock cycles to write memory×

Write buffer size
1.36 memory references

2.0 clock cycles
-- 0.1 writes× 15 clock cycles

Write
-------------------------------------× 1.0= =

5.12 Concluding Remarks 471

 un-
s that
re—
rrent
 the

ke the
 the
ther,
ng a
hat
ciative
ook.

, per-
ware,
ful,

000
The difficulty of building a memory system to keep pace with faster CPUs is
derscored by the fact that the raw material for main memory is the same a
found in the cheapest computer. It is the principle of locality that saves us he
its soundness is demonstrated at all levels of the memory hierarchy in cu
computers, from disks to TLBs. Figure 5.53 summarizes the attributes of
memory-hierarchy examples described in this chapter.

Yet the design decisions at these levels interact, and the architect must ta
whole system view to make wise decisions. The primary challenge for
memory-hierarchy designer is in choosing parameters that work well toge
not in inventing new techniques. The increasingly fast CPUs are spendi
larger fraction of time waiting for memory, which has led to new inventions t
have increased the number of choices: variable page size, pseudo-asso
caches, and cache-aware compilers weren’t found in the first edition of this b
Fortunately, there tends to be a technological “sweet spot” in balancing cost
formance, and complexity: missing the target wastes performance, hard
design time, debug time, or possibly all four. Architects hit the target by care
quantitative analysis.

5.12 Concluding Remarks

TLB First-level cache Second-level cache Virtual memory

Block size 4–8 bytes
(1 PTE)

4–32 bytes 32–256 bytes 4096–16,384 bytes

Hit time 1 clock cycle 1–2 clock cycles 6–15 clock cycles 10–100 clock
cycles

Miss penalty 10–30 clock cycles 8–66 clock cycles 30–200 clock cycles 700,000–6,000,
 clock cycles

Miss rate (local) 0.1–2% 0.5–20% 15–30% 0.00001–0.001%

Size 32–8192 bytes
(8–1024 PTEs)

1–128 KB 256 KB–16 MB 16–8192 MB

Backing store First-level cache Second-level cache Page-mode DRAM Disks

Q1: block placement Fully associative
or set associative

Direct mapped Direct mapped or
set associative

Fully associative

Q2: block
identification

Tag/block Tag/block Tag/block Table

Q3: block replacement Random N.A. (direct
mapped)

Random ≈ LRU

Q4: write strategy Flush on a write to
page table

Write through
or write back

Write back Write back

FIGURE 5.53 Summary of the memory-hierarchy examples in this chapter.

472 Chapter 5 Memory-Hierarchy Design

 and
d by
sity

op-
 an-
erm
only
dded

 645
 first
as in-

 ma-
m was
980s
rly

ribed
om-
ea
st .…

st to
 fre-

, de-
 open
uced

s or
 pro-

l ad-
. At

 slow
 that
 go
While the pioneers of computing knew of the need for a memory hierarchy
coined the term, the automatic management of two levels was first propose
Kilburn et al. [1962] and demonstrated with the Atlas computer at the Univer
of Manchester. This was the year before the IBM 360 was announced. While
IBM planned for its introduction with the next generation (System/370), the
erating system TSS wasn’t up to the challenge in 1970. Virtual memory was
nounced for the 370 family in 1972, and it was for this machine that the t
“translation look-aside buffer” was coined [Case and Padegs 1978]. The
computers today without virtual memory are a few supercomputers, embe
processors, and older personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and the GE
was the first system to provide paged segmentation. The Intel 80286, the
80x86 to have the protection mechanisms described on pages 453 to 457, w
spired by the Multics protection software that ran on the GE 645. Over time,
chines evolved more elaborate mechanisms. The most elaborate mechanis
capabilities, which reached its highest interest in the late 1970s and early 1
[Fabry 1974; Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of the ea
workers on capabilities, had this to say:

Anyone who has been concerned with an implementation of the type just desc
[capability system], or has tried to explain one to others, is likely to feel that c
plexity has got out of hand. It is particularly disappointing that the attractive id
of capabilities being tickets that can be freely handed around has become lo

Compared with a conventional computer system, there will inevitably be a co
be met in providing a system in which the domains of protection are small and
quently changed. This cost will manifest itself in terms of additional hardware
creased runtime speed, and increased memory occupancy. It is at present an
question whether, by adoption of the capability approach, the cost can be red
to reasonable proportions.

Today there is little interest in capabilities either from the operating system
the computer architecture communities, although there is growing interest in
tection and security.

Bell and Strecker [1976] reflected on the PDP-11 and identified a smal
dress space as the only architectural mistake that is difficult to recover from
the time of the creation of PDP-11, core memories were increasing at a very
rate, and the competition from 100 other minicomputer companies meant
DEC might not have a cost-competitive product if every address had to

5.13 Historical Perspective and References

5.13 Historical Perspective and References 473

ust 4
e IBM
ecture
ever,
er ad-
 soft-
tored
ine

 stay

bing

o a
l
f the

t pub-
ped

nnel
tates

om-
de-
s rate
0 pro-
mory
 years

e of
s in

ersus
ory

rm
r ex-
rvey
has
ve re-
isses
d in
cking
through the 16-bit datapath twice, hence the architect's decision to add j
more address bits than the predecessor of the PDP-11. The architects of th
360 were aware of the importance of address size and planned for the archit
to extend to 32 bits of address. Only 24 bits were used in the IBM 360, how
because the low-end 360 models would have been even slower with the larg
dresses in 1964. Unfortunately, the architects didn’t reveal their plans to the
ware people, and the expansion effort was foiled by programmers who s
extra information in the upper 8 “unused” address bits. Virtually every mach
since then, including the Alpha AXP, will check to make sure the unused bits
unused, and trap if the bits have the wrong value.

A few years after the Atlas paper, Wilkes published the first paper descri
the concept of a cache [1965]:

The use is discussed of a fast core memory of, say, 32,000 words as slave t
slower core memory of, say, one million words in such a way that in practica
cases the effective access time is nearer that of the fast memory than that o
slow memory. [p. 270]

This two-page paper describes a direct-mapped cache. While this is the firs
lication on caches, the first implementation was probably a direct-map
instruction cache built at the University of Cambridge. It was based on tu
diode memory, the fastest form of memory available at the time. Wilkes s
that G. Scarott suggested the idea of a cache memory.

Subsequent to that publication, IBM started a project that led to the first c
mercial machine with a cache, the IBM 360/85 [Liptay 1968]. Gibson [1967]
scribes how to measure program behavior as memory traffic as well as mis
and shows how the miss rate varies between programs. Using a sample of 2
grams (each with 3 million references!), Gibson also relied on average me
access time to compare systems with and without caches. This was over 25
ago, and yet many used miss rates until recently.

Conti, Gibson, and Pitkowsky [1968] describe the resulting performanc
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 program
the paper, even though the 360/85 has a slower clock cycle time (80 ns v
60 ns), smaller memory interleaving (4 versus 16), and a slower main mem
(1.04 µsec versus 0.75 µsec). This paper was also the first to use the te
“cache.” Strecker [1976] published the first comparative cache design pape
amining caches for the PDP-11. Smith [1982] later published a thorough su
paper, using the terms “spatial locality” and “temporal locality”; this paper
served as a reference for many computer designers. While most studies ha
lied on simulations, Clark [1983] used a hardware monitor to record cache m
of the VAX-11/780 over several days. Hill [1987] proposed the three C’s use
section 5.3 to explain cache misses. One of the first papers on nonblo
caches is by Kroft [1981].

474 Chapter 5 Memory-Hierarchy Design

ed by
n this
Borg,
oth-
od
rime
iative
earch.
and

.

m-

he
SCA

,”

he

ss

s

0

nnual
This chapter relies on the measurements of SPEC92 benchmarks collect
Gee et al. [1993] for DEC 5000s. There are several other papers used i
chapter that are cited in the captions of the figures that use the data:
Kessler, and Wall [1990]; Farkas and Jouppi [1994]; Jouppi [1990]; Lam, R
berg, and Wolf [1991]; Mowry, Lam, and Gupta [1992]; Lebeck and Wo
[1994]; and Torrellas, Gupta, and Hennessy [1992]. For more details on p
numbers of memory modules, read Gao [1993]; for more on pseudo-assoc
caches, see Agarwal and Pudar [1993]. Caches remain an active area of res

The Alpha AXP architecture is described in detail by Bhandarkar [1995]
by Sites [1992], and a good source of data on implementations is the Digital
Technical Journal, issue no. 4 of 1992, which is dedicated to articles on Alpha

References

AGARWAL, A. [1987]. Analysis of Cache Performance for Operating Systems and Multiprogra
ming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May).

AGARWAL, A. AND S. D. PUDAR [1993]. “Column-associative caches: A technique for reducing t
miss rate of direct-mapped caches,” 20th Annual Int’l Symposium on Computer Architecture I
’20, San Diego, Calif., May 16–19. Computer Architecture News 21:2 (May), 179–90.

BAER, J.-L. AND W.-H. WANG [1988]. “On the inclusion property for multi-level cache hierarchies
Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 73–80.

BELL, C. G. AND W. D. STRECKER [1976]. “Computer structures: What have we learned from t
PDP-11?,” Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, 1–14.

BHANDARKAR, D. P. [1995]. Alpha Architecture Implementations, Digital Press, Newton, Mass.

BORG, A., R. E. KESSLER, AND D. W. WALL [1990]. “Generation and analysis of very long addre
traces,” Proc. 17th Annual Int’l Symposium on Computer Architecture (Cat. No. 90CH2887–8),
Seattle, May 28–31, IEEE Computer Society Press, Los Alamitos, Calif., 270–9.

CASE, R. P. AND A. PADEGS [1978]. “The architecture of the IBM System/370,” Communications of
the ACM 21:1, 73–96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Struc-
tures: Principles and Examples (1982), McGraw-Hill, New York, 830–855.

CLARK, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on Computer System
1:1, 24–37.

CONTI, C., D. H. GIBSON, AND S. H. PITKOWSKY [1968]. “Structural aspects of the System/36
Model 85, Part I: General organization,” IBM Systems J. 7:1, 2–14.

CRAWFORD, J. H. AND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif.

FABRY, R. S. [1974]. “Capability based addressing,” Comm. ACM 17:7 (July), 403–412.

FARKAS, K. I. AND N. P. JOUPPI [1994]. “Complexity/performance tradeoffs with non-blocking
loads,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago (April).

GAO, Q. S. [1993]. “The Chinese remainder theorem and the prime memory system,” 20th A
Int’l Symposium on Computer Architecture ISCA '20, San Diego, May 16–19, 1993. Computer
Architecture News 21:2 (May), 337–40.

GEE, J. D., M. D. HILL , D. N. PNEVMATIKATOS, AND A. J. SMITH [1993]. “Cache performance of the
SPEC92 benchmark suite,” IEEE Micro 13:4 (August), 17–27.

GIBSON, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS Conf. Proc. 30,
SJCC, 75–80.

5.13 Historical Perspective and References 475

381

ully-
c-
s

.

s
ges

y,”

r
ting

re-

-

n

h.

e-
HANDY, J. [1993]. The Cache Memory Book, Academic Press, Boston.

HILL , M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis,
University of Calif. at Berkeley, Computer Science Division, Tech. Rep. UCB/CSD 87/
(November).

HILL , M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (December), 25–40.

JOUPPI, N. P. [1990]. “Improving direct-mapped cache performance by the addition of a small f
associative cache and prefetch buffers,” Proc. 17th Annual Int’l Symposium on Computer Archite
ture (Cat. No. 90CH2887–8), Seattle, May 28–31, 1990. IEEE Computer Society Press, Lo
Alamitos, Calif., 364–73.

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, AND F. H. SUMNER [1962]. “One-level storage
system,” IRE Trans. on Electronic Computers EC-11 (April) 223–235. Also appears in D. P
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
McGraw-Hill, New York, 135–148.

KROFT, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,” Proc. Eighth Annual
Symposium on Computer Architecture (May 12–14), Minneapolis, 81–87.

LAM, M. S., E. E. ROTHBERG, AND M. E. WOLF [1991]. “The cache performance and optimization
of blocked algorithms,” Fourth Int’l Conf. on Architectural Support for Programming Langua
and Operating Systems, Santa Clara, Calif., April 8–11. SIGPLAN Notices 26:4 (April), 63–74.

LEBECK, A. R. AND D. A. WOOD [1994]. “Cache profiling and the SPEC benchmarks: A case stud
Computer 27:10 (October), 15–26.

LIPTAY, J. S. [1968]. “Structural aspects of the System/360 Model 85, Part II: The cache,” IBM
Systems J. 7:1, 15–21.

MCFARLING, S. [1989]. “Program optimization for instruction caches,” Proc. Third Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems (April 3–6), Boston,
183–191.

MOWRY, T. C., S. LAM, AND A. GUPTA [1992]. “Design and evaluation of a compiler algorithm fo
prefetching,” Fifth Int’l Conf. on Architectural Support for Programming Languages and Opera
Systems (ASPLOS-V), Boston, October 12–15 , SIGPLAN Notices 27:9 (September), 62–73.

PALACHARLA , S. AND R. E. KESSLER [1994]. “Evaluating stream buffers as a secondary cache
placement,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago, April 18–21,
IEEE Computer Society Press, Los Alamitos, Calif., 24–33.

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann
Publishers, San Mateo, Calif.

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. “Performance tradeoffs in cache de
sign,” Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 290–298.

SAAVEDRA-BARRERA, R. H. [1992]. CPU Performance Evaluation and Execution Time Predictio
Using Narrow Spectrum Benchmarking, Ph.D. Dissertation, University of Calif., Berkeley (May).

SAMPLES, A. D. AND P. N. HILFINGER [1988]. “Code reorganization for instruction caches,” Tec
Rep. UCB/CSD 88/447 (October), University of Calif., Berkeley.

SITES, R. L. (ED.) [1992]. Alpha Architecture Reference Manual, Digital Press, Burlington, Mass.

SMITH, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.

SMITH, J. E. AND J. R. GOODMAN [1983]. “A study of instruction cache organizations and replac
ment policies,” Proc. 10th Annual Symposium on Computer Architecture (June 5–7), Stockholm,
132–137.

STRECKER, W. D. [1976]. “Cache memories for the PDP-11?,” Proc. Third Annual Symposium on
Computer Architecture (January), Pittsburgh, 155–158.

476 Chapter 5 Memory-Hierarchy Design

-
up-

2

l

s,”
stems

aniza-
riting
t writ-
-back

rough

ck and

s pos-
.)

s pos-
.)

hine

hine

ram
d then
elow
UNIX
hange
 at dif-

d many
d from
ime per
TORRELLAS, J., A. GUPTA, AND J. HENNESSY [1992]. “Characterizing the caching and synchron
ization performance of a multiprocessor operating system,” Fifth Int’l Conf. on Architectural S
port for Programming Languages and Operating Systems (ASPLOS-V), Boston, October 1–15,
SIGPLAN Notices 27:9 (September), 162–174.

WANG, W.-H., J.-L. BAER, AND H. M. LEVY [1989]. “Organization and performance of a two-leve
virtual-real cache hierarchy,” Proc. 16th Annual Symposium on Computer Architecture (May 28–
June 1), Jerusalem, 140–148.

WILKES, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Electronic
Computers EC-14:2 (April), 270–271.

WILKES, M. V. [1982]. “Hardware support for memory protection: Capability implementation
Proc. Symposium on Architectural Support for Programming Languages and Operating Sy
(March 1–3), Palo Alto, Calif., 107–116.

WULF, W. A., R. LEVIN, AND S. P. HARBISON [1981]. Hydra/C.mmp: An Experimental Computer
System, McGraw-Hill, New York.

E X E R C I S E S

5.1 [15/15/12/12] <5.1,5.2> Let’s try to show how you can make unfair benchmarks. Here
are two machines with the same processor and main memory but different cache org
tions. Assume the miss time is 10 times a cache hit time for both machines. Assume w
a 32-bit word takes 5 times as long as a cache hit (for the write-through cache) and tha
ing a whole 32-byte block takes 10 times as long as a cache-read hit (for the write
cache). The caches are unified; that is, they contain both instructions and data.

Cache A: 128 sets, two elements per set, each block is 32 bytes, and it uses write th
and no-write allocate.

Cache B: 256 sets, one element per set, each block is 32 bytes, and it uses write ba
does allocate on write misses.

a. [15] <1.5,5.2> Describe a program that makes machine A run as much faster a
sible than machine B. (Be sure to state any further assumptions you need, if any

b. [15] <1.5,5.2> Describe a program that makes machine B run as much faster a
sible than machine A. (Be sure to state any further assumptions you need, if any

c. [12] <1.5,5.2> Approximately how much faster is the program in part (a) on mac
A than machine B?

d. [12] <1.5,5.2> Approximately how much faster is the program in part (b) on mac
B than on machine A?

5.2 [15/10/12/12/12/12/12/12/12/12/12] <5.3,5.4> In this exercise, we will run a prog
to evaluate the behavior of a memory system. The key is having accurate timing an
having the program stride through memory to invoke different levels of the hierarchy. B
is the code in C for UNIX systems. The first part is a procedure that uses a standard
utility to get an accurate measure of the user CPU time; this procedure may need to c
to work on some systems. The second part is a nested loop to read and write memory
ferent strides and cache sizes. To get accurate cache timing, this code is repeate
times. The third part times the nested loop overhead only so that it can be subtracte
overall measured times to see how long the accesses were. The last part prints the t
access as the size and stride varies. You may need to change CACHE_MAX depending on the

Exercises 477

g. The
, and
question you are answering and the size of memory on the system you are measurin
code below was taken from a program written by Andrea Dusseau of U.C. Berkeley
was based on a detailed description found in Saavedra-Barrera [1992].

#include <stdio.h>
#include <sys/times.h>
#include <sys/types.h>
#include <time.h>
#define CACHE_MIN (1024) /* smallest cache */
#define CACHE_MAX (1024*1024) /* largest cache */
#define SAMPLE 10 /* to get a larger time sample */
#ifndef CLK_TCK
#define CLK_TCK 60 /* number clock ticks per second */
#endif
int x[CACHE_MAX]; /* array going to stride through */

double get_seconds() { /* routine to read time */
struct tms rusage;
times(&rusage); /* UNIX utility: time in clock ticks */
return (double) (rusage.tms_utime)/CLK_TCK;

}
void main() {
int register i, index, stride, limit, temp;
int steps, tsteps, csize;
double sec0, sec; /* timing variables */

for (csize=CACHE_MIN; csize <= CACHE_MAX; csize=csize*2)
for (stride=1; stride <= csize/2; stride=stride*2) {

sec = 0; /* initialize timer */
limit = csize-stride+1; /* cache size this loop */

steps = 0;
do { /* repeat until collect 1 second */

sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

x[index] = x[index] + 1; /* cache access */
steps = steps + 1; /* count while loop iterations */
sec = sec + (get_seconds() - sec0);/* end timer */
} while (sec < 1.0); /* until collect 1 second */

/* Repeat empty loop to subtract loop overhead */
tsteps = 0; /* used to match no. while iterations */

do { /* repeat until same no. iterations as above */
sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

temp = temp + index; /* dummy code */
tsteps = tsteps + 1; /* count while iterations */
sec = sec - (get_seconds() - sec0);/* - overhead */
} while (tsteps<steps); /* until = no. iterations */

printf("Size:%7d Stride:%7d read+write:%l4.0f ns\n",
csize*sizeof(int), stride*sizeof(int), (double)

sec*1e9/(steps*SAMPLE*stride*((limit-1)/stride+1)));
}; /* end of both outer for loops */

}

478 Chapter 5 Memory-Hierarchy Design

h is true
es tend
chine

emory

d the
e for

 any),
 block

che?

archy

in

ad or
The program above assumes that program addresses track physical addresses, whic
on the few machines that use virtually addressed caches. In general, virtual address
to follow physical addresses shortly after rebooting, so you may need to reboot the ma
in order to get smooth lines in your results.

To answer the questions below, assume that the sizes of all components of the m
hierarchy are powers of 2.

a. [15] <5.3,5.4> Plot the experimental results with elapsed time on the y-axis an
memory stride on the x-axis. Use logarithmic scales for both axes, and draw a lin
each cache size.

b. [10] <5.3,5.4> How many levels of cache are there?

c. [12] <5.3,5.4> What is the size of the first-level cache? Block size? Hint: Assume the
size of the page is much larger than the size of a block in a secondary cache (if
and the size of a second-level cache block is greater than or equal to the size of a
in a first-level cache.

d. [12] <5.3,5.4> What is the size of the second-level cache (if any)? Block size?

e. [12] <5.3,5.4> What is the associativity of the first-level cache? Second-level ca

f. [12] <5.3,5.4> What is the page size?

g. [12] <5.3,5.4> How many entries are in the TLB?

h. [12] <5.3,5.4> What is the miss penalty for the first-level cache? Second-level?

i. [12] <5.3,5.4> What is the time for a page fault to secondary memory? Hint: A page
fault to magnetic disk should be measured in milliseconds.

j. [12] <5.3,5.4> What is the miss penalty for the TLB?

k. [12] <5.3,5.4> Is there anything else you have discovered about the memory hier
from these measurements?

5.3 [10/10/10] <5.2> Figure 5.54 shows the output from running the program
Exercise 5.2 on a SPARCstation 1+, which has a single unified cache.

a. [10] <5.2> What is the size of the cache?

b. [10] <5.2> What is the block size of the cache?

c. [10] <5.2> What is the miss penalty for the first-level cache?

5.4 [15/15] <5.2> You purchased an Acme computer with the following features:

■ 95% of all memory accesses are found in the cache.

■ Each cache block is two words, and the whole block is read on any miss.

■ The processor sends references to its cache at the rate of 109 words per second.

■ 25% of those references are writes.

■ Assume that the memory system can support 109 words per second, reads or writes.

■ The bus reads or writes a single word at a time (the memory system cannot re
write two words at once).

Exercises 479

ch of
system
ptions.

ache
ccur,
t 50%
buffer
es 1
he to
 0.5%

 DLX
ith a

the
■ Assume at any one time, 30% of the blocks in the cache have been modified.

■ The cache uses write allocate on a write miss.

You are considering adding a peripheral to the system, and you want to know how mu
the memory system bandwidth is already used. Calculate the percentage of memory
bandwidth used on the average in the two cases below. Be sure to state your assum

a. [15] <5.2> The cache is write through.

b. [15] <5.2> The cache is write back.

5.5 [15/15] <5.5> One difference between a write-through cache and a write-back c
can be in the time it takes to write. During the first cycle, we detect whether a hit will o
and during the second (assuming a hit) we actually write the data. Let’s assume tha
of the blocks are dirty for a write-back cache. For this question, assume that the write
for write through will never stall the CPU (no penalty). Assume a cache read hit tak
clock cycle, the cache miss penalty is 50 clock cycles, and a block write from the cac
main memory takes 50 clock cycles. Finally, assume the instruction cache miss rate is
and the data cache miss rate is 1%.

a. [15] <5.5> Using statistics for the average percentage of loads and stores from
in Figure 2.26 on page 105, estimate the performance of a write-through cache w
two-cycle write versus a write-back cache with a two-cycle write for each of
programs.

FIGURE 5.54 Results of running program in Exercise 5.2 on a SPARCstation 1+.

1100

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

1000

900

800

700

600

500

400

300

200

4K

64K

8K

128K

2M1M

16K

Stride

256K

4M

32K

512K

Time for read + write (ns)

480 Chapter 5 Memory-Hierarchy Design

ache
 clock

lim-
 cache
in the

 399
e cor-

 block.
le in-

inol-
9.

cess
hich

 CPI

le and
ctions
a TLB
r the
LB,
 cache

B.

hree

ly or

r of
cially
e
ing:
b. [15] <5.5> Do the same comparison, but this time assume the write-through c
pipelines the writes, as described on page 425, so that a write hit takes just one
cycle.

5.6 [20] <5.3> Improve on the compiler prefetch Example found on page 401: Try to e
inate both the number of extraneous prefetches and the number of non-prefetched
misses. Calculate the performance of this refined version using the parameters
Example.

5.7 [15/12] <5.3> The Example evaluation of a pseudo-associative cache on page
assumed that on a hit to the slower block the hardware swapped the contents with th
responding fast block so that subsequent hits on this address would all be to the fast
Assume that if we don’t swap, a hit in the slower block takes just one extra clock cyc
stead of two extra clock cycles.

a. [15] <5.3> Derive a formula for the average memory access time using the term
ogy for direct-mapped and two-way set-associative caches as given on page 39

b. [12] <5.3> Using the formula from part (a), recalculate the average memory ac
times for the two cases found on page 399 (2-KB cache and 128-KB cache). W
pseudo-associative scheme is faster for the given configurations and data?

5.8 [15/20/15] <5.7> If the base CPI with a perfect memory system is 1.5, what is the
for these cache organizations? Use Figure 5.9 (page 391):

■ 16-KB direct-mapped unified cache using write back.

■ 16-KB two-way set-associative unified cache using write back.

■ 32-KB direct-mapped unified cache using write back.

Assume the memory latency is 40 clocks, the transfer rate is 4 bytes per clock cyc
that 50% of the transfers are dirty. There are 32 bytes per block and 20% of the instru
are data transfer instructions. There is no write buffer. Add to the assumptions above
that takes 20 clock cycles on a TLB miss. A TLB does not slow down a cache hit. Fo
TLB, make the simplifying assumption that 0.2% of all references aren’t found in T
either when addresses come directly from the CPU or when addresses come from
misses.

a. [15] <5.3> Compute the effective CPI for the three caches assuming an ideal TL

b. [20] <5.3> Using the results from part (a), compute the effective CPI for the t
caches with a real TLB.

c. [15] <5.3> What is the impact on performance of a TLB if the caches are virtual
physically addressed?

5.9 [10] <5.4> What is the formula for average access time for a three-level cache?

5.10 [15/15] <5.6> The section on avoiding bank conflicts by having a prime numbe
memory banks mentioned that there are techniques for fast modulo arithmetic, espe
when the prime number can be represented as 2N – 1. The idea is that by understanding th
laws of modulo arithmetic we can simplify the hardware. The key insights are the follow

1. Modulo arithmetic obeys the laws of distribution:

((a modulo c) + (b modulo c)) modulo c = (a + b) modulo c
((a modulo c) × (b modulo c)) modulo c = (a × b) modulo c

Exercises 481

inary

only

 of
ve?

ank
 wide.

 in-
lock.
ccess
. The
g:

e to

d in a
into a
 as the
e the

) Use
ate for
ocess-
witch.)
2. The sequence 20 modulo 2N– 1, 21 modulo 2N– 1, 22 modulo 2N– 1, . . . is a repeating
pattern 20, 21, 22, and so on for powers of 2 less than 2N. For example, if 2N– 1 = 7, then

20 modulo 7 = 1
21 modulo 7 = 2
22 modulo 7 = 4
23 modulo 7 = 1
24 modulo 7 = 2
25 modulo 7 = 4

3. Given a binary number a, the value of (a mod 7) can be expressed as

ai × 2i +. . .+ a2 × 22 + a1 × 21 + a0 × 20 modulo 7 =
((a0 + a3 +. . .) × 1 + (a1 + a4 +. . .) × 2 + (a2 + a5 +…) × 4) modulo 7

where i = log2a and aj = 0 for j >i

This is possible because 7 is a prime number of the form 2N–1. Since the multiplica-
tions in the expression above are by powers of two, they can be replaced by b
shifts (a very fast operation).

4. The address is now small enough to find the modulo by looking it up in a read-
memory (ROM) to get the bank number.

Finally, we are ready for the questions.

a. [15] <5.6> Given 2N– 1 memory banks, what is the approximate reduction in size
an address that is M bits wide as a result of the intermediate result in step 3 abo
Give the general formula, and then show the specific case of N = 3 and M = 32.

b. [15] <5.6> Draw the block structure of the hardware that would pick the correct b
out of seven banks given a 32-bit address. Assume that each bank is 8 bytes
What is the size of the adders and ROM used in this organization?

5.11 [25/10/15] <5.6> The CRAY X-MP instruction buffers can be thought of as an
struction-only cache. The total size is 1 KB, broken into four blocks of 256 bytes per b
The cache is fully associative and uses a first-in, first-out replacement policy. The a
time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock cycle
X-MP takes 1 clock cycle on a hit. Use the cache simulator to determine the followin

a. [25] <5.6> Instruction miss rate.

b. [10] <5.6> Average instruction memory access time measured in clock cycles.

c. [15] <5.6> What does the CPI of the CRAY X-MP have to be for the portion du
instruction cache misses to be 10% or less?

5.12 [25] <5.6> Traces from a single process give too high estimates for caches use
multiprocess environment. Write a program that merges the uniprocess DLX traces
single reference stream. Use the process-switch statistics in Figure 5.26 (page 423)
average process-switch rate with an exponential distribution about that mean. (Us
number of clock cycles rather than instructions, and assume the CPI of DLX is 1.5.
the cache simulator on the original traces and the merged trace. What is the miss r
each, assuming a 64-KB direct-mapped cache with 16-byte blocks? (There is a pr
identified tag in the cache tag so that the cache doesn’t have to be flushed on each s

482 Chapter 5 Memory-Hierarchy Design

mple

g is
h in-
support

 with

 four-
ock on
y band-

the

ter-

ss of
ck as

write

write-

ith a

there
5.13 [25] <5.6> One approach to reducing misses is to prefetch the next block. A si
but effective strategy, found in the Alpha 21064, is when block i is referenced to make sure
block i + 1 is in the cache, and if not, to prefetch it. Do you think automatic prefetchin
more or less effective with increasing block size? Why? Is it more or less effective wit
creasing cache size? Why? Use statistics from the cache simulator and the traces to
your conclusion.

5.14 [20/25] <5.6> Smith and Goodman [1983] found that for a small instruction cache, a
cache using direct mapping could consistently outperform one using fully associative
LRU replacement.

a. [20] <5.6> Explain why this would be possible. (Hint: You can’t explain this with the
three C’s model because it ignores replacement policy.)

b. [25] <5.6> Use the cache simulator to see if their results hold for the traces.

5.15 [30] <5.7> Use the cache simulator and traces to calculate the effectiveness of a
bank versus eight-bank interleaved memory. Assume each word transfer takes one cl
the bus and a random access is eight clocks. Measure the bank conflicts and memor
width for these cases:

a. <5.7> No cache and no write buffer.

b. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks.

c. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks.

d. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks but
“interleaving” comes from a page-mode DRAM.

e. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks but the “in
leaving” comes from a page-mode DRAM.

5.16 [25/25/25] <5.7> Use a cache simulator and traces to calculate the effectivene
early restart and out-of-order fetch. What is the distribution of first accesses to a blo
block size increases from 2 words to 64 words by factors of two for the following:

a. [25] <5.7> A 64-KB instruction-only cache?

b. [25] <5.7> A 64-KB data-only cache?

c. [25] <5.7> A 128-KB unified cache?

Assume direct-mapped placement.

5.17 [25/25/25/25/25/25] <5.2> Use a cache simulator and traces with a program you
yourself to compare the effectiveness of these schemes for fast writes:

a. [25] <5.2> One-word buffer and the CPU stalls on a data-read cache miss with a
through cache.

b. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss w
write-through cache.

c. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss only if
is a potential conflict in the addresses with a write-through cache.

Exercises 483

ssed

data

ata
 and

for in-
mory
emory.

che
ss rate
 same

data.
ost
LB on

es?

em-
pect to

curity
ome

n.

ected
ppose

tech-
uctor

agnetic
 it is.
Thus
fac-
h sev-
sing

uced
tions
and,
. The

timiza-
s and
es in
 the so-
ople
d. [25] <5.2> A write-back cache that writes dirty data first and then loads the mi
block.

e. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss
first and then stalls the CPU on a clean miss if the write buffer is not empty.

f. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss d
first and then stalls the CPU on a clean miss only if the write buffer is not empty
there is a potential conflict in the addresses.

Assume a 64-KB direct-mapped cache for data and a 64-KB direct-mapped cache
structions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect me
system and it takes 14 clocks on a cache miss and 7 clocks to write a single word to m

5.18 [25] <5.4> Using the UNIX pipe facility, connect the output of one copy of the ca
simulator to the input of another. Use this pair to see at what cache size the global mi
of a second-level cache is approximately the same as a single-level cache of the
capacity for the traces provided.

5.19 [Discussion] <5.7> Second-level caches now contain several megabytes of
Although new TLBs provide for variable length pages to try to map more memory, m
operating systems do not take advantage of them. Does it make sense to miss the T
data that are found in a cache? How should TLBs be reorganized to avoid such miss

5.20 [Discussion] <5.7> Some people have argued that with increasing capacity of m
ory storage per chip, virtual memory is an idea whose time has passed, and they ex
see it dropped from future computers. Find reasons for and against this argument.

5.21 [Discussion] <5.7> So far, few computer systems take advantage of the extra se
available with gates and rings found in a CPU like the Intel Pentium. Construct s
scenario whereby the computer industry would switch over to this model of protectio

5.22 [Discussion] <5.12> Many times a new technology has been invented that is exp
to make a major change to the memory hierarchy. For the sake of this question, let's su
that biological computer technology becomes a reality. Suppose biological memory
nology has the following unusual characteristic: It is as fast as the fastest semicond
DRAMs and it can be randomly accessed, but its per byte costs are the same as m
disk memory. It has the further advantage of not being any slower no matter how big
The only drawback is that you can only write it once, but you can read it many times.
it is called a WORM (write once, read many) memory. Because of the way it is manu
tured, the WORM memory module can be easily replaced. See if you can come up wit
eral new ideas to take advantage of WORMs to build better computers u
“biotechnology.”

5.23 [Discussion] <3,4,5> Chapters 3 and 4 showed how execution time is being red
by pipelining and by superscalar and VLIW organizations: even floating-point opera
may account for only a fraction of a clock cycle in total execution time. On the other h
Figure 5.1 on page 374 shows that the memory hierarchy is increasing in importance
research on algorithms, data structures, operating systems, and even compiler op
tions were done in an era of simpler machines, with no pipelining or caches. Classe
textbooks may still reflect those simpler machines. What is the impact of the chang
computer architecture on these other fields? Find examples where textbooks suggest
lution appropriate for old machines but inappropriate for modern machines. Talk to pe
in other fields to see what they think about these changes.

	Memory-Hierarchy �Design
	Ideally one would desire an indefinitely large memory capacity such that any particular . . . wor...

	A. W. Burks, H. H. Goldstine, and J. von Neumann Preliminary Discussion of the Logical Design of ...
	5.1 Introduction �373
	5.2 The ABCs of Caches �375
	5.3 Reducing Cache Misses �390
	5.4 Reducing Cache Miss Penalty �411
	5.5 Reducing Hit Time �422
	5.6 Main Memory �427
	5.7 Virtual Memory �439
	5.8 Protection and Examples of Virtual Memory �447
	5.9 Crosscutting Issues in the Design of Memory Hierarchies �457
	5.10 Putting It All Together:
	The Alpha AXP 21064 Memory Hierarchy 461
	5.11 Fallacies and Pitfalls �466
	5.12 Concluding Remarks �471
	5.13 Historical Perspective and References �472
	Exercises �476
	5.1
	Introduction
	Computer pioneers correctly predicted that programmers would want unlimited amounts of fast memor...
	The importance of the memory hierarchy has increased with advances in performance of processors. ...
	FIGURE 5.1� Starting with 1980 performance as a baseline, the performance of memory and CPUs are ...

	In addition to giving us the trends that highlight the importance of the memory hierarchy, Chapte...
	Memory stall cycles = Instruction count ¥ Memory references per instruction ¥ Miss rate ¥ Miss pe...

	where Miss rate is the fraction of accesses that are not in the cache and Miss �penalty is the ad...
	This chapter uses a related formula to evaluate many examples of using the principle of locality ...
	Q1: Where can a block be placed in the upper level? (Block placement)
	Q2: How is a block found if it is in the upper level? (Block identification)
	Q3: Which block should be replaced on a miss? (Block replacement)
	Q4: What happens on a write? (Write strategy)
	The answers to these questions help us understand the different trade-offs of memories at differe...
	To put these abstract ideas into practice, throughout the chapter we show �examples from the four...
	5.2
	The ABCs of Caches
	Cache: a safe place for hiding or storing things.

	Webster’s ���New World Dictionary of the American Language, Second College Edition (1976)
	Cache is the name generally given to the first level of the memory hierarchy encountered once the...
	Q1: Where can a block be placed in a cache?

	Figure�5.2 shows that the restrictions on where a block is placed create three cate�gories of cac...
	FIGURE 5.2� This example cache has eight block frames and memory has 32 blocks. Real caches conta...

	If each block has only one place it can appear in the cache, the cache is said to be direct mappe...
	(Block address) mod (Number of blocks in cache)

	If a block can be placed anywhere in the cache, the cache is said to be fully �associative.
	If a block can be placed in a restricted set of places in the cache, the cache is said to be set ...
	(Block address) mod (Number of sets in cache)

	If there are n blocks in a set, the cache placement is called n-way set associative.
	The range of caches from direct mapped to fully associative is really a continuum of levels of se...
	Q2: How is a block found if it is in the cache?

	Caches have an address tag on each block frame that gives the block address. The tag of every cac...
	There must be a way to know that a cache block does not have valid information. The most common p...
	Before proceeding to the next question, let’s explore the relationship of a CPU address to the ca...
	FIGURE 5.3� The three portions of an address in a set-associative or direct-mapped cache. The tag...

	Checking the index would be redundant, since it was used to select the set to be checked; an ad�d...
	The offset is unnecessary in the comparison since the entire block is present or not, and hence a...
	If the total cache size is kept the same, increasing associativity increases the number of blocks...
	Q3: Which block should be replaced on a cache miss?

	When a miss occurs, the cache controller must select a block to be replaced with the desired data...
	Random—To spread allocation uniformly, candidate blocks are randomly �selected. Some systems gene...
	Least-recently used (LRU)—To reduce the chance of throwing out informa�tion that will be needed s...
	A virtue of random replacement is that it is simple to build in hardware. As the number of blocks...
	Associativity
	Two-way
	Four-way
	Eight-way
	Size
	LRU
	Random
	LRU
	Random
	LRU
	Random
	FIGURE 5.4� Miss rates comparing least-recently used versus random replacement for several sizes ...
	Q4: What happens on a write?

	Reads dominate processor cache accesses. All instruction accesses are reads, and most instruction...
	Fortunately, the common case is also the easy case to make fast. The block can be read from cache...
	Such is not the case for writes. Modifying a block cannot begin until the tag is checked to see i...
	The write policies often distinguish cache designs. There are two basic options when writing to t...
	Write through (or store through)—The information is written to both the block in the cache and to...
	Write back (also called copy back or store in)—The in�formation is written only to the block in t...
	To reduce the frequency of writing back blocks on replacement, a feature called the dirty bit is ...
	Both write back and write through have their advantages. With write back, writes occur at the spe...
	When the CPU must wait for writes to complete during write through, the CPU is said to write stal...
	Since the data are not needed on a write, there are two common options on a write miss:
	Write allocate (also called fetch on write)—The block is loaded on a write miss, followed by the ...
	No-write allocate (also called write around)—The block is modified in the �lower level and not lo...
	Although either write-miss policy could be used with write through or write back, write-back cach...
	An Example: The Alpha AXP 21064 Data Cache and Instruction Cache

	To give substance to these ideas, Figure�5.5 shows the organization of the data cache in the Alph...
	FIGURE 5.5� The organization of the data cache in the Alpha AXP 21064 microprocessor. The 8-KB ca...

	Let’s trace a cache hit through the steps of a hit as labeled in Figure�5.5. (The four steps are ...
	The cache index selects the tag to be tested to see if the desired block is in the cache. The siz...
	Hence the index is 8 bits wide, and the tag is 29 – 8 or 21 bits wide.
	Index selection is step�2 in Figure�5.5. Remember that direct mapping allows the data to be read ...
	After reading the tag from the cache, it is compared to the tag portion of the block address from...
	Assuming the tag does match, the final step is to signal the CPU to load the data from the cache....
	Handling writes is more complicated than handling reads in the 21064, as it is in any cache. If t...
	Since this is a write-through cache, the write process isn’t yet over. The data are also sent to ...
	FIGURE 5.6� To illustrate write merging, the write buffer on top does not use it while the write ...

	So far we have assumed the common case of a cache hit. What happens on a miss? On a read miss, th...
	We have seen how it works, but the data cache cannot supply all the memory needs of the processor...
	The CPU knows whether it is issuing an instruction address or a data address, so there can be sep...
	Figure�5.7 shows that instruction caches have lower miss rates than data �caches. Separating inst...
	Size
	Instruction cache
	Data cache
	Unified cache
	FIGURE 5.7� Miss rates for in�struction, data, and unified caches of different sizes. The data ar...
	Cache Performance

	Because instruction count is independent of the hardware, it is tempting to evaluate CPU performa...
	Average memory access time = Hit time + Miss rate ¥ Miss penalty

	where Hit time is the time to hit in the cache; we have seen the other two terms before. The comp...
	This formula can help us decide between split caches and a unified cache.
	EXAMPLE Which has the lower miss rate: a 16-KB instruction cache with a 16-KB data cache or a 32-...

	ANSWER As stated above, about 75% of the memory ac�cesses are instruction �references. Thus, the ...
	(75% ¥ 0.64%) + (25% ¥ 6.47%) = 2.10%

	According to Figure 5.7, a 32-KB unified cache has a slightly lower miss rate of 1.99%.
	The average memory access time formula can be divided into �instruction and data accesses:
	So the time for each organization is
	Hence the split caches in this example—which offer two memory ports per clock cycle, thereby avoi...
	In Chapter 1 we saw another formula for the memory hierarchy:
	CPU time = (CPU execution clock cycles + Memory stall clock cycles) ¥ Clock cycle time

	To simplify evaluation of cache alternatives, sometimes designers assume that all memory stalls a...
	The CPU time formula above raises the question whether the clock cycles for a cache hit should be...
	Memory stall clock cycles can then be defined in terms of the number of memory accesses per progr...
	We often simplify the complete formula by combining the reads and writes and finding the average ...
	Memory stall clock cycles = Memory accesses ¥ Miss rate ¥ Miss penalty

	This formula is an approximation since the miss rates and miss penalties are often different for ...
	Factoring instruction count (IC) from execution time and memory stall cycles, we now get a CPU ti...
	Some designers prefer measuring miss rate as misses per instruction rather than misses per memory...
	The advantage of this measure is that it is independent of the hardware implementation. For examp...
	We can now explore the impact of caches on performance.
	EXAMPLE Let’s use a machine similar to the Alpha AXP as a first example. Assume the cache miss pe...

	ANSWER
	The per�formance, including cache misses, is
	The clock cycle time and instruction count are the same, with or without a cache, so CPU time inc...
	As this example illustrates, cache behavior can have enormous impact on performance. Furthermore,...
	1. The lower the CPIexecution, the higher the relative impact of a fixed number of cache miss clo...
	2. When calculating CPI, the cache miss penalty is measured in CPU clock �cycles for a miss. Ther...

	The importance of the cache for CPUs with low CPI and high clock rates is thus greater, and, cons...
	Although minimizing average memory access time is a reasonable goal and we will use it in much of...
	EXAMPLE What is the impact of two different cache organizations on the performance of a CPU? Assu...
	FIGURE 5.8� A two-way set-associative version of the 8-KB cache of Figure�5.5, showing the extra ...

	ANSWER Average memory access time is
	Average memory access time = Hit time + Miss rate ¥ Miss penalty

	Thus, the time for each organization is
	Average memory access time1-way = 2.0 + (.014 ¥ 70) = 2.98 ns Average memory access time2-way = 2...

	The average memory access time is better for the two-way set-associative cache.
	CPU performance is
	Substituting 70 ns for (Miss penalty ¥ Clock cycle time), the performance of each cache organizat...
	and relative performance is
	In contrast to the results of average memory access time comparison, the direct-mapped cache lead...
	Improving Cache Performance

	The increasing gap between CPU and main memory speeds shown in Figure 5.1 has at�tracted the atte...
	Average memory access time = Hit time + Miss rate ¥ Miss penalty

	Hence we organize 15 cache optimizations into three categories:
	Reducing the miss rate (Section 5.3)
	Reducing the miss penalty (Section 5.4)
	Reducing the time to hit in the cache (Section 5.5)
	Figure�5.29 on page�427 concludes with a summary of the implementation complexity and the perform...
	5.3
	Reducing Cache Misses
	Most cache research has concentrated on reducing the miss rate, so that is where we start our exp...
	Compulsory—The very first access to a block cannot be in the cache, so the block must be brought ...
	Capacity—If the cache cannot contain all the blocks needed during execution of a program, capacit...
	Conflict—If the block placement strategy is set associative or di�rect mapped, conflict misses (i...
	Figure�5.9 shows the relative frequency of cache misses, broken down by the�“three C’s.” Figure�5...
	Cache size
	Degree associative
	Total miss rate
	Miss rate components (relative percent) (Sum = 100% of total miss rate)
	Compulsory
	Capacity
	Conflict
	FIGURE 5.9� Total miss rate for each size cache and percentage of each accord�ing to the “three C...
	FIGURE 5.10� Total miss rate (top) and distribution of miss rate (bottom) for each size cache acc...

	Eight-way—conflict misses due to going from fully associative (no conflicts) to eight-way associa...
	Four-way—conflict misses due to going from eight-way associative to four- way associative
	Two-way—conflict misses due to going from four-way associative to two-way associative
	One-way—conflict misses due to going from two-way associative to one-way associative (direct mapped)
	As we can see from the figures, the compulsory miss rate of the SPEC92 programs is very small, as...
	Having identified the three C’s, what can a computer de�signer do about them? Conceptually, confl...
	There is little to be done about capacity except to enlarge the cache. If the �upper-level memory...
	Another approach to improving the three C’s is to make blocks larger to re�duce the number of com...
	The three C’s give insight into the cause of misses, but this simple model has its limits; it giv...
	Alas, many of the techniques that reduce miss rates also increase hit time or miss penalty. The d...
	First Miss Rate Reduction Technique: Larger Block Size

	This simplest way to reduce miss rate is to increase the block size. Figure�5.11 shows the trade-...
	FIGURE 5.11� Miss rate versus block size for five different-sized caches. Each line represents a ...

	At the same time, larger blocks increase the miss penalty. Since they reduce the number of blocks...
	Cache size
	Block size
	1K
	4K
	16K
	64K
	256K
	FIGURE 5.12� Actual miss rate versus block size for five different-sized caches in Figure�5.11. N...
	EXAMPLE Figure�5.12 shows the actual miss rates plotted in Figure�5.11. Assume the memory system ...

	ANSWER Average memory access time is
	Average memory access time = Hit time + Miss rate ¥ Miss penalty

	If we assume the hit time is one clock cycle independent of block size, then the access time for ...
	Average memory access time = 1 + (15.05% ¥ 42) = 7.321 clock cycles

	and for a 256-byte block in a 256-KB cache the average memory access time is
	Average memory access time = 1 + (0.49% ¥ 72) = 1.353 clock cycles

	Figure�5.13 shows the average memory access time for all block and cache sizes between those two ...
	Cache size
	Block size
	Miss penalty
	1K
	4K
	16K
	64K
	256K
	FIGURE 5.13� Average memory access time versus block size for five different-sized caches in Figu...

	As in all of these techniques, the cache designer is trying to minimize both the miss rate and th...
	After seeing the positive and negative impact of larger block size on compulsory and capacity mis...
	Second Miss Rate Reduction Technique: Higher Associativity

	Figures 5.9 and 5.10 above show how miss rates improve with higher associativity. There are two g...
	Like many of these examples, improving one aspect of the average memory access time comes at the ...
	EXAMPLE Assume that going to higher associativity would increase the clock cycle as suggested below:
	Clock cycle time2-way = 1.10 ¥ Clock cycle time1-way Clock cycle time4-way = 1.12 ¥ Clock cycle t...

	Assume that the hit time is 1 clock cycle, that the miss penalty for the �direct-mapped case is 5...
	ANSWER Average memory access time for each associativity is
	The miss penalty is the same time in each case, so we leave it as 50 clock cycles. For example, t...
	and the time for a 128-KB, eight-way set-associative cache is
	Using these formulas and the miss rates from Figure�5.9, Figure�5.14 shows the average memory acc...
	Note that we did not account for the slower clock rate on the rest of the program in this example...
	Associativity
	Cache size (KB)
	One-way
	Two-way
	Four-way
	Eight-way
	FIGURE 5.14� Average memory access time using miss rates in Figure�5.9 for parameters in the exam...
	Third Miss Rate Reduction Technique: Victim Caches

	Larger block size and higher associativity are two classic techniques to reduce miss rates that h...
	One solution that reduces conflict misses without impairing clock rate is to add a small, fully a...
	FIGURE 5.15� Placement of victim cache in the memory hierarchy.
	Fourth Miss Rate Reduction Technique: Pseudo-Associative Caches

	Another approach to getting the miss rate of set-associative caches and the hit speed of direct m...
	Pseudo-associative caches then have one fast and one slow hit time—corresponding to a regular hit...
	FIGURE 5.16� Relationship between a regular hit time, pseudo hit time, and miss penalty.

	Let’s do an example to see how well pseudo-associativity works.
	EXAMPLE Assume that it takes two extra cycles to find the entry in the alternative location if it...

	ANSWER The average memory access time for pseudo-associative caches starts with the standard form...
	Average memory access timepseudo = Hit timepseudo + Miss ratepseudo ¥ Miss penaltypseudo

	Let’s start with the last part of the equation. The pseudo miss penalty is one cycle more than a ...
	Miss ratepseudo ¥ Miss penaltypseudo = Miss rate2-way ¥ Miss penalty1-way

	Returning to the beginning of the equation, the hit time for a pseudo- �associative cache is the ...
	Hit timepseudo = Hit time1-way + Alternate hit ratepseudo ¥ 2

	The hit rate for the pseudo-associative search is the difference between the hits that would occu...
	But it is slightly more complex. The miss rate is of a direct-mapped cache half the size—since ha...
	Figure�5.9 supplies the values we need to plug into our formulas:
	From Figure�5.14 in the last example we know these results for 2-KB caches:
	Average memory access time1-way = 5.90 clock cycles Average memory access time2-way = 4.90 clock ...

	For 128-KB caches the times are
	Average memory access time1-way = 1.50 clock cycles Average memory access time2-way = 1.45 clock ...

	The pseudo-associative cache is fastest for the 128-KB cache while the two-way set associative is...
	Although an attractive idea on paper, variable hit times can complicate a pipelined CPU design. H...
	Fifth Miss Rate Reduction Technique: Hardware Prefetching of Instructions and Data

	Victim caches and pseudo-associativity both promise to improve miss rates without affecting the p...
	Instruction prefetch is frequently done in hardware outside of the cache. For example, the Alpha ...
	A similar approach can be applied to data accesses. Jouppi found that a single data stream buffer...
	EXAMPLE What is the effective miss rate of the Alpha AXP 21064 using instruction prefetching? How...

	ANSWER We assume it takes 1 extra clock cycle if the instruction misses the cache but is found in...
	Let's assume the prefetch hit rate is 25%. Figure�5.7 on page�384 gives the miss rate for an 8-KB...
	To find the effective miss rate with the equivalent performance, we start with the original formu...
	Our calculation suggests that the effective miss rate of prefetching with an 8-KB cache is 0.83%....
	Prefetching relies on utilizing memory bandwidth that otherwise would be unused, and can actually...
	Sixth Miss Rate Reduction Technique: Compiler-Controlled Prefetching

	An alternative to hardware prefetching is for the compiler to insert prefetch instructions to req...
	Register prefetch will load the value into a register.
	Cache prefetch loads data only into the cache and not the register.
	Either of these can be faulting or nonfaulting; that is, the address does or does not cause an ex...
	Prefetching makes sense only if the processor can proceed while the prefetched data are being fet...
	Like hardware-controlled prefetching, the goal is to overlap execution with the prefetching of da...
	Issuing prefetch instructions incurs an instruction overhead, however, so care must be taken to e...
	EXAMPLE For the code below, determine which accesses are likely to cause data cache misses. Next,...

	for (i = 0; i < 3; i = i+1) for (j = 0; j < 100; j = j+1) a[i][j] = b[j][0] * b[j+1][0];
	ANSWER The compiler will first determine which accesses are likely to cause cache misses; otherwi...
	To simplify our optimization, we will not worry about prefetching the first accesses of the loop ...
	for (j = 0; j < 100; j = j+1) { prefetch(b[j+7][0]); /* b(j,0) for 7 iterations later */ prefetch...
	This revised code prefetches a[i][7] through a[i][99] and b[7][0] through b[99][0], reducing the ...
	The cost of avoiding 232 cache misses is executing 400 prefetch instructions, very likely a good ...
	EXAMPLE Calculate the time saved in the example above. Ignore instruction cache misses and assume...

	ANSWER The original doubly nested loop executes the multiply 3 ¥ 100 or 300 times. Since the loop...
	Seventh Miss Rate Reduction Technique: Compiler Optimizations

	Thus far our techniques to reduce misses have required changes to or additions to the hardware: l...
	This magical reduction comes from optimized software—the hardware designer’s favorite solution. T...
	Code can easily be rearranged without affecting correctness; for example, �reordering the procedu...
	Data have even fewer restrictions on location than code. The goal of such transformations is to t...
	To give a feeling of this type of optimization, we will show four examples, transforming the C co...
	FIGURE 5.17� Lebeck and Wood [1994] performed the four optimizations in this section by hand on t...
	Merging Arrays

	This first technique reduces misses by improving spatial locality. Some programs reference multip...
	/* Before */ int val[SIZE]; int key[SIZE];
	/* After */ struct merge { int val; int key; }; struct merge merged_array[SIZE];
	An interesting characteristic of this example is that the proper coding practice of using an arra...
	Loop Interchange

	Some programs have nested loops that access data in memory in nonsequential order. Simply exchang...
	/* Before */ for (j = 0; j < 100; j = j+1) for (i = 0; i < 5000; i = i+1) x[i][j] = 2 * x[i][j];
	/* After */ for (i = 0; i < 5000; i = i+1) for (j = 0; j < 100; j = j+1) x[i][j] = 2 * x[i][j];
	The original code would skip through memory in strides of 100 words, while the revised version ac...
	Loop Fusion

	Some programs have separate sections of code that access the same arrays with the same loops, per...
	/* Before */ for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) a[i][j] = 1/b[i][j] * c[i][j];
	for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) d[i][j] = a[i][j] + c[i][j];
	/* After */ for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) { a[i][j] = 1/b[i][j] * c[i][...
	The original code would take all the misses to access arrays a and c twice, once in the first loo...
	Blocking

	This optimization, perhaps the most famous of the cache optimizations, again tries to reduce miss...
	Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatr...
	/* Before */ for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) {r = 0; for (k = 0; k < N; k...
	The two inner loops read all N by N elements of z, access the same N elements in a row of y repea...
	FIGURE 5.18� A snapshot of the three arrays x, y, and z when i = 1. The age of accesses to the ar...

	The number of capacity misses clearly depends on N and the size of the cache. If it can hold all ...
	To ensure that the elements being accessed can fit in the cache, the original code is changed to ...
	/* After */ for (jj = 0; jj < N; jj = jj+B) for (kk = 0; kk < N; kk = kk+B) for (i = 0; i < N; i ...
	Figure�5.19 illustrates the accesses to the three arrays using blocking. Looking only at capacity...
	FIGURE 5.19� The age of accesses to the arrays x, y, and z. Note in contrast to Figure�5.18 the s...

	Although we have aimed at reducing cache misses, blocking can also be used to help register alloc...
	Traditionally blocking has been aimed at reducing capacity misses, under the simplifying assumpti...
	FIGURE 5.20� The impact of conflict misses in caches that aren’t fully associative on block size....

	These last two subsections have concentrated on the potential benefit of cache- aware compilers a...
	Now that we have spent more than 20 pages on techniques that reduce cache misses, it is time to l...
	5.4
	Reducing Cache Miss Penalty
	Reducing cache misses has been the traditional focus of cache research, but the cache performance...
	First Miss Penalty Reduction Technique: Giving Priority to Read Misses over Writes

	With a write-through cache the most important improvement is a write buffer (page 380) of the pro...
	EXAMPLE Look at this code sequence:

	SW 512(R0),R3 ; M[512] ¨ R3 (cache index 0) LW R1,1024(R0) ; R1 ¨ M[1024] (cache index 0) LW R2,5...
	Assume a direct-mapped, write-through cache that maps 512 and 1024 to the same block, and a four-...
	ANSWER Using the terminology from Chapter�3, this is a read-after-write data hazard in memory. Le...
	The simplest way out of this dilemma is for the read miss to wait until the write buffer is empty...
	The cost of writes by the processor in a write-back cache can also be reduced. Suppose a read mis...
	Second Miss Penalty Reduction Technique: Sub-block Placement for Reduced Miss Penalty

	Suppose you are designing a cache that must fit on the chip. You may find that your tags are too ...
	One solution is called sub-block placement. A valid bit is added to units smaller than the full b...
	Figure�5.21 shows the reduction in tag storage; if the valid bits had to be replaced by full tags...
	FIGURE 5.21� In this example there are four sub-blocks per block in a direct-mapped cache. Sub-bl...
	Third Miss Penalty Reduction Technique: Early Restart and Critical Word First

	The first two techniques require extra hardware to reduce miss penalty, but not this third techni...
	Early restart—As soon as the requested word of the block ar�rives, send it to the CPU and let the...
	Critical word first�—Request the missed word first from memory and send it to the CPU as soon as ...
	Generally these techniques only benefit designs with very large cache blocks, since the benefit i...
	EXAMPLE Let’s assume a machine has a 32-byte cache block and the memory system takes five clock c...

	ANSWER The average miss penalty is five clock cycles for critical word first. For back-to-back re...
	As this example illustrates, the benefits of critical word first and early restart depend on the ...
	The next technique takes overlap between the CPU and cache miss penalty even further to reduce th...
	Fourth Miss Penalty Reduction Technique: Nonblocking Caches to Reduce Stalls on Cache Misses

	Early restart still waits for the requested word to arrive before the CPU can continue execution....
	Figure�5.22 shows the average time in clock cycles for cache misses for an �8-KB data cache as th...
	FIGURE 5.22� Ratio of the average memory stall time for a blocking cache to hit-under-miss scheme...
	EXAMPLE For the cache described in Figure�5.22, which is more important for �floating-point progr...

	ANSWER The numbers for Figure�5.22 were based on a miss penalty of 16 clock cycles. Although this...
	Miss rateDM ¥ Miss penalty = 11.4% ¥ 16 = 1.84
	Miss rate2-way ¥ Miss penalty = 10.7% ¥ 16 = 1.71

	The memory stalls of two-way are thus 1.71/1.84 or 93% of direct- mapped cache. The caption of Fi...
	For integer programs the calculation is
	Miss rateDM ¥ Miss penalty = 7.4% ¥ 16 = 1.18
	Miss rate2-way ¥ Miss penalty = 6.0% ¥ 16 = 0.96

	The memory stalls of two-way are thus 0.96/1.18 or 81% of direct- mapped cache. The caption of Fi...
	Fifth Miss Penalty Reduction Technique: Second-Level Caches

	The first four techniques to reduce miss penalty have impact on the CPU. This final technique ign...
	The performance gap between processors and memory leads the architect to this question: Should I ...
	While the concept of adding another level in the hierarchy is straightforward, it complicates per...
	Average memory access time = Hit timeL1 + Miss rateL1 ¥ Miss penaltyL1

	and
	Miss penaltyL1 = Hit timeL2 + Miss rateL2 ¥ Miss penaltyL2

	so
	In this formula, the second-level miss rate is measured on the left�overs from the first-level ca...
	Local miss rate—The number of misses in the cache divided by the total number of memory accesses ...
	Global miss rate—The number of misses in the cache di�vided by the total number of memory accesse...
	This local miss rate is large because the first-level cache skims the cream of the memory accesse...
	EXAMPLE Suppose that in 1000 memory references there are 40 misses in the first- level cache and ...

	ANSWER The miss rate (either local or global) for the first-level cache is 40/1000 or 4%. The loc...
	Note that these formulas are for combined reads and writes, assuming a write- back first-level ca...
	Figures 5.23 and�5.24 show how miss rates and relative execution time change with the size of a s...
	FIGURE 5.23� Miss rates versus cache size for reads and writes. The top graph shows the results p...

	With these definitions in place, we can consider the parameters of second- �level caches. The for...
	The initial decision is the size of a second-level cache. Since everything in the first-level cac...
	FIGURE 5.24� Relative execution time by second-level cache size. Przybylski [1990] collected thes...
	EXAMPLE Given the data below, what is the impact of second-level cache as�sociativity on the miss...

	ANSWER For a direct-mapped second-level cache, the first-level cache miss �penalty is
	Miss penalty1- way L2 = 10 + 25% ¥ 50 = 22.5 clock cycles

	Adding the cost of associativity increases the hit cost only 0.1 clock �cycles, mak�ing the new f...
	Miss penalty2- way L2 = 10.1 + 20% ¥ 50 = 20.1 clock cycles

	In reality, second-level caches are al�most always synchronized with the first-level cache and CP...
	Miss penalty2- way L2 = 10 + 20% ¥ 50 = 20.0 clock cycles
	Miss penalty2- way L2 = 11 + 20% ¥ 50 = 21.0 clock cycles

	Now we can reduce the miss penalty by reducing the miss rate of the second- level caches using te...
	Another approach to reducing misses is increasing block size in second-level caches. In�creasing ...
	Another consideration concerns whether all data in the first-level cache are always in the second...
	The drawback to this natural inclusion is that the lower average memory �access times can suggest...
	Finally, although a novice might design the first- and second-level caches �independently, the de...
	FIGURE 5.25� Relative execution time by block size for a two-level cache. Przybylski [1990] colle...

	Summarizing the second-level cache considerations, the essence of cache design is balancing fast ...
	5.5
	Reducing Hit Time
	Now that we have examined ways to improve cache performance by reducing misses (in section�5.3) a...
	Hit time is critical because it affects the clock rate of the processor; on many machines today t...
	First Hit Time Reduction Technique: Small and Simple �Caches

	A time-consuming portion of a cache hit is using the index portion of the address to read the tag...
	Second Hit Time Reduction Technique: Avoiding Address Translation During Indexing of the Cache

	Even a small and simple cache must cope with the translation of a virtual address from the CPU to...
	The guideline of making the common case fast suggests that we use virtual �addresses for the cach...
	FIGURE 5.26� Miss rate versus virtually addressed cache size of a program measured three ways: wi...

	Another reason why virtual caches are not more popular is that operating systems and user program...
	Software can make this problem much easier by forcing aliases to share some address bits. The ver...
	The final area of concern with virtual addresses is I/O. I/O typically uses physical addresses an...
	Another technique to get fast hits is to break address translation and cache �access into separat...
	One alternative to get the best of both virtual and physical caches is to use the page offset—the...
	One way to keep the index small enough to be taken from the physical part of the address and stil...
	The IBM 3033 cache, as an extreme example, is 16-way set associative, even though studies show th...
	FIGURE 5.27� Relationship of index field and page offset in the IBM 3033 cache. The 4-KB page mea...

	One alternative to higher associativity is for the operating system to implement page coloring by...
	Another alternative to higher associativity is to have a small piece of hardware that guesses the...
	Keeping caches small and simple and techniques to avoid delays of address translation will make b...
	Third Hit Time Reduction Technique: Pipelining Writes for Fast Write Hits

	Write hits usually take longer than read hits be�cause the tag must be checked before writing the...
	FIGURE 5.28� The hardware organization of pipelined writes. It is possible to find the desired da...
	Cache Optimization Summary

	The techniques in sections 5.3 to 5.5 to improve miss rate, miss penalty, and hit time generally ...
	Technique
	Miss rate
	Miss penalty
	Hit time
	Hardware complexity
	Comment

	Larger block size
	Trivial; RS/6000 550 uses 128
	Higher associativity
	e.g., MIPS R10000 is 4-way
	Victim caches
	Similar technique in HP 7200
	Pseudo-associative caches
	Used in L2 of MIPS R10000
	Hardware prefetching of instructions and data
	Data are harder to prefetch; tried in a few machines; Alpha 21064
	Compiler-controlled prefetching
	Needs non�blocking cache too; �several machines support it
	Compiler techniques to reduce cache misses
	Software is �challenge; some machines give compiler option
	Giving priority to read misses over writes
	Trivial for �uniprocessor, and widely used
	Subblock placement
	Used primarily to reduce tags
	Early restart and critical word first
	Used in MIPS R10000, IBM 620
	Nonblocking caches
	Used in Alpha 21064, R10000
	Second-level caches
	Costly hardware; harder if block size L1 ¹ L2; widely used
	Small and simple caches
	Trivial; widely used
	Avoiding address translation during indexing of the cache
	Trivial if small cache; used in Alpha 21064
	Pipelining writes for fast write hits
	Used in Alpha 21064
	FIGURE 5.29� Summary of cache optimizations and impact on the three aspects of cache performance ...

	5.6
	Main Memory
	… the one single development that put computers on their feet was the invention of a reliable for...

	Maurice Wilkes, Memoirs of a Computer Pioneer (1985)
	Main memory is the next level down in the hierarchy. Main memory satisfies the demands of caches ...
	Memory Technology

	Memory latency is traditionally quoted using two measures—access time and cycle time. Access time...
	As early DRAMs grew in capacity, the cost of a package with all the necessary address lines was a...
	An additional requirement of DRAM derives from the property signified by its first letter, D, for...
	This requirement means that the memory system is occasionally unavailable because it is sending a...
	In contrast to DRAMs are SRAMs—the first letter standing for static. The dynamic nature of the ci...
	The main memory of virtually every computer sold since 1975 is composed of semiconductor DRAMs (a...
	Amdahl suggested a rule of thumb that memory capacity should grow linearly with CPU speed to keep...
	Row access strobe (RAS)
	Year of �introduction
	Chip size
	Slowest DRAM
	Fastest DRAM
	Column access strobe (CAS)
	Cycle time
	FIGURE 5.30� Times of fast and slow DRAMs with each generation. The improvement by a factor of tw...

	As we saw in Figure�5.1 on page�374, the CPU-DRAM perfor�mance gap is clearly a problem today—Amd...
	Organizations for Improving Main Memory �Performance

	Although caches are interested in low latency memory, it is generally easier to improve memory ba...
	Let’s illustrate these organizations with the case of satisfy�ing a cache miss. Assume the perfor...
	4 clock cycles to send the address
	24 clock cycles for the access time per word
	4 clock cycles to send a word of data
	Given a cache block of four words, the miss penalty is 4 ¥ (4 + 24 + 4) or 128 clock cycles, with...
	Figure�5.31 shows some of the options to faster memory systems. The next four solutions assume ge...
	FIGURE 5.31� Three examples of bus width, memory width, and memory interleaving to achieve higher...

	The simplest approach to increasing memory bandwidth, then, is to make the memory wider; we exami...
	First Technique for Higher Bandwidth: Wider Main Memory

	First-level caches are often organized with a physical width of one word because most CPU accesse...
	There is cost in the wider connection between the CPU and memory, typically called a memory bus. ...
	One example of wide main memory is the Alpha AXP 21064 whose second- level cache, memory bus, and...
	Second Technique for Higher Bandwidth: Simple Interleaved Memory

	Increasing width is one way to improve bandwidth, but another is to take advantage of the potenti...
	The banks are often one word wide so that the width of the bus and the cache need not change, but...
	The mapping of addresses to banks affects the behavior of the memory system. The example above as...
	FIGURE 5.32� Four-way interleaved memory. This example assumes word addressing: with byte address...
	EXAMPLE What can interleaving and a wide memory buy? Consider the fol�lowing description of a mac...

	Block size = 1 word
	Memory bus width = 1 word
	Miss rate = 3%
	Memory accesses per instruction = 1.2
	Cache miss penalty = 32 cycles (as above)
	Average cycles per instruction (ignoring cache misses) = 2
	If we change the block size to two words, the miss rate falls to 2%, and a four-word block has a ...
	ANSWER The CPI for the base machine using one-word blocks is
	2 + (1.2 ¥ 3% ¥ 32) = 3.15

	Since the clock cycle time and instruction count won’t change in this ex�ample, we can calculate ...
	Increasing the block size to two words gives the following options:
	Thus, doubling the block size slows down the straightforward im�plementation (3.54 versus 3.15), ...
	Again, the larger block hurts performance for the simple case, although the interleaved 32-bit me...
	This subsection has shown that interleaved memory is logically a wide memory, except that accesse...
	How many banks should be included? One metric, used in vector computers (Appendix�B), is as follows:
	Number of banks ³ Number of clock cycles to access word in bank

	The memory system goal is to deliver information from a new bank each clock cycle for sequential ...
	We will discuss conflicts on nonsequential accesses to banks in the following subsections. For no...
	Ironically, as capacity per memory chip increases, there are fewer chips in the same-sized memory...
	A second disadvantage of memory banks is again the difficulty of main memory expansion. Either th...
	Third Technique for Higher Bandwidth: Independent Memory Banks

	The original motivation for memory banks was higher memory bandwidth by inter�leaving sequential ...
	Thus the term memory bank has potentially two conflicting definitions. We use the term superbank ...
	FIGURE 5.33� The relationship of superbanks and banks.
	Fourth Technique for Higher Bandwidth: Avoiding Memory Bank Conflicts

	If the memory system is being designed to support multiple independent �requests—as in the case o...
	The problem with such a solution is that data memory references are not �random, and may go to th...
	int x[256][512]; for (j = 0; j < 512; j = j+1) for (i = 0; i < 256; i = i+1) x[i][j] = 2 * x[i][j];
	Since the 512 is an even multiple of 128, all the elements of a column will be in the same memory...
	There are both software and hardware solutions to the bank conflict problem. The compiler could d...
	Before describing a hardware solution, let’s review how addressing of banks works. The mapping of...
	Bank number = Address mod Number of banks
	Address within bank =

	Traditional memory systems keep both the number of banks and the amount of memory per bank a powe...
	One hardware solution to reduce the number of bank conflicts is to have a prime number of banks! ...
	Fortunately, there are several hardware schemes to calculate modulo quickly, especially if the pr...
	Address within bank = Address mod Number of words in bank

	Since the number of words in a bank is very likely a power of two, we have replaced division by a...
	The proof of this simplification is based on the Chinese Remainder Theorem. This 2000-year-old ob...
	bi = x mod ai, 0 £ bi < ai, 0 £ x < a0 ¥ a1 ¥ a2 ¥. . .

	and that ai and aj are co-prime if i ¹ j, then the integer x has only one solution of each pair o...
	Bank number = Address mod Number of banks (b0 = x mod a0).
	Address within bank = Address mod Number of words in bank (b1 = x mod a1).
	Bank number < Number of banks (0 £ b0 < a0).
	Address within a bank < Number of words in bank (0 £ b1 < a1).
	Address < Number of banks ¥ Number of words in a bank (0 £ x < a0 ¥ a1).
	The number of banks and the number of words in a bank are co-prime (a0 and a1 are co-prime).
	The first two conditions above are simply the definition of the mapping. The next three condition...
	Figure�5.34 shows three memory modules, each with eight words, showing the traditional sequential...
	Address within bank
	Memory bank
	Sequentially interleaved
	Modulo interleaved
	0
	1
	2
	0
	1
	2

	0
	0
	1
	2
	0
	16
	8
	1
	3
	4
	5
	9
	1
	17
	2
	6
	7
	8
	18
	10
	2
	3
	9
	10
	11
	3
	19
	11
	4
	12
	13
	14
	12
	4
	20
	5
	15
	16
	17
	21
	13
	5
	6
	18
	19
	20
	6
	22
	14
	7
	21
	22
	23
	15
	7
	23
	FIGURE 5.34� Three memory banks with sequentially interleaved addressing on the left, requiring a...
	Fifth Technique for Higher Bandwidth: DRAM-Specific �Interleaving

	Thus far we have seen four techniques that improve memory bandwidth: wider memory, interleaved me...
	As mentioned earlier, DRAM access is divided into row access and column ac�cess. DRAMs must buffe...
	Nibble mode—The DRAM can supply three extra bits from se�quential locations for every row access ...
	Page mode—The buffer acts like a SRAM; by changing column address, �random bits can be accessed i...
	Static column—Very similar to page mode, except that it’s not necessary to �toggle the column acc...
	Starting with the 1-Mbit generation, most DRAMs can perform any of the three options, with the op...
	Row access
	Optimized time nibble, page, static column
	Chip size
	Slowest DRAM
	Fastest DRAM
	Column access
	Cycle time
	FIGURE 5.35� DRAM cycle time for the optimized accesses. This figure is the same as Figure�5.30 (...

	The advantage of such optimizations is that they use the cir�cuitry already on the DRAMs, adding ...
	Recently new breeds of DRAMs have been produced that further optimize the interface between the D...
	Most main memory systems use techniques such as page mode to reduce the CPU-DRAM performance gap....
	One example niche market is computer graphics, where a DRAM with a fast serial output line is use...
	5.7
	Virtual Memory
	… a system has been devised to make the core drum combination appear to the programmer as a singl...

	Kilburn et al. [1962]
	At any instant in time computers are running multiple processes, each with its own address space....
	Although virtual memory is essential for current computers, sharing is not the reason virtual mem...
	FIGURE 5.36� The logical program in its contiguous virtual address space is shown on the left: it...

	In addition to sharing protected memory space and automatically managing the memory hierarchy, vi...
	Several general memory-hierarchy terms from Chapter�1 apply to virtual memory, while some other t...
	Parameter
	First-level cache
	Virtual memory

	Block (page) size
	16–128 bytes
	4096–65,536 bytes
	Hit time
	1–2 clock cycles
	40–100 clock cycles
	Miss penalty
	8–100 clock cycles
	700,000–6,000,000 clock cycles
	(Access time)
	 (6–60 clock cycles)
	 (500,000–4,000,000 clock cycles)
	(Transfer time)
	 (2–40 clock cycles)
	 (200,000–2,000,000 clock cycles)
	Miss rate
	0.5–10%
	0.00001– 0.001%
	Data memory size
	0.016–1MB
	16–8192 MB
	FIGURE 5.37� Typical ranges of parameters for caches and virtual memory. Virtual memory parameter...

	There are further differences between caches and virtual memory beyond those quantitative ones me...
	Replacement on cache misses is primarily controlled by hard�ware, while vir�tual memory replaceme...
	The size of the processor address determines the size of virtual memory, but the cache size is in...
	In addition to acting as the lower-level backing store for main memory in the hierarchy, secondar...
	Virtual memory also encompasses several related techniques. Virtual memory systems can be categor...
	FIGURE 5.38� Example of how paging and segmentation divide a program.

	The decision to use paged virtual memory versus segmented virtual memory affects the CPU. Paged a...
	The pros and cons of these two approaches have been well doc�umented in oper�ating systems textbo...
	Page
	Segment

	Words per �address
	One
	Two (segment and offset)
	Programmer �visible?
	Invisible to application programmer
	May be visible to application �programmer
	Replacing a block
	Trivial (all blocks are the same size)
	Hard (must find contiguous, variable-size, �unused portion of main memory)
	Memory use �inefficiency
	Internal fragmentation (unused portion of page)
	External fragmentation (unused pieces of main mem�ory)
	Efficient disk traffic
	Yes (adjust page size to balance access time and transfer time)
	Not always (small segments may transfer just a few bytes)
	FIGURE 5.39� Paging versus segmentation. Both can waste memory, depend�ing on the block size and ...

	We are now ready to answer the four memory-hierarchy ques�tions for virtual memory.
	Q1: Where can a block be placed in main memory?

	The miss penalty for virtual memory involves access to a rotating magnetic storage device and is ...
	Q2: How is a block found if it is in main memory?

	Both paging and segmentation rely on a data structure that is indexed by the page or segment numb...
	FIGURE 5.40� The mapping of a virtual address to a physical address via a page table.

	This data structure, containing the physical page addresses, usually takes the form of a page tab...
	To reduce address translation time, computers use a cache dedicated to these address translations...
	Q3: Which block should be replaced on a vir�tual memory miss?

	As mentioned above, the overriding operating system guideline is minimizing page faults. Consiste...
	Q4: What happens on a write?

	The level below main memory contains rotating magnetic disks that take millions of clock cycles t...
	Techniques for Fast Address Translation

	Page tables are usually so large that they are stored in main mem�ory, and sometimes paged themse...
	One remedy is to remember the last translation, so that the mapping process is skipped if the cur...
	A TLB entry is like a cache entry where the tag holds portions of the virtual address and the dat...
	Figure�5.41 shows the Alpha AXP 21064 data TLB organization, with each step of a translation labe...
	FIGURE 5.41� Operation of the Alpha AXP 21064 data TLB during address translation. The four steps...

	For reasons similar to those in the cache case, there is no need to include the 13 bits of the Al...
	As mentioned on page 422, one architectural challenge stems from the difficulty of combining cach...
	Address translation can easily be on the critical path determining the clock �cycle of the proces...
	Selecting a Page Size

	The most obvious architectural parameter is the page size. Choosing the page is a question of bal...
	The size of the page table is inversely proportional to the page size; memory (or other resources...
	As mentioned on page 424 in section�5.5, a larger page size simplifies fast cache hit times.
	Transferring larger pages to or from secondary storage, possibly over a network, is more efficien...
	The number of TLB entries are restricted, so a larger page size means that more memory can be map...
	It is for this final reason that recent microprocessors have decided to support multiple page siz...
	The main motivation for a smaller page size is conserving stor�age. A small page size will result...
	5.8
	Protection and Examples of Virtual Memory
	The invention of multi�programming, where a computer would be shared by �several programs running...
	Multiprogramming leads to the concept of a process. Metaphorically, a process is a program’s brea...
	A process must operate correctly whether it executes continuously from start to finish, or is int...
	Protecting Processes

	The simplest protection mechanism is a pair of registers that checks every address to be sure tha...
	Base £ Address £ Bound

	In some systems the address is considered an unsigned number that is always added to the base, so...
	(Base + Address) £ Bound

	If user processes are allowed to change the base and bounds registers, then �users can’t be prote...
	1. Provide at least two modes, indicating whether the running process is a user process or an ope...
	2. Provide a portion of the CPU state that a user process can use but not write. This includes th...
	3. Provide mechanisms whereby the CPU can go from user mode to supervisor mode and vice versa. Th...

	Base and bound constitute the minimum protection system, while virtual memory offers a more fine-...
	Processes are thus protected from one another by having their own page �tables, each pointing to ...
	Protection can be escalated, depending on the apprehension of the computer designer or the purcha...
	As the designer’s apprehension escalates to trepidation, these simple rings may not suffice. Rest...
	A Paged Virtual Memory Example: The Alpha AXP Memory Management and the 21064 TLB

	The Alpha AXP architecture uses a combination of segmentation and paging, providing protection wh...
	FIGURE 5.42� The organization of seg0 and seg1 in the Alpha. User processes live in seg0, while s...

	Even with this division, the size of page tables for the 64-bit address space is alarming. Hence ...
	FIGURE 5.43� The mapping of an Alpha virtual address. Each page table is exactly one page long, s...

	The Alpha uses a 64-bit page table entry (PTE) in each of these page tables. The first 32 bits co...
	Valid—Says that the page frame number is valid for hardware translation
	User read enable—Allows user programs to read data within this page
	Kernel read enable—Allows the kernel to read data within this page
	User write enable—Allows user programs to write data within this page
	Kernel write enable—Allows the kernel to write data within this page
	In addition, the PTE has fields reserved for systems software to use as it pleases. Since the Alp...
	Since the PTEs are 8 bytes long, the page tables are exactly one page long, and the Alpha AXP 210...
	The maximum virtual address and physical address is then tied to the page size. The architecture ...
	While we have explained translation of legal addresses, what prevents the user from creating ille...
	The first implementation of this architecture was the Alpha AXP 21064, which employs two TLBs to ...
	Parameter
	Description

	Block size
	1 PTE (8 bytes)
	Hit time
	1 clock cycle
	Miss penalty (average)
	20 clock cycles
	TLB size
	Instruction: 8 PTE for 8-KB pages, 4 PTE for 4-MB pages (96 bytes total)
	Data: 32 PTE for 8-KB, 64-KB, 512-KB, or 4-MB pages (256 bytes total)
	Block selection
	Random, but not last used
	Write strategy
	(Not applicable)
	Block placement
	Fully associative
	FIGURE 5.44� Memory-hierarchy parameters of the Alpha AXP 21064 TLB.

	Memory management in the Alpha 21064 is typical of most computers today, relying on page-level ad...
	A Segmented Virtual Memory Example: Protection in the �Intel Pentium
	The second system is the most dangerous system a man ever de�signs… . The g�eneral tendency is to...

	F. P. Brooks, Jr., The Mythical Man-Month (1975)
	The original 8086 used segments for addressing, yet it provided nothing for vir�tual memory or fo...
	The first enhancement is to double the traditional two-level protection model: the Pentium has fo...
	The Intel designers did not stop there. The Pentium divides the address space, allowing both the ...
	The Intel designers were guided by the principle of trusting the operating system as little as po...
	Adding Bounds Checking and Memory Mapping

	The first step in enhancing the Intel processor was getting the segmented addressing to check bou...
	A present bit—equivalent to the PTE valid bit, used to indicate this is a valid translation
	A base field—equivalent to a page frame address, containing the physical �address of the first by...
	An access bit—like the reference bit or use bit in some architectures that is helpful for replace...
	An attributes field—speci�fies the valid operations and protection levels for �operations that us...
	There is also a limit field, not found in paged systems, which establishes the �upper bound of va...
	FIGURE 5.45� The Pentium segment descriptors are distin�guished by bits in the attributes field. ...

	Pentium provides an optional paging system in addition to this segmented addressing, where the up...
	Adding Sharing and Protection

	To provide for protected sharing, half of the address space is shared by all processes and half i...
	A program loads a Pentium segment register with an index to the table and a bit saying which tabl...
	We can now show how to invoke the payroll program mentioned above to update the year-to-date info...
	Adding Safe Calls from User to OS Gates and Inheriting �Protection Level for Parameters

	Allowing the user to jump into the operating system is a bold step. How, then, can a hardware des...
	To restrict entry into others’ code, the Pentium provides a special segment �descriptor, or call ...
	What happens if caller and callee are “mutually suspicious,” so that neither trusts the other? Th...
	This scheme still leaves open the potential loophole of having the operat�ing system use the user...
	Summary: Protection on the Alpha versus the Pentium

	If the Pentium protection model looks harder to build than the Alpha model, that’s because it is....
	One wild card is the increasing popularity of the Internet, where virtually any machine can becom...
	We conclude this section with questions rather than answers: Will the considerable protection eng...
	5.9
	Crosscutting Issues in the Design of Memory Hierarchies
	This section describes four topics discussed in other chapters that are fundamental to memory-hie...
	Superscalar CPU and Number of Ports to the Cache

	One complexity of the advanced designs of Chapter 4 is that multiple instructions can be issued w...
	For example, the IBM RS/6000 Power 2 model 900 can issue up to six instructions per clock cycle, ...
	Speculative Execution and the Memory System

	Inherent in CPUs that support speculative execution or conditional instructions is the possibilit...
	By similar reasoning, we cannot allow such instructions to cause the cache to stall on a miss, fo...
	Compiler Optimization: Instruction-Level Parallelism versus Reducing Cache Misses

	Sometimes the compiler must choose between improving instruction-level parallelism and improving ...
	for (i = 0; i < 512; i = i+1) for (j = 1; j < 512; j = j+1) x[i][j] = 2 * x[i][j-1];
	accesses the data in the order they are stored, thereby minimizing cache misses. Unfortunately, t...
	for (i = 0; i < 512; i = i+1) for (j = 1; j < 512; j = j+4){ x[i][j] = 2 * x[i][j-1]; x[i][j+1] =...
	Each of the last three statements has a RAW dependency on the prior statement. We can improve par...
	for (j = 1; j < 512; j = j+1) for (i = 0; i < 512; i = i+1) x[i][j] = 2 * x[i][j-1];
	Unrolling the loop shows this parallelism:
	for (j = 1; j < 512; j = j+1) for (i = 0; i < 512; i = i+4) { x[i][j] = 2 * x[i][j-1]; x[i+1][j] ...
	Now all four statements in the loop are independent! Alas, increasing parallelism leads to access...
	I/O and Consistency of Cached Data

	Because of caches, data can be found in memory and in the cache. As long as the CPU is the sole d...
	FIGURE 5.46� The cache-coherency problem. A' and B' refer to the cached copies of A and B in memo...

	The question is this: Where does the I/O occur in the computer—between the I/O device and the cac...
	The goal for the I/O system in a computer with a cache is to prevent the stale- data problem whil...
	The cache-coherency problem applies to multiprocessors as well as I/O. Unlike I/O, where multiple...
	5.10
	Putting It All Together: The Alpha AXP 21064 Memory Hierarchy
	Thus far we have given glimpses of the Alpha AXP 21064 memory hierarchy; this section unveils the...
	FIGURE 5.47� The overall picture of the Alpha AXP 21064 memory hierarchy. Individual components c...

	Let's really start at the beginning, when the Alpha is turned on. Hardware on the chip loads the ...
	One of the first steps is to update the instruction TLB with valid page table entries (PTEs) for ...
	Once the operating system is ready to begin executing a user process, it sets the PC to the appro...
	We are now ready to follow memory hierarchy in action: Figure�5.47 is labeled with the steps of t...
	A miss, on the other hand, simultaneously starts an access to the second-level cache (step 6) and...
	If the instruction is not in the prefetch stream buffer, the second-level cache continues trying ...
	The instruction stream does not rely on the TLB for address translation. It simply increments the...
	If the instruction is not found in the secondary cache, the translated physical address is sent t...
	Since the second-level cache is a write-back cache, any miss can lead to some old block being wri...
	Suppose this initial instruction is a load. It will send the page frame of its data address to th...
	Assuming that we have a valid PTE in the data TLB (step 21), the cache tag and the physical page ...
	Suppose the instruction is a store instead of a load. The page frame portion of the data address ...
	The write buffer takes over now. It has four entries, each containing a whole cache block. If the...
	All writes are eventually passed on to the second-level cache. If a write is a hit, then the data...
	If the access to the second-level cache is a miss, the victim block is checked to see if it is di...
	Performance of the 21064 Memory Hierarchy

	How well does the 21064 work? The bottom line in this evaluation is the per�centage of time lost ...
	CPI
	Miss rates
	Program
	I cache
	D cache
	L2
	Total cache
	Instr. issue
	Other stalls
	Total CPI
	I cache
	D cache
	L2

	TPC-B (db1)
	0.57
	0.53
	0.74
	1.84
	0.79
	1.67
	4.30
	8.10%
	41.00%
	7.40%
	TPC-B (db2)
	0.58
	0.48
	0.75
	1.81
	0.76
	1.73
	4.30
	8.30%
	34.00%
	6.20%
	AlphaSort
	0.09
	0.24
	0.50
	0.83
	0.70
	1.28
	2.81
	1.30%
	22.00%
	17.40%
	Avg comm
	0.41
	0.42
	0.66
	1.49
	0.75
	1.56
	3.80
	5.90%
	32.33%
	10.33%
	espresso
	0.06
	0.13
	0.01
	0.20
	0.74
	0.57
	1.51
	0.84%
	9.00%
	0.33%
	li
	0.14
	0.17
	0.00
	0.31
	0.75
	0.96
	2.02
	2.04%
	9.00%
	0.21%
	eqntott
	0.02
	0.16
	0.01
	0.19
	0.79
	0.41
	1.39
	0.22%
	11.00%
	0.55%
	compress
	0.03
	0.30
	0.04
	0.37
	0.77
	0.52
	1.66
	0.48%
	20.00%
	1.19%
	sc
	0.20
	0.18
	0.04
	0.42
	0.78
	0.85
	2.05
	2.79%
	12.00%
	0.93%
	gcc
	0.33
	0.25
	0.02
	0.60
	0.77
	1.14
	2.51
	4.67%
	17.00%
	0.46%
	Avg SPECint92
	0.13
	0.20
	0.02
	0.35
	0.77
	0.74
	1.86
	1.84%
	13.00%
	0.61%
	spice
	0.01
	0.68
	0.02
	0.71
	0.83
	0.99
	2.53
	0.21%
	36.00%
	0.43%
	doduc
	0.16
	0.26
	0.00
	0.42
	0.77
	1.58
	2.77
	2.30%
	14.00%
	0.11%
	mdljdp2
	0.00
	0.31
	0.01
	0.32
	0.83
	2.18
	3.33
	0.06%
	28.00%
	0.21%
	wave5
	0.04
	0.39
	0.04
	0.47
	0.68
	0.84
	1.99
	0.57%
	24.00%
	0.89%
	tomcatv
	0.00
	0.42
	0.04
	0.46
	0.67
	0.79
	1.92
	0.06%
	20.00%
	0.89%
	ora
	0.00
	0.10
	0.00
	0.10
	0.72
	1.25
	2.07
	0.05%
	7.00%
	0.10%
	alvinn
	0.03
	0.49
	0.00
	0.52
	0.62
	0.25
	1.39
	0.38%
	18.00%
	0.01%
	ear
	0.01
	0.15
	0.00
	0.16
	0.65
	0.24
	1.05
	0.11%
	9.00%
	0.01%
	mdljsp2
	0.00
	0.09
	0.00
	0.09
	0.80
	1.67
	2.56
	0.05%
	5.00%
	0.11%
	swm256
	0.00
	0.24
	0.01
	0.25
	0.68
	0.37
	1.30
	0.02%
	13.00%
	0.32%
	su2cor
	0.03
	0.74
	0.01
	0.78
	0.66
	0.71
	2.15
	0.41%
	43.00%
	0.16%
	hydro2d
	0.01
	0.54
	0.01
	0.56
	0.69
	1.23
	2.48
	0.09%
	32.00%
	0.32%
	nasa7
	0.01
	0.68
	0.02
	0.71
	0.68
	0.64
	2.03
	0.19%
	37.00%
	0.25%
	fpppp
	0.52
	0.17
	0.00
	0.69
	0.70
	0.97
	2.36
	7.42%
	7.00%
	0.01%
	Avg SPECfp92
	0.06
	0.38
	0.01
	0.45
	0.71
	0.98
	2.14
	0.85%
	20.93%
	0.27%
	FIGURE 5.48� Percentage of execution time due to memory latency and miss rates for three commerci...

	Figure�5.48 also shows the miss rates for each component. The SPECint92 programs have about a 2% ...
	FIGURE 5.49� Graphical representation of the data in Figure 5.48, with programs in each of the th...

	5.11
	Fallacies and Pitfalls
	As the most naturally quantitative of the computer architecture dis�ciplines, memory hierarchy wo...
	Pitfall: Too small an address space.
	Just five years after DEC and Carnegie Mellon University collaborated to design the new PDP-11 co...
	The fatal flaw of the PDP-11 was the size of its addresses as compared to the address sizes of th...
	There is only one mistake that can be made in computer design that is difficult to recover from—n...
	A partial list of successful machines that eventually starved to death for lack of address bits i...
	Fallacy: Predicting cache performance of one program from another.
	Figure�5.50 shows the instruction miss rates and data miss rates for three programs from the SPEC...
	FIGURE 5.50� Instruction and data miss rates for direct-mapped caches with 32-byte blocks for run...

	Nor is it safe to generalize cache measurements from one architecture to another. Figure�5.48 for...
	Pitfall: Simulating enough instructions to get accurate performance measures of the memory hierar...
	There are really two pitfalls here. One is trying to predict performance of a large cache using a...
	FIGURE 5.51� Average memory access times for four programs over execution time of billions of ins...

	The first edition of this book included another example of this pitfall. The compulsory miss rati...
	Data on typical page fault rates and process sizes do not support the conclusion that memory is t...
	Pitfall: Ignoring the impact of the operating system on the performance of the memory hierarchy.
	Figure�5.52 shows the memory stall time due to the operating system spent on three large workload...
	Time
	Misses
	% time due to appl. misses
	% time due directly to OS misses
	% time OS misses & appl. conflicts
	Workload
	% in�% in appl��OS
	Inherent appl. misses
	OS conflicts w. appl.
	OS instr misses
	Data misses for migration
	Data misses in block operations
	Rest of OS misses

	Pmake
	Multipgm
	Oracle
	FIGURE 5.52� Misses and time spent in misses for applications and operating system. Collected on ...

	Pitfall: Basing the size of the write buffer on the speed of memory and the average mix of writes.
	This seems like a reasonable approach:
	If there is one memory reference per clock cycle, 10% of the memory references are writes, and wr...
	Thus, a one-word buffer seems sufficient.
	The pitfall is that when writes come close together, the CPU must stall until the prior write is ...
	The proper ques�tion to ask is how large a buffer is needed to keep utilization low so that the b...
	5.12
	Concluding Remarks
	The difficulty of building a memory system to keep pace with faster CPUs is underscored by the fa...
	TLB
	First-level cache
	Second-level cache
	Virtual �memory

	Block size
	4–8 bytes (1 PTE)
	4�–32 bytes
	32–256 bytes
	4096–16,384 bytes
	Hit time
	1 clock cycle
	1–2 clock cycles
	6–15 clock �cycles
	10–100 clock �cycles
	Miss penalty
	10–30 clock �cycles
	8–66 clock cycles
	30–200 clock cycles
	700,000–6,000,000 clock cycles
	Miss rate (local)
	0.1–2%
	0.5–20%
	15–30%
	0.00001–0.001%
	Size
	32–8192 bytes (8–1024 PTEs)
	1–128 KB
	256 KB–16 MB
	16–8192 MB
	Backing store
	First-level cache
	Second-level cache
	Page-mode DRAM
	Disks
	Q1: block placement
	Fully associative or set associative
	Direct mapped
	Direct mapped or set �associative
	Fully �associative
	Q2: block �identification
	Tag/block
	Tag/block
	Tag/block
	Table
	Q3: block re�placement
	Random
	n.a. (direct mapped)
	Random
	ª LRU
	Q4: write strategy
	Flush on a write to page table
	Write through or write back
	Write back
	Write back
	FIGURE 5.53� Summary of the memory-hierarchy examples in this chapter.

	Yet the design decisions at these levels interact, and the architect must take the whole system v...
	5.13
	Historical Perspective and References
	While the pioneers of computing knew of the need for a memory hier�archy and coined the term, the...
	Both the Atlas and the IBM 360 provided protection on pages, and the GE 645 was the first system ...
	Anyone who has been concerned with an implementation of the type just described [capability syste...
	Compared with a conventional computer system, there will inevitably be a cost to be met in provid...

	Today there is little interest in capabilities either from the operating systems or the computer ...
	Bell and Strecker [1976] reflected on the PDP-11 and identified a small address space as the only...
	A few years after the Atlas paper, Wilkes published the first pa�per describing the concept of a ...
	The use is discussed of a fast core memory of, say, 32,000 words as slave to a �slower core memor...

	This two-page paper describes a direct-mapped cache. While this is the first publication on cache...
	Subsequent to that publication, IBM started a project that led to the first commercial machine wi...
	Conti, Gibson, and Pitkowsky [1968] describe the resulting per�formance of the 360/85. The 360/91...
	This chapter relies on the measurements of SPEC92 benchmarks collected by Gee et al. [1993] for D...
	The Alpha AXP architecture is described in detail by Bhandarkar [1995] and by Sites [1992], and a...
	References

	Agarwal, A. [1987]. Analysis of Cache Performance for Operating Systems and Multiprogramming, Ph....
	Agarwal, A. and S. D. Pudar [1993]. “Column-associative caches: A technique for reducing the miss...
	Baer, J.-L. and W.-H. Wang [1988]. “On the inclusion property for multi-level cache hier�archies,...
	Bell, C. G. and W. D. Strecker [1976]. “Computer structures: What have we learned from the PDP-11...
	Bhandarkar, D. P. [1995]. Alpha Architecture Implementations, Digital Press, Newton, Mass.
	Borg, A., R. E. Kessler, and D. W. Wall [1990]. “Generation and analysis of very long address tra...
	Case, R. P. and A. Padegs [1978]. “The architecture of the IBM System/370,” Communications of the...
	Clark, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on Computer Systems 1:1, 2...
	Conti, C., D. H. Gibson, and S. H. Pitkowsky [1968]. “Structural aspects of the System/360 �Model...
	Crawford, J. H. and P. P. Gelsinger [1987]. Programming the 80386, Sybex, Alameda, Calif.
	Fabry, R. S. [1974]. “Capability based addressing,” Comm. ACM 17:7 (July), 403–412.
	Farkas, K. I. and N. P. Jouppi [1994]. “Complexity/performance tradeoffs with non-blocking loads,...
	Gao, Q. S. [1993]. “The Chinese remainder theorem and the prime memory system,” 20th Annual Int’l...
	Gee, J. D., M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith [1993]. “Cache performance of the SP...
	Gibson, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS Conf. Proc. 30, SJ...
	Handy, J. [1993]. The Cache Memory Book, Academic Press, Boston.
	Hill, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis, Uni...
	Hill, M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (December), 25–40.
	Jouppi, N. P. [1990]. “Improving direct-mapped cache performance by the addition of a small fully...
	Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level storage �system...
	Kroft, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,” Proc. Eighth Annua...
	Lam, M. S., E. E. Rothberg, and M. E. Wolf [1991]. “The cache performance and optimizations of bl...
	Lebeck, A. R. and D. A. Wood [1994]. “Cache profiling and the SPEC benchmarks: A case study,” Com...
	Liptay, J. S. [1968]. “Structural aspects of the System/360 Model 85, Part II: The cache,” IBM �S...
	McFarling, S. [1989]. “Program optimization for instruction caches,” Proc. Third Int’l Conf. on �...
	Mowry, T. C., S. Lam, and A. Gupta [1992]. “Design and evaluation of a compiler algorithm for pre...
	Palacharla, S. and R. E. Kessler [1994]. “Evaluating stream buffers as a secondary cache replacem...
	Przybylski, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann Publishe...
	Przybylski, S. A., M. Horowitz, and J. L. Hennessy [1988]. “Performance tradeoffs in cache design...
	Saavedra-Barrera, R. H. [1992]. CPU Performance Evaluation and Execution Time Prediction Using Na...
	Samples, A. D. and P. N. Hilfinger [1988]. “Code reorganization for instruction caches,” Tech. Re...
	Sites, R. L. (ed.) [1992]. Alpha Architecture Reference Manual, Digital Press, Burlington, Mass.
	Smith, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.
	Smith, J. E. and J. R. Goodman [1983]. “A study of instruction cache organizations and replacemen...
	Strecker, W. D. [1976]. “Cache memories for the PDP-11?,” Proc. Third Annual Symposium on Compute...
	Torrellas, J., A. Gupta, and J. Hennessy [1992]. “Characterizing the caching and synchron�ization...
	Wang, W.-H., J.-L. Baer, and H. M. Levy [1989]. “Organization and performance of a two-level virt...
	Wilkes, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Electronic �Compu...
	Wilkes, M. V. [1982]. “Hardware support for memory protection: Capability implementations,” Proc....
	Wulf, W. A., R. Levin, and S. P. Harbison [1981]. Hydra/C.mmp: An Experimental Computer �System, ...
	Exercises
	5.1� [15/15/12/12] <5.1,5.2> Let’s try to show how you can make unfair benchmarks. Here are two m...

	Cache A: 128 sets, two elements per set, each block is 32 bytes, and it uses write through and no...
	Cache B: 256 sets, one element per set, each block is 32 bytes, and it uses write back and does a...
	a. [15] <1.5,5.2> Describe a program that makes machine A run as much faster as possible than �ma...
	b. [15] <1.5,5.2> Describe a program that makes machine B run as much faster as possible than �ma...
	c. [12] <1.5,5.2> Approximately how much faster is the program in part (a) on machine A than �mac...
	d. [12] <1.5,5.2> Approximately how much faster is the program in part (b) on machine B than on �...
	5.2� [15/10/12/12/12/12/12/12/12/12/12] <5.3,5.4> In this exercise, we will run a program to eval...

	#include <stdio.h>
	#include <sys/times.h>
	#include <sys/types.h>
	#include <time.h>
	#define CACHE_MIN (1024) /* smallest cache */
	#define CACHE_MAX (1024*1024) /* largest cache */
	#define SAMPLE 10 /* to get a larger time sample */
	#ifndef CLK_TCK
	#define CLK_TCK 60 /* number clock ticks per second */
	#endif
	int x[CACHE_MAX]; /* array going to stride through */
	double get_seconds() { /* routine to read time */
	struct tms rusage;
	times(&rusage); /* UNIX utility: time in clock ticks */
	return (double) (rusage.tms_utime)/CLK_TCK;
	}
	void main() {
	int register i, index, stride, limit, temp;
	int steps, tsteps, csize;
	double sec0, sec; /* timing variables */
	for (csize=CACHE_MIN; csize <= CACHE_MAX; csize=csize*2)
	for (stride=1; stride <= csize/2; stride=stride*2) {
	sec = 0; /* initialize timer */
	limit = csize-stride+1; /* cache size this loop */
	steps = 0;
	do { /* repeat until collect 1 second */
	sec0 = get_seconds(); /* start timer */
	for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
	for (index=0; index < limit; index=index+stride)
	x[index] = x[index] + 1; /* cache access */
	steps = steps + 1; /* count while loop iterations */
	sec = sec + (get_seconds() - sec0);/* end timer */
	} while (sec < 1.0); /* until collect 1 second */
	/* Repeat empty loop to subtract loop overhead */
	tsteps = 0; /* used to match no. while iterations */
	do { /* repeat until same no. iterations as above */
	sec0 = get_seconds(); /* start timer */
	for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
	for (index=0; index < limit; index=index+stride)
	temp = temp + index; /* dummy code */
	tsteps = tsteps + 1; /* count while iterations */
	sec = sec - (get_seconds() - sec0);/* - overhead */
	} while (tsteps<steps); /* until = no. iterations */
	printf("Size:%7d Stride:%7d read+write:%l4.0f ns\n",
	csize*sizeof(int), stride*sizeof(int), (double)
	sec*1e9/(steps*SAMPLE*stride*((limit-1)/stride+1)));
	}; /* end of both outer for loops */
	}
	The program above assumes that program addresses track physical addresses, which is true on the f...
	To answer the questions below, assume that the sizes of all components of the memory �hierarchy a...
	a. [15] <5.3,5.4> Plot the experimental results with elapsed time on the y-axis and the memory st...
	b. [10] <5.3,5.4> How many levels of cache are there?
	c. [12] <5.3,5.4> What is the size of the first-level cache? Block size? Hint: Assume the size of...
	d. [12] <5.3,5.4> What is the size of the second-level cache (if any)? Block size?
	e. [12] <5.3,5.4> What is the associativity of the first-level cache? Second-level cache?
	f. [12] <5.3,5.4> What is the page size?
	g. [12] <5.3,5.4> How many entries are in the TLB?
	h. [12] <5.3,5.4> What is the miss penalty for the first-level cache? Second-level?
	i. [12] <5.3,5.4> What is the time for a page fault to secondary memory? Hint: A page fault to ma...
	j. [12] <5.3,5.4> What is the miss penalty for the TLB?
	k. [12] <5.3,5.4> Is there anything else you have discovered about the memory hierarchy from thes...
	5.3� [10/10/10] <5.2> Figure�5.54 shows the output from running the program in Exercise�5.2 on a ...
	FIGURE 5.54� Results of running program in Exercise�5.2 on a SPARCstation 1+.

	a. [10] <5.2> What is the size of the cache?
	b. [10] <5.2> What is the block size of the cache?
	c. [10] <5.2> What is the miss penalty for the first-level cache?
	5.4� [15/15] <5.2> You purchased an Acme computer with the following features:

	95% of all memory accesses are found in the cache.
	Each cache block is two words, and the whole block is read on any miss.
	The processor sends references to its cache at the rate of 109 words per second.
	25% of those references are writes.
	Assume that the memory system can support 109 words per second, reads or writes.
	The bus reads or writes a single word at a time (the memory system cannot read or write two words...
	Assume at any one time, 30% of the blocks in the cache have been modified.
	The cache uses write allocate on a write miss.
	You are considering adding a peripheral to the system, and you want to know how much of the memor...
	a. [15] <5.2> The cache is write through.
	b. [15] <5.2> The cache is write back.
	5.5� [15/15] <5.5> One difference between a write-through cache and a write-back cache can be in ...
	a. [15] <5.5> Using statistics for the average percentage of loads and stores from DLX in Figure�...
	b. [15] <5.5> Do the same comparison, but this time assume the write-through cache pipelines the ...
	5.6� [20] <5.3> Improve on the compiler prefetch Example found on page 401: Try to eliminate both...
	5.7� [15/12] <5.3> The Example evaluation of a pseudo-associative cache on page 399 �assumed that...
	a. [15] <5.3> Derive a formula for the average memory access time using the terminology for direc...
	b. [12] <5.3> Using the formula from part (a), recalculate the average memory access times for th...
	5.8� [15/20/15] <5.7> If the base CPI with a perfect memory system is 1.5, what is the CPI for th...

	16-KB direct-mapped unified cache using write back.
	16-KB two-way set-associative unified cache using write back.
	32-KB direct-mapped unified cache using write back.
	Assume the memory latency is 40 clocks, the transfer rate is 4 bytes per clock cycle and that 50%...
	a. [15] <5.3> Compute the effective CPI for the three caches assuming an ideal TLB.
	b. [20] <5.3> Using the results from part (a), compute the effective CPI for the three caches wit...
	c. [15] <5.3> What is the impact on performance of a TLB if the caches are virtually or physicall...
	5.9� [10] <5.4> What is the formula for average access time for a three-level cache?
	5.10� [15/15] <5.6> The section on avoiding bank conflicts by having a prime number of memory ban...
	1. Modulo arithmetic obeys the laws of distribution:

	((a modulo c) + (b modulo c)) modulo c = (a + b) modulo c ((a modulo c) ¥ (b modulo c)) modulo c ...
	2. The sequence 20 modulo 2N– 1, 21 modulo 2N– 1, 22 modulo 2N– 1, . . . is a repeating pattern 2...

	20 modulo 7 = 1 21 modulo 7 = 2 22 modulo 7 = 4 23 modulo 7 = 1 24 modulo 7 = 2 25 modulo 7 = 4
	3. Given a binary number a, the value of (a mod 7) can be expressed as

	ai ¥ 2i +. . .+ a2 ¥ 22 + a1 ¥ 21 + a0 ¥ 20 modulo 7 = ((a0 + a3 +. . .) ¥ 1 + (a1 + a4 +. . .) ¥...
	where i = log2a and aj = 0 for j >i
	This is possible because 7 is a prime number of the form 2N–1. Since the multiplications in the e...
	4. The address is now small enough to find the modulo by looking it up in a read-only memory (ROM...

	Finally, we are ready for the questions.
	a. [15] <5.6> Given 2N– 1 memory banks, what is the approximate reduction in size of an address t...
	b. [15] <5.6> Draw the block structure of the hardware that would pick the correct bank out of se...
	5.11� [25/10/15] <5.6> The CRAY X-MP instruction buffers can be thought of as an instruction-only...
	a. [25] <5.6> Instruction miss rate.
	b. [10] <5.6> Average instruction memory access time measured in clock cycles.
	c. [15] <5.6> What does the CPI of the CRAY X-MP have to be for the portion due to instruction ca...
	5.12� [25] <5.6> Traces from a single process give too high estimates for caches used in a multip...
	5.13� [25] <5.6> One approach to reducing misses is to prefetch the next block. A simple but effe...
	5.14� [20/25] <5.6> Smith and Goodman [1983] found that for a small instruction cache, a cache us...
	a. [20] <5.6> Explain why this would be possible. (Hint: You can’t explain this with the three C’...
	b. [25] <5.6> Use the cache simulator to see if their results hold for the traces.
	5.15� [30] <5.7> Use the cache simulator and traces to calculate the effectiveness of a four- ban...
	a. <5.7> No cache and no write buffer.
	b. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks.
	c. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks.
	d. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks but the �“interleaving” ...
	e. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks but the “interleaving” come...
	5.16� [25/25/25] <5.7> Use a cache simulator and traces to calculate the effectiveness of early r...
	a. [25] <5.7> A 64-KB instruction-only cache?
	b. [25] <5.7> A 64-KB data-only cache?
	c. [25] <5.7> A 128-KB unified cache?

	Assume direct-mapped placement.
	5.17� [25/25/25/25/25/25] <5.2> Use a cache simulator and traces with a program you write yoursel...
	a. [25] <5.2> One-word buffer and the CPU stalls on a data-read cache miss with a write- through ...
	b. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss with a write-through ...
	c. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss only if there is a po...
	d. [25] <5.2> A write-back cache that writes dirty data first and then loads the missed block.
	e. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss data first and...
	f. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss data first and...

	Assume a 64-KB direct-mapped cache for data and a 64-KB direct-mapped cache for instructions with...
	5.18� [25] <5.4> Using the UNIX pipe facility, connect the output of one copy of the cache simula...
	5.19� [Discussion] <5.7> Second-level caches now contain several megabytes of data. �Although new...
	5.20� [Discussion] <5.7> Some people have argued that with increasing capacity of memory storage ...
	5.21� [Discussion] <5.7> So far, few computer systems take advantage of the extra security availa...
	5.22� [Discussion] <5.12> Many times a new technology has been invented that is expected to make ...
	5.23� [Discussion] <3,4,5> Chapters 3 and 4 showed how execution time is being reduced by pipelin...

