
AIAA-98-4807

PRELIMINARY RESULTS FROM THE
APPLICATION OF AUTOMATED ADJOINT

CODE GENERATION TO CFLSD

.Alan Carle*
F k e T;ni\-ersity
Houston. Texas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
carle@rice.edu

Alike Fagant
F k e T;ni\-ersity
Houston. Texas

mf agan@rice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. edu

Lawrence L. Green:
N.ASAA Langley Research Center

Hampton. l’irginia
l.l.green@larc.nasa.gov

Abstract

This report describes preliminary results obtained
using an automated adjoint code generator for Fortran
to augment a widely-used computational fluid dynam-
ics flow sol\-er to compute deri\-ati\-es. These prelim-
inary results with this augmented code suggest that:
e\-en in its infancy: tlie automated adjoint code gener-
ator can accurately and efficiently deli\-er deri\-ati\-es
for use in transonic Euler-based aerodynamic shape

optimization problems with hundreds to thousands of
independent design \-ariables.

Introduction
-Automatic differentiation (.AD) is a set of teclmiques

for automatically augmenting computer codes to com-
pute chi\-ati\-es of their outputs with respect to their
inputs. Numerous papers presented at recent AIultidis-
ciplinary -Analysis and Optimization (ALAhO) confer-
ences haye reported that -AD can pro\-ide tlie deri\-a-
tiyes required for use in simulation-based clesign.1-8
‘These papers describe tlie use of .ADIFOR, an -AD
tool for Fortran.9$ lo .ADIFOR implements tlie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAforwnrd
mode of -AD. For a code with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn independent \-ariables

*Faculty Fcllow; lIcmhcr, IILLI; Dcpartmcnt of Computa-

t Rcscarch Scicntist, Dcpartmcnt of Computcr Scicncc
iRcscarch Enginccr, Scnior lIcmhcr, IILLI; Multidisci-

tional and IIpplicd 1Iathcmatics

plinary Optimization Branch
Copyright 0 1998 by Lhc hmcrican Inalilulc of hcronaulics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand hslro-

naulics. Inc. ZTo copyright is aascrlcd in Lhc Lrnilcd Slalca rmdcr Tillc 17. Lr.S.
C‘odc. Thc 1r.S. C:ovcrmncnl has a royally-frcc liccnsc Lo cxcrcisc all rights i m -

der Lhc copyright claimcd hcrcin for C:ovcrnmcnlal Purpoaca . All olhcr rights
arc rcscrvcd by Lhc copyright O W I I C ~ .

(or design \-ariables) anti zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712 clependent \-ariables: tlie
forward mode computes tlie deri\-ati\-es using time and

space proportional to n. Ob\-iously: for problems with
a large number of independent \-ariables: tlie compu-
tational cost of this method is prohibiti\-e.

.ADJIFOR: a substantially extended \-ersion of -AD-
IFOR: implements tlie reverse (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAndjoint) mode of
-AD. For a code with n independent \-ariables and 712

dependent \-ariables: tlie re\-erse mode computes tlie
deri\-ati\-es using time proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712: not n: albeit
by using space proportional to tlie number of floating
point operations required to execute tlie original code.
Fortunately, as will be shown for tlie CFLSD (Compu-
tational Fluids Laboratory 3-Dimensional) code: spe-

cial mathematical properties of steady-state solutions
can be exploited to tlrmatically reduce tlie storage re-
quirements of tlie re\-erse mode. Other re\-erse mode
-AD tools include Otlyss6ell and TAAAIC.12

The Shape Optimization Problem
-Aerodynamic shape nnnlysis requires a grid gener-

ator to be coupled with a flow sol\-er. Gi\-en a set of
shape pnrnmeters, tlie grid generator creates a grid.
‘The newly created grid then becomes an input to tlie
flow sol\-er. ‘The flow sol\-er then computes tlie aero-
dynamic outputs. Often: tlie point of shape analysis
is to determine tlie \-dues of shape parameters that
gi\-e rise to “fa\-orable” aerodynamic outputs. The
process of seeking shape inputs that lead to tlie fayor-
able outputs is called shape optimixntion. Con\-ersion
of a shape analysis problem into a shape optimization

mailto:carle@rice.edu
mailto:l.l.green@larc.nasa.gov

problem requires defining exactly what criteria consti-
tute b‘fa\-orable.’’ Tlie definition of fayorable includes
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobjective funct ion to be minimized or maximized.
Geometric and flow constraints might also be included.

Gmdient-bused shupe optimixution requires tlie
deri\-ati\-es of tlie objectiye function and tlie con-
straints with respect to tlie parmeters that control
tlie shape of tlie object. In tlie following text, Q rep-
resents tlie flow field: X tlie grid: and I? tlie shape

parmeters. -A grid generator, G: generates tlie grid
X : @\-en shape parmeters I?: that is: X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(I?).
‘The flow sol\-er computes tlie final b‘con\-erged” flow
field by iterating a stepping function S. ‘The stepping
function computes tlie next iterate: using tlie current
iterate and grid. ‘This dependence is emphasized by
writing S(Q, X) for tlie step. Tlie initial iterate in tlie
procedure is indicated as Qo: which is usually inde-
pendent of tlie shape parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?: except perhaps

on tlie boundaries. ‘The final: or con\-erged: flow field
is indicated as Q*: diere Q* = S (Q * : X) , meaning
that tlie solution has reached a steady state. Tlie ob-

jectiye function F is a function of both tlie flow field
and tlie grid: and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is tlie \-alue of F for a @\-en Q
and X : that is: V = F(Q: X) .

STith this notation in place, tlie following pseudocode
defines tlie canonical shape analysis procedure:

X = G(I?)
Q = Qo
Do until Q “is con\-erged”

Enddo
Q = S (Q : X)

V = F (Q : X)

-4s indicated pre\-iously: to solye gradient-based
shape optimization problems it is n
pute tlie chi\-ati\-es of tlie objectiye function and tlie
constraints with respect to tlie shape parameters. To
simplify tlie initial applications of .ADJIFOR: no at-
tempt has been made to compute chi\-ati\-es for prob-

lems with constraints.5 Hence for tlie simplified prob-

lems, only tlie deri\-ati\-es of tlie dependent \-xiable
V with respect to tlie components of tlie independent
\-wiables I? we required.

In this paper: a uniform notation for deri\-ati\-es is
used. ‘The matrix representation for tlie chi\-ati\-e lin- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e x operator for any function 2: Le.: tlie Jacobian of 2:
will be written Jz. In addition, tlie deri\-ati\-e of any
\-xiable Z with respect to I? will be written as 2‘: and
tlie deri\-ati\-e of V with respect to a \-xiable 2 will be

SThc tcchniqucs dcscrihcd hclow apply dircctly to constraints
that arc functions of Q+ and X by simply cxpanding F into
a vcctor-valucd function that computcs thc ohjcctivc function
and thc constraints. Thc dimcnsion of thc dcrivativcs cxpands
accordingly.

written as z. In summary: tlie .ADJIFOR-generated
code should compute v‘: or eqiii\-dently, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.

For additional convenience: I is used for any identity
matrix, 0 is used for tlie zero matrix, 121 is tlie number
of elements in matrix Z: and ZT is the transpose of
matrix 2. Tlie dimensions of matrices will either be

ob\-ious from context or explicitly indicated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AD for Shape Optimization

Tlie classic forwwd mode of automatic clifferenti-
ation accumulates deri\-ati\-es as a computation pro-

ds from tlie inputs to outputs. It follows tlie control
flow of tlie original program and: for a matrix R with
p columns: computes tlie matrix product J * R to @\-e
tlie p directional deri\-ati\-es with a time and space
complexity that is roughly p times that of tlie original
program. If R = I: tlie forwwd mode computes J .
-An alternati\-e approach: tlie re\-erse mode, accumii-
lates tlie chi\-ati\-es in tlie opposite direction-from
outputs to inputs. ,To propagate adjoints, one must
be able to re\-erse tlie flow of tlie program: and record
or recompute any intermediate \-due that nonlinearly
affects tlie final result. Once these technical clifficul-
ties we o\-ercome: then: for a matrix L with q rows:

tlie matrix product L * J can be computed with a time
complexity that is roughly q times that of tlie original
program. If L = 1: tlie re\-erse mode computes J .

Tlie need to record intermediate program \-dues
makes tlie storage requirements of adjoint codes po-

tentially yery high, particularly for iteratiye methods.
Ninimizing tlie storage requirements represents tlie
most significant challenge to automatic adjoint tools.
Checkpointing strategies1” or additional mathematical
knowledge can be used to reduce these requirements.

.Assuming that sufficient storage for tlie re\-erse
mode is ayailable: tlie choice of forwwd mode or re-
Terse mode for computing tlie Jacobian clepends on
tlie number of independent \-ariables p: tlie number of
dependent \-wiables q: tlie ratio of tlie cost of comput-
ing a column of tlie Jacobian to tlie cost of computing
tlie function using tlie forward mode Of: and tlie ratio
of tlie cost of computing a row of tlie Jacobian to tlie
cost of computing tlie function using tlie re\-erse mode
0,. If q * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, < p * Of then re\-erse mode is indicated.
Since tlie operations performed by forward and re\-erse
modes are yector operations: 0, and Of actually de-

pend on q and p: respectidy. 0, and Of clepend on
platform, compiler: and application as well. Typically:
Of for forward mode-based .ADIFOR ranges from .3 to
4.0. In limited tests so fix: 0, for re\-erse mode-based
.ADJIFOR ranges from 6.3 to 20. Hence: tlie re\-erse
mode is pwticulwly attractke for computing sensi-
ti\-ities for shape optimization problems with a lwge
number of shape parmeters: an objectiye function:

and a b'few'i flow constraints. For example: if 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20
and Of = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: re\-erse mode outperforms forward mode
w?-hene\-er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / q > 10: diere q = 1 + #constraints.

To mathematically justify tlie approach to deri\-a-
tiye computation for shape optimization problems: fur-
ther details about tlie framework are elaborated. Tlie
framework is conceptually simple, relying only on tlie
fact that deri\-ati\-es are linear functions and: conse-
quently: composition of chi\-ati\-es is simple matrix
multiplication. Tlie deri\-ati\-es are \-iewed as linear
functions of all program \-ariables in tlie following
canonical order: shape parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?: grid X : flow
field Q: and objectiye \-due T.'. 'This conyention is
used solely for mathematical con\-enience. 'The im-
plemented deri\-ati\-e computation does not form Imge
matrices and then multiply them together.

Csing this framework: tlie deri\-ati\-e of tlie shape

optimization problem can be written as

T." = L JF Js,, . . . Js, Jc; R:

where: using tlie notation for linear operators intro-
cluced abo\-e: JZ represents tlie deri\-ati\-e of a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 e\-aluated at its inputs. In particular: J.7, is tlie Ja-
cobian of S e\-aluated at Q k : tlie flow field at step k .
AIoreo\-er: J.7, is tlie Jacobian of S e\-aluated at Q*:
tlie final flow field. AIatrices L and R are block row

and column projection matrices that select tlie desired
independent and dependent \-ariables: respecti\-ely.

For this problem, \-xiable T.' is tlie desired output:
and I? is tlie \-ector of desired inputs: hence: tlie two
projections are

L = (zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlxlBl OlxlXl OlxlQI 1)
and

-4s described pre\-iously, assuming sufficient storage
for recording intermediate program \-dues for each of
tlie functions G: SI:. . . : S,L: and F: re\-erse mode com-
putes VI. If tlie number of steps n is large: then a

tremendous amount of storage will be required. Fortu-
nately, it is possible to take ad\-antage of mathematical
properties of tlie flow sol\-er to substantially reduce
tlie storage requirements for a steady-state solution.
'This re\-erse mode \-xiant is called tlie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiternted re~~erse
mode. Christianson pro\-ides mathematical justifica-
tion of this approach when tlie flow sol\-er is %uffi-
cientl y " con\-erged . l4

-Applying tlie implicit function theorem to tlie
steady-state condition

Q* = S(Q*:X)

Since Q* is a fixed point of S: tlie matrix
(B': X': Qk: lr')T is a fixed point of J.7. Recall that
tlie framework expantis (ieri\-ati\-e linear operators to
coyer nil \-ariables. Since S has no effect on B: X: or
T.': tlie appropriate entries in J.7 will be 1.

TYhen J.7, is contractiye (i.e., IIJ,y,II < 1): tlie
contractiye mapping theorem guarantees that a fixed
point of J.7, can be computed by simple iteration. 'The
flow sol\-ers anti test cases encountered so far appear

to haye tlie necessary contractiye properties. -Applying
this technique to tlie shape optimization problem, 1"
can be computed as

T." = L JF J.7, . . . J.7, Jc; R.

For this computation: note that tlie snme operator J.7,

is used for each re\-erse-mode iteration. Kote also that
tlie number of iterations required for conyergence of
tlie chi\-ati\-es is not n ssarily tlie same as required
for conyergence of tlie original function. Consequently,
instead of storing tlie intermediate \-dues for all n
steps: it is sufficient to store tlie \-dues for a single
step. Implementing tlie iterated re\-erse mode requires
only two small clianges (less than 10 lines of code) to
tlie -AD JIFOR-generated re\-erse-mode code: (1) turn
off intermediate \-alue recording for tlie first n - 1 steps
of S: saying tlie \-alues only for step n, anti (2) mod-
ify tlie control loop for S to repeatedly execute tlie
re\-erse-mode code for S, until tlie chi\-ati\-es con\-erge
or until a user-specified number of iterations has been
reached. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description of the Codes
For tlie current study, G is a %ome grown" wing

grid generator named AIYGRID: S is tlie stepping
function in tlie CFLSD flow sol\-er code: and tlie ob-

jectiye function F is taken to be tlie lift-to-drag ratio:
which is obtained by cli\-ding tlie computed lift coef-
ficient: cl: by tlie computed drag coefficient: cd. Tlie
calculation of this objectiye function: cl/cd: was added

to tlie original CFLSD code. Description of AIYGRID
and CFLSD follows.

MYGRID Grid Generation Code
AIYGFUD implements a fast and simple algebraic

method for generating wing grids. Tlie grid generation
code was cle\-eloped (in Fortran) for use in .ADIFOR
and .ADJIFOR studies. It is \-eq robust in grid gen-
eration. but tlie code does not include manj of tlie

ad\-anced tecliniques commonly used in commercial
grid generation packages to ensure high quality grids.

AIYGRJD defines 3-D wings by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa set of wing sec-
tions, using an expanded definition of the N.AC-4 four
digit airfoil section family, based upon real numbers
for the maximum thickness, maximum camber: and
location of maximum camber: rather than the usual
integer designation. ‘This allows for airfoil shapes to be
incrementally perturbed in a continuous, rather than
a discrete: fashion: tliiis enabling the construction of
accurate finite-difference approximations to \-erify the
results of .ADIFOR and .ADJIFOR. Each wing section
is described by eight design parameters: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd e : yle, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xZe (the x: y and z leading edge coordinates): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc d (the
wing section chord length to trailing edge), cr1m (the
maximum camber line height in y-direction): xcr1n (tlie
streamwise location of maximum camber height): tlik
(tlie streamwise maximum airfoil thickness): and t i cs
(the section twist angle).

The number of design \-ariables can be increased by
simply increasing the number of wing sections that
are specified. ‘The code also allows the user to specify
the number of grid points in each of the coordinate
directions and pro\-ides a few choices that affect the
grid stretching and distribution.

The AIYGRJD code produces single-block grids that
were used in the initial demonstrations of this ad-
joint technology. Subsequently, a utility program was

cle\-eloped by Biedron of N.ASAA Langley Research Cen-
ter: which splits a single-block grid and its associated
CFLSD input file into a user-specified number of sub-
set grid blocks, while also splitting the boundary con-
dition specification within the associated single-block
CFLSD input file into a multiblock input specification.
‘This grid block and input file splitting utility program
was used within the current work to pro\-ide a mech-
anism to decompose a large grid into many smaller
pieces for parallel processing.

The CFLSD Flow Solver Code
The CFLSD code is a general purpose compu-

tational fluid dynamics (CFD) sol\-er cle\-eloped by
.Thomas, Riimsey, and Biedron of the N.ASAA Langley
Research Center: with contributions from numerous
other researchers. From its inception in the early
1980‘s: the CFLSD code has been continuously im-
pro\-ed: applied to a wide \-ariety of problems, \-erified
extensidy by experiment and other CFD results: and
widely distributed for use in indiistry.1cj-22

The CFLSD code sol\-es the time-dependent
Reynolds-a\-eraged Na\-ier-Stokes equations in conser-
\-ation form using upwind-biasing for the con\-ecti\-e
and pressure terms: and central differencing for the
shear stress and lieat transfer terms. The code in-

cludes the ability to sol\-e in\-iscitl: laminar: or tmbu-
lent flows around complex 2-D or 3-D geometries 11s-
ing one of four possible grid schemes (point-matched:
patclied, o\-erlapped: or embetitled). CFLSD includes
the ability to compute steady or unsteady flows with
implicit time ad\-ancement. Both multigrid and mesh
sequencing techniques can be used for comergence

leration. The code also pro\-ides numeroils tm-
bulence models, including Baldwin-Lomax, Baltlwin-
Barth: and Spalart--Allmaras: as well as se\-eral other
popular models.

Two distinct \-ersions of the CFLSD code were

used in this work: (1) the sequential CFLSD \-ersion
3.0 code and (2) an existing block-parallel \-ersion of
CFLSD: from tlie \-ersion 4.1 code that employs AIPI
(AIessage Passing Interface) routines to implement a
clistributed-memory parallel flow sol~ition.~” .Although
these two codes are substantially different internally:
and the sequential \-ersion 3.0 code includes some new
features not found in tlie parallel \-ersion 4.1 code: they
haye been found to produce essentially tlie same re-
sults for test cases similar to those used in this work.
-A forthcoming N.ASAA Technical AIemorantlum tlocu-
ments the CFLSD \-ersion 3.0 code anti its differences
from pre\-ious code \-ersions: including: (1) sliding
patched-zones for use in rotor-stator computations and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) impro\-ed computational efficiency anti memory 11s-
age.

For simplicity: only a limited subset of tlie possible
CFLSD code options ha\-e been clemonstratecl within
the scope of the work presented in this paper: although
the only portions of the CFLSD code that were pur-
posely a\-oidetl were tlie tmbulence models. Based
upon pre\-ious work with the .ADIFOR code genera-
tion tool: the -AD JIFOR-generated CFLSD code is ex-
pected to work correctly and accurately for tlie entire
suite of bountlary conditions: as well as the niimer-
oils sol\-er and multigrid options within tlie code. It is
expected that the primary impact of these additional
options will be to increase tlie storage requirements
of the adjoint code in proportion to tlie increased
complexity of tlie computation. -Adjoint code for the
turbulence models could easily be incorporated in the
adjoint code. .Also, tlie use of patclietl or oyerset grids
would require -AD JIFOR processing of: respecti\-ely,
the RONNIE or AI-AGGIE utility programs pro\-idetl
with CFLSD: -AD JIFOR processing of these utilities
has not yet been attempted.

For this current work: the CFLSD code was used to
solye steady: in\-iscitl: transonic flow around a simple
3-D transport wing. The algorithmic choices included
the use of local time stepping: Roe‘s flux-difference
splitting scheme: anti scalar tri-diagonal matrix in\-er-
sion with smooth flux-limiters. AIultigritl and grid

sequencing were not used in these demonstrations.
'The test cases used either single-block grids: or grids
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhad been decomposed into smaller: point-matclied
I'LO'TSD miiltiblock style grids \-ia the splitter utility
program pre\-ious described.

DescriDtion of the Test Problem

The choice of a test problem for this .ADJIFOR
demonstration was influenced by two considerations:
(1) the problem needed to resemble a realistic tran-
sonic shape optimization problem, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) the problem
needed to be small enough to permit \-alidation of nu-
merical results using .ADIFOR and finite differences.
In light of these considerations, a small-sized shape
parmeter specification was cle\-eloped. Specifically,
the test problem uses 88 shape parmeters to define
a swept and tapered wing: similar to those used on
numerous commercial transport aircraft today. Gi\-en
these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 shape parmeters: AIYGRID was used to gen-
erate 33 x 9 x 9 and 63 x 17 x 17 one-zone grids.
'The grid splitter was then used to split each of these
one-zone grids into two-zone: four-zone and eight-zone
grids. Test cases were run under an Euler regime at
AIacli 34, alpha 3.06'. CFL3D 3.0 was tested only
on the 33 x 9 x 9 one-zone grid. CFL3D 4.1 was
tested on all eight grids. 'These grid sizes was clio-
sen for this adjoint demonstration as a compromise
between the flow modeling resolution and the initial
in-core storage requirement for the adjoint flow sol\-er.
'The adjoint capability was first clemonstrated on the
flow sol\-er: without using the grid generation package.
Each of the grid x-y-z coordinates input to CFL3D was

considered to be an independent \-xiable. 'This yielded
a potentially large number of design \-ariables: up to
a total of 8019 (3 3 x 9 ~ 9 ~ 3) : with minimal time and
storage requirements for the CFD sol\-er.

Currently: adjoint \-ersions of the grid and the flow
sol\-er haye been coupled to produce flow sensitiyi-
ties with respect to the shape specification parmeters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(d e : yle, xle: crd, cmz: m r n 3 tlik, and tws) at each
of the input sections. The number of independent de-

sign \-ariables can be increased by simply increasing
the number and distribution of input wing sections:
so long as the spanwise grid resolution is approxi-
mately the same as the number and distribution of
input sections. For this test case: there are 11 input
wing sections and 8 design \-ariables per wing section
for a total of 88 shape specification design yariables.
If many more (or more densely spaced) wing sections
are specified than spanwise grid lines computed: the
process will still work: but some of the design \-ariables
may become ineffecti\-e: clue to the linear interpolation
between the input wing sections: se\-eral interpolations
to obtain grid lines may be possible, and the effect of a

design \-xiable at any one input section then becomes
less clear.

For this test case: the wing span is taken to be

1.0: the root chord is 0.6737, the tip chord is 0.3789.
For simplicity of grid generation, a K.ACAA 0010 wing
section was used. The grid generation for this case
was clone with the AIYGRJD program, described pre-
\-iously. Since multigrid was not used in this study:
con\-erging the flow solution for this problem took
about 1000 cycles.

Since the grid is so coarse: particular attention was

gi\-en to grid stretching anti distribution in order to
obtain the most reasonable in\-isciti flow solution grid
possible within the limitations of AIYGRJD. In the
stremwise coordinate direction with 33 (or 63) grid
points: the grid direction index starts: as is common:
at the lower downstream wake: wraps around tlie air-
foil from the lower trailing edge: to tlie leading edge:
to the upper trailing edge: and continues to tlie upper
clownstrem wake. Grid clustering has been pro\-ideti
near the leading anti trailing edges for each wing sec-
tion. -An unusually large number of grid cells (30
percent) were placed in the wake: distributed equally
between the upper and lower wake regions: to improye
the grid distribution for this coarse grid case. Both the
wing normal anti spanwise directions haye 9 (or 17)
points. In the normal direction: grid points are some-
what clustered toward the airfoil surface: grid lines are
perpendicular to tlie airfoil surface near the leading
edge: but \-ertical beyond tlie airfoil maximum thick-
ness point and in the wake. In the spanwise direction:
the grid points are equally spaced along the wing span.
In the test problem, the wing tip has zero thickness and

the outer bountiary is placed at a distance of 3 wing
semi-spans away from the airfoil surface.

It is worth noting that: from the authors' experience:
the initial .ADIFOR/.AD JIFOR \-didation for accii-
racy, relatiye to carefully constructed finite-difference
approximations: can usually be done on such coarse
grids as described abo\-e. In the current studies: grids
as coarse as 1 7 x 3 ~ 3 points were used in tlie initial
\-erification of .ADIFOR anti .ADJIFOR results. 'The
accuracy of tlie .ADIFOR/.AD JIFOR (ieri\-ati\-es for
reasonably short runs: relatiye to such finite-difference
approximations: appears to be intiepentlent of the res-
olution of the flow field features. 'This is true as long
as the coarseness of the grid does not lead to incon-
sistencies in tlie basic flow soher algorithm. In fact:
although the 17x 3 x 3 grid is already extremely coarse:
it may be possible to do these \-alitiation tests on a
9 x 3 x 3 grid: but the authors were uncertain whether
that l e d of coarseness would yiolate some unknown
3-point operator assumption that may be buried deep
within the CFL3D computational algorithm. 'There is

probably no way to proye that \-alidation can always
be clone on these coarse grids: it may wen be possible
to proye that such tests can produce misleading, or
incorrect, results for some cases. Howxer: the yirtue
of such coarse grid yalidation, if it works: is that the
results can be conyerged quickly to machine zero with
limited time inyested in grid generation.

Results

The goal of this work was to inyestigate the effec-
tiyeness of the -AD JIFOR-generated adjoint code: in

conjunction with the iterated reyerse mode. Com-
puting platforms used in this effort included: an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8-
processor Sun Enterprise E4000 shared memory seryer: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 4-processor IBAI SP2 shared memory node: and a 4-
processor SGI Power Challenge shared memory node.
In the following text and tables: these t h e e shared
memory processors are referred to as the SLK SAIP:
IBAI SAIP and SGI SAIP: respectiyely. For CFL3D
3.0: test cases were executed using a single processor:

and for CFL3D 4.1, two processors (one host and one
compute node) were used for the one-zone test cases:

t h e e processors (one host and two compute nodes) for
the two-zone test cases: five processors (one host and
four compute nodes) for the four-zone cases: and nine
processors (one host and eight compute nodes) for the
eight-zone cases.7 -411 test cases were run using bit
floating-point ari t lime t ic.

Table 1 shows (leriyatiye \-slues for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtlvs computed
using the forward mode by .ADIFOR and the iterated
reverse mode by .ADJIFOR for the 33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 9 x 9 one-
zone test case using the sequential and parallel yersions
of CFLJD. For forward mode, the .ADIFOR-enhanced
AIYGRID and 1000 steps of the .ADIFOR-enhanced
CFL3D were executed. For iterated re\-erse-mode,
tlie .ADJIFOR-enhanced AIYGRID and 1000 steps of
CFLSD: followed by 1000 adjoint iterations of CFL3D
were executed. Forward-mode and iterated reyerse-
mode deriyatiye values for CFL3D 3.0 show excellent
agreement. ‘The forward-mode and iterated reverse-
mode derivative values for CFL3D 4.1 likewise show
excellent agreement. For both codes, finite-difference
approximations (not shown in the table) agree with the
.ADIFOR-generated (leriyatiyes to more than six sig-
nificant figures. The discrepancies between the cleriya-
tiyes computed for CFLJD 3.0 and CFL3D 4.1 haye
not yet been inyestigated

Table 2 presents timings based on CFL3D 3.0:
including the shape analysis procedure: finite clif-
ferences: .ADIFOR-generated forward-mode cleriyatiye

TExccuting CFLJD 5.0 on a singlc proccssor of multiproccs-
sor hardwarc cnablcd thc faircst possiblc pcrformancc compar-
isons bctwccn thc various sensitivity-cnhanccd scqucntial and
parallcl vcrsions of CFLJD.

code: and the -AD JIFOR-generated adjoint code 11s-

ing the same 33 x 9 x 9 one-zone test case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKo-
tice that the cost of computing all 88 cleriyatiyes 11s-
ing .ADJIFOR on the SLK SAIP is about 10 percent
of the cost of using finite differences. The timing
numbers shown in ‘Table 2 is intentied to illustrate
the performance of -ADJIFOR-generated code rela-
tiye to other standard methotis for computing (ieriya-
tiyes. -4s such: they do not reflect the possible use of
coarse-grained parallelization within finite differences
or forward-mode (leriyatiye computations to improye
performance. .Also, the tables do not reflect tlie poten-
tial for improyed efficiency of .ADIFOR-generated code

through the use of the incremental iterative method
(le~eloped by Taylor anti O l0s0 .~~

Tables 3 and 4 summarize tlie time anti storage
requirements of tlie iterated reyerse mode yersion of
CFL3D 4.1. In Table 3: for each of the eight test
cases: the following information is pro\-itied: (1) time
required for the original function, (2) time required for
the iterated reyerse mode: (3) tlie ratio of the iterated.

reyerse mode anti function times. Table 3 shows that
the iterated reyerse mode is scaling better than the
original CFL3D 4.1 function eyaluation as the number
of grid zones anti processes is increased The iterated
reyerse mode shows excellent performance on all eight
test cases.

In Table 4: for each of the eight cases: the follow-
ing information is pro\-itied (per compute node): (1)
memory required for tlie original function: (2) memory
(static and dynamic) for the iterated reyerse mode: (3)
disk space required for tlie iterated reyerse mode: and

(4) bytes per point summaries of tlie dynamic mem-
ory and disk requirements of the iterated reyerse mode.
‘The table indicates an approximation of 8000 bytes of
dynamic memory per grid point anti 32000 bytes of
disk space per grid point for an iterated reyerse mode
calculation. This approximation yields a 3.2 GByte
dynamic memory requirement and a 12.8 GByte disk
space requirement for the target 400:000 point grid.
Consequently, a 32-processor parallel computer con-
sisting of processors with 128 AIBytes memory anti 400
AIbytes disk could be used to compute the cleriyatiyes
for this 400:000 point problem.

Finally, in Fig. 1: tlie conyergence behayior for
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 of the 11 wing sections is shown for CFL3D 3.0.
Conyergence for all other design parameters and wing
sections is similar. Derivatives do indeed converge: and
appear to do so in perhaps half as many steps as the
original flow soher.

It should be noted that several successful “by-hand”
(rather than automated) adjoint demonstrations with
CFD codes already exist.””-28 The variations in these
adjoint solution tecliniques and the iterated reverse

mode make direct comparisons clifficult. It is ex-

pected that .ADJIFOR-generated code will always be
more pessimistic in data storage requirements than
the best by-hand adjoint methods employing signif-
icant knowledge about the code structure and solu-
tion process. Nonetheless: the performance of the
-AD JIFOR-generated code is competitive with the by-
hand methods. Fiirthermore: the time required to
produce adjoint \-ersions of existing codes using -AD JI-
FOR is surely orders of magnitude less than the time
required for similar by-hand implementations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Significance of Results
First, this work demonstrated the use of the .ADJI-

FOR automatic adjoint code generation tool for the
computation of shape semiti\-ities for a small prob-
lem. The (hi\-ati\-es for the design \-a.riables in this
small problem haye been \-erified to be accurate: thus
providing confidence that the .ADJIFOR tool is work-
ing correctly. This is significant because the \-didation
of the adjoint results by finite differences or forward-
mode differentiation will become more cumbersome
as the number of design variables increases: and as

the adjoint code becomes more efficient relatiye to the
comparison methods.

Second, this work cle\-eloped the iterated re\-erse
mode for CFLSD. 'The iterated re\-erse mode uses a

mll-con\-erged solution to store intermediate program
\-dues and then repeatecllly executes the final iteration
until the chi\-ati\-es con\-erge. 'This technique pro\-ides
accurate deri\-ati\-es with substantially smaller storage
requirements than the standard re\-erse mode, and: in
addition, appears to con\-erge the deri\-ati\-es in fewer
iterations than were required for the solution comer-
gence. The rechiceel storage reqiiirement,s should make
it possible to tackle much larger semiti\-ity and opti-
mization problems.

Third, this work demonstrated that the -AD JIFOR
prototype is capable of pro\-iding shape semiti\-ities at
a cost comparable to about 7 e\-aluations of CFLSD: on
the SIX SNP: for a test case with 88 design variables.
'This compares fayorably to the 89 function e\-aluations
that ~voiild haye been required for one-sided finite clif-
ferences. These timing results agree with expectations.

The current demonstration represents a significant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ad\-mce in the ability to automatically generate sensi-
tivity code for sensitivity analysis or shape optimiza-
tion using a widely distributed industrial-grade aero-
dynamic sol\-er. Furthermore, a special effort has been
made to accommodate the aerospace industry's need
for rigorous \-alidation. Nore work remains to be clone
on se\-era1 fronts to make this demonstration more re-
alistic.

Conclusions
The .ADJIFOR automatic adjoint code generation

tool has been applied to both a sequential and a
parallel \-ersion of the CFLSD computational fluid
dynamics code. The resulting ADJIFOR-generated
codes have been demonstrated with one-zone: two-
zone: four-zone: and eight-zone grids. 'The -AD JIFOR
application to these CFLSD code \-emions produced
exact cleri\-ati\-ea, with respect to shape parameters:
of a sample objectke function: the lift-to-drag ra-

tio. 'The computed re\-erse-mode chi\-ati\-es were

compared with both for\vard-mode results and finite-
difference approximations to \-didate their accuracy.
'The deri\-ati\-es were obtained for steady-state prob-
lems using a technique known as the iterated re\-erse
mode which records the last step in a function comer-
gence and replaj-s this information during the adjoint
solution process until the derivatives converge.

The resulting adjoint semiti\-ity analysis was exe-

cuted on multiprocessor parallel computers using the
amount of storage typically ayailable on these kinds
of machines. For 88 design \-ariables: the re\-erse

mode code required execution times ranging from 7
to 21 fiinction evaluations: clepencling upon machine
type and compiler options. For this example: the
re\-erse-mode chi\-ati\-es conyerge to acceptable accii-
racy bounds within about half the number of iterations
required for the function itself to conyerge to a steady
state: resulting in an additional performance benefit
relatiye to either the forward-mock or finite-difference
methods for computing deri\-ati\-es.

Remaining Work
The most immediate issue remaining for the .ADJI-

FOR prototype is the reduction of the storage required
for intermediate \-dues in .ADJIFOR-generated code.
'Two strategies will be in\-estigated: eliminating the
storage for iinnecessary intermediate \-dues (such as

those that are only used linearly): and recomputing:
rather than storing, other intermediate \-dues.

.Additional impro\-ements to the prototype will be

dri\-en by a more thorough imestigation of the adjoint
code generated for CFLSD. The .ADJIFOR-generated
code will be demonstrated for laminar and turbulent
flows: with other boundary condition options: and on
larger: miiltiblock grids with grid sequencing: multi-
grid: and other conyergence a leration techniques.

Previous experience with the forward-mode .ADIFOR
tool suggests that none of these issues should pose a

clifficult problem for the re\-erse-mode .ADJIFOR tool.
Each issue: howe\-er: must be addressed with a \-iew
toward rigorous \-didation for accuracy and the best-
attainable efficiency. .Also, the efficiency of the adjoint
code must be demonstrated within a realistic opti-

mization problem, rather than just within a semiti\-ity
analysis.

From discussions with engineers doing shape opti-
mization for a major aerospace firm in the Cnited
States, the authors belieye that the minimum realistic
target test problem for this adjoint demonstration is a

wing-body configuration in in\-iscid flow with at least
400:OOO grid points and about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 design \-ariables. In
such a test problem the grid size: the configuration
complexity: and the number of design problems would
be consistent with the current practices for shape op-

timization of new aircraft.

It is belie\-ed that grid size can be increased with
little or no performance penalty using the -AD JIFOR-
generated parallel \-ersion of CFLSD: which uses AIPI
message passing to distribute large problems across

numerous processors working in parallel. 'Thus: each
processor is required to solye only a small piece of a

larger problem. In theory, parallelism pro\-ides a

to the large amounts of storage space required fo
iterated re\-erse mode. It has not yet been shown: how-
eyer: that good flow-sol\-er conyergence: a prerequisite
for using the iterated re\-erse mode, can be achie\-ed
for grids that haye been cli\-ided into a large number
of zones.

One question that has only partially been answered

at this point is how the conyergence of function and ad-
joint codes in the shape analysis procedure affects the
\-dues of deri\-ati\-es computed by the iterated re\-erse
mode. In this work: the deri\-ati\-es were obser\-ed to

ptable accuracy bounds in fewer iter-
ations than the function required to reach a steady
state: starting the adjoint calculation from a well-
con\-erged function solution. It is not known diether
this will be true for a broad range of configurations and
classes of shape parmeters. .Also, the exact meclia-
nism for this rapid conyergence of the deri\-ati\-es is not
well iinderstood. Con\-ergence of the shape analysis
procedure based: as is iisiial: on the con\-ergence of the
configuration force and moment coefficients (usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 orders of magnitude con\-ergence) rather than
on the conyergence of the flow field itself (6 or more
orders of magnitude con\-ergence): will impact the ac-
curacy of the deri\-ati\-es within the shape semiti\-ity
analysis and shape optimization procedures. But the
exact impact of such reduced conyergence has not been
quantified. Fiirthermore: it is not known whether the
adjoint method clemonstrated liere can be applied to
time-dependent problems. In fact: it is expected that
many: if not all: function iterations must be logged in
order to construct accurate re\-erse-mode deri\-ati\-es
for time-dependent problems. The impact of logging
many iterations of a time-dependent problem will be
a huge increase in the storage requirements necessary

to sohe the adjoint problem.

Finally, there is theoretical anti practical interest in
clarifying the relationship between the iterated re\-erse
mode and the \-arious by-hand adjoint approaches.
Ideally: this imestigation will suggest ways in which
automated methods may be impro\-ed to acliieye effi-
ciency comparable to the best by-hand approaclies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Acknowledgements
The authors wish to express their sincere thanks to

Dr. Tom Zang, head of the AIultiDisciplinary Opti-
mization Branch (AIDOB) at K.4S-A Langley Research
Center (LaRC): without whose support through both
funding and ad\-ocacy this project would not haye been
possible. 'The authors wish to thank Dr. Chris Riim-
sey of the -4erodynmic and -Acoustic AIethods Branch
(-A-AAIB) at K.4S-A LaRC for the guidance he pro-

\-ided to the authors in the use of the CFL3D code.

'The authors also wish to express their thanks to Dr.
Bob Biedron of -A-AAIB at K.4S-A LaRC for his \-alida-
tion efforts with the parallel CFL3D code \-ersion and
the (le\-elopment of the grid block splitter code for the
adjoint solution of large grid problems. 'The authors
express their thanks to Dr. Perry Kewman of AIDOB
at K.AS-4 LaRC for his direction and support of AIDOB
research in automatic differentiation tools. The au-
thors express their thanks to Drs. Shreekant .Agrawal:
Geojoe Kuru\-ila, Peter Hartwich: Pichurman Sun-
clarm: James Hager: Bob Karducci: and Eric Cnger
of Boeing Long Beach for their informati\-e discussions
with the authors about the status of shape optimiza-
tion within the K.AS-4 High Speed Research Program.
Finally: the authors express their thanks to Dr. Chris
Bischof of .Argonne Kational Laboratories for mathe-
matical (le\-elopments contributing to the -AD JIFOR
tool.

This work was supported by the Kational .Aero-
nautics and Space .Administration under Cooperati\-e
-Agreement Number KCC 1 234, and by the Kational
Science Foundation, through the Center for Research
on Parallel Computation: under Cooperati\-e .Agree-
ment KO. CCR-9120008. Carle and Fagan were re-
sponsible for adjoint code generation and initial code

execution demonstrations. Green was responsible for
the problem definition: grid generation, and CFL3D
code support.

References
lUngcr, E.; and Hall; L.; "Thc Usc of Ilutomatic

DiKcrcntiation in an dlircraft Dcsign Prohlcm," 5th
AIAA/Nrl.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary
Analysis and Optimization; 11LIll-94-4260-CP; Panama City;

'Bischof, C.; KnauK; T.; Grccn, L.; and Haiglcr,
K.; "Parallcl Chlculation of Scnsitivity Dcrivativcs for

FL.; Scpt. 1994; pp. 64-72.

Ilircrart Dcsign Using dlutomatic DiITcrcntiation," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5th
AIAA/NA.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary
Analysis and Optimization; 2lLLl-94-4261-CP; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPanama City;

3Korivi; Y.; Shcrman; L.; Taylor; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21.; Hou; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG.; Grccn,
L.; and Ncwman, P.; "First- and Sccond-ordcr dlcrodgnamic
Scnsitivitg Dcrivatvcs via dlutomatic DiITcrcntiation with Incrc-
mcnt a1 It crativc 1 Ic thod s iii 5th A I A A/iVASA/~JSA F/ISSMO
Syinposium on Multidisciplinary Analysis and Optimization;
1lLtl-94-4262-CP; Panama City; FL.; Scpt. 1994; pp. 87-120.

"Korivi, V.; Taylor; 21.; and Ncwman; P.; 'illcrody-
namic Optimization Studics using a 3-d Supcrsonic Eulcr
Codc with Eficicnt Chlculation of Scnsitivitg Dcrivativcs," 5th
AIAA/NA.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary
Analysis and Optimization; 2lLLl-94-4270-CP; Panama City;

'Su, J. and Rcnaud; J.; "dlutomatic DiITcrcntiation in Ro-
bust Optimization;" 6th AIAA/NASA/ ISSMO Syinposium on
Multidisciplinary Analysis and Optimization; 1111Ll-96-4005-

'JVujck; B.; and Rcnaud; J.; "dlutomatic DiITcrcntiation
for Mort Eficicnt IIultidisciplinary Dcsign >lnalysis and Opti-
mization;" 6th AIAA/NASA/ ISSMO Symposium on Multidis-
ciplinanj Analysis and Optimization; 11Llll-96-41 17-CP, Bcllc-
vuc; JVdl.; Scpt. 1996; pp. 1151-1166.

'IIocn, C.; Spcncc, P.; IIcza, J.; and Plantcnga, T.; "lluto-
matic DiITcrcntiation for Gradicnt-hxcd Optimization of Radia-
tivcly Hcatcd IIicroclcctronics 1Ianufacturing Equipmcnt;" 6th
AIAA/NASA/ ISSMO Symposium on Multidisciplinanj Analy- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sis and Ooptimization; ~lLLl-96-4118-C~P; Bcllcvuc, JV21.; Scpt.

81ssac; J.; and Kapania, R.; "~lcroclxtic Scnsitivitg
dlnalysis of JVings using dlutomatic DiITcrcntiation," 6th
AIAA/NASA/ ISSMO Symposium on Multidisciplinanj Analy-
sis and Optimization; 2lLLl-96-4119-CP; Bcllcvuc, JV21.; Scpt.

9Bischof, C.; Carlc, 21.; Corliss, G.; and Gricwank;
"2lDIFOR-Gcncrating Dcrivativc Codcs from FORTRdlN Pro-
grams;" Scientific Prograinining, Yol. 1; 1992; pp. 11-29.

10Bischof, C.; Chrlc, 21.; Khadcmi; P.; and IIaucr, 21.7 'illd-
ifor 2.0: dlutomatic DiITcrcntiation of Fortran 77 Programs,"
IEEE Computational Science and Engineering, Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3; No. 3;

'lRostaing, N.; Da1m.q S.; and Galligo, 21.; "dlutomatic Dif-
fcrcntiation in Odyss6c;'; Tcllus, 4.51; 1993.

l2CGicring, R.; and Kaminski, T.; "Rccipcs for Ildjoint Codc
Construction;" I ~ C X TOMS; 1998; in prcss.

13Gric~.ank; 21.; "dlchicving Logarithmic Growth of Tcmpo-
ral and Spatial Complcxity in Rcvcrsc >lutomatic DiITcrcntia-
tion," Optimization Methods and Sojtware; Vol. 1; No. 1; 1992;
pp. 35-54.

l'lChristianson, B.; "Rcvcrsc Ilccumulation and >lttractivc
Fixcd Points," Optimization Methods and Sojtware; Yol. 3;

Gcncralizcd Patchcd-Grid
dllgorithm with dlpplication to thc F-18 Forchodg with Ilctuatcd
Control Strakc," Computing Systems in Enginee:ering; Yol. 1;
No. 2 4 ; 1990; pp. 563-576.

l'Compton, JV.; Thomas; J.; Ilhcyounis; JV.; and Mason,
11.; "Transonic Navicr-Stokcs Solutions of Thrcc-Dimcnsional
Ilrtcrhodg Flows;" N I ~ S ~ ~ TI1 4111; July 1989.

17GhaITari; F.; Luckring, J.; Thomnq J.; Batcs, B.; and
Bicdron, R.; "IIultihlock Navicr-Stokcs Solutions dlhout thc
F/dl-18 JVing-LEX-Fusclagc Configuration;" Journal os Air-

FL.; Scpt. 1994; pp. 73-86.

FL.; Scpt. 1994; pp. 170-194.

C T ; Bcllcvuc, JVdl.; Scpt. 1996; pp. 201-215.

1996; pp. 1167-1175.

1996; pp. 1176-1186.

Fall 1996; pp. 18-32.

1994; pp. 311-326.

13Bicdron, R.; and Thomas; J.;

CraJt, Yol. 30; No. 3; 1993; pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA293-303.

18Rumscy; C.; Bicdron, R.; and Thomnq J.; "CFLJD: Its
History and Somc Rcccnt dlpplications;" NI\SI\ TI1 112861;
Mag 1997; prcscntcd at thc "Godunov% 1Icthod for Gay Dg-
namics" Symposium; dlnn Ilrhor, 111; Mag 1997.

"Rumscy, C.; and Yatsa; V.; "Comparison of thc Prcdictivc
Capahihtics of Scvcrd Turhulcncc IIodcls;" Journal o j Aircrajt;

"Rumscy, C.; Sanctrik, 11.; Bicdron, R.; IIclson, N.; and
Parlcttc, E.; "Ellicicncg and dlccuracg of Timc-dlccuratc Tur-
hulcnt Navicr-Stokcs Computations," Computers & Fluids;

"Thomay; J.; Krist; S.; and dlndcrson; JV.; "Navicr-
Stokcs Computations of Vortical Flows Ovcr Low-llspcct-Ratio
JVings,'; A I M Journal; Vol. 28; No. 2; 1990; pp. 205-212.

"Vatsa; Y.; Thomas; J.; and JVcdan; B.; "Navicr-Stokcs
Computations of a Prolatc Sphcroid at dlnglc of Ilttack;" Jour-
nal o j Aircrajt; Yol. 26; No. 11; 1989; pp. 986-993.

"Snir, 11.; Otto; S. JV.; Huss-Lcdcrman, S.; JValkcr; D. JV.;
and Dongarra, J.; MPI: The Complete Rejerence; NIT Prcss,
1995.

21. C.; 111; "dlutomatic DiITcrcntiation of Ildvanccd
is Codcs in Incrcmcntal Itcrativc Form for Multi-

disciplinary dlpplications;" Old Dominion Univcrsitg Rcscardi
Foundation (ODURF); Tcch. Rcp. 96-147; 1996.

"Rcuthcr, J.; Illonso, J. J.; Rimlingcr, 11. J.; and Jamcson,
21.; "dlcrodgnamic Shapc Optimization of Supcrsonic dlircraft
Configurations via an dldjoint Formulation on Distrihutcd IIcm-
ory Parallcl Computcrs," ~ l L L l Papcr No. 96-4045; Scpt. 1996.

"dlndcrson; JV. Kglc; and Ycnkatakrishnan; Y.; "dlcrodg-
namic Dcsign Optimization on Unstructurcd Grids with a Con-
tinuous dldjoint Formulation;'; 2lLLl Papcr No. 97-0643; 1997.

"dlndcrson; JV. Kglc; and Bonhaus; DaTl; L.; "dlcrodg-
namic Dcsign on Unstructurcd Grids for Turhulcnt Flows;"
N ~ l S d l T l I 112867; Jun. 1997.

"Kuruvila, G.; Hagcr, J. 0.; and Sundaram; P.; "dlcrodg-
namic Gradicnts Using Thrcc IIcthods;" HSR dlirframc Tcchni-
cal Rcvicw.; Los dlngclcs; C217 Fch. 1998.

Yol. 32; No. 3; 1995; pp. 510-514.

Yol. 25; No. 2; 1996; pp. 217-236.

Table 1. Derivatives of V with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtuqs (tu3.s).

S I X SAIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Function

STing
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111 1

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2
3
4

6
7
8
9
10
11

3

IBAI SAIP

SGI SAIP

CFL3D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0

One-sided FD
Forward AIode

Iterated Rewrse AIode

Function
One-sided FD
Forward AIode

Iterated Rewrse AIode

Function
One-sided FD
Forward AIode

Iterated Rewrse AIode

.ADIFOR
Forwxd Node

-8.97831 73393046E-02
-0.13 777493 1 724 78
-0.14033316309433
-0.14268876834394
-0.144841 74747294

-0.19469374919372
-0.14344334149336
-0.13203643206894
-0.13362460240379
-0.13620783249790

-2.2 707098320427E-02

-AD JIFOR
Iterated Rewrse Node

-8.9783304818603E-02
-0.13777313263480
-0.14033340038874
-0.14268902 700298
-0.14484201 187733
-0.19469413020923
-0.14344361023223
-0.13203667493141
-0.13362481323497
-0.13620803120294

-2.2 707403366190E-02

CFL3D 4.1
.ADIFOR

Forwxd AIode

-9.3396682272919D-02
-0.143692 73633618
-0.14363042803318

-0.14780920646490
-0.130169091 76336
-0.20168090120663
-0.13104420303333
-0.13700349641320
0.14102086061983
-0.16309629 76 7328

-8.2278444748449D-02

.ADJIFOR
Iterated Rewrse Node

-9.3396321007446D-02
-0.14369243379322

-0.14363008124860
-0.14780883618091
-0.13016870039014
-0.20168033692083
-0.13104381203916
-0.13700314033909
-0.14102034023426

-0.16309601 114463
-8.2278043874306D-02

Table 2. Comparison of timings for baseline function evaluation and derivative
computation using one-sided finite differences, forward mode, and the iterated
reverse mode with a single processor, CFL3D 5.0.

987E+l
324E+2

810
132

117E+2

330E+2
146E+l

173
136E+2
123E+3
373E+l

89
292
7.3

1

89
402
11.1

1
1

89
701
21.4

Table 3.
iterated reverse mode for CFL3D 4.1 on the IBM SMP.

Summary of timings (in seconds) for baseline function evaluation and the

Iterated Revme Alode
Dynamic AIemory
(bytes/pt)

Iterated Revme Alode
Disk (bytes/pt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

wina section 1 wina section 2

7776 7743 7873 7963 7883 7824 7923 7930

31398 31683 32318 33918 31969 31907 32610 33639

wing section 7

wina section 6

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.05

n "
0 250 500 750 1000

wing section 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
: 4 : I r i

4.05

4

3.95

3.9
0 250 500 750 1000

wing section 11

0.9 0.8 !I_ 0 250 500 750 1000

Fig. 1.
respect to d e (&), CFL3D 5.0.

Iterated reverse mode AD convergence for the derivatives of 1' with

