
Bulletin of the Seismological Society of America. Vol. 66, No. 4, pp. 1343 1373. August 1976 

PRELIMINARY EMPIRICAL MODEL FOR SCALING 

FOURIER AMPLITUDE SPECTRA OF STRONG 

GROUND ACCELERATION IN TERMS OF EARTHQUAKE 

MAGNITUDE, SOURCE-TO-STATION DISTANCE, AND 

RECORDING SITE CONDITIONS 

BY M .  D .  TRIFUNAC 

A B S T R A C T  

An empirical model for scaling Fourier Amplitude Spectra of strong 

earthquake ground acceleration in terms of magnitude, M, epicentral distance, R, 

and recording site conditions has been presented. The analysis based on this model 

implies that: 

(a) the Fourier amplitude spectra of strong-motion accelerations are character- 

ized by greater energy content and relatively larger amplitudes for long-period 

waves corresponding to larger magnitudes M, 

(b) the shape of Fourier amplitude spectra does not vary appreciably for the 

distance range between about 10 and 100 km, and 

(c) long-period spectral amplitudes (T > 1 sec) recorded on alluvium are on the 

average 2.5 times greater than amplitudes recorded on basement rocks, 

whereas short-period (T < 0.2 sec) spectral amplitudes tend to be larger on 

basement rocks. 

It has been shown that the uncertainties which are associated with the forecasting of 

Fourier amplitude spectra in terms of magnitude, epicentral distance, site 

conditions, and component direction are considerable and lead to the rhnge of 

spectral amplitudes which for an 80 per cent confidence interval exceed one order of 

magnitude. A model has been presented which empirically approximates the 

distribution of Fourier spectrum amplitudes and enables one to estimate the 

spectral shapes which are not exceeded by the presently available data more than 

100 (1 - p) per cent of time where p represents the desired confidence level (0 < p 

<1). 

INTRODUCTION 

Qne of the main practical objectives of the current research work in strong-motion 

seismology and earthquake engineering is to find the scaling relationships that exist 

between the amplitudes of strong earthquake ground motion and several parameters 

which are routinely employed to describe the overall earthquake size and its effect in the 

near-field, Significant progress has been made during the past 10 years toward better 

understanding of earthquake mechanisms and the manner in which the properties of 

earthquake sources influence the amplitudes of recorded motions (e.g., Haskell, 1969; 

Savage, 1966; Brune, 1970). Numerous detailed studies of several earthquakes (e.g., 

Mikumo, 1973; Trifunac, 1974; Trifunac and Udwadia, 1974), of the overall trends in 

body waves (e.g., Thatcher and Hanks, 1973; Hanks and Wyss, 1972; Tucker, 1975), and 

of surface-wave amplitudes have also been carried out. However, empirical studies of 

spectral amplitudes in the near-field, which contain all types of waves, were not feasible 

until this time because the number and the uniformity in the quality of digital processing of 

recorded accelerograms were inadequate for such investigations. Even now, over 40 years 
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after the strong-motion recording program in the United States began, the number of 

recorded accelerograms is far from adequate to provide a sound basis for complete and 

detailed empirical studies of near-field strong ground motions. Nevertheless, the data 

which are available offer a basis for a preliminary analysis of spectral amplitudes and can 

indicate which scaling parameters and what types of empirical models may be suitable for 

an interim description of strong-motion amplitudes. These data also provide enough 

information for ongoing research and development in the fields of instrumentation, data 

collection, and processing techniques, as well as in the search for better and more complete 

empirical models for use in scaling near-field ground motions. 

The purpose of this paper is to present an empirical model for scaling Fourier amplitude 

spectra in terms of earthquake magnitude, source-to-station distance, and the geological 

environment of the recording station. Although it is well known (e.g., Brune, 1970; 

Trifunac, 1973) that the shape of the near-field spectrum cannot be modeled accurately by 

only one amplitude scaling parameter, such as earthquake magnitude, the difficulties 

associated with forecasting the stress-drop, the direction, the spatial amplitude 

distribution and the velocity with which faulting might progress along a postulated fault 

plane are indeed quite formidable. Therefore, from a practical point of view, it is 

worthwhile to consider only those parameters which are readily available in routine 

studies and catalogs of earthquake occurrence. The advantage of such an approach is that, 

without a detailed and possibly indecisive investigation, one can estimate the expected 

Fourier spectral amplitudes for a given earthquake magnitude, source-to-station distance 

and recording-site conditions. The penalty for disregarding other important parameters is 

then reflected in the scatter of the data about the predicted amplitudes. 

Characterization of the amplitudes of strong earthquake ground motion by means of an 

approximate empirical model, as the one presented in this paper, represents considerable 

improvement relative to the scaling in terms 3f peak acceleration, peak velocity, and peak 

displacement (e.g., Trifunac, 1976). This is because the peaks sample only the spectral 

amplitudes in a limited frequency band which is centered around the frequency 

components which build up the peak itself. The scatter of peak amplitudes about the root- 

mean-square of Fourier spectrum amplitudes, of the representative frequency band, is 

often considerable, i.e., may have a large standard deviation. Thus, from the peak 

acceleration alone, for example, it is not possible to make a reliable estimate of the 

complete Fourier amplitude spectrum. Scaling of spectra by peak acceleration, peak 

velocity, and peak displacement would be considerably better but would still be 

characterized by lar, ge uncertainties when compared to the direct scaling of the entire 

spectral amplitudes which is presented in this work. 

The analysis presented in this paper is of a preliminary nature and should be interpreted 

only as an attempt to develop and test a simple approximate model for scaling Fourier 

amplitude spectra of strong earthquake ground motion in terms of several routinely 

available parameters. Although considerable thought has been given to the functional 

form of the model in order that it be capable of incorporating the majority of the 

important characteristics of recorded accelerograms, it must be emphasized that the 

model presented here and the method of the analysis will have to be updated and 

improved as more strong-motion accelerograms become available and as we learn about 

better empirical models for such analyses. 

AVAILABLE DATA 

The Fourier amplitude spectra (FS) which are used in this study have been extracted 
from the Volume Ill tape (Trifunac and Lee, 1973) which contains absolute acceleration 
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spectra (SA), relevant displacement spectra (SD), relative velocity spectra (SV), pseudo- 

relative velocity spectra (PSI/) and Fourier amplitude spectra (FS) for 381 strong-motion 

accelerograms (Hudson et al., 1972a). Of these 381 records, with two horizontal and one 

vertical component each, 186 accelerograms have been recorded at "free-field" stations or 

in the basement of tall buildings. For the purpose of this analysis, it has been assumed that 

these recordings represent strong ground motion which is not seriously affected by the 

surroundings of the recording station. Detailed investigations will, no doubt, show that 

the records obtained in the basements of tall buildings or adjacent to some other large man- 

made or natural structure may be modified by the wave scattering and diffraction caused 

by these structures. For this analysis, it will be assumed that these variations are averaged 

out when one considers all records simultaneously, and thus such effects will be neglected. 

These 381 accelerograph records resulted from 57 earthquakes in the western United 

States and were recorded during the period from 1933 to 1971. From the 186 records that 

could be used as free-field data, only 182 were actually employed in this analysis because 

no reliable magnitude estimates were available for four records (Table 1). These 182 

records were obtained during 46 earthquakes whose published magnitudes (Volume II 

reports, Parts A through Y, Hudson et al., 1971 ) range from 3.8 to 7.7. The distribution of 

this data among five magnitude intervals is as follows: magnitude 3.0 to 3.9, 1 record; 4.0 

to 4.9, 5 records; 5.0 to 5.9, 40 records; 6.0 to 6.9, 129 records; and 7.0 to 7.9, 7 records. As 

may be seen from this distribution, there is a concentration of data between magnitudes 5 

and 7 with only 13 records available for magnitudes less than 5.0 and greater than 7.0. A 

majority (117) of the 182 records were registered at stations which were located on 

alluvium (classified under s=O; see Trifunac and Brady, 1975a for more detailed 

description of this classification), 52 records were obtained on intermediate type rocks (s 

= 1 ) or close to boundaries between alluvium and basement rocks, and only 13 records 

came from stations on basement rocks (s= 2). Of these 182 records more than one half 

were recorded during the San Fernando, California, earthquake of 1971. 

As may be seen from the above paragraph, the data used in this study are far fi'om 

adequate to describe the complete magnitude range from M = 3 to M = 8 and all recording 

Site conditions. There is also a serious shortage of recorded accelerograms on basement 

rock sites (s ~- 2) and for magnitudes greater than M = 7. Thus, the following analysis is no 

doubt seriously affected by this shortage and the non-uniformity of data and will have to 

be repeated and improved when more records become available. Nevertheless, these data 

do represent the largest collection of uniformly processed accelerograms, so far, and can 

be used as an interim basis for the preliminary development of empirical models for study 

of Fourier amplitude spectra. 

The Fourier amplitude spectrum of strong motion acceleration can be defined by (e.g., 

Hudson et aI., 1972a) 

FS(T)= ISSo a(t)e i(a~'T"dtl, (1) 

where T is the period of vibration, T=27r/(~), S is the total duration of digitized 

accelerogram a(t), for 0 _< t _< S and i=  ~ - - 1 .  FS(T)  can be shown to correspond to the 

amplitude of the relative velocity spectrum for an undamped single-degree-of-freedom 

oscillator at t = S (e.g., Hudson et al., 1972a), and this property of FS(T)  can be used to 

compute the Fourier amplitude spectra simultaneously with the computation of the 

relative velocity response spectra (Trifunac and Lee, 1973). The Fourier amplitude spectra 

have also been calculated by using the Fast Fourier Transform technique (FFT) (see 

Hudson et al., 1972b) and are available in Volume IV reports. In this paper, however, in 

which we carry out simultaneous regression analysis for all 182 records at 91 selected 

periods, Z it is preferable to use FS(T) as computed in the Volume III Processing of 
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T A B L E  1 

SUMMARY OF ACCELEROGRAMS RECORDED AT "FREE-FIELD" 

STATIONS OR IN BUILDING BASEMENTS 

No. of 
Aceelerograms 

Earthquake Used in 
No.* - this S t u d y  Magnitude Caltech Report No. 

1 3 6.3 B021,V314, V315 

2 1 5.4 B023 

3 - -  - -  U294 

4 1 6.5 B024 

5 ! 6.0 B025 

6 - -  - -  U295 

8 U297 

9 - -  - -  U298 

13 l 5.5 B026 

14 1 6.7 A001 

15 ! 6.4 B027 

16 1 5.9 U299 

17 1 6.4 U300 

18 2 5.4 V316, V317 

19 1 6.5 T286 

20 1 5.3 U301 

21 2 7.1 B028, B029 

22 1 5.6 T287 

23 1 5.8 A002 

24 5 7.7 A003, A004, A005, A006, 

A007 

26 1 5.5 B030 

27 1 6.0 V319 

28 1 5.5 T288 

29 l 5.9 B03f  

30 ! 5.3 U305 

31 1 6.3 T289 

32 2 6.5 A008, A009 

33 1 5.8 A010  

36 1 5.4 T292 

37 1 6.8 A011 

39 1 4.7 V329 

40 1 3.8 V320 

41 5 5.3 A013, A014, A0t5 ,  A016, 

A017 

42 2 4.4 V322, V323 

43 1 4.0 V328 

44 1 5.0 U307 

45 1 5.7 U308 

46 2 5.7 A018, U309 

47 ! 5.0 V330 

48  2 6.5 B032, U310 

49 1 4.0 V33l  

50 6 5.6 B034, B035, B036, B037, 

B038, U311 

51 1 6.3 T293 

52 1 6.3 V332 

53 2 5.8 B039, U312 

54 1 5.2 U313 
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TABLE 1--Continued 

No. of 
Accelerograms 

Earthquake Used in 
No.* this Study Magnitude Caltech Report No. 

55 13 6.4 

56 7 5.4 

57 98 6.4 

A019, A020, B040, Y370, 
Y371, Y372, Y37L Y375, 
Y376, Y377, Y378, Y379, 
Y380 
W334, W335, W336, W33& 
W339, W342, W344 
C041, C048, C051, C054, 
D056, D057, D058, D059, 
D062, D065, D068, E071, 
E072, E075, E078, E081, 
E083, F086, F087, F088, 
F089, F092, F095, F098, 
F10E F102~ FI(J3, F104, 
El05, GI06, G107, G10.8, 
G110~ G112, G114, H115, 
HlI8, H121, H124, I128,. 
I131, I134, 1137, J141, 
J142, J143, J144, J145, 
J148, K157, L166, L171, 
M176, M179, MI80, M183, 
M184, N185, N186, N187, 
N188, N191, NI92, N195, 
N196, N197, Ol98, O199, 
0204, 0205, 0206, 0207, 
0208, O210, P214, P217, 
P220, P221, P222, P223, 
P231, Q233, Q236, Q239, 
Q241, R244, R246, R248, 
R249, R251, R253, $255, 
$258, $261, $262, $265, 
$266, $267 

*For further details on these earthquakes see Trifunac and Brady (1975a). 
Records U296, T274, T275, T276, U302, U303, U304, T290, T291 and A012 
which were recorded during the earthquakes numbered 7, 10, 11, 12, 25, 34, 
35 and 38 were not included in this analysis. Six of these records represent 
incomplete time histories. For earthquakes 7 and 25 no reliable magnitude 
estimates were available. 
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Response Spectra  (Trifunac and Lee, 1973), since these c ompu ta t i ons  have a l ready  been 

carried out  at 91 fixed per iods  for the interval  of T from 0.040 to 15 sec. Fu r the rmore ,  

computa t ions  in Volume IV which employ  the E F T  a lgor i thm are based on the discrete 

t ime series analysis,  while the compu ta t i ons  in Volume I I I  are based on the s t ra ight- l ine 

in te rpola t ion  between the consecut ive points  of digi t ized accelerograms.  This s t ra ight- l ine 

in te rpola t ion  i(nproves the accuracy  of compu ted  Four ie r  spec t rum ampl i tudes ,  

especially in the high-frequency range close to the Nyquis t  f requency (Udwad ia  and 

Trifunac,  1975). Final ly ,  the F F T  a lgor i thm yields Four i e r  ampl i tudes  at equal ly  spaced 

frequencies which are  mul t ip les  of I/S. Since S is different for every record,  extensive 

in te rpola t ion  and smooth ing  of the compu ted  Four ie r  spectra  would  be required before 

the spectra  from the Volume IV tape  could  be used in the fol lowing analysis.  F o r  this 
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reason, F S ( T )  spectra computed in the Volume III processing were found to be more 

convenient for use in this study. 

All data on the Volume II! tape (Trifunac and Lee, 1973) have been presented in terms 

of seconds for time units and inches for amplitudes, because the Volume III data have been 

primarily prepared for use in the engineering community. For simplicity, and to preserve a 

direct relationship with the raw data, we will also employ inches and seconds in this paper, 

since all amplitudes can easily be multiplied by 2.54 to convert them from inches to 

centimeters. 

FOURIER AMPLITUDE SPECTRA OF DIGITIZATION NOISE 

Before proceeding with the regression analysis of Fourier amplitude spectra, it is 

necessary to examine the extent to which the computed Fourier spectra are affected by 

digitization and processing noise in the frequency band of interest which is between 

0.07 Hz (or 0.125 Hz) and 25 Hz. Routine data processing techniques (Trifunac and Lee, 

1973) which have been designed for typical accelerograms simply band-pass filter raw 

digitized data between 0.07 and 25 Hz or between 0.125 and 25 Hz depending on whether 

the raw data have been digitized from paper or 70- and 35-ram film records. However, 

since the digitization noise does not have constant spectral amplitudes in the respective 

frequency bands and since these amplitudes depend on the total length of record which has 

been digitized, for the analysis in this paper it is necessary to extend the results presented 

by Trifunac et al. (1973a) and compute the average Fourier amplitude spectra of 

digitization noise for different record durations. 

Six operators digitized a straight line twice and one operator digitized it once, thus 

producing a total of 13 digitizations. The straight line which they digitized extended 

diagonally from the lower left corner to the upper right corner of a rectangular Mylar 

transparency, 10in high and about 23 in long. The total average number of digitized 

points had been selected to be about 700, which corresponds to about 30 pts/inch. This 

digitization rate was chosen to correspond to t[ae average digitization rate for 4 x 

enlargements of 10- to 15-cm-long segments of 70-ram film records from which an average 

operator would digitize about 40 to 50 points per 4cm which corresponds to a time 

interval of 1 sec. The reasons for selecting a sloping straight line to analyze digitization 

noise and other pertinent details of this and related procedures have been discussed by 

Trifunac et al. (1973a) and will not be repeated here. 

To simulate the effect of fixed base line with respect to which all accelerograms are 

routinely digitized in order to eliminate long-period distortions, we decimated all raw 

digitizations of the straight line and kept only 16 points from the total sequence of about 

700 points. For the 4x  enlargements of 70-mm film records, this corresponds to 

digitization of the fixed base line at equal intervals of about 1 sec long. By smoothing these 

decimated data with a ~,1 ~,1 ¼ filter and by subtracting the result from the raw digitization, 

the long-period drifts were thus eliminated from the raw data by following the same 

procedures used in routine processing of recorded accelerograms which contain fixed 

mirror traces. An example of a typical acceleration noise for a 15-sec-long record after it 

has been processed through the routine Volume II (Trifunac and Lee, 1973) band-pass 

filtering is shown in Figure 1. Once- and twice-integrated acceleration noise data are also 

shown in this figure to illustrate what may be the typical appearance of velocity and 

displacement curves which result from the digitization noise. Table 2 presents the average 

and standard deviations for the peaks of acceleration, velocity and displacement 

computed from 13 records for the duration of noise records equal to 15, 30, 60 and 100 sec. 

The peak displacement amplitudes in this table are smaller by a factor of 2 to 3 than the 
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estimates of the overall accuracy of computed ground displacements by Trifunac and Lee 

(1974). This could be explained as follows. First, the typical 70-ram record, which is longer 

than about 15 sec, is digitized in segments which are about 10 to 15 sec long. Moving the 

record to digitize successive segments adds a "saw-tooth-like" sequence of straight lines to 

the digitized amplitudes and, thus, additional long-period errors which are not present in 
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FIG. 1. Typical contributions to acceleration, velocity, and displacement records for instrument and baseline 
corrected data that result from digitization noise. 

TABLE 2 

AVERAGES AND STANDARD DEVIATION OF PEAK ACCELERATION, PEAK 

VELOCITY, AND PEAK DISPLACEMENT THAT MAY BE EXPECTED TO RESULT 

FROM DIGITIZATION NOISE ALONE 

D u r a t i o n  o f  N o i s e  R e c o r d  

15 sec 30 sec 60 sec 100 sec  

acceleration ave. 1.66 1.72 1.75 1.74 

(cm/sec 2) st. dev. 0.48 0.48 0.46 0.46 

velocity ave. 0.46 0.55 0.59 0.58 

(cm/sec) st. dev. 0.13 0.15 0.14 0.13 

displacement ave. 0.49 0.61 0.68 0.73 

(cm) st. dev. 0.19 0.18 0.19 0.19 

the 13 noise digitizations studied in this paper. The long-period noise contributions 

resulting from this "saw-tooth-like" error are eliminated from the digitized data off 70-mm 

film records which have all been high-pass filtered from 0.125 Hz rather than from 0.07 Hz 

(see Trifunac et  al., 1973b), but some intermediate frequency errors are still present in the 

data. Second, and probably a more important reason for peak displacements in Table 1 
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being two to three times smaller than our previous estimates of the overall displacement 

errors (Trifunac and Lee, 1974), is that this noise study was carried out under more 

uniform and controlled conditions than the actual digitizations of the 381 accelerograph 

records, which took several years to complete and involved many more operators and 

different digitizing equipment as well. 

For the purpose of this and other related investigations we will assume that the 

characteristics of the above described "noise" accelerograms are satisfactory to describe 

approximately the overall noise amplitudes in 182 records for short and intermediate 

periods, 7;, and we will use the average Fourier amplitude spectra of these 13 digitizations 

to carry out an approximate scheme of noise subtraction from the computed Fourier 

amplitude spectra of 546 accelerograms. The amplitudes of the average and of the average 

plus one standard deviation of spectral amplitudes of noise are shown in Figures 3 

through 6. 

EMPIRICAL MODEL FOR SCALING FOURIER AMPLITUDE SPECTRA 

In a recent study Trifunac (1976) presented an approximate model for estimating the 

range of possible peak amplitudes of strong ground motion for known earthquake 

magnitude, source-to-station distance and recording-site conditions. The same empirical 

model can be applied to scaling of spectra!, amplitudes at a selected set of discrete periods, 

T. For this purpose equation (4) from our previous work (Trifunac, 1976) can be 

generalized to become 

lOglo[FS(T), p] = M + loglo A o (R) - logxo {FS o (T, M, p, s, v, R)} (2) 

where M is earthquake magnitude, p is the confidence level selected for the approximate 

bound of spectral amplitudes FS(T),p, s represents the type of site conditions ( s=0  for 

alluvium, s = 1 for intermediate rocks, and s = 2 for  basement rocks), v designates the 

horizontal or vertical components (v = 0 for horizontal, v = I for vertical) and lOgl0 A0(R) 

represents an empirical function (Richter, 1958) which describes the amplitude 

attenuation with distance. FSo(T,M,p,s,v,R ) represents another empirical scaling 

function for which we hypothesize the form 

loglo FSo(T, M,p,s, v, R)=  a(T)p+ b(T)M +c(T)+d(T)s  

+ e(T)v + f ( T ) M  2 + g(T)R, (3) 

where a(T), b (T) , . . . , f (T)  and g(T) are as yet unknown functions of T which will be 

determined in the following regression analysis. In this paper, as in the analysis of peak 

amplitudes (Trifunac, 1976), the higher order terms in p, s and M and the terms which 

include different products of p, s and M will be neglected. 

Equation (3) introduces a new term g(T)R the analog of which was not preser~t in our 

previous study (Trifunac, 1976). This term now models the period-dependent attenuation 

correction factor for distance R and its form corresponds to the usual amplitude 

attenuation exp(-TzR/QflT), on a linear scale, which is often employed to model 

approximately the effects of anelastic attenuation. Here fl stands for the shear-wave 

velocity and Q is the attenuation constant. In (3) g(T) then might be thought of as 

corresponding to 7r/QfiT log10 e. 

If the loglo Ao(R) term were to represent the geometric spreading only, the g(T)R 

would model the equivalent anelastic attenuation. However, log 1 o Ao (R), which has been 

derived empirically from the data on actual peak amplitudes in Southern California, 

represents an average combination of geometric spreading and anelastic attenuation for a 
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frequency band centered around 1 Hz. Therefore, the term g(T)R cannot be thought of as 

modeling ~/Q~TlOglo e but rather represents a correction to the average attenuation 

which is represented by logao Ao(R). In the study of peak accelerations, peak velocities 

and peak displacements (Trifunac, 1976), a term like g(T)R was omitted on purpose to 

avoid undue emphasis and dependence in the model on the digitization noise which is 

reflected in larger peak amplitudes, especially for displacements, at distances which are 

typically greater than 100 km. In this paper, because Fourier amplitude spectra are being 

studied, it is possible to subtract the expected contributions to spectral amplitudes that 

result from noise; the g(T)R then reflects actual corrections to the log 1 o Ao (R) term. 

REGRESSION ANALYSIS 

The computation of the coefficient functions a(T), b(T) ..... f ( T )  and g(T)in equation 

(3) was carried out at 91 discrete periods T ranging from 0.04 to 15.0 sec. From each of the 

546 Fourier amplitude spectra an average noise spectrum was first subtracted. This noise 

spectrum was obtained by linearly interpolating from the spectra which were computed 

for 15, 30, 60 and 100sec (Figures 3 through 6) to obtain a noise spectrum which would 

apply for a record with the actual duration (Table 3) of each accelerogram. The data for 

loglo{FSo(ZM, p,s,v,R)} in equation (2) were then computed by subtracting from 

logjo[FS(T)] the respective magnitude and logm0 Ao(R) for the epicentral distance R 

corresponding to each of 182 records. Regression analysis was then carried out for each of 

91 periods by fitting the right-hand side of equation (3) to the data for 

loglo{FS(Z M, p, s, v, R)}. 

To carry out regression analysis on l°gl 0 {FSo (T, M, p, s, v, R )} with 

a(T), b(T) ..... f ( T )  and g(T) as coefficients at a fixed value of T, we began by partitioning 

all data into five groups corresponding to magnitude groups 3.0-3.9, 4.0-4.9, 5.0-5.9, 6.0- 

6.9 and 7.0-7.9. The data in each of these groupswere next grouped according to the site 

classifications s = 0, s = 1 and s = 2. The data within each of these subgroups were then 

divided into two parts corresponding to v = 0 and v = 1. The n data remaining in each of 

these final parts were next rearranged so that the numerical values of 

logl0{FS 0 (T, M, p, s, v, R)}i for i=  1,2, 3 ..... n decrease monotonically with increasing i. 

Then, if re=integer part of (pn), the ruth data point represents an estimate of 

loglo{FSo (Z M, p, s, v, R)} which is to be associated with the p-percent confidence level. If 

the number of data points, n, in each group was greater than 19, we used 19 levels for 

subsequent least-squares fitting with the p levels equal to 0.5, 0.10, 0.! 5 . . . . .  0.9 and 0.95. If 

the number of data points in each group was less than 19, we used all data points and 

computed the estimates of the corresponding confidence levels p from the fraction of 

points that were smatler than a given level to the total number of points in that group ofn. 

This approximate scheme has the effect of decreasing the ~weight" of data groups for 

which many points are available in the subsequent least-squares fitting. 

For  those accelerograms which were high-pass filtered from 0.125 Hz rather than from 

0.07 Hz (Table 3) the data on loglo{FSo(T,M,p,s,v,R)} have not been included in the 

regression analysis for periods, Z longer than 8 sec. This and the fact that for many 

intermediate and small earthquakes spectral amplitudes for the long-period waves have a 

small signal-to-noise ratio led to the decision to terminate the final computation and 

presentation of a (T), b (T) . . . .  , f (T) and g (T) at t he long-period end equal to 12 sec rat her 

than at 15 sec. 

Figure 2 presents the results of least-squares fitting of equation (3) to 

logl0{FSo(T, M, p, s, v, R)} data. The discrete estimates of a(T), b(T),..., f ( T ) ' a n d  g(T) 

have been connected with straight lines to illustrate the degree of variability and "'noise" 
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TABLE 3 

TOTAL DURATION AND LOW CUTOFF FREQUENCY 

FOR ACCELERATION RECORDS USED IN THIS STUDY 

Low-Frequency 
Record No. Caltech Report No. Total Duration* Cutoff (Hz} 

1 A001 54 0.07 

2 A002 56 0.07 

3 A003 77 0.07 

4 A004 54 0.07 

5 A005 75 0.07 

6 A006 83 0.07 

7 A007 79 0.07 

8 A008 78 0.07 

9 A009 42 0.07 

10 A010 51 0.07 

11 A011 90 0.07 

12 A013 25 0.07 

13 A014 26 0,07 

14 A015 27 0.07 

15 A016 25 0,07 

16 A017 40 0.07 

17 A018 40 0.07 

18 A019 87 0.07 

19 A020 79 0.07 

20 B021 99 0.07 

21 B023 75 0.07 

22 B024 90 0.07 

23 B025 51 0.07 

24 B026 71 0.07 

25 B027 67 0.07 

26 B028 67 0.07 

27 B029 89 0.07 

28 B030 58 0.07 

29 B031 65 0.07 

30 B032 82 0.07 

31 B034 44 0.07 

32 B035 26 0.07 

33 B036 44 0.07 

34 B037 30 0.07 

35 B038 30 0.07 

36 B039 30 0.07 

37 B040 45 0.07 

38 C041 31 0.07 

39 C048 "59 0.07 

40 C051 52 0.07 

41 C054 57 0.07 

42 D056 62 0.07 

43 D057 82 0.07 

44 D058 79 0.07 

45 D059 57 0.07 

46 D062 54 0.07 

47 D065 41 0.07 

48 D068 37 0.07 

49 E071 30 0.07 

50 E072 54 0.07 

51 E075 44 0.07 

52 E078 57 ~.07 
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TABLE 3--Continued 

Low-Frequency 
Record No. Caltech Report No. Total Duration* Cutoff (Hz) 

53 E081 50 0.07 

54 E083 63 0.07 

55 F086 78 0.07 

56 F087 81 0.07 

57 F088 30 0.07 

58 F089 59 0.07 

59 F092 34 0.07 

60 F095 67 0.07 

61 F098 56 0.07 

62 FI01 11 0.07 

63 F102 10 0.07 

64 F103 27 0.07 

65 F104 11 0.07 

66 FI05 64 0.07 

67 GI06 31 0.125 

68 G107 29 0.125 

69 G108 99 0.125 

70 G l l 0  98 0.125 

71 G ll2 52 0.125 

72 Gl14 58 0.125 

73 Hl l5  40 0.125 

74 H l18 86 0.125 

75 H 121 46 0.125 

76 H124 33 0.125 

77 I128 27 0.125 

78 I131 48 0.125 

79 I134 49 0.125 

80 1137 57 0.125 

81 J141 60 0.07 

82 Jl42 37 0.125 

83 J143 35 0.07 

84 J144 37 0.07 

85 J145 99 0.125 

86 J148 19 0.125 

87 K157 32 0.125 

88 L166 65 0.125 

89 L171 53 0.07 

90 M176 88 0.125 

91 M179 13 0.07 

92 M I80 99 0.125 

93 M183 20 0.125 

94 M184 30 0.125 

95 N185 44 0.125 

96 N186 59 0.125 

97 N187 30 0.125 

98 N188 45 0.125 

99 N191 70 0.125 

100 N192 25 0.125 

101 N195 99 0.125 

102 N196 53 0.125 

t03 N197 43 0.125 

104 O198 31 0.125 

105 O199 35 0.125 

106 0204 69 0.07 

CmTtinued 
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TABLE 3--Continued 

Low-Frequqncy 
Record No. Caltech Report No. Total Duration* CutoffIHz~ 

107 0205  99 0.07 

108 0206  53 0.125 

109 0207  62 0.07 

110 0208  6 2  0.125 

1ll  O210 54 0.125 

112 P214 30 0.07 

113 P217 30 0.07 

114 P220 61 0.07 

115 P221 30 0.07 

116 P222 58 0.07 

117 P223 33 0.07 

118 P231 48 0.125 

119 Q233 37 0 ,125  

120 Q236 42 0.125 

12l Q239 45 0.125 

122 Q241 49 0.125 

123 R244 42 0.125 

124 R246 44 0.125 

125 R248 45 0.125 

126 R249 41 0.125 

127 R251 3t 0.125 

128 R253 36 0,125 

129 $255 30 0.125 

130 $258 48 0.125 

131 $261 39 0.125 

132 $262 36 0.125 

133 $265 21 0.125 

134 $266 35 0.125 

135 $267 49 0.125 

136 T286 71 0.07 

137 T287 60 0.07 

138 T288 86 0.07 

139 T289 78 0.07 

140 T292 43 0.07 

141 T293 75 0,07 

142 U294t  59 0,07 

143 U2957 21 0,07 

144 U297t  9 0,07 

145 U298t  76 0,07 

146 U299 62 0.07 

147 U300 68 0.07 

148 U301 56 0.07 

149 U305 57 0.07 

150 U307 77 0.07 

151 U308 82 0.07 

152 U309 88 0.07 

153 U310 74 0.07 

154 U31t  72 0.07 

155 U312 93 0.07 

156 U313 61 0.07 

157 V314 99 0.07 

158 V315 99 0.07 

159 V316 67 0.07 

160 V317 62 0.07 : 
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TABLE 3--Cominued 

Low-Frequency 
Record No. Caltech Report No. Total Dttration* CutoffIHzl 

161 V319 4~ 0.07 
162 V320 36 0.07 
163 V322 49 0.07 
164 V323 23 0.07 
165 V328 26 0.07 
166 V329 69 0.07 
167 V330 75 0.07 
168 V331 7 0.07 
169 V332 43 0.07 
170 W334 17 0.07 
171 W335 38 0.07 
172 W336 10 0.07 
173 W338 30 0.07 
i74 W339 42 0.07 
175 W342 23 0.07 
176 W344 23 0.07 
177 Y370 85 0.07 
178 Y37l 82 0.07 
179 Y372 52 0.07 
180 Y373 42 0.07 
181 Y375 54 0.07 
182 Y376 60 0.07 
183 Y377 44 0.07 
t84 Y378 21 0.07 
185 Y379 62 0.07 
186 Y380 51 0.07 

*Rounded to nearest second. 
tNot included in the analysis because of incomplete information on 

earthquake magnitude. 

that  are associa ted with each of these functions.  The smoothed  a (T) ,  b(T) . . . . . .  I'(T) and 

g ( T )  have been c o m p u t e d  by low-pass  filtering the da ta  with an O r m s b y  filter a long the 

lOgl0 T axis and are also shown in F igure  2. 

F o r  fixed "E p, s, v and R, l og lo{FS  0 (T, M, p, s, t:, R)} represents  a p a r a b o l a  when plot ted  

versus M. The par t i cu la r  choice of a p a r a b o l a  in equa t ion  (3) has no physical  significance 

and has been mot iva ted  by our  previous  work which deal t  with peaks  of s t rong g round  

mot ion  (Trifunac, 1976), by the simplici ty of  its funct ional  form and by the observa t ion  

that  the local ampl i tudes  of near-field s t rong g round  mot ion,  for the l imited range of 

per iods  cons idered  in that  analysis  (T < 15 sec), seem to cease to grow apprec iab ly  with an 

increase in M for large ea r thquakes  (Trifunac, 1973). Thus, by employ ing  the a p p r o x i m a t e  

model  which is defined by equa t ion  (2), and after the coefficients a(T), b(T) ..... f ( T )  and 

g ( T  ) have been de te rmined  by regression,, we assume that  log I o { FS(T ),pl grows l inearly 

with M up to some magn i tude  M~in. Between Mmi n and Mmax lOglo{FS(T),p} still grows 

with M but  with a s lope which is less than 1 until the m a x i m u m  is reached at Mma x. F o r  

magni tudes  greater  than  M . . . .  we assume that  the ampl i tude  of loglo{FS(T),p} remains  

cons tan t  and  equal  to its value for M = Mma x. Since the funct ional  form of the growth  of 

loglo{FS(T)w } is not  known  at this t ime and cannot  be de te rmined  empir ica l ly  from the 

l imited number  o f  avai lable  da ta  points,  we a p p r o x i m a t e  it, quite arbi t rar i ly ,  by a 
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parabola between M m l  n and Mmax. With these restrictions equation (3) becomes 

logl0{FS0(T, M,p,s, r, R)} = 

a(T)p+ b(T)M +c(T)+ d(T)s +e(T)v+ f (T)M 2 - f  (T) (M - Mm~,x) 2 + g(T)R 

for M > Mma x 

a(T)p+ b(T)M +c(T)+d(T)s +e(T)c + f (T)M2 +g(T)R 

for Mini n ~ M __< M . . . .  

a(T)p+b(T)Mn, i,,+c(T)+d(T)s+e(T)c+ f (  2 T)Mm~,, + g(T)R 

for M _-< Mmin. (4) 

Table 4 presents the values and definitions of Mini n and M~,~ for six selected periods which 

range from 0.05 to 10.0sec. As may be seen from ~ this table, this analysis suggests that 

loglo{FS(T),p} may cease to grow linearly with M for earthquakes between M = 4 and M 

= 5.5 and that it perhaps reaches its maxima for magnitudes ranging from about M = 7.5 

to about M = 8.5 and higher. These estimates of Mm~n and Mma x a r e  more reliable for 

periods, rE, which are not close to the left and right limits of the T interval considered in this 

TABLE 4 

MAGNITUDE INTERVAL Mm~n<M<Mm~x IN WHK'H 

EQUATION (3) APPLIES 

Period T sec Mmin* Mm~t 

0.05 4.3 7.8 

0.10 4.7 7.7 

0.50 4.3 8.~ 

1.00 4.8 8.6 

5.00 5.3 7.8 

10.00 4.1 9.1 

*Mml,= - Eb(T)/2f(T)], see equation (3). 

tMma x = [1 - b(T)/2f(T)~,  see equation (3). 

study, because Mmi n a n d  Mma x depend on smoothed amplitudes of b(T) and f (T )  which 

tend to be distorted in the vicinity of the left and right ends by the process of digital 

filtering. The range of estimates for Mini n and Mma x can, of course, only be taken as 

tentative, since there is not an adequate number of recordings for M greater than 7 and less 

than 5. 

The range of values for Mm~n and Mm,x in Table 4 is in fair agreement with similar 

estimates of Mini n and Mma x in the related analysis of the dependence of peak acceleration, 

peak velocity and peak displacement on magnitude (Trifunac, 1976). This agreement, 

however, only shows that there is consistency of interpretation between these two similar 

models in the study of different characteristics of the same data, but it does not provide an 

independent support for the choice of these models or for the analysis which is based on 

these models. We are presenting the estimates of Mmi n and Mma x . i n  this paper and 

discussing their possible physical meaning as it may relate to our present understanding of 

the earthquake source mechanism to show that the regression analysis in this paper does 

not lead to unreasonable inferences when applied outside the range for which the data are 

now available. The final test, as well as the improvement of the model, can only come from 

numerous recordings of representative strong-motion records in the future. 
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The confidence level function a(T) first increases from a b o u t -  1.7 for short periods to 

about - 1.4 at periods of about 0.3 sec and then decreases to about - 1.8 at the long-period 

end. This means that the spread of spectral amplitudes about the mean level is smallest 

close to the period equal to 0.3 sec and that it grows for shorter and longer periods to reach 

its maximum at the two extreme ends of the T interval. The numerical values of a(T) are 

about 1.5 to 2 times greater than the corresponding coefficients in similar correlations of 

peak acceleration (a ~ - 0.9), peak velocity (a ~ - 1.1 ), and peak displacement (a ~ - 1.3) 

(Trifunac, 1976). This is as one might expect, since the peak of a time function scales 

proportional the root-mean-square value of its Fourier amplitude spectrum (Udwadia and 

Trifunac, 1974). This tends to smooth out the amplitude variations, while a(T) represents 

the spread of raw unsmoothed Fourier amplitude spectra. 

The amplitudes of the site-dependent function d(T) are negative for periods shorter 

than about 0.2 sec. This means that the spectral amplitudes are, on the linear scale, up to 

about 1.5 times greater at basement rock sites (s = 2) than on alluvium (x = 0). For periods 

greater than 0.2 sec d(T) becomes positive and reaches a nearly constant level equal to 

about 0.2 for periods greater than 1.0 sec. For these long periods equation (2) indicates 

that the spectral amplitudes recorded on alluvium (s=0)  are on the average about 2.5 

times greater than the average spectral amplitudes recorded on basement rock sites (s = 2). 

It is interesting to observe that the corresponding d coefficient for peak displacements 

(Trifunac, t976) is 0.2 as well. 

Gutenberg and Richter (1956) in their studies of the effects of site conditions on the 

average peak amplitudes also found a factor of 0.4 difference on the logarithmic scale 

between the sites located on alluvium and the sites on basement rocks. Their inference is in 

excellent agreement with the results of this analysis for periods longer than about ¼ to 

1 sec. Furthermore, more detailed perusal of Figure 8 in Gutenberg's (1957) paper, for 

example, shows that the general trend of the observed ratios of peak amplitudes versus 

period recorded on alluvium (in Pasadena) to the amplitudes recorded on basement rock 

(in the Seismological Laboratory) follows the same general trend as that indicated by d(T) 
in Figure 2. Thus, a detailed study of Gutenberg's (1957) paper shows that the nature of 

d(T) for periods longer than about 0.2 sec has been available in the literature for almost 20 

years. It was necessary, however, to collect accurate high-frequency information by 

recording with strong-motion accelerographs before it became possible to extend this 

information about d(T) toward periods shorter than 0.2 sec. 

In the high-frequency range d(T) changes sign from negative to positive at 0.2-sec period. 

If it is assumed that the corresponding coefficient d in the regression analysis for peak 

acceleration could be approximated by averaging d(T) over the high-frequency band from 

say 0.04 to 0.5 sec, then the coefficient d would be very close to zero. This is indeed the case, 

since we found d to be 0.06 (Trifunac, 1976). This confirms the observation that peak 

accelerations are not very sensitive to site conditions. 

Function e(T) in Figure 2 shows that for frequencies greater than about 10 Hz, Fourier 

amplitude spectra of vertical acceleration are greater than those for horizontal 

accelerations. For periods longer than 0.1-sec, horizontal amplitudes of Fourier Spectra 

are considerably larger than the amplitudes of spectra for ver.tical accelerations. 

Furthermore, the amplitudes of e(T) for periods longer than about 0.2sec are fairly 

consistent with similar estimates of coefficient e for peak accelerations (e~0.33), peak 

velocity (e ~ 0.34)4 and peak displacement (e ~ 0.24) (Trifunac, 1976). 

The amplitudes of g(T)  are small and vary from -0.0005 to about -0 .0015 throughout 

the period range from 0.04 to 12 sec (Figure 2). This means that for a typical distance, say R 

= 100km, the correction term g(T)R in equation (3) contributes at most 0.15 on the 

logarithmic scale, i.e., by a factor of 1.4 on the linear amplitude scale. Considering the 
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spread of spectral amplitudes for a fixed set of parameters and the values of a(T), it 

appears that g(T)R represents only a minor correction to the overall average scaling of 

amplitudes versus distance in terms of the logloAo(R ) function. This means that 

log1 o A0 (R)+  R/1000 would represent a good approximation for scaling Fourier spectral 

amplitudes for all periods between 0.04 and 12 sec. 

CHARACTERISTICS OF THE MODEL 

Figures 3 and 4 show the Fourier amplitude spectra for horizontal and vertical ground 

motion at R = 0, for magnitudes M = 4.5, 5.5, 6.5 and 7.5, and for a 50 per cent confidence 

level (p = 0.50). The average and the average plus one standard deviation of the smoothed 

spectra that would result from digitization noise are also shown. 
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FIG. 2. Scaling functions a(T) ,  b { T )  . . . . .  -f(T) and g{T). 

LO I0 

T-SECONDS 

Formally, equation (2) implies that the spectra FS(T) computed at R = 0 represent the 

maximum spectral amplitudes for all other parameters held constant. Since an adequate 

number of Fourier amplitude spectra computed from recorded strong-motion accelero- 

grams is available only for a distance range between about 20 and 250 km and because the 

logxo Ao(R ) curve may not be the best representation for the amplitude variation with 

distance for R less than about 10 to 20 km for all magnitudes (e.g., see Trifunac, 1976), the 

spectra in Figures 3 and 4 only represent extrapolations based on equation (2) and at this 

time cannot be tested by the recorded strong-motion data. However, because the g(T)R 

term contributes a negligible amount to spectral amplitudes at distances less than 20 km, 

the shape of the Fourier spectra at say R = 20 km and at R - - 0  km is very similar. Because 

in the following discussion we intend to examine some spectral characteristics at R = 0 km, 

which are based on the properties of shallow and surface earthquake sources, for 

consistency we chose to present the spectra in Figures 3 and 4 for epicentral distance R = 0. 



MODEL FOR SCALING AMPLITUDES OF STRONG EARTHQUAKE GROUND MOTION 1359 

In the near-field of strong earthquake ground motion, permanent displacements which 

are caused by relative motions on shallow and surface faults represent important 

contributions to the total displacement history. For ground motions associated with very 

long wavelengths (long periods, T) permanent displacements contribute virtually all 

significant spectral amplitudes. As T--,oc, the Fourier amplitude spectrum of ground 

displacements in the near-field or at the fault itself tends to ~uT/2rc (Trifunac, 1973), where u 

IO00 

I00  

co I0 

i 

b 
Ld 

p- 
I 

O. 
o 
b_ 

0.01 

I 

HORIZONTAL MOTION 

R=O k m  

50% CONFIDENCE LEVEL 

I I 

/ "  ~ ' /  M = 7.5 \ " \  
, . ~  ", 

~ - M  = 5 " 5 \ x  ~'S=O 

i I ~S=2 

/ 

; - ' ~ M = 4 . ~  ", 

'S=O 

1/1' " S = 2 

I 
I i . ¢  

i I 

/ I .7 _ u ~ -  

• . ~ . - : _ [ - ~ "  

'~-AVERAG F DIGITIZATION NOISE 

~ A V E R A G E  + STANDARD DEVIATION 
OF DIGITIZATION NOISE 

' / / 2  DURATION OF NOISE RECORD 

/ /  I 5 SECONDS 

,t - . . . . .  30 SECONDS 
. . . . . .  60 SECONDS i 
• ............. I00 SECONDS 

O 0 0 1  I I I 
0.01 0 .1  I iO 

PERiOD-SECONDS 

FIG. 3. Horizontal Fourier amplitude spectra of strong-motion acceleration for R =0, p =0.50, s = 0  and 2 and 
for magnitudes equal to 4.5, 5.5, 6.5, and 7.5. 

represents the permanent static displacement after the earthquake. The Fourier amplitude 

spectrum of long-period accelerations would then tend to 2fruiT. This implies that on the 

log-log plot the FS(T) should have a slope o f - I  as T ~  at R=0.  Figures 3 and 4 

suggest that this condition may be satisfied for periods longer than about 0.5 sec for 

magnitude M = 4.5 earthquakes and for periods longer than about 3 sec for magnitude 7.5 

earthquakes. This statement is, of course, applicable only to the average spectral trends (p 

=0.5) as those shown in Figures 3 and 4. The spectra of individual earthquakes may 

deviate from this average trend considerably because of radiation patterns, interference 
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created by the moving dislocation, relative position of the recording station and numerous 

other factors which cannot be considered explicitly in this simplified analysis. How large 

these deviations may be is illustrated by the amplitude of a(T) in Figure 2. 

The expected value of the Fourier spectrum amplitudes computed from digitization 

noise (Figures 3 . . . . .  5 and 6) had been subtracted from the Fourier amplitude spectra of 

the digitized accelerograms before the regression analysis was carried out. However, this 
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FIG. 4. Vertical Fourier amplitude spectra of strong-motion acceleration for R =0, p =0.50, s=0 and 2 and for 
magnitudes equal to 4.5, 5.5, 6.5, and 7.5. 

noise does not include all possible sources of long-period errors which have no doubt 

contributed to the computed Fourier amplitude spectra (Trifunac et al., 1973b). 

Furthermore, to maintain as many spectra as possible for all periods which were 

considered in the regression analysis, we did not eliminate those spectral amplitudes that 

were characterized by low signal-to-noise ratio. The consequence of this has been that the 

functions b(T), c(T), and f ( T )  still reflect considerable noise content in the raw data for 

periods longer than several seconds for magnitudes close to 4.5 and for periods longer 

than 6 to 8 sec for magnitudes close to 7.5. Thus, the spectra that would be obtained from 
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equation (2) are not accurate for the periods and magnitudes greater than those just 

indicated. This limitation is also reflected in Figures 3 and 4 where we terminated the 

spectra in this long-period range. The long-period cut-offpoints in those figures have been 

selected at periods where spectra computed from equation (2) begin to deviate appreciably 

from the slope equal to - 1 and start to approach a constant level. An example of an onset 

of such deviation can still be seen for the spectra corresponding to M=6.5  and 7.5 in 

Figure 3. 

If we assume then that in the immediate near-field, shortly after the fault ceases to move, 

the particle displacement reaches its static permanent displacement and that no long- 

period wave energy can be reflected back toward the source, then the spectra in Figures 3 

and 4 could be extended by straight lines which are defined by u2rc/T. Estimates of the 

permanent static displacement, u, can then be computed from Figures 3 and 4; these 

estimates are shown in Table 5 for s = 0 and s = 2 for magnitudes M = 4.5 and M = 7.5. If no 

significant overshoot of ground displacements takes place at the fault, then these estimates 

of permanent displacements should be consistent with the estimates of peak displacements 

for R =0  and with the estimates computed from the analysis of peak displacement 

amplitudes (Trifunac, 1976). Table 5 shows that this is indeed the case for M = 7.5 but also 

indicates that there exist systematic differences of 0.4 to 0.6 on the logarithmic scale 

T A B L E  5 

COMPARISON OF THE LOGARITHMS OF PEAK DISPLACEMENTS (IN INCHES) 

AT R = 0  FROM TRIFUNAC (1976) WITH THE LOGARITHMS OF MAXIMUM 

PERMANENT DISPLACEMENTS (IN INCHES) COMPUTED BY EXTRAPOLATING 

FOURIER AMPLITUDE SPECTRA (FIGURES 3 AND 4) BY A STRAIGHT LINE 

WITH SLOPE EQUAL TO MINUS ONE 

Horizontal Motion Vertical Motion 

s O  s = 2  s=0 s - 2  

4.5 Trifunac(1976),p=0.5 -0.18 -0.59 -0 .42 -0.83 

This study -0.61 -1.09 - 1.03 -1.45 

7.5 Trifunac (1976), p = 0.5 1.66 1.25 1.42 1.0l 

This study 1.64 1.25 1.39 1.01 

(factors 2 to 4 on the linear scale) for M =4.5. These differences could be attributed to the 

tong-period noise which is present in twice-integrated accelerograms for small and/or 

distant recordings. As Figures 3 and 4 show, these differences would be eliminated by 

adding the contribution of digitization noise to the spectra for M = 4.5 or by eliminating 

the contribution of noise to the computed peak displacements (Trifunac, 1976). 

Further corrections and improvements of the functions a(T), c(T), and f (T)  so that 

they do not depend on contributions from processing and digitization noise, as well as the 

elimination of considerable noise content in the computed peak displacement (Trifunac, 

1976), are, of course, all possible. These corrections would require optimum band-pass 

filtering to be applied in a different manner for each of the 546 accelerograms used in this 

study and could be designed in such a way that only selected frequency bands remain so 

that all data have better than some predetermined signal-to-noise ratio. However, we did 

not carry out such correction procedures in this paper because many data points would 

have been eliminated from an analysis that already has only a marginal number of 

representative accelerograms. Furthermore, such correction procedures would require 

separate extensive and costly analysis of each accelerogram and would only contribute to 

better accuracy of b(T), c(T), and f(T) in the frequency range where the overall trends of 
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spectral amplitudes may be inferred from other theoretical and/or observational analyses. 

For these reasons, it was decided to postpone this noise elimination scheme for a Dater time 

when more strong-motion accelerograms become available. 

In the short-period range for small magnitudes (Figures 3 and 4) the signal-to-noise 

ratio also becomes small. However, because the strong-motion data for all recordings 

employed in this paper are proportional to acceleration, the noise and the recorded 

spectra t6nd to be roughly parallel in the high-frequency range so that poor signal 

accuracy can be expected only for small and/or distant earthquakes and for very high 

frequencies. Therefore, the high-frequency noise contributions to digitized accelerograms 

are typically easier to handle and represent less of a problem than the long-period noise. 

The slope of the high-frequency spectra for frequencies between about 10 and 25 Hz 

(Figures 3 and 4) is close to 3 on the log-log scale. This means that for periods between 

about 0.04 and 0.1 sec, Fourier spectra behave like T 3. The overall shape of the Fourier 

amplitude spectra in Figures 3 and 4 could be characterized and enveloped by three 

straight lines. The first line would have a positive slope of about 3, the second line would 

have zero slope, while the third line would have slope equal to - 1. These lines would be 

tangent to the high-, intermediate-, and low-frequency portions of spectral amplitudes. 

The intersection of the first and the second straight lines would characterize the low- 

period corner frequency (about 6 Hz for horizontal and 7 to 8 Hz for vertical spectra 

corresponding to s=2 )  where the transition of the slope of about 3 to zero slope takes 

place. As can be seen from Figures 3 and 4 t'or s=2, this corner does not vary much in the 

magnitude range from 4.5 to 7.5. The long-period corner frequency, which corresponds to 

the intersection of two straight lines with zero and - 1 slopes, decreases with increasing 

magnitude. For spectra corresponding to a 50 .per cent confidence level and s = 2, this 

frequency decreases from about 2 Hz for M = 4.5 to about 0.5 Hz for M = 7.5. 

The changes of average spectral shapes in Figures 3 and 4 illustrate why one may expect 

to find that the local magnitude ML would cease to grow as rapidly as the surface-wave 

magnitude M s for magnitudes greater than about 6. Ms is determined from amplitudes 

of distant 20-sec surface waves. The local magnitude ML predominantly samples 

displacement waves centered around 1 Hz. As Figures 3 and 4 show, this means that for 

magnitudes less than about 6, M L samples mainly that portion of acceleration Fourier 

spectra for which the periods are longer than the long-period corner frequency, i.e., it 

samples the amplitudes where spectra behave like 2nu/T. For magnitudes greater than 

about 6, the corner periods become longer than 1 sec (Figures 3 and 4) and the amplitude 

of the Wood-Anderson Seismometer becomes more dependent on the amplitudes of the 

central band of the Fourier spectra between the two corner frequencies where average 

acceleration spectra tend to be constant with respect to T and cease to grow appreciably 

for M >  7.5. 

Figures 5 and 6 illustrate the amplitude and shape-dependence of average (p=0.5) 

Fourier amplitude spectra for M = 6.5 versus epicentral distance. As it can be seen from 

equations (2) and (3), the terms loglo Ao(R) and g(T)R govern these distance changes. 

The term logtoAo(R ) leads to overall amplitude variations which are frequency- 

independent, while the term g(T)R depends on frequency through g(T) and is linear in R. 

Since g(T) is negative for all frequencies ( f = l / T ) ,  g(T)R acts to increase FS(T) 

amplitudes with distance. Because, on the whole, the absolute value of g(T) is smaller for 

high frequencies and larger for low frequencies, the net effect of g(T)R is to attenuate the 

high-frequency waves somewhat faster than the low-frequency waves. For 0.04- and 10-sec 

period waves at eDicentral distance R = 200 km, this relative difference would be about 0.2 

on the logarithmic amplitude scale. This is a small difference compared to what might 

be expected on the basis of frequency-dependent attenuation studies which employ 
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exp ( - ~R/TQfi) ,  for example. However, if it is remembered that the amplitudes of the long- 

period near-field motions can have geometric decay as rapid as 1/r 4 (Haskell, 1969) and that 

these terms most probably have contributed to the recorded strong ground motions for 

smaller epicentral distances, then the small differences in attenuation of high- and low- 

frequency spectral amplitudes become more plausible. This could mean then that the rapid 

geometric decay of long-period waves with distance,~ 1/r n may be comparable to the 

anelastic decay of high-frequency waves, exp ( -~R/TQf i ) ,  so that the net effect is that the 

average shape of the Fourier amplitude spectra of strong-motion acceleration is not very 

sensitive to changes of distance, at least for distances between about 20 and 250 km which 

are representative of the data studied in this paper. 

Figures 5 and 6 show that for M=6.5  and distances greater than about 70 to 80kin for 

horizontal motion and about 50 km for vertical motion, high- and low-frequency Fourier 

amplitude spectra become comparable to the spectra of digitization noise. While some 

useful data may still be present in the narrow frequency band close to 0.2-sec period and as 

far as 200km away from the source for M=6.5  earthquakes, these figures clearly show 

that for typical instrumentation (Trifunac and Hudson, 1970) little or no useful 

information may be contained in the strong-motion records which have been obtained at 

epicentral distances greater than about 200 km. For smaller earthquakes (smaller M) this 

distance range is, of course, smaller. For conventional accelerographs (Trifunac and 

Hudson, 1970), as Figures 3 and 4 show, the smallest earthquakes that may be expected to 

provide some useful information in the limited frequency band between say 0.1 and 1 Hz 

for epicentral distances less than 10 km would have to have magnitude not less than about 

3.5 to 4.0 (e.g., Trifunac and Brune, 1970; Dielman et al., 1975: Trifunac, 1972a, 1972b). 

Figures 7 and 8 show an example of how horizontal and vertical spectra computed from 

equations (2) and (4) compare with the acceleration spectra for the three components of 

strong-motion recorded at the Pacoima Dam site during the San Fernando, California, 

earthquake of February 9, 1971. In these figures lOglo{FS(T),p} spectra were computed 

for p=0.1,  0.5 and 0.9 so that the interval between the spectra for p=0.1 and p=0.9  

represents an estimate of the 80 per cent confidence interval. As may be seen from these 

figures, the agreement between the recorded and empirically predicted spectra in this case 

is very good. The spectra for p=0.1 and p=0.9 do not only envelope the spectra of 

recorded accelerograms but also follow the overall amplitude and shape trends quite well. 

This type of agreement between empirically predicted and actually recorded spectra, 

however, is probably better than what might be expected in an average case. 

An example of worse than average fit is illustrated in Figures 9 and 10 for the spectra of 

strong-motion accelerograms recorded in E1 Centro during the Imperial Valley, 

California, earthquake of 1940. During this earthquake the fault rupture was initiated 

most probably at a distance of about 10km, or less, southeast of E1 Centro. It has been 

suggested that the faulting then progressed southeast in a sequence of some four separate 

shocks over a fault length of about 40 km during a time interval of some 25 sec (Trifunac 

and Brune, 1970: Trifunac, 1972b). The largest of these four events most probably took 

place toward the southeastern end of the fault, 30 to 40 km away from El Centro. Figures 9 

and 10 show that if one approximates this complex sequence by a single earthquake of M 

= 6.4 at an epicentral distance of 15 km, the average (p = 0.50) empirical spectra computed 

from equation (2) underestimate the spectra of recorded motions in the high-frequency 

range and overestimate the long-period spectral amplitudes. Although an 80 per cent 

confidence interval still contains most of the recorded spectral amplitudes, the quality of 

the fit is poor when compared with the results in Figures 7 and 8. The observed differences 

can be explained, however, by the complexity of the earthquake source and represent a 

good example of why the function a(T)  has such large amplitudes. 
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The first event during the Imperial Valley sequence of 1940 (Trifunac, 1972b) most 

probably took place at an epicentral distance equal to 7 to 15 km, had magnitude M ~ 5.8, 

and was characterized by a large stress drop. These factors could explain larger high- 

frequency and smaller low-frequency spectral amplitudes in the recorded motions. The 

largest event in the sequence (M=6 .2  to 6.4) probably occurred some 30 to 40km 

southeast, and, thus, its contribution to empirically computed long-period spectra wo.uld 

also be smaller than as indicated in Figures 9 and 10 because the large epicentral distance 
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FIG. 5. Horizontal Fourier amplitude spectra of strong-motion acceleration for p = 0.3, s = 0 and 2, M = 6.5, and 
epicentral distances equal to 0, 25, 50, 100 and 200 km. 

would bring the long-period spectral amplitudes further down. Finally, the overall effect of 

dislocation propagation to the southeast, i.e., away from the recording station, would tend 

to diminish the long-period waves. 

The differences between computed and observed Fourier spectra in Figures 9 and 10 

clearly show that the scaling of spectral characteristics of strong earthquake ground 

motion in terms of earthquake magnitude alone cannot be expected to yield satisfactory 

answers in all cases, especially for complex earthquake mechanisms. Introduction of 
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additional parameters into the empirical scaling functions, similar to those which have 

been presented in equation (2), could be expected to reduce the observed differences. These 

additional parameters could specify the relative source-to-station geometrical position 

more precisely than is now done by epicentral distance alone and could describe such 

properties of the earthquake sources as radiation pattern and the direction and velocity of 

the propagating dislocation. The compilation of these additional parameters could be 

carried out during detailed source mechanism studies. Such studies have now been carried 
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FIG. 6. Vertical Fourier amplitude spectra of strong-motion acceleration for p=0.5, s = 0  and 2. M =6.5, and 
epicentral distances equal to 0, 25, 50, 100 and 200 kin. 

out for several earthquakes that lead to the data base which is used in this paper (e.g., 

Trifunac and Brune, 1970: Trifunac, 1972b; Trifunac, 1972a; Trifunac, 1974; Trifunac and 

Udwadia, 1974). While such a posteriori  refinements of the empirical models will, no 

doubt, become possible when more data become available for well-documented and 

carefully studied earthquakes, the practical question still remains: How feasible will it be 

to obtain detailed characterization of possible future earthquakes a priori? Detailed 

investigations may enable one to estimate the possible location and probable size (e.g., 

magnitude and/or fault length) of a future earthquake; if this earthquake is predicted to 
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occ~ar on the existing fault, the relative position of the fault to the station may also be 

known. However, such details as the stress-drop, the direction and the velocity with which 

dislocation will propagate, and the possible multiplicity of the source appear to be quite 

difficult to predict at this time. Therefore, for practical earthquake engineering 

applications, it may be desirable to work with empirical scaling functions which are 

purposely not more detailed than equation (2), for example, so that the empirical models 

themselves do not imply smaller uncertainties than those which have to be associated with 

the input parameters. 

LIMITATIONS OF THIS ANALYSIS AND POSSIBILITIES FOR FUTURE IMPROVEMENTS 

There are several important limitations of this study which are related to the number 

and the type of data which were available for the analysis. First, the total of 182 records, 

546 accelerograms, seem to be only barely sufficient to indicate approximate and overall 

amplitudes of the assumed model for Fourier amplitude spectra. At the present rate of 

gathering data, it will take many more instrument years before a tenfold or so increase in 

the total number of records can be expected to become available. The present data and this 

analysis suggest that at least 2000 records may be required to enable the development of 

the next generation of better and more detailed theoretical models for scaling the Fourier 

amplitude spectra of strong ground motion. The presently available 182 records are 

unevenly distributed among different magnitude levels, and most of them have been 

recorded at stations located on alluvium. Finally, more than one half of the 182 records 

were obtained during the San Fernando earthquake of 1971. Since this earthquake does 

not necessarily represent a typical shock in southern California, this may have introduced 

a systematic bias into some of the results of this paper. 

The function lOgloAo(R) has been assumed to describe the spectral amplitude 

variations with distance. This function represents an average trend of observed variations 

of peak amplitudes recorded on a Wood-Anderson seismometer in southern California 

(Richter, 1958). The advantage in using this function is that it contains information on the 

average properties of wave propagation through the crust in California where virtually all 

strong-motion data have been recorded. The disadvantages and limitations, however, 

which result from using logto Ao(R ) in equation (2) are that its shape does not depend on 

magnitude, i.e., source dimension of an earthquake, on the geological environment (s 

= 0, 1 and 2) of the recording station, or on the actual amplitudes of recorded motions. 

That logto A o (R) or its analog should depend on the geometric size of the fault has been 

discussed in some detail, for example, by Dietrich (1973) and need not be repeated here. 

These magnitude dependent changes of logt0 A 0 (R) would be such that for small R the 

slope of log to Ao (R) would tend to be steeper for earthq uakes with small fault dimensions, 

while for large faults and for small R, loglo Ao(R) would tend to flatten out and have a 

smaller slope than the average lunction we employ in this paper. To detect these changes 

of shape it would be necessary to have manynear-field records for different magnitude 

ranges. Since only very few of the 182 records have been .obtained at epicentral distances 

less than about 10kin, the empirical derivation of different shapes of logto Ao(R ), or its 

equivalent, for different magnitudes or source dimensions does not seem to be feasible at 

this time. The shape of the tOgto Ao(R) curve may also be expected "to depend on 

deviations from the average properties of the propagation path in California and the 

geological environment of the recording station. Finally, the amplitudes of waves may be 

distorted in the near-field and for large amplitudes by the nonlinear response of shallow 

and surface-soil deposits beneath and surrounding the recording station. 

The functional form of the proposed correlation function, equation (2), seems to 
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represent an adequate approximation for empirical modeling in terms of earthquake 

magnitude, M, and epicentral distance,R, provided A 0 (R) and FSo (T, M, p, s, v, R ) can be 

chosen to satisfy the trends indicated by the recorded accelerograms. As we indicated in 

the above discussion, if one assumes that Ao(R) can be approximated by the empirical 

Ao(R) function (Richter, 1958), which has been proposed for scaling local earthquake 

magnitude scale, then it becomes possible to determine the coefficients in the assumed 

empirical model for FSo(ZM,  p,s,v,R ). The functional forms for FSo(ZM,  p,s,v,R ) 

which could be based on the fundamental physical principles that govern strong ground 

motion and reflect the characteristics of the instrumentation used to record this motion 

are not fully known at this time and would be complicated and possibly too detailed for 

simple empirical scaling that may b~ useful in routine applications. For this reason, 

we considered an approximate representation of FSo(T,M,p,s ,v ,R ) (equation, 3) 

1.0 i J j 

- v X /  - - . / v  x, p = 0 . 9  

" ~ V 0 . 8  

t~ 0.7 

0.6  0 .6  

~ 0.4 
a 

0 

a ~ / ~ " x  v 
LI.I 
I-- 0.2 

a_ V ~ w  v -  .--., ~ - v , ' ~ - - ' ~ - ~ -  

£9 

0.5 

0.4 

0.3 

0.2 

0.1 

I 
I0 

0.0 I 
0.t 

T-SECONDS 

FZG. I I. Actual confidence levels corresponding to the assumed confidence levels p in the linear distribution 
model. 

which is convenient for linear regression analysis and at the same time reflects the 

simplicity and limitations which are imposed on this analysis. This expression 

[log 10{FSo (T,, M, p, s, v, R )}] is linear in p, s, and v, has linear [g(T)R]  dependence on R, 

and is quadratic in M in the interval Mm~ -< M < M . . . .  linear for M _-> M . . . .  and constant 

for M < Mm~n- Higher-order terms in equation (3) and the cross product terms which 

would contain all or some combination of p, s, v and M have been omitted from the 

analysis to avoid possibly biased inferences which might result from nonuniform 

distribution of available data points over the required intervals of p, s, M and R. 

The assumed nonlinear nature of logloFSo(T,M,p,s , l ,R ) versus M in Mnli,,<M 

Mma x has been inferred from several previous investigations which were based on the 

same set of strong-motion records (Trifunac and Brady, 1975b: Trifunac and Brady, 1976"; 

Trifunac, 1976). However, the parabolic dependence on M represents only a rough 
approximation to a function which is as yet not known. 
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In equation (3) we assumed linear dependence on p to permit linear regression analysis 

and because the actual distribution of spectral amplitudes about the mean level is not 

known a priori. Once the estimates for a(T) ,b(T)  . . . . . .  f (T)  and g(T) are known for a 

given T, it becomes possible to calculate the fraction of points which lie below and above 

the predicted amplitudes of FS(T),p for a given value ofp and for the known M, R, S and v 

corresponding to each recorded spectrum. This computation has been carried out for all 

periods, for p = 0.1,0.2,..., 0.8 and 0.9 and for all Fourier spectra of 546 accelerograms 

which were used in this study. The result of this calculation, which yields actual confidence 

levels with respect to the model in equation (2) for the selected p = 0.1,0.2,..., 0.8 and 0.9 in 

the linear terror a(T)p, in equation (3), is shown in Figure 11. The smoothed confidence 

levels for the nine values of p are also shown in this figure. Therefore, if calculation of 

FS(T),p is required for actual confidence levels with respect to the assumed model in 

equation (2), one can find by simple interpolation the correct p value to be used in the 

linearized model in equation (3) from Figure 11. It should be emphasized, however, that 

Figure 11 does not show the actual distribution of Fourier spectrum amplitudes, but 

rather the distribution relative to the assumed approximate representation of spectra in 

terms of equations (2) and (3). 

CONCLUSIONS 

In this paper a new method for empirical scaling of Fourier amplitude spectra of strong 

earthquake ground motion has been presented. The functional form of this correlation 

model has been chosen to reflect the known physical principles that govern the earthquake 

energy release at the source, the transmission path and the recording conditions. Although 

an effort has been made to derive the representative scaling functions for this model by 

using all the digitized and corrected data which are available in the United States so far, it 

should be emphasized here that the detailed characteristics of the model and the smoothed 

numerical values of its scaling functions a(T), b(T) ...... g(T) represent only preliminary 

and approximate estimates which will have to be improved when more recordings become 

available. Therefore, the results presented in this paper can only be taken as suggestive of 

actual overall trends that characterize the Fourier amplitude spectra of strong earthquake 

ground motion. Some inferences, although seemingly real, may only reflect the weaknesses 

of the model and/or the inadequate and incomplete set of data which we used to estimate 

them. In spite of these limitations, however, the only sound approach toward a complete 

solution of this problem is to examine the simple and obvious trends which can be 

extracted from actual recordings and to use these trends on an interim basis as a vehicle for 

the development of better recording and analyzing techniques in the future. 

On the logarithmic scale the Fourier amplitude spectra of strong-motion accelerations 

tend to increase linearly with magnitude for shocks which are typically less than M = 4.0 to 

M -- 5.5. For larger magnitudes the rate of growth of spectral amplitudes slows down and 

the amplitudes seem to reach maxima for the magnitude range between M = 7.5 and M 

=8.5. The shape of the average Fourier amplitude spectra changes with magnitude 

reflecting relatively greater content of long-period waves for larger earthquakes. 

For M=6.5  earthquakes, at distances close to and greater than 100km, the Fourier 

spectra of digitization and processing noise begin to interfere with and become 

comparable to spectral amplitudes of strong motion. For shocks with magnitude less than 

M = 4.5 only a limited frequency band from about 10 to about 1 Hz may be extracted from 

the records at small epicentral distances which are typically less than 10 km. 
The average high-frequency Fourier amplitude spectra for periods shorter than about 

0.2 sec appear to be larger for accelerogram's which were recorded on basement rock sites 
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(s---2) than for the stations that recorded on alluvium (s = 0) by a factor which is less than 

about 0.2 on the logarithmic scale. For periods longer than about 0.7 to 0.8 sec this trend is 

reversed and the average Fourier spectrum recorded on alluvium (s = 0) is larger by about 

0.4 on the logarithmic scale than the spectrum amplitudes of accelerograms recorded on 

basement rocks (s = 2). 

Vertical components of strong-motion accelerograms lead to Fourier amplitudes which 

are larger than the horizontal components by a factor less than 0.1 on the logarithmic scale 

for frequencies higher than 10 Hz. This trend is reversed for periods longer than 0.1 sec. 

For  periods between about 0.3 and 2 sec, horizontal spectra are larger by a factor of about 

0.3 on the logarithmic scale. For periods longer than 2 sec this factor decreases from 0.3 to 

about 0.1 for long periods close to 10sec. 

The changes of shape of the Fourier amplitude spectra with distance have been found to 

be small and are such that the high-frequency waves are attenuated faster than the long- 

period waves. For distances less than 50 to 100 km, relative attenuation of the logarithm of 

Fourier amplitudes can be approximated by log 1 oA o (R) + R/1000. 

The nature of the dependence of the empirical Fourier spectral amplitudes on 

magnitude and distance could be related to and does not seem to be contradicted by our 

present understanding of the earthquake source mechanisms. The significance and the 

extent of the above described changes of spectral shapes, however, cannot be evaluated 

without a detailed consideration of the uncertainties and the scatter of actual observations 

relative to the average trends which result from the empirical model. The upper and lower 

boundaries of the 80 per cent confidence interval, for example, differ by factors equal to 1.1 

to 1.4 on the logarithmic scale. This corresponds to factors of about 12 to 25 on the linear 

amplitude scale and, when compared with the amplitude variations affected by different 

magnitudes or site conditions, clearly shows that many other features of the actual Fourier 

amplitude spectra have been omitted in this approximate analysis. These large variations 

thus illustrate the degree of variability that exists between earthquakes which have been 

labeled by an identical set of M, R, and s parameters or in other words show the 

uncertainties that result from the simplistic characterization of strong ground shaking in 

terms of magnitude, M, epicentral distance, R, and the recording site conditions only. 

Future improvements may reduce these uncertainties somewhat by introducing more 

complete and more detailed empirical scaling functions for Fourier amplitude spectra, but 

it seems likely that the large scatter similar to that which is now described by the a(T)  

function may remain. If this expectation is correct, it will mean that there is considerable 

variability in the characteristics of strong ground motion which is caused by complexities 

at the source and along the wave propagation path, and that this variability cannot be 

overlooked in the analysis of the trends and amplitude variations which depend on 

magnitude, distance and site conditions only. This variability will impose a limit on the 

resolution of source mechanism studies which use the data derived from strong-motion 

instruments. For practical applications in earthquake engineering and strong-motion 

seismology, better understanding of these uncertainties will enable one to evaluate the 

meaning and the adequacy of the computational methods and quantitative and 

judgmental engineering decisions. 
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