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ABSTRACT

The objective of the study has been to verify the calculated residual activity in the

decommissioning waste of TRIGA Mark II type research reactor FiR 1 in Finland. The

knowledge of radioactive inventory of irradiated materials is important in the planning of the

decommissioning activities and is essential for predicting the radiological impact to

personnel and environment. Measurements are performed for low active material samples

from outer parts of the reactor. Methods include gamma spectrometric measurements,

composition measurements with mass spectrometry, oxidation measurements of especially

C-14 in graphite and full combustion measurements of lithium enriched shielding materials.

Results are compared to estimates calculated with a combined Monte Carlo model of the

reactor and a point-depletion code modelling the irradiation history. Decommissioning waste

consists mainly of ordinary concrete, aluminium, steel and graphite parts. Only preliminary

measurements of low active samples are reported so far, but the same methods will be used

later for characterizing and classifying dismantling waste. Some discussion of

characterization requirements and future sampling is also included.

Keywords: decommissioning, TRIGA research reactor, activity inventory, characterization



I. INTRODUCTION

FiR 1 is a 250 kW TRIGA Mark II open pool reactor from General Atomics that has been in operation

in Espoo, Finland, for years 1962-2015. During its history FiR 1 has been used for training [1],

scientific purposes [2], BNCT treatments [3] and isotope production [4].

The reactor is entirely above ground and is surrounded by a concrete shield structure, as shown in

Figure 1. The reactor core and reflector assembly are located near the bottom of an aluminium tank

6.4 meters deep and 2.0 meters  in diameter. Approximately 4.9 meters of demineralised water

above the core provides vertical shielding. FiR 1 reactor has four beam tubes extending from the

reflector assembly through the water and concrete to the outer face of the shield structure. These

beam tubes have been used, for instance, to material research with neutrons during first decades of

the FiR 1 operational history. The have been been plugged in the late 1980s’.

Figure 1: Horizontal and vertical cross sections of the FiR 1 reactor.



Originally, FiR 1 reactor has had a 1.2x1.2x1.7 meters graphite thermal column extending from the

outer surface of the reflector assembly and penetrating the reactor tank and shield structure. In 1995-

1996, the thermal column was replaced by an epithermal boron neutron capture therapy (BNCT)

beam [5]. A BNCT irradiation room was also built of steel tube elements filled with density-optimized

heavy concrete and a heavy steel framed lead door. Based on the earlier shielding design

calculations [6], it can be assumed that these structures are not activated, and it is justified to exclude

them from current waste measurements. The BNCT beam moderator and collimator structures

consist of several different materials, the most important of which is Fluental neutron moderator used

to shape the neutron energy spectrum to suitable epithermal energy range for BNCT. Bismuth, lead

and lithiated polyethylene are also used for gamma and neutron shielding.

FiR 1 reactor will be decommissioned in the following few years. Decommissioning planning requires

knowledge on the activation levels and amounts of radioactive decommissioning waste to design

safe dismantling procedures. Knowledge on the activity inventories of different waste streams are

also important for appropriate waste packaging and planning both the interim storage and the final

disposal of the decommissioning waste.

Computational estimates of the activity inventories were completed in 2016 [7]. This paper presents

initial measurement results to verify earlier computational estimates. First general requirements and

official regulations are introduced, then results of material-wise measurements are presented and

finally the utilization of these results e.g. in active waste clearance procedures and other future work

is discussed.



II. INVENTORIES AND MEASUREMENT

REQUIREMENTS

Activity inventories of FiR 1 structures and components have been estimated in Reference [7]. In principle,

activity inventory calculations require modelling of neutron fluxes for all the reactor structures and components

with appropriate neutron transport code and combining these neutron flux values to material compositions and

operating history in a suitable point-depletion code. An illustration following IAEA recommendation [8] is

presented in Figure 2.

Neutron fluence rates in FiR 1 reactor were calculated with the Monte Carlo code MCNP5 [9] using criticality

eigenvalue search mode and cell-based tallies for all modelled structural components. Results per fission

neutron were scaled to 250 kW nominal power and divided to three-group form as specified in ORIGEN-S

manual. After calculating the fluxes in three-group form, they were used to model the decay chains of different

nuclides in all the structures with the point-depletion code ORIGEN-S [10]. The irradiation history was modelled

according to the reactor’s actual operational history for years 1962-2015 taking into account all major reactor

modifications (affecting the geometry and materials) during its history. After irradiation, a decay period was

modelled to study the radionuclide inventory both during dismantling and final disposal. The total neutron flux

was considered constant during all irradiations and zero in between them. Altogether, FiR 1 has generated

around 11 500 MWh of thermal energy.

Figure 2: Calculation model.



ORIGEN-S calculations were performed on component or structure base resulting in around 200 output files.

Technically FiR1 contains several types of aluminium and steel from different manufacturers. This taken into

account in the component-wise inventory calculations and detailed results will be used during practical

dismantling work. Material-wise total values are presented in Table I to give an overview of the material

quantities in the project.

Table I: Material-wise total activities. Volumes are ideal quantities without taking into account packaging

efficiency.

Material Volume (m3) Mass (tons) Main isotopes Total activity
(TBq)

Concrete 25 61 H-3, Eu-152, Co-60, C-14 0.1

Graphite 2.6 4.4 H-3, C-14, Eu-152, Eu-154 0.46
Steel 0.4 3.5 Fe-55, Ni-63, Co-60 1.91

Aluminium 0.8 2.2 Zn-65, Co-60, Ni-63 0.39
Fluental 0.45 1.3 H-3 1.3

Other 10 2.7 H-3, C-14, Ni-63 0.4

The main sources of error in the used inventory calculation system are that diffusion of gaseous nuclides, e.g.

H-3, cannot be taken into account. Another source of error is that if exact material specification are not

available, initial compositions are partially based on assumptions. Because activity is usually due to small

impurities in materials, even low concentrations of, e.g., cobalt, nickel, europium, or zinc may have a notable

effect on total activities. This was taken into account by assuming conservatively high impurities, but results

will be verified with systematic measurements before and during the dismantling work. Eventually the total

activity and nuclide vector for each waste package must be known. Both gamma and beta active nuclides are

relevant. Gamma activities are relatively easy and fast to measure, but measuring beta activities requires

chemical separation and different techniques such as liquid scintillation counting (LSC), mass spectroscopy

etc.  According to Finnish regulatory guides for nuclear and radiation safety [11], a scaling matrix approach is

used. This means that before actual dismantling, material samples of each (plausibly) activated material are

collected and studied in detail. Later, when actual waste packages are studied, only fast non-destructive

measurements (gamma spectrometry) are performed and the earlier data is used to scale the hard-to-measure

beta activities assuming the same ratio between nuclide-wise activities as in the samples. The procedure is

further illustrated in Figure 3.



The gamma active nuclides that are used in scaling are called key nuclides. Identifying appropriate key

nuclides requires considering their half-life, radiation energy, chemical challenges in the final disposal, toxicity

etc. with a conservative approach, but also enabling the measurements to be performed later systematically

for dozens of waste packages during dismantling. VTT uses In Situ Object Counting System (ISOCS)

equipment by CANBERRA [12] for gamma spectrometric measurement. It is based on a liquid nitrogen cooled

HPGe detector and spectroscopy  software GENIE2000 [13]. Sourceless detector-specific calibrations are

generated by using ISOCS software.

At the early stage of the project, the main restriction to sampling is that the structural integrity of the reactor

must be maintained strictly. Consequently, this report mostly studies only low-active samples from the edges

of the reactor. This helps to develop later a more detailed and logically optimized sampling and measurement

plan.

III.MATERIAL-WISE MEASUREMENTS

I I I .A.	LEAD	
Lead has been used as a shielding material in the BNCT station of FiR1 reactor. Very pure (e.g.

almost antimony-free) lead material was originally chosen for BNCT station shielding. Lead has been

Figure 3: Measurement scheme



exposed to a neutron flux of around 108 n/s×cm2 for years 1997-2015 and according to inventory

calculations, it is expected to have a very low specific activity of less than 10 Bq/g. Main contributing

nuclides are Ag-110M, Ag-108, Co-60 and Cr-51.

Samples of lead were collected from BNCT station shielding materials. Drilling holes were chosen

such that the distance of the samples from the BNCT station neutron channel is the same thus

representing redundant parallel samples. Drilling locations are presented in Figure 4 with red color.

The figure also lists some of the main components in the BNCT station with numbers 1-10. They

have been labelled in Table II.

Figure 4: Location of the lead drilling holes marked with red color.

Table II: Components in Figure 4.

Number in Figure 4. Component

1 Boral plate
2 Aluminium
3 Fluental moderator
4 Lead shielding



5 Lithium carbonate plastic shielding
6 Bismuth plate and cone
7 Li-Nat RX215 plastic shielding
8 Li 3.5% enriched RX215 plastic shielding
9 Li 7% enriched plastic collimator
10 Steel encapsulation for lead shielding

The impurities of the drilled lead samples were measured with High Resolution sector field

Inductively Coupled Plasma Mass Spectrometer (HR ICP-MS, Element 2, ThermoScientific). Lead

samples, with mass less than 200 mg were purified in 1 M HNO3 and ethanol (≥99.5 %) prior to the

microwave assisted acid digestion. Samples were weighted before and after the purification and 6.2

- 9.6 mg mass loss was detected due to the purification of the samples. Samples were completely

dissolved in HNO3 and milliQ water (Millipore) solution (3 mL concentrated HNO3 + 3 mL milliQ water)

with microwave digestion unit (Milestone MLS 1200 Mega). Digested samples were diluted to 50 g

with milliQ water. Further, for HR ICP-MS analysis samples were diluted 1/5, 1/10, 1/100 and

1/100000 with 1 % nitric acid solution.  10 µg/L of rhodium was added as internal standard to all

samples.

Calibration curve and control samples were diluted from ICP-MS Multi-Element Solutions 2 and 4

(SPEX), and control samples from Semi-Quantitative Standard (SQS-1, AccuTraceTM ) and

Laboratory Performance Check Standard 1 (LPC-1, SPEX) solutions. 10 µg/L of Rh was used as an

internal standard in all samples, background, calibration and control samples. The samples were

injected through SeaSpray nebulizer (0.4 ml/min) and double pass spray chamber equipped with

Peltier cooling unit. Aluminum sample cone and Nickel skimmer cone were used during the

measurement. Final results and measurement relative standard deviations (RSD) are listed in Table

III.

Table III: Measured impurities and relative standard deviations (RSD) of lead in the BNCT station.

Nuclide w% RSD
(%)

Nuclide ppm RSD
(%)

Nuclide ppm RSD
(%)

Ag-107 2.59E-04 4.40 Fe-56 1.41E-04 5.40 Sb-121 9.31E-05 3.53
Cd-111 8.46E-07 24.00 Ni-60 1.20E-05 8.88 Cr-52 7.60E-07 15.88
Sn-118 1.64E-06 16.95 Cu-63 2.98E-04 5.33 Co-59 1.22E-07 34.75
Bi-209 1.23E-03 5.58 Zn-66 4.23E-05 8.83
Ca-44 1.51E-03 4.80 As-75 9.46E-06 4.23



Mn-55 1.57E-07 15.00 Se-77 2.31E-05 14.00

Lead samples were measured at the end February 2017 using Canberra’s ISOCS

gammaspectrometer [12] with HPGe detector (BE2020), Inspector 2000 DSP analyzator and Genie

2000 v.3.4 gamma analysis software. The efficiency calibration were done with Geometry

Composer-program (version 4.4). For gamma measurements the drilled lead samples (first

corkscrew-like samples) were rotated to spiral-like discs to ease the efficiency calibration done with

Geometry Composer-program. Measurement time was around 24 hours.

Results are listed in Table IV. Listed values are averages from four measured parallel samples.

Table IV: Comparison of measured and calculated gamma activities. Estimated uncertainties are
given in parentheses.

Sample / specific
activity

Ag-110M (Bq/g)

Average measured 0.81 (0.07)
Average calculated 0.93 (0.09)

Apart from silver-110M measured activities were smaller than minimum detectable activities. In

addition, after a decay time of around 600 days some Ag-108M, Fe-55, Ni-63 and Zn-65 activities

could be expected, but based on activation calculation, all these values are clearly below Finnish

clearance levels.  Consequently, lead in the BNCT station can very likely be cleared from regulatory

control.

I I I .B.	ALUMINUM	

FiR1 reactor contains aluminum in the reactor tank, horizontal beam tubes and in most of the

equipment inside the tank. Aluminum parts are illustrated in Figure 5.



Figure 5: Aluminum parts in FiR1 reactor are illustrated in green color.

Only small impurities of e.g. cobalt, iron, nickel and zinc activate in aluminum. Specific activities are

much lower than in steel parts, but all the aluminum structures near the core region are still active

and need to be considered as low- and intermediate level nuclear waste. Nevertheless, typical power

reactors seldom contain any aluminum parts and consequently the safety of final disposal of

aluminum has not been studied as thoroughly. Chemical behavior of FiR1 aluminum in active waste

final disposal conditions has been studied at VTT in Reference [14].

Aluminum was sampled from the inactive upper parts of the tank. According to the manufacturing

specification, the aluminum should be of AlMg3 type. The tank, thermal column walls and beam

tubes were manufactured in Finland by Alstrom company, whereas smaller special components (grid

plates, tubes, etc.) were manufactured in US by General Atomics.

The approach was to measure the composition with inactive samples and irradiate a few of those to

validate the computational activation mechanisms.



The composition of aluminum was measured with HR ICP-MS technique from three samples from

the upper parts of the reactor tank. . Aluminum samples, with mass less than 300 mg were purified

in 1 M HNO3 and ethanol (≥99.5 %) prior to the microwave assisted acid digestion. Samples were

completely dissolved in aqua regia (5 mL) with microwave digestion unit. Digested samples were

diluted to 100 g with milli-Q water. Further, for HR ICP-MS analysis samples were diluted 1/2, 1/10,

1/100 and 1/10000.  10µg/L of indium was added as internal standard to all samples.

Calibration curve and control samples were diluted from ICP-MS Multi-Element Solutions 2 and 4

(SPEX), and control samples from Semi-Quantitative Standard (SQS-1, AccuTraceTM ) and

Laboratory Performance Check Standard 1 (LPC-1, SPEX) solutions. 10 µg/L of In was used as an

internal standard in all samples, background, calibration and control samples.

The samples were injected through SeaSpray nebulizer (0.4 ml/min) and double pass spray chamber

equipped with Peltier cooling unit. Aluminum sample cone and nickel skimmer cone were used

during the measurement. Results including measurements relative standard deviations (RSD) are

presented in Table V. Results are average values from three parallel samples.

Table V: Measured aluminum composition [ppb] and measurement relative standard deviations

(RSD).

Material ppb RSD (%) Material ppb RSD (%) Material ppb RSD (%)
Li-7 228 24 Pb-208 24025 1 Cr-52 2006694 1
B-11 2092 7 Bi-209 70 2 Mn-55 784529 1
Sr-88 44 10 Th-232 116 2 Fe-56 3805567 1
Zr-90 6308 1 U-238 1195 2 Co-59 900 3
Mo-95 3216 1 Na-23 1338 9 Ni-60 17184 1
Ag-107 188 1 Mg-24 11397907 1 Cu-63 1830652 1
Cd-111 555 1 Al-27 974157202 1 Zn-66 308425 2
Sn-118 8934 1 Si-28 4251635 12 Ga-69 84170 1
Cs-133 8 140 P-31 1206 6 K-39 276 2
Ba-137 415 5 S-32 1846 18 Ge-72 327 1
Ta-181 1 5 Ca-44 2313 4 As-75 94 17
W-182 1242 1 Sc-45 104 1 Se-77 536 235
Re-185 0 108 Ti-47 143215 2 Se-78 1122368 14
Tl-205 274 1 V-51 32603 1



Samples of inactive aluminum from the upper parts of the reactor tank were irradiated in FiR1 reactor

before shutdown in June 2015. Samples were irradiated in the irradiation ring around the core in a

neutron flux of 2.32×1012 n/s×cm2 and cadmium ratio of 2.02. Two of the samples were irradiated for

four hours and one of them was irradiated for 14 hours.

Two of these activated samples were studied with ISOCS gammaspectrometry system [12] [15].

Used detector was BE2020 and the calibrations were done using ISOCS version 4.3. Small samples

were measured as close as possible, top of the detector.  Specific activities were also calculated

with the same method as in [7] using the measured aluminum composition. The calculation contains

still some uncertainties due to neglecting the shielding effect of the irradiation capsule and neutron

input spectrum cannot be modelled exactly.  An estimate for the calculation uncertainly is around ten

percent.  The results show that at the time of measurements, a specific activity of around 2.7 kBq/g

is expected. Main contributing nuclides will be Cr-51, Fe-55, Zn-65, Mn-54, Fe-59, Ni59, Ni-63, Sc-

46 and Co-60. Measured spectrum is illustrated in Figure 6. Uncertainties in the measurement  arise

mainly from separating the background from the measurement data and converting the cpm to Bq/g.

Moreover, the material composition of the samples has been assumed to be homogenous, but in

real life some variations always occur. Comparison between the measured and calculated gamma

activities is presented in Table VI.



Figure 6: Measured gamma spectrum for aluminum.

Table VI: Specific activities of the studied samples.

Nuclide Half-
life
(days)

Measured
activity
(Bq/g)

Measurement
uncertainty
(%)

Calculated
activity
(Bq/g)

Calculation
uncertainty
(%)

Sc-46 83.79 5.46 2.9 7.4 10
Cr-51 27.7 699 4.7 639 10
Mn-54 312.2 1.80 7.9 4.1 10
Fe-59 44.5 13.5 2.9 20.7 10
Co-60 1925 5.24 3.0 18.4 10
Zn-65 243.9 81.1 3.0 133.9 10

Specific activities correspond to the values reasonably well and provide a  basis for further aluminum

waste characterization and classification. Apart from short living Cr-51, assumptions in the calculated

values also result in a conservative estimate. However, Cr-51 is short living nuclide with a half life of

only 27.7 days. Considering the half-lives and nuclide-wise clearance levels, Co-60 will be chosen

as a key nuclide for aluminum in future waste measurements.

I I I .C.	GRAPHITE	MEASUREMENTS	
FiR1 research reactor contains graphite both in the reflector around the core and in 1.2x1.2x1.74 m

thermal column that was disassembled in 1995. Disassembled graphite is stored at VTT premises

in Finland.



Figure 7: Graphite in FiR1 reactor is illustrated on the right side of the core [7].

Graphite is a porous material, and the most important activation mechanism in the material is the

activation of nitrogen in the air of the porous holes into carbon-14 via reaction N-14(n,p)C-14.

Carbon-14 is an especially important nuclide in waste disposal, because it spreads rapidly in the

biosphere. Other important isotopes are e.g. Eu-152, Eu-154 and Co-60. Moreover, power reactors

in Finland do not contain any active graphite, and thus it has not been studied as thoroughly. The

chemical behavior of active graphite in final disposal conditions has also been studied at VTT in a

separate report [14].



In this study, carbon-14 activity of cylindrical 1.0x1.0 cm samples from thermal column graphite have

been measured both at VTT and at the University of Helsinki radioisotope laboratory in Viikki,

Finland.

Nuclides that emit only low energy beta radiation, such as tritium and carbon-14, are hard to measure

from graphite with normal liquid scintillation counting, because of the poor solubility of the material

in scintillation liquid. However, these problems are not present if the sample is oxidized to volatile

oxides  measuring the activity from their oxides is much easier. VTT measured the graphite samples

with Junitek Oxidizer (Junitek co, Finland) device at the University of Helsinki isotope laboratory in

Viikki, Finland. Samples of 100 mg were studied.  Junitek Oxidizer is based on dry oxidation method

and uses pure oxygen to fully burn the sample to water and carbon dioxide at a temperature of

960°C. CO2 reacts with the amine in the reaction column to form carbamate. The released gases

are cooled. Water and air rinsing through the reaction column and collect carbon-14 to liquid

scintillation counter bottle. The operating principle is illustrated in Figure 8 and final results with

estimates of measurement errors are listed in Table VII. Measurement errors arise partially from

collecting the gasses and from performing the LSC measurement.

Figure 8: Operating principle of oxidizer device.



Table VII: Measured carbon-14 activities from samples 1–8.

Sample 1 2 3 4 5 6 7 8 Average
(kBq/g)

kBq/g 0.293 0.115 0.001 0.023 1.660 0.241 0.100 0.393 0.353
Estimated
measurement
error (%)

4.9 5.1 23.6 6.6 4.5 4.8 5.2 4.7

Activities in the thermal column graphite have been calculated earlier [7].  Calculated activity profile

of C-14 in the graphite is presented in Figure 9.

Figure 9: Calculated specific activities of C-14 in thermal column graphite as the function of distance

from the core.

Unfortunately exact location of samples in the old thermal column was not saved, but based on dose

rate measurements, samples were collected from graphite blocks around the middle of the thermal

column. Comparing the measured and calculated specific activities, a reasonable correspondence

is seen. However, other radionuclide from same graphite samples need to be studied in the future.

This includes especially chemical dissolving and measuring exact chlorine and europium fractions.
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I I I .D.	LITHIUM 	ENRICHED	PLASTICS	

FiR1 contains lithium enriched plastic that has been used as a neutron shielding material in the

BNCT irradiation room. It is a mixture of lithium carbonate (Li2CO3) and polyethylene paraffin.

Shielding plastics is estimated to contain some tritium due to thermal neutron absorption of Li-6. No

other significant activities are expected. Nevertheless, a large part of the tritium may have released

from the porous material, and total activities may be close to clearance limits.  Plastic samples were

studied by full combustion method at Horia Hulubei National Institute for Physics and Nuclear

Engineering (IFIN-HH).

The latest inventory calculations model [7] of the decommissioning waste does not contain a detailed

model of neutron spectrum inside the BNCT irradiation room, but earlier estimates indicate that

fluxes can be at highest around 106 neutrons/sec×cm2. However, it is expected that the fluxes can

vary a lot inside the room. With the assumed neutron flux, computational estimates show that specific

tritium activities in the shielding plastic can be at highest around a few hundred Bq/g.

Studied samples were drilled from six locations around the room as illustrated in Figure 10. Points 3

and 4 are from two adjacent plastic plates on top of each other. Sample number 3 was the innermost

one. Two parallel samples of all location were prepared.



Figure 10: Locations of drilling holes.

Parallel samples of drilled lithium-enriched plastics were sent to IFIN-HH institute to be studied with

full combustion oxidation method. The measurement system consisted of a pressurised oxygen tube

and two heated tube furnaces that were used for sample oxidation and catalytic oxidation of

produced gases at temperature of around 750°C. Gases were collected to water, which was then

measured with liquid scintillation counting method. The measurement setup is illustrated in Figure

11.



Figure 11: Schematic view of the oxidizer with retention of resulted HTO. QS- Oxygen supply; FM-

Flow-meter; TF (I/C)- Tube furnace (Incineration/Calcination); FC- Furnace controllers: TF (CO)-

Tube Furnace (Catalytic Oxidation); TQ- Quartz tube; S- Sample; CuO - CuO wire oxidation bed;

HTO RV - HTO Collector with 3 retention vials; C RV- Cryogenic retention vial, DwV –Dewar vessel

RGM- Radioactive gas monitor, V RChB - ventilated Radiochemical Box



Studied drill cores were cut into disks and smaller pieces to be able to study the inner portions of the

material, since the assumption was that tritium may have diffused from the outer parts of the

samples. Eventually only the three inner cubic pieces were measured. The cutting protocol is

presented in Figure 12.

Figure 12: Cutting of the drill cores.

Samples were oxidized by gradually increasing the temperature to 750°C in around 120  minutes
(see Figure 13) with oxygen flow rate of 4 liters/min.

Figure 13: Temperature/time diagram applied for polyethylene/Li2CO3 composite oxidation

15 ml of tritiated water was collected from three retention vials to be measured in with liquid
scintillation counting technique.
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Specific activities were obtained by incineration of samples, tritiated water retaining and

determination of the activities at Liquid Scintillation Counter. Obtained specific activities are listed in

Table VIII.

Table VIII: Measured H-3 specific activities. Sample numbers refer to drilling locations in Figure 10.

Sample Activity determined
with LSC (Bq)

Activity-
Background

Sample mass
(g)

df As (Bq/g)

1A 6.658 6.0626 0.4977 15 190.618
1B 13.077 12.4818 0.5184 15 359.461
1C 2.105 1.5098 0.5084 15 58.996
Average 203.025
Standard deviation 150.616
2A 25.714 25.1194 0.5089 15 720.044
2B 37.738 37.1426 0.5154 15 1043.385
2C 17.635 17.0402 0.5273 15 476.582
Average 746.670
Standard deviation 284.338
3A 11.138 10.5434 0.5065 15 313.371
3B 21.758 21.1634 0.5179 15 598.682
3C 9.726 9.1314 0.5219 15 265.570
Average 392.541
Standard deviation 180.116
4A 12.434 11.8386 0.5277 15 335.757
4B 17.147 16.5522 0.5180 15 471.714
4C 9.632 9.037 0.5141 15 266.983
Average 358.151
Standard deviation 104.186
5A 17.890 17.2946 0.5170 15 519.041
5B 32.140 31.545 0.5160 15 934.302
5C 21.637 21.042 0.5170 15 627.766
Average 659.018
Standard deviation 204.573
6A 10.079 9.4842 0.5181 15 277.222
6B 15.502 14.9074 0.5748 15 384.324
6C 13.090 12.4946 0.5238 15 356.103
Average 339.216
Standard deviation 55.512
7A 31.849 31.254 0.5200 15 872.785
7B 32.637 32.042 0.5142 15 904.468
7C 27.993 27.398 0.5068 15 787.096
Average 854.783



Standard deviation 60.721

Shielding plastics may have possibly re-use as shielding material in other institutes in Finland.

Studied results indicate that their activity in relatively low and consequently from the point of radiation

safety, there is no obstacle for re-use.

I I I .E.	CONCRETE		

The aluminum tank in FiR1 reactor is surrounded by 1.5 meter thick layer of ordinary concrete, which

serves as a biological shield. According to computational estimates in Reference [7], most of the

concrete is inactive and activity is limited only close to the reactor core region about one meter from

the surface of the tank and 0.5 meters around the beam tubes. Main radionuclides are Eu-152, Eu-

154, Co-60, Ca-45, H-3, Ni-63, Ni-59, and Fe-55. Neutron fluxes inducing the activity are illustrated

in Figure 14.

Concrete has been studied at VTT by measuring its composition from three drill cores from the

inactive outer part of the reactor and by measuring an active older drill core from the thermal column

cavity.

Figure 14: MCNP simulated total neutron fluence rates a) with thermal column and open beam ports, b) with
thermal column and plugged beam ports, and c) with BNCT beam. [7]

Three drilling samples were taken from the outermost inactive part of the reactor to determine the

detailed composition of the material. Direction of drilling is illustrated in Figure 15.



Figure 15: Direction of drilling.

Sample compositions were measured with inductively coupled optical emission spectrometry
method by VTT Expert Services. Results are listed in Table IX.



Table IX: Measured concrete composition.

Sample# /
element

1 (ppm) 2 (ppm) 3 (ppm) Measurement
uncertainties
(ppm)

Al 70300 67900 68050 100
B 100 100 100 100
Ba 860 890 840 20
C 1730 1835 2165 80
Ca 91000 79000 95000 100
Cl 55 52 59 20
Co 12 13 13 5
Cs 1.9 1.7 1.7 100
Eu 2.1 2.0 2.2 0.1
Fe 23000 21000 23000 100
H 4290 4150 4430 8
K 35300 36450 33650 500
Li 36 27 39 10
Mg 9000 7700 8500 200
Mn 350 310 370 10
N 200 200 200 0.04
Na 19000 20000 19000 100
Ni 50 50 50 50
P 500 500 500 500
S 3200 2400 2900 200
Si 258500 258500 258500 500
Sm 8.3 8.0 13 0.1
Ti 1380 1210 1370 100
U 3.0 3.4 4.0 1

Inventory calculations of concrete activity are based on conservative assumptions, namely choosing

the maximum impurities of activating nuclides.

During the construction of the BNCT station in the 1990’s parts of biological shield concrete were

removed by diamond drilling. The drilling location is illustrated in Figure 16.  The most active drill

core was studied with gamma spectrometry. The computational specific activity for this sample was

around 10 Bq/g.



Figure 16: Original location of the drill core.

Gammaspectrometric measurements were performed using ISOCS system [15]. Used detector was

BE2020 and the calibrations were done using ISOCS version 4.3. Distance from source to detector

was 540 mm.  The measured spectrum is illustrated in Figure 17. Results and comparison with

calculation are listed in Table X.

Figure 17: The gamma spectrum of the concrete sample.



Table X: Comparison of measured and calculated gamma activities in concrete.

Nuclide Measured (Bq/g) Measurement
uncertainty (%)

Calculated (Bq/g) Calculation
uncertainty (%)

Co-60 2.5E-02 6.93 2.6E-02 10
Eu-152 9.6E-01 2.29 8.1E-01 10

Uncertainties in the calculation arise from the facts input neutron spectrum cannot be modelled

exactly. Moreover, the material composition of the samples has been assumed to be homogenous,

but in real life some variations always occur. However, a separate calculation was performed for this

exact location and measured concrete composition was used as input quantity. An uncertainty of ten

percent was estimated. Measurement uncertainties arise mainly from separating the background

from the measurement data and converting the cpm to Bq/g. Bearing these in mind, specific activities

correspond to the values reasonably well, although the measured sample was quite old and had a

very low activity. Co-60 and Eu-152 will be chosen as key nuclides for future concrete waste

measurements.

IV. CONCLUSION AND FUTURE WORK

This paper describes preliminary measurements that will be used in decommissioning project of FiR1

TRIGA research reactor. Computational estimates of total activity inventories have been published

earlier [7], but measured values are required to verify the results and to plan safety of workers during

dismantling and all legal requirements for waste packaging and final disposal.

The presently completed measurements support earlier calculations, although only low activity

samples have been studied so far. To determine the radiological condition of the facility in detail,

samples need to be taken also from more active parts with a systematic sampling plan. Work will

continue with collecting more samples from different parts of the facility (especially from biological

shield concrete) and from material that have not been drilled yet, such as steel inside the tank,

Fluental moderator and beam tube plugs. This requires a detailed sampling plan and well-

established measurement methods. Moreover, beta active nuclides such as Ni-63, Fe-55 and Ca-

41 need to be measured via chemical dissolving, radiochemical separation and liquid scintillation

counting. Only after that, full nuclide vectors and scaling matrices can be reported.
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