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Abstract- This paper presents some preliminary 
results on asymptotic stabilization of nonholonomic 
mechanical systems using the Hamiltonian formulation 
proposed in [l]. Our work seeks to establish a gen- 
eral formulation for designing time-varying controllers 
for some mechanical system described in the general- 
ized coordinates (position and momentum). The pa- 
per gives the change of coordinates that transforms the 
Hamiltonian system to the form needed to apply the 
center manifold theorem. We also present a worked 
example for which stability is analyzed. 
Keywords Stabilization, Hamiltonian systems, Non- 
holonomic systems, time-varying control. 

I. INTRODUCTION 

Stabilization of nonholonomic systems has re- 
cently received a lot of interest. It is now we11 known 
that the necessary condition for feedback stabilization 
given by Brockett [2] is not satisfied for nonholonomic 
systems. Thus, there exists no continuous feedback 
law making the origin locally asymptotically stable. 
Consequently, alternative solutions such as discon- 
tinuous feedback and smooth time-varying feedback 
have been investigated. 

Time-varying strategies have been extensively 
studied and constructives methods have been pro- 
posed for a quite large class of driftless nonholo- 
nomic systems [3]. General results on the existence 
of such controllers has been explored by Coron [4] 
who established that almost all controllable systems 
are stabilizable by continuous time-periodic feedback. 
Throughout suitable modifications (i.e. homogeneous 
norms, etc) such controllers can also provide exponen- 
tial convergence rates [ 5 ] ,  [6], [7]. Recently, works of 
the same authors have extended the stabilization re- 
sults to systems with drift by adding an integrator to 
the kinematic (velocity) input. 

Most of these works use as a basis for the control 
design, a transformed driftless systems in canonical 
form (chained or power forms are commonly used). 
Since these transformations do not yet cover the com- 
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plete class of mechanical systems having nonholo- 
nomic constraints, it is then interesting to investigate 
the possibility of design controllers that do not rely 
on these canonical forms. 

The Hamiltonian formulation used in [l] seems to 
be a good basis for this analysis. They show how the 
Hamiltonian form of equations may be used for sta- 
bilization purposes; the controller is constructed used 
a suitable potential-like function. However, this con- 
troller does not yield asymptotic stability but make 
the general system coordinates ( q , p )  (position and 
momentum) tend to an invariant set ( p  = 0,  q = no), 
which contains the origin and depends on the used 
potential-like function. The idea behind the con- 
troller proposed in this paper is to smoothly switch 
over two controllers constructed by using two differ- 
ent potential functions yielding two different invari- 
ant sets whose intersection is the singleton (0). Since 
the switching is performed via periodic time-varying 
functions, the stability analysis can be carried out by 
the application of the center manifold theory. This re- 
quires first to find the general change of coordinates 
that transforms the closed-loop system into the form 
needed to apply the center manifold theorem and then 
to study the stability on the resulting reduced-order 
center manifold. 

In this paper preliminary results are presented. 
Section 2 presents the Hamiltonian control formula- 
tion. Section 3 gives the time-varying control law 
based on the smooth switch over two potential-like 
functions. Section 4 gives the general change of coor- 
dinates required to apply the center manifold theory. 
Section 5 presents a worked example for which stabil- 
ity conditions can be found. Finally Section 6 gives 
the conclusions. 

11. HAMILTONIAN CONTROL FORMULATION 

In this section, we recall some of the results con- 
cerning the Hamiltonian formulation given in [l]. 
Let Q be an n-dimensional configuration manifold 
with local coordinates q = (q1, . . . , qn). Classical con- 
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straints for a mechanical system are given in local 
coordinates as 

AT(q)q = 0 (1) 
with A a k x n matrix k 5 n, with entries depending 
smoothly on q.  Throughout, we assume that A(q) 
has rank equal to  k everywhere. The constraints (1) 
determine a k-dimensional distribution .D on Q, given 
in every point qo E Q as 

D(q0) = kerAT(qo) (2) 

The constraints (1) are called nonholonomic if D is 
not involutive. Since rank A(q) = k, there exists 
locally a smooth n x n - k matrix S(q) of rank n - k 
such that 

A T ( d s ( q )  = 0. (3) 
Defining the Hamiltonian of the system H ( q , p )  by 
the Legendre transformation: 

n 

with L(q,  4) a smooth Lagrangian function satisfying 
the usual regularity condition, the constrained Hamil- 
tonian equations on T*Q are given as 

q = a H  

(5) aPaH ?j = -a + A(q)X + B ( ~ ) u  
A T ( q ) G  = 0 

where X E IRk are the constraint forces, U E IR" ; 
B(q)u are the external forces applied to  the system 
with B(q) an n x m full rank matrix. 

On the constrained state space: 

Xr = { ( q , ~ )  E T*Q I A T ( n ) z ( q > p )  = 01 
a H  

(6) 

the dynamic equations of motion in the local coordi- 
nates ( q , f i l )  as described in [l] are: 

with: 

0 

(9) 
a (2n - k) x (2n - k )  skew-symmetric matrix ; 
Sj(q) denotes the i-th column of S(q), 

0 Hr: the reduced Hamiltonian, which is taken of 
the form 

1 
Hr(q,F1) = V(q) + T ( F ~ ) ~ G ( ~ ) ~  G(4) > 0 

(10) 

V(q) is the potential energy 

0 Br(q) has a full rank m = n - k 

Consider the following feedback law: 

together with the Lyapunov function 

where 7 is used to  shape the potential energy in 
the function above. Then we have that every point 
(qo ,  0) E Xr is Lyapunov stable and the solutions of 
the closed-loop system (7)-(ll),  tend to  the largest 
invariant set given as: 

111. CONTROL LAW DESIGN 

As noted in the previous section, the potential- 
like energy functions can be arbitrarily chosen by 
defining 7;. In general, each choice of vi yields a 
different invariant set Ri. 
In the sequel, consider control laws combining only 
two potential-like energy functions although more 
combinations may be possible. Therefore the func- 
tions 71, and 7 2  should be defined so that the cor- 
responding invariant sets R1 and Rz satisfy: 

The above condition seems to  be necessary to  
ensure that the origin is the unique equilibria. Fur- 
ther conditions on the functions Vi will be needed in 
connection with the stability requirements. 

Let u(q,fi1) be the control law given by: 

1 -cost 
and a(t) = - 9 .  

,5 

Selecting G(q) = I ,  V(q) = 0 and assume that 

(as all degree of freedom are controlled (na = n - k), 
there exists a feedback law such that (17) is satisfied) 
then system (7) simplifies to: 
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which gives through calculations 

Br(q)U(q,P) = -P-  + ~ ( q ) ( % ( q ) - +  %(q ) )  

+ $F(Q)(%(d - +(d)  
(20) 

where to  simplify the notation, we have redefined p := 
E Rm and defined w1 = sin(t) and wz = cos(t). w1 

and wz are here seen as additional variables generated 
by the oscillator: 

lAi, = w:! 

L i z  = -w1. (21) 

Let v i  now be of the form 
- 
V i  = qTQiq; Qi 2 0 for i =  1,2.  (22) 

87. 
aq 

Therefore, L ( q )  = Qiq for i = 1,2,  yielding 

Qi + Qz Qz - QI 
Br(q)u(qtp) = -P - s T ( q ) y q +  WzST(q)- 2 q. 

The closed-loop system is thus given by (21) and 

Qz - Qi and Mz := - Q 1 +  Q2  

2 .  
where Ml := - 

The matrices Qi 2 0 are not free; they have to  
fulfill the requirement (14), where the 02;'s are given 
by: 

2 

ai = {((I, 0) E Xr I s T ( q ) Q i q  = 0 } ,  i = 1,2. 

Assuming that S(q) satisfies 

with Sl (0)  a square non-singular matrix m x m, and 
letting Qi be partitioned as: 

Qii  E R" x R", 
Qil Qiz Qi2 E IR" x Et"-", 

Qi = ( Qi3 Qj4 ) Qi3 E Rn-" x Rm, 
\ -~ - ,  

Q i 4  E R"-" x Rn-" 

f o r i  = 1,2  and q as, 

then it can be shown - via the implicit function the- 
orem - that condition (14) is satisfied if the following 
2m x n matrix is full rank: 

Rank ( ' 1 1  ' l 2  ) = n 
Q z i  Q z z  

This implies that, with the controller constructed on 
the basis of only two quadratic potential-like func- 
tions (22), the considered class of mechanical systems 
is restricted to those satisfying 

2 m 2 n  

that is systems having a number of inputs larger than 
one half of the number of generalized position coor- 
dinates. This class can be enlarged by increasing the 
number of potential-like functions and finding more 
involved forms. 

IV. COORDINATE TRANSFORMATION 

In this section we give, under the hypothesis and 
control structure introduced in the previous section, 
the required coordinate transformation that brings 
the closed-loop system (23) to  the form required for 
the application of the center manifold theorem. 

The matrix S(q) can be expanded using a Taylor 
series about q = 0, as: 

where Cij(q) := - q and O(ll q 11') 5 
"=" 

for i = 1 ,2  and 

C,(q) C l ( d  E IR" x nz", 
Cz(q) E W-" x R". c(q) = ( CZ(Q) ) 

Let M21 = 0, yields 

then system (25) can be written as 

p = -P - q(0)Mllql  - ST(O)M12qz - W z s ~ ( o ) M z 2 9 z  -mq)w1 - WzMz)q + ON 113) 
41 = S l ( O ) P +  cl(q)P+o(Il P 1I2)P 
42 = C2(9)P+ O(ll Q II%J 

(26) 
Note that M21 = 0 implies that  Q11 = Q 2 1 .  

Now, in order to  apply the "Time-varying" Cen- 
ter Manifold lemma [8] the following change of coor- 
dinate is necessary. 
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Lemma IV. 1: Consider the following coordinate 
transformation 

P = P + ( r p w 1  + r p Z w 2 ) Q z  

d l  = 4 1  + ( T q l  + r q 2 w 1  + rq3wz)qz 
(27) 

then rpl, r p 2 ,  rql, a q 2 ,  rq3 E Rm xIR”-~ are uniquely 
defined by the set of equations 

q ( 0 ) M l l r q l  - $-(O)MlZ = o  
S T ( 0 ) M l l r q Z  + T p 1 -  r p z  = o  

q ( 0 ) T p I  + 7rq3 = o  
S T ( O ) r p 2  - aq2 = o  
$ ( o ) M 1 1 r q 3  - F(0)Mzz + rppl + r p z  = 0 

(28) 
provided that M I 1  is defined as a full rank matrix and 
hypothesis (24) is satisfied. 

Proof Computing the time derivative of gives, 

b = 
- - 

1; + (Tp1W2 - r p z w 1 ) q z  + (TplW1 + rp2Wz)iz 

- P  - ST(0)MllBI + I(ST(O)MI1Tql - ST(O)Ml2) 

+Wl(ST(O)MllTpZ +rp1 - Tp2) +Y(sT(O)MllT*3 

+ST(O)M22 + Tp1 + “P2)142 + O(ll I ll)P+ O(ll P 112) 

Setting the terms within the square brackets to zero 
gives the first three equations in (28). Proceeding 
similarly with q1 yields, 

81 = d l  + (Tq2w2 - Tq3wl)q2 + (Tpl + mqZw1 + Tq3Wz)d2 
Sl(0)P + [TpZWZ - Tq3W1 - sl (O)(TplWl + TppZw?)]qZ 

+O(ll 9 ll)P + O(ll q 112) 
the last two equations of system (28) are obtained by 
setting the terms within the square brackets to zero. 

After the coordinate transformation, 
writes as 

0 1  where H = ( -1 ) and 

system (26) 

( ;l) 
(29) 

fi(P, 41, 92,w) = -CT(n)(M - w2M2)q 

f2(P,817Q2,W) = Cl(P)P+ (Tql +Tq2Wl +T,3WZ)C2(4)P 

s(?j,G1742,w) = CZ(P)P+0(11 9 I12)P 

with q 1  and p given by (27) and f = ( f 1 ,  f ~ ) ~  and g 
verifying f (O,O,O,w) = 0, f’(O,O,O,w) = 0, 
g(O,O, 0 , w )  = 0 and g’(O,O, 0 ,w)  = 0. 
Define F as 

-(Tplwl + Tp2w2)c2(q)P+ o(ii q 1131 

+O(ll 9 IIZ)P 

with M 1 1  = Q 1 1  + Q 2 1  be such that all the eigenvalues 
of F have negative real part. It is now possible to 
apply to  system (29) the following modified version 
of the center manifold theorem: 
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Lemma IV.2: (“Time-varying”Center 
Manifold) [SI Consider the system 

with y E R”, t E IR”, w E Rp and the eigenvalues 
of F have negative real part and the eigenvalues of G 
and H have zero real part. The function f, g and h are 
C2 with f ( O , O , w )  = 0, f’(O,O,w) = 0 ,  g(O,O,w) = 0 
and g’(O,O,w) = 0. Then, given M > 0, there exists 
a center manifold for (30), y = h( t ,  w )  for I w I< M ,  I 
z I< S(M) ,  for some S > 0 and dependent on M ,  
where h is C2 and h(0,w) = 0, h’(0,w) = 0. 

Therefore, there exists a center manifold for the sys- 
tem (29) together with the relations (27) which can be 
expressed in the form (30) by defining yT = ET, g?], 
z = q2 and G = 0. The center manifold y = h(z ,w)  
is thus of the form: 

(31) 
P = h p ( q 2 , w )  

6 1  = hq(q2,w). 

Stability of the system remains to be determined from 
the analysis of the reduced order system: 

82 = g(hp(42,w), hq(qa,w), 9 2 r W )  

where the determination of the lower power matri- 
ces of the expansion of h(w,qa) should be obtained 
from the application of the approximation theorem. 
Finally, the stability of the complete system can be 
studied by using averaging analysis. Next section 
shows how this procedure is applied to  the knife edge 
example. 

V. KNIFE EDGE EXAMPLE 

The dynamic equations of motion of the knife 
edge moving in point contact on a plane surface de- 
scribed in the local coordinates ( q , F 1 )  are: 

& 
0 1 0  
0 0 S O S P  

0 0  (+( :  -1 0 - c o * y  : 0 - . iny  : : 0 0 ( g ) 2 

($2) 

where (I, y) are the Cartesian coordinates of the con- 
tact point, p the heading angle of the knife edge, 
u 1  the control in the direction of the heading an- 
gle, and u2 the control torque about the vertical 
axis. The generalized position coordinates are q = 
(p I y)T E R3, and the reduced generalized mo- 
menta is 9’ = ( p 1  p ~ ) ~  E R2 as defined in (8). The 
reduced Hamiltonian H r ( p l ,  p 2 )  is then given by: 



Note that assumptions (24) and (14) are satisfied for 
this system. 

Taking 

- 1 1 0 0  
V i ( d  = p T Q 1 q  Q1 = ( 0 1 0 )  > O  

0 0 1  

and computing the feedback law using (11): 

(33) 
U11 

U12 = -P-P1 
= -2 cos cp - y sin cp - p2 w = {  

yields the associated invariant set: 

n1 = { ( q , O )  I $0 = 0,z = 0). 

Let now 7 2  defined as: 

(: :  :) 1 - 
V Z ( Q ) =  p T Q z q  Q z =  0 1 0 1 0  

The resulting feedback is thus given by: 

u21 = -zcoscp-(cp+y)sincp-p2 
u 2 = {  U22 = -((p+y)-p1 

(34) 
leading to  the invariant set: 

n2 = { (q ,  0) I cp + y = 0,2 cos $0 = 0). 

With this definition, we can easily check that the in- 
tersection of 01 and 0 2  is the singleton (0). There- 
fore conditions 2m > n and the rank condition of QO 
are, with the proposed choice of Q1 and Q2, satisfied. 

Finally, the time-varying control law (15) is given 
as: 

u(q,$l) = (Y(t)Ul + (1 - a( t ) )uz .  (35) 

The change of coordinates given in Section 4 can be 
now performed. The following computations results 
from the above definitions: 

With this choice , the matrix F 

is stable and Mzl = 0. 

dinates: 
Solving (28) gives the following change of coor- 

The first approximation of the center manifold is 
given as 

I; = h,(w, y) = hl(w)y2 + 0(y3) (37) 
i = w, Y) = hz(W)y2 + 0(y3) (38) 

Then evaluating the time derivatives of (37)-(38) 
along the closed-loop equations gives 

$U2 - &Jl + hl(W) + hz(w)  + .(U) 
%U2 - 2 w 1 -  h ( w )  = o  

= 0 

(39) 
{ 

where 

( ~(1+w1)2(1--W2)+ 4 ( 1 + W l )  ) .(W) = 

and the dynamics in the reduced order manifold is 
thus, 

?j = PW++(Y4) 
= ~~y - gi + wl)Y) + o(Y4) 
= --(I + wl)fizy + O(y4) 
= -1(1+ wl )h l2~3  + o(y4) 

where only the second component of the vector hl = 
(hll  h 1 2 ) ~  is important for stability analysis. By 
inspecting (39) it can be concluded that hl2 should 
be of the form 

i+j=3 

h12(W) = aij,w;w; 
i=j=O 

which gives, 

that can be compactly written as: 

(40) 
1 
2 ?j = --(ul + u2)y3 + 0(y4)  

Now, applying the coordinate change given in 
Appendix 1, stability of system (40) can be concluded 
from studying the stability of the following trans- 
formed averaged system: 

. 1  
( = --(G 2 + z2)<3 + 0K4) 

where 7il and z2 are respectively the mean value of a1 
and a2. The coefficients a;j ,  for which the averaging 
value of w f w i  and wf+'wi is different from zero, are: 

1 9 3 
4 73-49 a30a = -- a202 = -a022, alOa = -, a122 = - 73.4 
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We finally obtain 
- 7r 

4 a 1 = 0 ,  E 2 = -  

which gives a locally asymptotically stable averaged 
svstem: 

VI. CONCLUSIONS 

We have presented some preliminary results on 
asymptotic stabilization of nonholonomic mechanical 
systems using the Hamiltonian formulation proposed 
in [l]. Our work seeks to establish a general for- 
mulation for designing time-varying controllers for 
some mechanical system described in the general- 
ized coordinates (position and momentum). We have 
explicitly stated the change of coordinates required 
to transform the Hamiltonian system to the form 
needed to apply the center manifold theorem. We 
have also presented the knife edge example for which 
stability is analyzed. One possible generalization of 
this approach lies in the consideration of more than 
two potential-like functions with eventually a reduced 
Hamiltonian in a more general form. 

VII. APPENDIX 

Let consider the system 

i = --s(t)y3 + 0 ( Y 4 )  (42) 

where g ( t )  is a T-periodic function of class C’ and 
the coordinate transformation 

Y = c + P W 3 .  (43) 

Then, differentiation gives 

Wow, we choose p( t )  so that 

aP - = - j ( t )  
at 

and we obtain 

t = - K ~  + 0(c4). 
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