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Abstract
This paper presents methods of localization using co-

operating landmarks (beacons) that provide the ability to
measure range only. Recent advances in radio frequency
technology make it possible to measure range between in-
expensive beacons and a transponder. Such a method has
tremendous benefit since line of sight is not required be-
tween the beacons and the transponder, and because the
data association problem can be completely avoided. If
the positions of the beacons are known, measurements from
multiple beacons can be combined using probability grids
to provide an accurate estimate of robot location. This es-
timate can be improved by using Monte Carlo techniques
and Kalman filters to incorporate odometry data. Similar
methods can be used to solve the simultaneous localiza-
tion and mapping problem (SLAM) when beacon locations
are uncertain. Experimental results are presented for robot
localization. Tracking and SLAM algorithms are demon-
strated in simulation.

1 Introduction
In this paper, we present a system of active beacons as

a solution to the problem of mobile robot localization. The
beacons, which return a range estimate and unique beacon
identification number when queried from a mobile robot,
form ade factolocal positioning system when distributed
in an environment. The beacons are self-contained, small,
and inexpensive. They do not require line-of-sight to the
robot, and when used with the methods presented here they
do not need to be accurately placed. The result is a low-
cost, easily installed system that can be used to localize a
mobile robot in both indoor and outdoor environments.

The ability of a robot localize itself is a fundamental
problem for mobile robots. Not surprisingly, many tech-
nologies and techniques for robot localization can be found
in the literature (eg. [1, 8, 9, 14]). While there are many
different variations of the localization problem, we con-
centrate on three:static localization, position tracking, and
simultaneous localization and mapping(SLAM). Static lo-
calization requires a robot to obtain an accurate estimate
of its global position based only sensor readings. For po-

sition tracking, the robot starts with an initial position es-
timate that is assumed to be “close” to the actual location.
The robot must then keep track of its position as it moves
about, using sensory information continually improve its
location estimate and correct for odometry errors [1]. For
both position tracking and global localization, it is gener-
ally assumed that the robot has a map of its environment,
i.e. that the locations of the landmarks used for localiza-
tion are known. The SLAM problem does not rely on this
assumption: the robot must use sensor information to si-
multaneously localize itself and build a map of its environ-
ment. The SLAM problem was first studied by Smith, Self,
and Cheeseman [10] in 1990 and has been the subject of of
significant recent activity [2, 3, 7, 13].

Typically, the work in SLAM supposes that a robot is
able to measure both bearing and range to landmarks in
the environment [3, 7, 13], but there is some work in try-
ing to use sensors that measure only bearing [2, 12]. This
work is related to a body of literature in the computer vi-
sion community known as structure from motion, where
egomotion and the locations of sparse landmarks are si-
multaneously extracted from a sequence of images [4]. In
contrast to these methods, we examine methods where only
range to the landmarks is measured. The most prevalent
case of localization using range only is the use of GPS,
which has been successfully used for mobile robot local-
ization in outdoor experiments [15]. GPS essentially mea-
sures the time taken for signals broadcast from satellites to
reach a receiver with the presumption that the locations of
the satellites are known with high accuracy. The fact that
GPS works only outdoors is a significant drawback. Pseu-
dolites that act as stand-ins for GPS satellites have been
used to allow GPS receivers to operate indoors [6], how-
ever this solution is undesirable due to the cost and size of
the required infrastructure.

For most range-only sensors, the problem of data reg-
istration poses a serious obstacle for localization and map-
ping; the sensors give range to some object without iden-
tifying the object. Because beacons in the system we use
transmit a unique ID number as well as range, data regis-
tration is solved trivially.



In this paper we employ probabilistic methods to gen-
erate position estimates from sensor data. We use three
methods that have been applied in the past with success:
Kalman filtering, Markov methods, and Monte Carlo local-
ization. All three of these methods estimate robot position
as a distribution of probabilities over the space of possible
robot positions. Originally introduced in 1960, the Kalman
filter assumes a multivariate Gaussian distribution [5]. The
Kalman filter has the advantage that the representation of
the distribution is compact; a Gaussian distribution can be
represented by a mean and a covariance matrix. Recent ex-
tensions to Kalman filtering allow for non-Gaussian, mul-
timodal probability distributions through multiple hypoth-
esis tracking [8]. The result is a more versatile estimation
technique that still preserves many of the computational
advantages of the Kalman filter. Markov methods provide
another means of estimation [9]. Here, the space of pos-
sible robot positions in discretized (often into a “probabil-
ity grid”) and the probability distribution is approximated
by assigning a real number to each point in the discretiza-
tion. Successive grids or grids arising from independent
measurements are combined to create a new grid using
Bayes’ rule. Markov methods have the advantage of flex-
ibility, but the size of the discretization can become pro-
hibitive for large areas, small grid resolutions, or problems
such as SLAM where the system state has high dimension.
Monte Carlo localization provides yet another method of
representing multimodal distributions for position estima-
tion [14]. Also known as particle filtering, Monte Carlo
localization approximates a distribution using a finite num-
ber of weighted samples. The estimated distribution is up-
dated using importance sampling: new samples are drawn
from the old distribution at random, propagated in accor-
dance with robot odometry, and then weighted according
to available sensor information. One advantage of Monte
Carlo localization is that the computational requirements
can be scaled as needed by adjusting the number of sam-
ples used to represent the distribution.

The paper is arranged as follows: In Section 2, we inves-
tigate the problem of robot localization in an environment
with known beacon locations using Markovian probability
grids. Experimental results are presented. Section 3 ex-
tends these ideas to position tracking using Kalman filter-
ing and Monte Carlo localization. Section 4 addresses the
problem of localization in an environment with uncertain
beacon locations. Here we present a SLAM algorithm that
combines intuition with Kalman filtering. Simulation re-
sults are given for position tracking and SLAM algorithms.

2 Static Localization
In this section, we address the problem of robot local-

ization based solely on current beacon readings. We term
this static localizationbecause this method does not use

past sensor readings or past estimates of position to deter-
mine an estimate of the current position. We assume that
the positions of the beacons are known and fixed.

For perfect measurements, determining position from
range information is a matter of simple geometry. A robot
at distancer from a beacon must be located on a circle
of radiusr centered at the beacon. Determining location
from multiple range measurements is just a matter of find-
ing where the corresponding circles intersect. Unfortu-
nately, perfect measurements are difficult to achieve in the
real world. The commercially available beacons we use
here provide range measurements with an expected error
of about 6 feet. We use probabilistic methods to estimate
robot position in the face of these uncertainties.

2.1 Characterizing Range Measurements
In order to apply probabilistic methods to the localiza-

tion problem, we first obtain a set of probability distribu-
tion functions (pdfs) to characterize the range data pro-
vided by the system. Because of measurement discretiza-
tion and noise, the actual ranger associated with a mea-
surementmi is a random variable. We denote the pdf de-
scribing the distribution ofr givenmi asp(r|mi).

The beacon system used in our experiments provides
range measurements in feet, discretized to lie in the set

{0, 6, 12, 18, 25, 31, 37, 43, 50}.

A pdf was experimentally determined for each measure-
ment. The resulting pdfs are plotted in Figure 1a.

2.2 Creating Probability Grids
The pdfs generated in the previous section give a proba-

bilistic description of the range between the antenna and
beacon. In order to be used for robot localization in a
plane, these one-dimensional range distributions must be
converted to two-dimensional position distributions. Prob-
ability grids provide one method of accomplishing this.

To construct a probability grid, the space of interest is
discretized into a grid of desired size and resolution. For
our purposes, the50′ × 50′ test area was divided into a
Cartesian grid of1′ × 1′ squares. Then each square is as-
signed a real number equal to the probability that the robot
resides in that square given a measurementmi from a bea-
con at known locationxb. We approximate this probability
via the following steps:

1. For each square on the grid, compute the value

γs =
p(rs|mi)

2πrs
,

wherers = ‖xb − xs‖ andxs is the location of the
center of the square.
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Figure 1:a. Experimentally determined pdfs for each of the nine possible range measurements.b. Probability grids arising
from measurements are shown on the left, the resulting combined probability grid is shown on the right.c. Probability grid
resulting from the combination of measurements from eight different beacons.

2. Assign to each square the probability

Ps =
γs
α
.

whereα =
∑Ns
s=1 γs.

Here, step 1 assigns a relative probability to each square
while step 2 rescales the relative probabilities to make sure
that the overall probability is one.

2.3 Combining Probability Grids
Probability grids arising from measurements to multi-

ple beacons can be combined to produce an estimate of
robot location. To combine two probability grids, we sim-
ply multiply them in a pointwise manner and scale the re-
sult so that the sum over the squares is one. Figure 1b de-
picts this merging process. Note that the number of squares
where the robot is likely to be is reduced, providing a better
estimate of robot position. This process can be repeated for
multiple beacons to yield better results. Figure 1c depicts a
probability grid that results from combining measurements
from eight beacons.

To get the position estimatêx from a probability grid,
we take a weighted average of grid locations:

x̂ =
Ns∑
s=1

Psxs. (1)

The covariance matrixC associated with this estimate is
computed as

C =
1
Ns

XXT , (2)

whereX is the2×Ns matrix whosesth column is

Xs =
√
Ps (xs − x̂) .

2.4 Experimental Results
We used the technique described above to estimate

robot location at approximately 100 points distributed over
the 50 × 50 test area with 8 active beacons. The average
estimate error over this sample was 1.62 feet. This result is
significant considering that the expected error in the range
measurements ranges from 5.82 to 7.18 feet.

3 Position Tracking
Here we present two methods that take advantage of

past position estimates and odometry data to continuously
track a robot’s position.
3.1 Extended Kalman Filtering

When the robot can read data from 3 or more beacons,
the resulting combined probability grid usually has only
one peak. In these cases, the distribution resulting from
the static localization algorithm is reasonably well approx-
imated as Gaussian and we can use a type of extended
Kalman filtering algorithm to solve the position tracking
problem.

For this discussion, we assume an omnidirectional robot
with x and y velocities as inputs1. We also assume
some uncertainty in this model, which conceptually mod-
els phenomena like wheel slippage and other unmod-
eled disturbances. Given robot positionx(k) and inputs
(u1(k), u2(k)) at timet, the robot location at timet + T
will be

x(k + 1) = x(k) + T

[
u1(k)
u2(k)

]
+ ω(k), (3)

whereω(k) is an identically independently distributed (iid)
Gaussian random vector with zero mean and constant co-
variance matrixR.

1This assumption is made for clarity. More complicated robot models
such as that of a differentially steered robot can be accommodated for
with minor adjustments to the approach given here



xb

z

x

vr

vtθ

Figure 2: This figure shows how we approximate an annu-
lar distribution as Gaussian around an estimatex̂.

Given a range measurementm from a beacon located
atxb, we seek to approximate the annular distribution that
results with a Gaussian distribution. Generally, this is not
possible, but if we have a prior estimate,x̂ of robot position
we can “linearize” the annular distribution around the es-
timate. The variance in the direction radial to the annulus,
vr, is chosen to be the same as the variance of the range
measurement. The variance in the direction tangent to the
annulus,vt, is chosen to be very large, reflecting the fact
that the range measurement provides little information in
that direction. In practice, we choose this variance to be
10 times the variance of the range measurement. The re-
sulting covariance matrixC to has principal variancesvr
andvt in the axial and radial directions respectively. The
mean of this approximate distribution,ẑ, is chosen to lie on
same radial line with thêx with the distance between the
beacon and̂z equal to expected value associated with the
measurementm. This approximation process is depicted
graphically in Figure 2. The ellipse plotted in this figure is
the variance ellipse associated withC.

If we let θ be the angle between thex axis and the line
throughẑ that points radially away fromxb, then we can
express the mean̂z and covariance matrixC of the approx-
imate distribution as

ẑ = xb +
[
r̄mcosθ
r̄msinθ

]
, (4)

C = Φ
[
vr 0
0 10 ∗ vr

]
ΦT , (5)

wherer̄m andvr are the mean and variance respectively of
the pdf associated with the measurementm, and

Φ =
[

cosθ −sinθ
sinθ cosθ

]
.

In the notation of Kalman filtering, the estimate at the
kth time step is denoted̂x(k|k) and its associated covari-
ance matrix isP (k|k). Givenx̂(k|k),P (k|k), an input vec-
tor u(k), and a collection of measurementsmi from a set
of Nb beacons located atxbi, i = 1, 2, 3, . . . , Nb. the next
estimatêx(k + 1|k + 1), and covarianceP (k + 1|k + 1))
are computed as follows:

1. Compute predicted next estimate according to robot
model:

x̂(k + 1|k) = x̂(k|k) + T

[
u1(k)
u2(k)

]
.

2. Compute predicted covariance matrix:2

P (k + 1|k) = P (k|k) +R

3. Let x̂0 = x̂(k + 1|k) andP0 = P (k + 1|k).

4. Fori = 1, 2, 3 . . . , Nb:

(a) Compute Gaussian approximation(zi, Ci)
aboutx̂i−1 using Equation 4 and Equation 5.

(b) Compute new estimatêxi and and covariancePi
by merging the Gaussian distributions given by
predicted estimate and measured estimate [11]:

K = Ci (Ci + Pi−1)−1

Pi = Ci −KCi (6)

x̂i = zi +K (x̂i−1 − zi) . (7)

5. The corrected estimate and covariance are then

x̂(k + 1|k + 1) = xNb , P (k + 1|k + 1) = PNb .

To start the algorithm, initial position and covariance es-
timates (̂x(1|1) andP (1|1), respectively) are found using
the static localization method presented in Section 2. In
cases where the initialization does not produce a unimodal
distribution (eg. when only two beacons are visible), multi-
ple hypothesis testing [8] can be used to solve the tracking
problem.
3.2 Monte Carlo Methods

In Monte Carlo localization, a probability distribution
is represented by a finite collection of samples. The sam-
ples, often referred to asparticles, represent possible robot
locations. The basic idea of Monte Carlo localization is to
propagate the particles so that they all converge to likely
robot locations. Intuitively, the process is not all that dif-
ferent from prediction/update process of Kalman filtering.

2For more complicated robot models, this step is more difficult.
See [11] for compounding when robot orientation is taken into account



There is a “prediction” step where each particle is propa-
gated according to some robot model, the current inputs,
and a random noise selected from an appropriate distribu-
tion. There is then an “update” step where the collection of
predictions is merged with measurement data. This merg-
ing is accomplished through a technique called importance
sampling, where particles are weighted according to the
pdf associated with the measurement and then resampled.
As a result, particles with large weights are likely to be
chosen multiple times while particles with small weights
are likely not to be chosen at all. In this manner, particles
that are in unlikely robot locations are replaced by particles
in more likely locations.

Let xp(k), p ∈ {1, 2, . . . , Np}, be a collection of par-
ticles at time stepk, whereNp is the number of particles
in the collection. Using the omnidirectional robot model
given in Equation 3, the algorithm to propagate this collec-
tion based on a measurementm(k) obtained from a beacon
at locationxb(k) is:

1. Propagate each particle in the collection, i.e. for each
p ∈ {1, 2, . . . , Np} compute

x̃p(k) = xp(k) + T

[
u1(k)
u2(k)

]
+ ωp(k),

whereωp(k) is generated by a zero–mean Gaussian
random number generator with covariance matrixR.

2. For eachp assign a weight to thepth particle accord-
ing to the pdf associated withm(k) andxb(k):

w(p) = p (rp|m(k)) ,

whererp is the distance betweenxb(k) andx̃p(k).

3. Rescale the weights so that
∑Np
p=1 = 1.

4. For eachp, randomly choosexp(k + 1) from the pre-
dicted collection. The probability that the particle
x̃i(k) is selected during any choice isw(i).

3.3 Results
Both the Kalman and Monte Carlo methods were tested

in simulation using the robot model given in Equation 3
and the set of pdfs determined from experimental data in
Section 2. Both systems were simulated with identical bea-
con locations, beacon returns, and robot trajectories. The
covariance matrix for the noise vectorω was chosen to be

R =
[

0.4 0
0 0.4

]
.

The results are plotted in Figures 3a and 3b.
We conducted multiple simulations for different robot

trajectories. After some transient, the average estimation

error generated by the extended Kalman filter method was
0.73 feet. The result for the Monte Carlo method was 0.93
feet. Kalman filtering requiresO(Nb) computations each
step while Monte Carlo requiresO(NbNp). In our experi-
ence the smallestNp which provided suitable results was
about 200, so this difference in efficiency is significant.

4 Simultaneous Localization and Mapping
The algorithms presented in Sections 2 and 3 require

that the positions of the beacons are known exactly. Algo-
rithms that can cope with uncertain beacon positions will
make the proposed positioning system easier to install be-
cause the beacons will not need to be placed carefully. The
problem of simultaneously determining robot position and
identifying the locations of the beacons used to navigate is
known as simultaneous localization and mapping (SLAM).

The scenario where initial robot and beacon locations
are approximately known is a reasonable one. Good (but
not perfect) beacon locations can be obtained through
crude measurement or even through estimating location on
a building blueprint. Here we adapt the extended Kalman
filtering algorithm presented in Section 3.1 to apply it to
the SLAM problem. At each step, we use the current esti-
mates of robot and beacon positions together with Equa-
tions 4 and 5 to translate each range measurementmi,
i = 1, 2, . . . , Nb into an estimate of the relative displace-
ment between the robot,x, and theith beacon,xbi. The
estimated relative displacementẑi can be thought of as a
measurement with zero-mean Gaussian noise with covari-
anceCi. The remaining SLAM problem can then be solved
according to [10]. Specifically, we define the system state
to include both robot and beacon locations, write down
dynamic equations for the state (which is easy since the
beacons do not move), write the outputs as a function of
the state (which are just the differences between robot and
beacon locations), and use a Kalman filter to provide an
estimate of the state.

Figure 3c depicts the performance of this technique. In
this simulation, we assume variance of the range measure-
ment noise isv = 1. The variances of the initial robot and
beacon estimates were set to25, meaning that the initial
guesses have an expected error of 5 feet. In this simula-
tion, the average error of the initial estimate for robot and
beacons was 5.13 feet. The average error of the estimates
at the end of the simulation improved to 0.77 feet.

5 Conclusion
We have presented some robot localization algorithms

that employ range only data obtained from active beacons
in the environment. Range measurements with expected
error on the order of 6 feet were used to generate posi-
tion estimates with expected error on the order of a foot
or less. The beacon technology used in this paper is con-
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Figure 3:a. Results of extended Kalman filter tracking algorithm.b. Results of Monte Carlo localization tracking algorithm.
c. Results of SLAM algorithm for uncertain beacon locations.

tinually improving, one manufacturer has told us that the
most recent systems provide an expected error of about one
foot. This increased performance should yield future posi-
tion estimation systems with expected errors on the order
of a few inches.

We also presented an algorithm based on Kalman fil-
tering to solve the SLAM problem when the beacon po-
sitions are approximately known. Here we use the lin-
earization step described in Figure 2 to put the range–only
SLAM problem into a form that can be solved with stan-
dard Kalman–based techniques. Conceptually, Markov
and Monte Carlo methods should provide a solution for
completely unknown beacons, however the high dimension
of the SLAM state space renders these methods computa-
tionally intractable. Range–only SLAM with completely
unknown beacon locations is left as a topic for future re-
search.
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