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Abstract 

This report describes preliminary results obtained 
using an automated adjoint code generator for Fortran 
to augment a widely-used computational fluid dynam- 
ics flow sol\-er to compute deri\-ati\-es. These prelim- 
inary results with this augmented code suggest that: 
e\-en in its infancy: tlie automated adjoint code gener- 
ator can accurately and efficiently deli\-er deri\-ati\-es 
for use in transonic Euler-based aerodynamic shape 

optimization problems with hundreds to thousands of 
independent design \-ariables. 

Introduction 
-Automatic differentiation (.AD) is a set of teclmiques 

for automatically augmenting computer codes to com- 
pute chi\-ati\-es of their outputs with respect to their 
inputs. Numerous papers presented at recent AIultidis- 
ciplinary -Analysis and Optimization (ALAhO) confer- 
ences haye reported that -AD can pro\-ide tlie deri\-a- 
tiyes required for use in simulation-based clesign.1-8 
‘These papers describe tlie use of .ADIFOR, an -AD 
tool for Fortran.9$ lo .ADIFOR implements tlie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAforwnrd 
mode of -AD. For a code with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn independent \-ariables 
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(or design \-ariables) anti zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712 clependent \-ariables: tlie 
forward mode computes tlie deri\-ati\-es using time and 

space proportional to n. Ob\-iously: for problems with 
a large number of independent \-ariables: tlie compu- 
tational cost of this method is prohibiti\-e. 

.ADJIFOR: a substantially extended \-ersion of -AD- 
IFOR: implements tlie reverse (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAndjoint) mode of 
-AD. For a code with n independent \-ariables and 712 

dependent \-ariables: tlie re\-erse mode computes tlie 
deri\-ati\-es using time proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712: not n: albeit 
by using space proportional to tlie number of floating 
point operations required to execute tlie original code. 
Fortunately, as will be shown for tlie CFLSD (Compu- 
tational Fluids Laboratory 3-Dimensional) code: spe- 

cial mathematical properties of steady-state solutions 
can be exploited to tlrmatically reduce tlie storage re- 
quirements of tlie re\-erse mode. Other re\-erse mode 
-AD tools include Otlyss6ell and TAAAIC.12 

The Shape Optimization Problem 
-Aerodynamic shape nnnlysis requires a grid gener- 

ator to be coupled with a flow sol\-er. Gi\-en a set of 
shape pnrnmeters, tlie grid generator creates a grid. 
‘The newly created grid then becomes an input to tlie 
flow sol\-er. ‘The flow sol\-er then computes tlie aero- 
dynamic outputs. Often: tlie point of shape analysis 
is to determine tlie \-dues of shape parameters that 
gi\-e rise to “fa\-orable” aerodynamic outputs. The 
process of seeking shape inputs that lead to tlie fayor- 
able outputs is called shape optimixntion. Con\-ersion 
of a shape analysis problem into a shape optimization 
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problem requires defining exactly what criteria consti- 
tute b‘fa\-orable.’’ Tlie definition of fayorable includes 
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobjective funct ion to be minimized or maximized. 
Geometric and flow constraints might also be included. 

Gmdient-bused shupe optimixution requires tlie 
deri\-ati\-es of tlie objectiye function and tlie con- 
straints with respect to tlie parmeters that control 
tlie shape of tlie object. In tlie following text, Q rep- 
resents tlie flow field: X tlie grid: and I? tlie shape 

parmeters. -A grid generator, G: generates tlie grid 
X :  @\-en shape parmeters I?: that is: X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(I?). 
‘The flow sol\-er computes tlie final b‘con\-erged” flow 
field by iterating a stepping function S. ‘The stepping 
function computes tlie next iterate: using tlie current 
iterate and grid. ‘This dependence is emphasized by 
writing S(Q, X )  for tlie step. Tlie initial iterate in tlie 
procedure is indicated as Qo: which is usually inde- 
pendent of tlie shape parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?: except perhaps 

on tlie boundaries. ‘The final: or con\-erged: flow field 
is indicated as Q*: diere  Q* = S ( Q * : X ) ,  meaning 
that tlie solution has reached a steady state. Tlie ob- 

jectiye function F is a function of both tlie flow field 
and tlie grid: and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is tlie \-alue of F for a @\-en Q 
and X :  that is: V = F(Q:  X ) .  

STith this notation in place, tlie following pseudocode 
defines tlie canonical shape analysis procedure: 

X = G(I?) 
Q = Qo 
Do until Q “is con\-erged” 

Enddo 
Q = S ( Q : X )  

V = F ( Q : X )  

-4s indicated pre\-iously: to solye gradient-based 
shape optimization problems it is n 
pute tlie chi\-ati\-es of tlie objectiye function and tlie 
constraints with respect to tlie shape parameters. To 
simplify tlie initial applications of .ADJIFOR: no at- 
tempt has been made to compute chi\-ati\-es for prob- 

lems with constraints.5 Hence for tlie simplified prob- 

lems, only tlie deri\-ati\-es of tlie dependent \-xiable 
V with respect to tlie components of tlie independent 
\-wiables I? we required. 

In this paper: a uniform notation for deri\-ati\-es is 
used. ‘The matrix representation for tlie chi\-ati\-e lin- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e x  operator for any function 2: Le.: tlie Jacobian of 2: 
will be written Jz.  In addition, tlie deri\-ati\-e of any 
\-xiable Z with respect to I? will be written as 2‘: and 
tlie deri\-ati\-e of V with respect to a \-xiable 2 will be 

SThc tcchniqucs dcscrihcd hclow apply dircctly to constraints 
that arc functions of Q+ and X by simply cxpanding F into 
a vcctor-valucd function that computcs thc ohjcctivc function 
and thc constraints. Thc dimcnsion of thc dcrivativcs cxpands 
accordingly. 

written as z. In summary: tlie .ADJIFOR-generated 
code should compute v‘: or eqiii\-dently, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.  

For additional convenience: I is used for any identity 
matrix, 0 is used for tlie zero matrix, 121 is tlie number 
of elements in matrix Z: and ZT is the transpose of 
matrix 2. Tlie dimensions of matrices will either be 

ob\-ious from context or explicitly indicated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AD for Shape Optimization 

Tlie classic forwwd mode of automatic clifferenti- 
ation accumulates deri\-ati\-es as a computation pro- 

ds from tlie inputs to outputs. It follows tlie control 
flow of tlie original program and: for a matrix R with 
p columns: computes tlie matrix product J * R to @\-e 
tlie p directional deri\-ati\-es with a time and space 
complexity that is roughly p times that of tlie original 
program. If R = I: tlie forwwd mode computes J .  
-An alternati\-e approach: tlie re\-erse mode, accumii- 
lates tlie chi\-ati\-es in tlie opposite direction-from 
outputs to inputs. ,To propagate adjoints, one must 
be able to re\-erse tlie flow of tlie program: and record 
or recompute any intermediate \-due that nonlinearly 
affects tlie final result. Once these technical clifficul- 
ties we o\-ercome: then: for a matrix L with q rows: 

tlie matrix product L * J can be computed with a time 
complexity that is roughly q times that of tlie original 
program. If L = 1: tlie re\-erse mode computes J .  

Tlie need to record intermediate program \-dues 
makes tlie storage requirements of adjoint codes po- 

tentially yery high, particularly for iteratiye methods. 
Ninimizing tlie storage requirements represents tlie 
most significant challenge to automatic adjoint tools. 
Checkpointing strategies1” or additional mathematical 
knowledge can be used to reduce these requirements. 

.Assuming that sufficient storage for tlie re\-erse 
mode is ayailable: tlie choice of forwwd mode or re- 
Terse mode for computing tlie Jacobian clepends on 
tlie number of independent \-ariables p:  tlie number of 
dependent \-wiables q: tlie ratio of tlie cost of comput- 
ing a column of tlie Jacobian to tlie cost of computing 
tlie function using tlie forward mode Of: and tlie ratio 
of tlie cost of computing a row of tlie Jacobian to tlie 
cost of computing tlie function using tlie re\-erse mode 
0,. If q * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, < p * Of then re\-erse mode is indicated. 
Since tlie operations performed by forward and re\-erse 
modes are yector operations: 0, and Of actually de- 

pend on q and p: respectidy. 0, and Of clepend on 
platform, compiler: and application as well. Typically: 
Of for forward mode-based .ADIFOR ranges from .3 to 
4.0. In limited tests so fix: 0, for re\-erse mode-based 
.ADJIFOR ranges from 6.3 to 20. Hence: tlie re\-erse 
mode is pwticulwly attractke for computing sensi- 
ti\-ities for shape optimization problems with a lwge 
number of shape parmeters: an objectiye function: 



and a b'few'i flow constraints. For example: if 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20 
and Of = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2:  re\-erse mode outperforms forward mode 
w?-hene\-er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / q  > 10: diere  q = 1 + #constraints. 

To mathematically justify tlie approach to deri\-a- 
tiye computation for shape optimization problems: fur- 
ther details about tlie framework are elaborated. Tlie 
framework is conceptually simple, relying only on tlie 
fact that deri\-ati\-es are linear functions and: conse- 
quently: composition of chi\-ati\-es is simple matrix 
multiplication. Tlie deri\-ati\-es are \-iewed as linear 
functions of all program \-ariables in tlie following 
canonical order: shape parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?: grid X :  flow 
field Q: and objectiye \-due T.'. 'This conyention is 
used solely for mathematical con\-enience. 'The im- 
plemented deri\-ati\-e computation does not form Imge 
matrices and then multiply them together. 

Csing this framework: tlie deri\-ati\-e of tlie shape 

optimization problem can be written as 

T." = L JF Js,, . . . Js,  Jc; R: 

where: using tlie notation for linear operators intro- 
cluced abo\-e: JZ represents tlie deri\-ati\-e of a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 e\-aluated at its inputs. In particular: J.7, is tlie Ja- 
cobian of S e\-aluated at Q k :  tlie flow field at step k .  
AIoreo\-er: J.7, is tlie Jacobian of S e\-aluated at Q*: 
tlie final flow field. AIatrices L and R are block row 

and column projection matrices that select tlie desired 
independent and dependent \-ariables: respecti\-ely. 

For this problem, \-xiable T.' is tlie desired output: 
and I? is tlie \-ector of desired inputs: hence: tlie two 
projections are 

L =  ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlxlBl OlxlXl OlxlQI 1 ) 
and 

-4s described pre\-iously, assuming sufficient storage 
for recording intermediate program \-dues for each of 
tlie functions G: SI:. . . : S,L: and F:  re\-erse mode com- 
putes VI. If tlie number of steps n is large: then a 

tremendous amount of storage will be required. Fortu- 
nately, it is possible to take ad\-antage of mathematical 
properties of tlie flow sol\-er to substantially reduce 
tlie storage requirements for a steady-state solution. 
'This re\-erse mode \-xiant is called tlie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiternted re~~erse 
mode. Christianson pro\-ides mathematical justifica- 
tion of this approach when tlie flow sol\-er is %uffi- 
cientl y " con\-erged . l4 

-Applying tlie implicit function theorem to tlie 
steady-state condition 

Q* = S(Q*:X) 

Since Q* is a fixed point of S: tlie matrix 
(B': X': Qk: lr')T is a fixed point of J.7. Recall that 
tlie framework expantis (ieri\-ati\-e linear operators to 
coyer nil \-ariables. Since S has no effect on B: X: or 
T.': tlie appropriate entries in J.7 will be 1. 

TYhen J.7, is contractiye (i.e., IIJ,y,II < 1): tlie 
contractiye mapping theorem guarantees that a fixed 
point of J.7, can be computed by simple iteration. 'The 
flow sol\-ers anti test cases encountered so far appear 

to haye tlie necessary contractiye properties. -Applying 
this technique to tlie shape optimization problem, 1" 
can be computed as 

T." = L JF J.7, . . . J.7, Jc; R. 

For this computation: note that tlie snme operator J.7, 

is used for each re\-erse-mode iteration. Kote also that 
tlie number of iterations required for conyergence of 
tlie chi\-ati\-es is not n ssarily tlie same as required 
for conyergence of tlie original function. Consequently, 
instead of storing tlie intermediate \-dues for all n 
steps: it is sufficient to store tlie \-dues for a single 
step. Implementing tlie iterated re\-erse mode requires 
only two small clianges (less than 10 lines of code) to 
tlie -AD JIFOR-generated re\-erse-mode code: (1) turn 
off intermediate \-alue recording for tlie first n - 1 steps 
of S: saying tlie \-alues only for step n, anti (2) mod- 
ify tlie control loop for S to repeatedly execute tlie 
re\-erse-mode code for S, until tlie chi\-ati\-es con\-erge 
or until a user-specified number of iterations has been 
reached. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Description of the Codes 
For tlie current study, G is a %ome grown" wing 

grid generator named AIYGRID: S is tlie stepping 
function in tlie CFLSD flow sol\-er code: and tlie ob- 

jectiye function F is taken to be tlie lift-to-drag ratio: 
which is obtained by cli\-ding tlie computed lift coef- 
ficient: cl: by tlie computed drag coefficient: cd. Tlie 
calculation of this objectiye function: cl/cd: was added 

to tlie original CFLSD code. Description of AIYGRID 
and CFLSD follows. 

MYGRID Grid Generation Code 
AIYGFUD implements a fast and simple algebraic 

method for generating wing grids. Tlie grid generation 
code was cle\-eloped (in Fortran) for use in .ADIFOR 
and .ADJIFOR studies. It is \-eq robust in grid gen- 
eration. but tlie code does not include manj of tlie 



ad\-anced tecliniques commonly used in commercial 
grid generation packages to ensure high quality grids. 

AIYGRJD defines 3-D wings by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa set of wing sec- 
tions, using an expanded definition of the N.AC-4 four 
digit airfoil section family, based upon real numbers 
for the maximum thickness, maximum camber: and 
location of maximum camber: rather than the usual 
integer designation. ‘This allows for airfoil shapes to be 
incrementally perturbed in a continuous, rather than 
a discrete: fashion: tliiis enabling the construction of 
accurate finite-difference approximations to \-erify the 
results of .ADIFOR and .ADJIFOR. Each wing section 
is described by eight design parameters: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd e :  yle, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xZe (the x: y and z leading edge coordinates): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc d  (the 
wing section chord length to trailing edge), cr1m (the 
maximum camber line height in y-direction): xcr1n (tlie 
streamwise location of maximum camber height): tlik 
(tlie streamwise maximum airfoil thickness): and t i cs  
(the section twist angle). 

The number of design \-ariables can be increased by 
simply increasing the number of wing sections that 
are specified. ‘The code also allows the user to specify 
the number of grid points in each of the coordinate 
directions and pro\-ides a few choices that affect the 
grid stretching and distribution. 

The AIYGRJD code produces single-block grids that 
were used in the initial demonstrations of this ad- 
joint technology. Subsequently, a utility program was 

cle\-eloped by Biedron of N.ASAA Langley Research Cen- 
ter: which splits a single-block grid and its associated 
CFLSD input file into a user-specified number of sub- 
set grid blocks, while also splitting the boundary con- 
dition specification within the associated single-block 
CFLSD input file into a multiblock input specification. 
‘This grid block and input file splitting utility program 
was used within the current work to pro\-ide a mech- 
anism to decompose a large grid into many smaller 
pieces for parallel processing. 

The CFLSD Flow Solver Code 
The CFLSD code is a general purpose compu- 

tational fluid dynamics (CFD) sol\-er cle\-eloped by 
.Thomas, Riimsey, and Biedron of the N.ASAA Langley 
Research Center: with contributions from numerous 
other researchers. From its inception in the early 
1980‘s: the CFLSD code has been continuously im- 
pro\-ed: applied to a wide \-ariety of problems, \-erified 
extensidy by experiment and other CFD results: and 
widely distributed for use in indiistry.1cj-22 

The CFLSD code sol\-es the time-dependent 
Reynolds-a\-eraged Na\-ier-Stokes equations in conser- 
\-ation form using upwind-biasing for the con\-ecti\-e 
and pressure terms: and central differencing for the 
shear stress and lieat transfer terms. The code in- 

cludes the ability to sol\-e in\-iscitl: laminar: or tmbu- 
lent flows around complex 2-D or 3-D geometries 11s- 
ing one of four possible grid schemes (point-matched: 
patclied, o\-erlapped: or embetitled). CFLSD includes 
the ability to compute steady or unsteady flows with 
implicit time ad\-ancement. Both multigrid and mesh 
sequencing techniques can be used for comergence 

leration. The code also pro\-ides numeroils tm- 
bulence models, including Baldwin-Lomax, Baltlwin- 
Barth: and Spalart--Allmaras: as well as se\-eral other 
popular models. 

Two distinct \-ersions of the CFLSD code were 

used in this work: (1) the sequential CFLSD \-ersion 
3.0 code and (2) an existing block-parallel \-ersion of 
CFLSD: from tlie \-ersion 4.1 code that employs AIPI 
(AIessage Passing Interface) routines to implement a 
clistributed-memory parallel flow sol~ition.~” .Although 
these two codes are substantially different internally: 
and the sequential \-ersion 3.0 code includes some new 
features not found in tlie parallel \-ersion 4.1 code: they 
haye been found to produce essentially tlie same re- 
sults for test cases similar to those used in this work. 
-A forthcoming N.ASAA Technical AIemorantlum tlocu- 
ments the CFLSD \-ersion 3.0 code anti its differences 
from pre\-ious code \-ersions: including: (1) sliding 
patched-zones for use in rotor-stator computations and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 )  impro\-ed computational efficiency anti memory 11s- 
age. 

For simplicity: only a limited subset of tlie possible 
CFLSD code options ha\-e been clemonstratecl within 
the scope of the work presented in this paper: although 
the only portions of the CFLSD code that were pur- 
posely a\-oidetl were tlie tmbulence models. Based 
upon pre\-ious work with the .ADIFOR code genera- 
tion tool: the -AD JIFOR-generated CFLSD code is ex- 
pected to work correctly and accurately for tlie entire 
suite of bountlary conditions: as well as the niimer- 
oils sol\-er and multigrid options within tlie code. It is 
expected that the primary impact of these additional 
options will be to increase tlie storage requirements 
of the adjoint code in proportion to tlie increased 
complexity of tlie computation. -Adjoint code for the 
turbulence models could easily be incorporated in the 
adjoint code. .Also, tlie use of patclietl or oyerset grids 
would require -AD JIFOR processing of: respecti\-ely, 
the RONNIE or AI-AGGIE utility programs pro\-idetl 
with CFLSD: -AD JIFOR processing of these utilities 
has not yet been attempted. 

For this current work: the CFLSD code was used to 
solye steady: in\-iscitl: transonic flow around a simple 
3-D transport wing. The algorithmic choices included 
the use of local time stepping: Roe‘s flux-difference 
splitting scheme: anti scalar tri-diagonal matrix in\-er- 
sion with smooth flux-limiters. AIultigritl and grid 



sequencing were not used in these demonstrations. 
'The test cases used either single-block grids: or grids 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhad been decomposed into smaller: point-matclied 
I'LO'TSD miiltiblock style grids \-ia the splitter utility 
program pre\-ious described. 

DescriDtion of the Test Problem 

The choice of a test problem for this .ADJIFOR 
demonstration was influenced by two considerations: 
(1) the problem needed to resemble a realistic tran- 
sonic shape optimization problem, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  the problem 
needed to be small enough to permit \-alidation of nu- 
merical results using .ADIFOR and finite differences. 
In light of these considerations, a small-sized shape 
parmeter specification was cle\-eloped. Specifically, 
the test problem uses 88 shape parmeters to define 
a swept and tapered wing: similar to those used on 
numerous commercial transport aircraft today. Gi\-en 
these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 shape parmeters: AIYGRID was used to gen- 
erate 33 x 9 x 9 and 63 x 17 x 17 one-zone grids. 
'The grid splitter was then used to split each of these 
one-zone grids into two-zone: four-zone and eight-zone 
grids. Test cases were run under an Euler regime at 
AIacli 34,  alpha 3.06'. CFL3D 3.0 was tested only 
on the 33 x 9 x 9 one-zone grid. CFL3D 4.1 was 
tested on all eight grids. 'These grid sizes was clio- 
sen for this adjoint demonstration as a compromise 
between the flow modeling resolution and the initial 
in-core storage requirement for the adjoint flow sol\-er. 
'The adjoint capability was first clemonstrated on the 
flow sol\-er: without using the grid generation package. 
Each of the grid x-y-z coordinates input to CFL3D was 

considered to be an independent \-xiable. 'This yielded 
a potentially large number of design \-ariables: up to 
a total of 8019 ( 3 3 x 9 ~ 9 ~ 3 ) :  with minimal time and 
storage requirements for the CFD sol\-er. 

Currently: adjoint \-ersions of the grid and the flow 
sol\-er haye been coupled to produce flow sensitiyi- 
ties with respect to the shape specification parmeters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( d e :  yle, xle: crd, cmz: m r n 3  tlik, and tws) at each 
of the input sections. The number of independent de- 

sign \-ariables can be increased by simply increasing 
the number and distribution of input wing sections: 
so long as the spanwise grid resolution is approxi- 
mately the same as the number and distribution of 
input sections. For this test case: there are 11 input 
wing sections and 8 design \-ariables per wing section 
for a total of 88 shape specification design yariables. 
If many more (or more densely spaced) wing sections 
are specified than spanwise grid lines computed: the 
process will still work: but some of the design \-ariables 
may become ineffecti\-e: clue to the linear interpolation 
between the input wing sections: se\-eral interpolations 
to obtain grid lines may be possible, and the effect of a 

design \-xiable at any one input section then becomes 
less clear. 

For this test case: the wing span is taken to be 

1.0: the root chord is 0.6737, the tip chord is 0.3789. 
For simplicity of grid generation, a K.ACAA 0010 wing 
section was used. The grid generation for this case 
was clone with the AIYGRJD program, described pre- 
\-iously. Since multigrid was not used in this study: 
con\-erging the flow solution for this problem took 
about 1000 cycles. 

Since the grid is so coarse: particular attention was 

gi\-en to grid stretching anti distribution in order to 
obtain the most reasonable in\-isciti flow solution grid 
possible within the limitations of AIYGRJD. In the 
stremwise coordinate direction with 33 (or 63) grid 
points: the grid direction index starts: as is common: 
at the lower downstream wake: wraps around tlie air- 
foil from the lower trailing edge: to tlie leading edge: 
to the upper trailing edge: and continues to tlie upper 
clownstrem wake. Grid clustering has been pro\-ideti 
near the leading anti trailing edges for each wing sec- 
tion. -An unusually large number of grid cells (30 
percent) were placed in the wake: distributed equally 
between the upper and lower wake regions: to improye 
the grid distribution for this coarse grid case. Both the 
wing normal anti spanwise directions haye 9 (or 17) 
points. In the normal direction: grid points are some- 
what clustered toward the airfoil surface: grid lines are 
perpendicular to tlie airfoil surface near the leading 
edge: but \-ertical beyond tlie airfoil maximum thick- 
ness point and in the wake. In the spanwise direction: 
the grid points are equally spaced along the wing span. 
In the test problem, the wing tip has zero thickness and 

the outer bountiary is placed at a distance of 3 wing 
semi-spans away from the airfoil surface. 

It is worth noting that: from the authors' experience: 
the initial .ADIFOR/.AD JIFOR \-didation for accii- 
racy, relatiye to carefully constructed finite-difference 
approximations: can usually be done on such coarse 
grids as described abo\-e. In the current studies: grids 
as coarse as 1 7 x 3 ~ 3  points were used in tlie initial 
\-erification of .ADIFOR anti .ADJIFOR results. 'The 
accuracy of tlie .ADIFOR/.AD JIFOR (ieri\-ati\-es for 
reasonably short runs: relatiye to such finite-difference 
approximations: appears to be intiepentlent of the res- 
olution of the flow field features. 'This is true as long 
as the coarseness of the grid does not lead to incon- 
sistencies in tlie basic flow soher algorithm. In fact: 
although the 17x 3 x 3  grid is already extremely coarse: 
it may be possible to do these \-alitiation tests on a 
9 x 3 x 3 grid: but the authors were uncertain whether 
that l e d  of coarseness would yiolate some unknown 
3-point operator assumption that may be buried deep 
within the CFL3D computational algorithm. 'There is 



probably no way to proye that \-alidation can always 
be clone on these coarse grids: it may wen be possible 
to proye that such tests can produce misleading, or 
incorrect, results for some cases. Howxer: the yirtue 
of such coarse grid yalidation, if it works: is that the 
results can be conyerged quickly to machine zero with 
limited time inyested in grid generation. 

Results 

The goal of this work was to inyestigate the effec- 
tiyeness of the -AD JIFOR-generated adjoint code: in 

conjunction with the iterated reyerse mode. Com- 
puting platforms used in this effort included: an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8- 
processor Sun Enterprise E4000 shared memory seryer: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 4-processor IBAI SP2 shared memory node: and a 4- 
processor SGI Power Challenge shared memory node. 
In the following text and tables: these t h e e  shared 
memory processors are referred to as the SLK SAIP: 
IBAI SAIP and SGI SAIP: respectiyely. For CFL3D 
3.0: test cases were executed using a single processor: 

and for CFL3D 4.1, two processors (one host and one 
compute node) were used for the one-zone test cases: 

t h e e  processors (one host and two compute nodes) for 
the two-zone test cases: five processors (one host and 
four compute nodes) for the four-zone cases: and nine 
processors (one host and eight compute nodes) for the 
eight-zone cases.7 -411 test cases were run using  bit 
floating-point ari t lime t ic. 

Table 1 shows (leriyatiye \-slues for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtlvs computed 
using the forward mode by .ADIFOR and the iterated 
reverse mode by .ADJIFOR for the 33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 9 x 9 one- 
zone test case using the sequential and parallel yersions 
of CFLJD. For forward mode, the .ADIFOR-enhanced 
AIYGRID and 1000 steps of the .ADIFOR-enhanced 
CFL3D were executed. For iterated re\-erse-mode, 
tlie .ADJIFOR-enhanced AIYGRID and 1000 steps of 
CFLSD: followed by 1000 adjoint iterations of CFL3D 
were executed. Forward-mode and iterated reyerse- 
mode deriyatiye values for CFL3D 3.0 show excellent 
agreement. ‘The forward-mode and iterated reverse- 
mode derivative values for CFL3D 4.1 likewise show 
excellent agreement. For both codes, finite-difference 
approximations (not shown in the table) agree with the 
.ADIFOR-generated (leriyatiyes to more than six sig- 
nificant figures. The discrepancies between the cleriya- 
tiyes computed for CFLJD 3.0 and CFL3D 4.1 haye 
not yet been inyestigated 

Table 2 presents timings based on CFL3D 3.0: 
including the shape analysis procedure: finite clif- 
ferences: .ADIFOR-generated forward-mode cleriyatiye 

TExccuting CFLJD 5.0 on a singlc proccssor of multiproccs- 
sor hardwarc cnablcd thc faircst possiblc pcrformancc compar- 
isons bctwccn thc various sensitivity-cnhanccd scqucntial and 
parallcl vcrsions of CFLJD. 

code: and the -AD JIFOR-generated adjoint code 11s- 

ing the same 33 x 9 x 9 one-zone test case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKo- 
tice that the cost of computing all 88 cleriyatiyes 11s- 
ing .ADJIFOR on the SLK SAIP is about 10 percent 
of the cost of using finite differences. The timing 
numbers shown in ‘Table 2 is intentied to illustrate 
the performance of -ADJIFOR-generated code rela- 
tiye to other standard methotis for computing (ieriya- 
tiyes. -4s such: they do not reflect the possible use of 
coarse-grained parallelization within finite differences 
or forward-mode (leriyatiye computations to improye 
performance. .Also, the tables do not reflect tlie poten- 
tial for improyed efficiency of .ADIFOR-generated code 

through the use of the incremental iterative method 
(le~eloped by Taylor anti O l0s0 .~~  

Tables 3 and 4 summarize tlie time anti storage 
requirements of tlie iterated reyerse mode yersion of 
CFL3D 4.1. In Table 3: for each of the eight test 
cases: the following information is pro\-itied: (1) time 
required for the original function, (2) time required for 
the iterated reyerse mode: (3) tlie ratio of the iterated. 

reyerse mode anti function times. Table 3 shows that 
the iterated reyerse mode is scaling better than the 
original CFL3D 4.1 function eyaluation as the number 
of grid zones anti processes is increased The iterated 
reyerse mode shows excellent performance on all eight 
test cases. 

In Table 4: for each of the eight cases: the follow- 
ing information is pro\-itied (per compute node): (1) 
memory required for tlie original function: (2) memory 
(static and dynamic) for the iterated reyerse mode: (3) 
disk space required for tlie iterated reyerse mode: and 

(4) bytes per point summaries of tlie dynamic mem- 
ory and disk requirements of the iterated reyerse mode. 
‘The table indicates an approximation of 8000 bytes of 
dynamic memory per grid point anti 32000 bytes of 
disk space per grid point for an iterated reyerse mode 
calculation. This approximation yields a 3.2 GByte 
dynamic memory requirement and a 12.8 GByte disk 
space requirement for the target 400:000 point grid. 
Consequently, a 32-processor parallel computer con- 
sisting of processors with 128 AIBytes memory anti 400 
AIbytes disk could be used to compute the cleriyatiyes 
for this 400:000 point problem. 

Finally, in Fig. 1: tlie conyergence behayior for 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 of the 11 wing sections is shown for CFL3D 3.0. 
Conyergence for all other design parameters and wing 
sections is similar. Derivatives do indeed converge: and 
appear to do so in perhaps half as many steps as the 
original flow soher. 

It should be noted that several successful “by-hand” 
(rather than automated) adjoint demonstrations with 
CFD codes already exist.””-28 The variations in these 
adjoint solution tecliniques and the iterated reverse 



mode make direct comparisons clifficult. It is ex- 

pected that .ADJIFOR-generated code will always be 
more pessimistic in data storage requirements than 
the best by-hand adjoint methods employing signif- 
icant knowledge about the code structure and solu- 
tion process. Nonetheless: the performance of the 
-AD JIFOR-generated code is competitive with the by- 
hand methods. Fiirthermore: the time required to 
produce adjoint \-ersions of existing codes using -AD JI- 
FOR is surely orders of magnitude less than the time 
required for similar by-hand implementations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Significance of Results 
First, this work demonstrated the use of the .ADJI- 

FOR automatic adjoint code generation tool for the 
computation of shape semiti\-ities for a small prob- 
lem. The (hi\-ati\-es for the design \-a.riables in this 
small problem haye been \-erified to be accurate: thus 
providing confidence that the .ADJIFOR tool is work- 
ing correctly. This is significant because the \-didation 
of the adjoint results by finite differences or forward- 
mode differentiation will become more cumbersome 
as the number of design variables increases: and as 

the adjoint code becomes more efficient relatiye to the 
comparison methods. 

Second, this work cle\-eloped the iterated re\-erse 
mode for CFLSD. 'The iterated re\-erse mode uses a 

mll-con\-erged solution to store intermediate program 
\-dues and then repeatecllly executes the final iteration 
until the chi\-ati\-es con\-erge. 'This technique pro\-ides 
accurate deri\-ati\-es with substantially smaller storage 
requirements than the standard re\-erse mode, and: in 
addition, appears to con\-erge the deri\-ati\-es in fewer 
iterations than were required for the solution comer- 
gence. The rechiceel storage reqiiirement,s should make 
it possible to tackle much larger semiti\-ity and opti- 
mization problems. 

Third, this work demonstrated that the -AD JIFOR 
prototype is capable of pro\-iding shape semiti\-ities at 
a cost comparable to about 7 e\-aluations of CFLSD: on 
the SIX SNP: for a test case with 88 design variables. 
'This compares fayorably to the 89 function e\-aluations 
that ~voiild haye been required for one-sided finite clif- 
ferences. These timing results agree with expectations. 

The current demonstration represents a significant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ad\-mce in the ability to automatically generate sensi- 
tivity code for sensitivity analysis or shape optimiza- 
tion using a widely distributed industrial-grade aero- 
dynamic sol\-er. Furthermore, a special effort has been 
made to accommodate the aerospace industry's need 
for rigorous \-alidation. Nore work remains to be clone 
on se\-era1 fronts to make this demonstration more re- 
alistic. 

Conclusions 
The .ADJIFOR automatic adjoint code generation 

tool has been applied to both a sequential and a 
parallel \-ersion of the CFLSD computational fluid 
dynamics code. The resulting ADJIFOR-generated 
codes have been demonstrated with one-zone: two- 
zone: four-zone: and eight-zone grids. 'The -AD JIFOR 
application to these CFLSD code \-emions produced 
exact cleri\-ati\-ea, with respect to shape parameters: 
of a sample objectke function: the lift-to-drag ra- 

tio. 'The computed re\-erse-mode chi\-ati\-es were 

compared with both for\vard-mode results and finite- 
difference approximations to \-didate their accuracy. 
'The deri\-ati\-es were obtained for steady-state prob- 
lems using a technique known as the iterated re\-erse 
mode which records the last step in a function comer- 
gence and replaj-s this information during the adjoint 
solution process until the derivatives converge. 

The resulting adjoint semiti\-ity analysis was exe- 

cuted on multiprocessor parallel computers using the 
amount of storage typically ayailable on these kinds 
of machines. For 88 design \-ariables: the re\-erse 

mode code required execution times ranging from 7 
to 21 fiinction evaluations: clepencling upon machine 
type and compiler options. For this example: the 
re\-erse-mode chi\-ati\-es conyerge to acceptable accii- 
racy bounds within about half the number of iterations 
required for the function itself to conyerge to a steady 
state: resulting in an additional performance benefit 
relatiye to either the forward-mock or finite-difference 
methods for computing deri\-ati\-es. 

Remaining Work 
The most immediate issue remaining for the .ADJI- 

FOR prototype is the reduction of the storage required 
for intermediate \-dues in .ADJIFOR-generated code. 
'Two strategies will be in\-estigated: eliminating the 
storage for iinnecessary intermediate \-dues (such as 

those that are only used linearly): and recomputing: 
rather than storing, other intermediate \-dues. 

.Additional impro\-ements to the prototype will be 

dri\-en by a more thorough imestigation of the adjoint 
code generated for CFLSD. The .ADJIFOR-generated 
code will be demonstrated for laminar and turbulent 
flows: with other boundary condition options: and on 
larger: miiltiblock grids with grid sequencing: multi- 
grid: and other conyergence a leration techniques. 

Previous experience with the forward-mode .ADIFOR 
tool suggests that none of these issues should pose a 

clifficult problem for the re\-erse-mode .ADJIFOR tool. 
Each issue: howe\-er: must be addressed with a \-iew 
toward rigorous \-didation for accuracy and the best- 
attainable efficiency. .Also, the efficiency of the adjoint 
code must be demonstrated within a realistic opti- 



mization problem, rather than just within a semiti\-ity 
analysis. 

From discussions with engineers doing shape opti- 
mization for a major aerospace firm in the Cnited 
States, the authors belieye that the minimum realistic 
target test problem for this adjoint demonstration is a 

wing-body configuration in in\-iscid flow with at least 
400:OOO grid points and about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 design \-ariables. In 
such a test problem the grid size: the configuration 
complexity: and the number of design problems would 
be consistent with the current practices for shape op- 

timization of new aircraft. 

It is belie\-ed that grid size can be increased with 
little or no performance penalty using the -AD JIFOR- 
generated parallel \-ersion of CFLSD: which uses AIPI 
message passing to distribute large problems across 

numerous processors working in parallel. 'Thus: each 
processor is required to solye only a small piece of a 

larger problem. In theory, parallelism pro\-ides a 

to the large amounts of storage space required fo 
iterated re\-erse mode. It has not yet been shown: how- 
eyer: that good flow-sol\-er conyergence: a prerequisite 
for using the iterated re\-erse mode, can be achie\-ed 
for grids that haye been cli\-ided into a large number 
of zones. 

One question that has only partially been answered 

at this point is how the conyergence of function and ad- 
joint codes in the shape analysis procedure affects the 
\-dues of deri\-ati\-es computed by the iterated re\-erse 
mode. In this work: the deri\-ati\-es were obser\-ed to 

ptable accuracy bounds in fewer iter- 
ations than the function required to reach a steady 
state: starting the adjoint calculation from a well- 
con\-erged function solution. It is not known diether 
this will be true for a broad range of configurations and 
classes of shape parmeters. .Also, the exact meclia- 
nism for this rapid conyergence of the deri\-ati\-es is not 
well iinderstood. Con\-ergence of the shape analysis 
procedure based: as is iisiial: on the con\-ergence of the 
configuration force and moment coefficients (usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 orders of magnitude con\-ergence) rather than 
on the conyergence of the flow field itself (6 or more 
orders of magnitude con\-ergence): will impact the ac- 
curacy of the deri\-ati\-es within the shape semiti\-ity 
analysis and shape optimization procedures. But the 
exact impact of such reduced conyergence has not been 
quantified. Fiirthermore: it is not known whether the 
adjoint method clemonstrated liere can be applied to 
time-dependent problems. In fact: it is expected that 
many: if not all: function iterations must be logged in 
order to construct accurate re\-erse-mode deri\-ati\-es 
for time-dependent problems. The impact of logging 
many iterations of a time-dependent problem will be 
a huge increase in the storage requirements necessary 

to sohe the adjoint problem. 

Finally, there is theoretical anti practical interest in 
clarifying the relationship between the iterated re\-erse 
mode and the \-arious by-hand adjoint approaches. 
Ideally: this imestigation will suggest ways in which 
automated methods may be impro\-ed to acliieye effi- 
ciency comparable to the best by-hand approaclies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Acknowledgements 
The authors wish to express their sincere thanks to 

Dr. Tom Zang, head of the AIultiDisciplinary Opti- 
mization Branch (AIDOB) at K.4S-A Langley Research 
Center (LaRC): without whose support through both 
funding and ad\-ocacy this project would not haye been 
possible. 'The authors wish to thank Dr. Chris Riim- 
sey of the -4erodynmic and -Acoustic AIethods Branch 
(-A-AAIB) at K.4S-A LaRC for the guidance he pro- 

\-ided to the authors in the use of the CFL3D code. 

'The authors also wish to express their thanks to Dr. 
Bob Biedron of -A-AAIB at K.4S-A LaRC for his \-alida- 
tion efforts with the parallel CFL3D code \-ersion and 
the (le\-elopment of the grid block splitter code for the 
adjoint solution of large grid problems. 'The authors 
express their thanks to Dr. Perry Kewman of AIDOB 
at K.AS-4 LaRC for his direction and support of AIDOB 
research in automatic differentiation tools. The au- 
thors express their thanks to Drs. Shreekant .Agrawal: 
Geojoe Kuru\-ila, Peter Hartwich: Pichurman Sun- 
clarm: James Hager: Bob Karducci: and Eric Cnger 
of Boeing Long Beach for their informati\-e discussions 
with the authors about the status of shape optimiza- 
tion within the K.AS-4 High Speed Research Program. 
Finally: the authors express their thanks to Dr. Chris 
Bischof of .Argonne Kational Laboratories for mathe- 
matical (le\-elopments contributing to the -AD JIFOR 
tool. 

This work was supported by the Kational .Aero- 
nautics and Space .Administration under Cooperati\-e 
-Agreement Number KCC 1 234, and by the Kational 
Science Foundation, through the Center for Research 
on Parallel Computation: under Cooperati\-e .Agree- 
ment KO. CCR-9120008. Carle and Fagan were re- 
sponsible for adjoint code generation and initial code 

execution demonstrations. Green was responsible for 
the problem definition: grid generation, and CFL3D 
code support. 

References 
lUngcr, E.; and Hall; L.; "Thc Usc of Ilutomatic 

DiKcrcntiation in an dlircraft Dcsign Prohlcm," 5th 
AIAA/Nrl.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary 
Analysis and Optimization; 11LIll-94-4260-CP; Panama City; 

'Bischof, C.; KnauK; T.; Grccn, L.; and Haiglcr, 
K.; "Parallcl Chlculation of Scnsitivity Dcrivativcs for 

FL.; Scpt. 1994; pp. 64-72. 



Ilircrart Dcsign Using dlutomatic DiITcrcntiation," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5th 
AIAA/NA.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary 
Analysis and Optimization; 2lLLl-94-4261-CP; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPanama City; 

3Korivi; Y.; Shcrman; L.; Taylor; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21.; Hou; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG.; Grccn, 
L.; and Ncwman, P.; "First- and Sccond-ordcr dlcrodgnamic 
Scnsitivitg Dcrivatvcs via dlutomatic DiITcrcntiation with Incrc- 
mcnt a1 It crativc 1 Ic thod s iii 5th A I A  A/iVASA/~JSA F/ISSMO 
Syinposium on Multidisciplinary Analysis and Optimization; 
1lLtl-94-4262-CP; Panama City; FL.; Scpt. 1994; pp. 87-120. 

"Korivi, V.; Taylor; 21.; and Ncwman; P.; 'illcrody- 
namic Optimization Studics using a 3-d Supcrsonic Eulcr 
Codc with Eficicnt Chlculation of Scnsitivitg Dcrivativcs," 5th 
AIAA/NA.~A/rJ.~AF/I.~.~MO Symposium on Multidisciplinary 
Analysis and Optimization; 2lLLl-94-4270-CP; Panama City; 

'Su, J. and Rcnaud; J.; "dlutomatic DiITcrcntiation in Ro- 
bust Optimization;" 6th AIAA/NASA/ ISSMO Syinposium on 
Multidisciplinary Analysis and Optimization; 1111Ll-96-4005- 

'JVujck; B.; and Rcnaud; J.; "dlutomatic DiITcrcntiation 
for Mort Eficicnt IIultidisciplinary Dcsign >lnalysis and Opti- 
mization;" 6th AIAA/NASA/ ISSMO Symposium on Multidis- 
ciplinanj Analysis and Optimization; 11Llll-96-41 17-CP, Bcllc- 
vuc; JVdl.; Scpt. 1996; pp. 1151-1166. 

'IIocn, C.; Spcncc, P.; IIcza, J.; and Plantcnga, T.; "lluto- 
matic DiITcrcntiation for Gradicnt-hxcd Optimization of Radia- 
tivcly Hcatcd IIicroclcctronics 1Ianufacturing Equipmcnt;" 6th 
AIAA/NASA/ ISSMO Symposium on Multidisciplinanj Analy- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sis and Ooptimization; ~lLLl-96-4118-C~P; Bcllcvuc, JV21.; Scpt. 

81ssac; J.; and Kapania, R.; "~lcroclxtic Scnsitivitg 
dlnalysis of JVings using dlutomatic DiITcrcntiation," 6th 
AIAA/NASA/ ISSMO Symposium on Multidisciplinanj Analy- 
sis and Optimization; 2lLLl-96-4119-CP; Bcllcvuc, JV21.; Scpt. 

9Bischof, C.; Carlc, 21.; Corliss, G.; and Gricwank; 
"2lDIFOR-Gcncrating Dcrivativc Codcs from FORTRdlN Pro- 
grams;" Scientific Prograinining, Yol. 1; 1992; pp. 11-29. 

10Bischof, C.; Chrlc, 21.; Khadcmi; P.; and IIaucr, 21.7 'illd- 
ifor 2.0: dlutomatic DiITcrcntiation of Fortran 77 Programs," 
IEEE Computational Science and Engineering, Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3; No. 3; 

'lRostaing, N.; Da1m.q S.; and Galligo, 21.; "dlutomatic Dif- 
fcrcntiation in Odyss6c;'; Tcllus, 4.51; 1993. 

l2CGicring, R.; and Kaminski, T.; "Rccipcs for Ildjoint Codc 
Construction;" I ~ C X  TOMS; 1998; in prcss. 

13Gric~.ank; 21.; "dlchicving Logarithmic Growth of Tcmpo- 
ral and Spatial Complcxity in Rcvcrsc >lutomatic DiITcrcntia- 
tion," Optimization Methods and Sojtware; Vol. 1; No. 1; 1992; 
pp. 35-54. 

l'lChristianson, B.; "Rcvcrsc Ilccumulation and >lttractivc 
Fixcd Points," Optimization Methods and Sojtware; Yol. 3; 

Gcncralizcd Patchcd-Grid 
dllgorithm with dlpplication to thc F-18 Forchodg with Ilctuatcd 
Control Strakc," Computing Systems in Enginee:ering; Yol. 1; 
No. 2 4 ;  1990; pp. 563-576. 

l'Compton, JV.; Thomas; J.; Ilhcyounis; JV.; and Mason, 
11.; "Transonic Navicr-Stokcs Solutions of Thrcc-Dimcnsional 
Ilrtcrhodg Flows;" N I ~ S ~ ~  TI1 4111; July 1989. 

17GhaITari; F.; Luckring, J.; Thomnq J.; Batcs, B.; and 
Bicdron, R.; "IIultihlock Navicr-Stokcs Solutions dlhout thc 
F/dl-18 JVing-LEX-Fusclagc Configuration;" Journal os Air- 

FL.; Scpt. 1994; pp. 73-86. 

FL.; Scpt. 1994; pp. 170-194. 

C T ;  Bcllcvuc, JVdl.; Scpt. 1996; pp. 201-215. 

1996; pp. 1167-1175. 

1996; pp. 1176-1186. 

Fall 1996; pp. 18-32. 

1994; pp. 311-326. 

13Bicdron, R.; and Thomas; J.; 

CraJt, Yol. 30; No. 3; 1993; pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA293-303. 

18Rumscy; C.; Bicdron, R.; and Thomnq J.; "CFLJD: Its 
History and Somc Rcccnt dlpplications;" NI\SI\ TI1 112861; 
Mag 1997; prcscntcd at thc "Godunov% 1Icthod for Gay Dg- 
namics" Symposium; dlnn Ilrhor, 111; Mag 1997. 

"Rumscy, C.; and Yatsa; V.; "Comparison of thc Prcdictivc 
Capahihtics of Scvcrd Turhulcncc IIodcls;" Journal o j  Aircrajt; 

"Rumscy, C.; Sanctrik, 11.; Bicdron, R.; IIclson, N.; and 
Parlcttc, E.; "Ellicicncg and dlccuracg of Timc-dlccuratc Tur- 
hulcnt Navicr-Stokcs Computations," Computers & Fluids; 

"Thomay; J.; Krist; S.; and dlndcrson; JV.; "Navicr- 
Stokcs Computations of Vortical Flows Ovcr Low-llspcct-Ratio 
JVings,'; A I M  Journal; Vol. 28; No. 2; 1990; pp. 205-212. 

"Vatsa; Y.; Thomas; J.; and JVcdan; B.; "Navicr-Stokcs 
Computations of a Prolatc Sphcroid at dlnglc of Ilttack;" Jour- 
nal o j  Aircrajt; Yol. 26; No. 11; 1989; pp. 986-993. 

"Snir, 11.; Otto; S. JV.; Huss-Lcdcrman, S.; JValkcr; D. JV.; 
and Dongarra, J.; MPI: The Complete Rejerence; NIT Prcss, 
1995. 

21. C.; 111; "dlutomatic DiITcrcntiation of Ildvanccd 
is Codcs in Incrcmcntal Itcrativc Form for Multi- 

disciplinary dlpplications;" Old Dominion Univcrsitg Rcscardi 
Foundation (ODURF); Tcch. Rcp. 96-147; 1996. 

"Rcuthcr, J.; Illonso, J. J.; Rimlingcr, 11. J.; and Jamcson, 
21.; "dlcrodgnamic Shapc Optimization of Supcrsonic dlircraft 
Configurations via an dldjoint Formulation on Distrihutcd IIcm- 
ory Parallcl Computcrs," ~ l L L l  Papcr No. 96-4045; Scpt. 1996. 

"dlndcrson; JV. Kglc; and Ycnkatakrishnan; Y.; "dlcrodg- 
namic Dcsign Optimization on Unstructurcd Grids with a Con- 
tinuous dldjoint Formulation;'; 2lLLl Papcr No. 97-0643; 1997. 

"dlndcrson; JV. Kglc; and Bonhaus; DaTl; L.; "dlcrodg- 
namic Dcsign on Unstructurcd Grids for Turhulcnt Flows;" 
N ~ l S d l  T l I  112867; Jun. 1997. 

"Kuruvila, G.; Hagcr, J. 0.; and Sundaram; P.; "dlcrodg- 
namic Gradicnts Using Thrcc IIcthods;" HSR dlirframc Tcchni- 
cal Rcvicw.; Los dlngclcs; C217 Fch. 1998. 

Yol. 32; No. 3; 1995; pp. 510-514. 

Yol. 25; No. 2; 1996; pp. 217-236. 



Table 1. Derivatives of V with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtuqs (tu3.s). 

S I X  SAIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Function 

STing 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111 1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 
3 
4 

6 
7 
8 
9 
10 
11 

3 

IBAI SAIP 

SGI SAIP 

CFL3D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 

One-sided FD 
Forward AIode 

Iterated Rewrse AIode 

Function 
One-sided FD 
Forward AIode 

Iterated Rewrse AIode 

Function 
One-sided FD 
Forward AIode 

Iterated Rewrse AIode 

.ADIFOR 
Forwxd Node 

-8.97831 73393046E-02 
-0.13 777493 1 724 78 
-0.14033316309433 
-0.14268876834394 
-0.144841 74747294 

-0.19469374919372 
-0.14344334149336 
-0.13203643206894 
-0.13362460240379 
-0.13620783249790 

-2.2 707098320427E-02 

-AD JIFOR 
Iterated Rewrse Node 

-8.9783304818603E-02 
-0.13777313263480 
-0.14033340038874 
-0.14268902 700298 
-0.14484201 187733 
-0.19469413020923 
-0.14344361023223 
-0.13203667493141 
-0.13362481323497 
-0.13620803120294 

-2.2 707403366190E-02 

CFL3D 4.1 
.ADIFOR 

Forwxd AIode 

-9.3396682272919D-02 
-0.143692 73633618 
-0.14363042803318 

-0.14780920646490 
-0.130169091 76336 
-0.20168090120663 
-0.13104420303333 
-0.13700349641320 
0.14102086061983 
-0.16309629 76 7328 

-8.2278444748449D-02 

.ADJIFOR 
Iterated Rewrse Node 

-9.3396321007446D-02 
-0.14369243379322 

-0.14363008124860 
-0.14780883618091 
-0.13016870039014 
-0.20168033692083 
-0.13104381203916 
-0.13700314033909 
-0.14102034023426 

-0.16309601 114463 
-8.2278043874306D-02 

Table 2. Comparison of timings for baseline function evaluation and derivative 
computation using one-sided finite differences, forward mode, and the iterated 
reverse mode with a single processor, CFL3D 5.0. 

987E+l 
324E+2 

810 
132 

117E+2 

330E+2 
146E+l 

173 
136E+2 
123E+3 
373E+l 

89 
292 
7.3 

1 

89 
402 
11.1 

1 
1 

89 
701 
21.4 

Table 3. 
iterated reverse mode for CFL3D 4.1 on the IBM SMP. 

Summary of timings (in seconds) for baseline function evaluation and the 



Iterated Revme Alode 
Dynamic AIemory 
(bytes/pt) 

Iterated Revme Alode 
Disk (bytes/pt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

wina section 1 wina section 2 

7776 7743 7873 7963 7883 7824 7923 7930 

31398 31683 32318 33918 31969 31907 32610 33639 

wing section 7 

wina section 6 

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.05 

n " 
0 250 500 750 1000 

wing section 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
: 4 : I r i  

4.05 
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wing section 11 
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Fig. 1. 
respect to d e  (&), CFL3D 5.0. 

Iterated reverse mode AD convergence for the derivatives of 1' with 


