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Abstract This bottom-up modeling study, supported by new population census 2011 data, simulates
ozone (O3) and fine particulate matter (PM2.5) exposure on local to regional scales. It quantifies, present-day
prematuremortalities associatedwith the exposure to near-surface PM2.5 andO3 concentrations in India using a
regional chemistry model. We estimate that PM2.5 exposure leads to about 570,000 (CI95: 320,000–730,000)
premature mortalities in 2011. On a national scale, our estimate of mortality by chronic obstructive pulmonary
disease (COPD) due to O3 exposure is about 12,000 people. The Indo-Gangetic region accounts for a large part
(~42%) of the estimated mortalities. The associated lost life expectancy is calculated as 3.4±1.1 years for all of
India with highest values found for Delhi (6.3 ± 2.2 years). The economic cost of estimated prematuremortalities
associated with PM2.5 and O3 exposure is about 640 (350–800) billion USD in 2011, which is a factor of 10 higher
than total expenditure on health by public and private expenditure.

1. Introduction

Surface ozone (O3) and fine particulate matter (PM2.5) are major atmospheric pollutants directly affecting
human health by causing cardiovascular and respiratory diseases. The environmental risk caused by exposure
to these pollutants has increased in many parts of the world as a result of human activity [Burnett et al., 2014;
Lelieveld et al., 2015; Apte et al., 2015]. Poor air quality is an important societal issue specifically for developing
countries like India [Ghude et al., 2014] where rapid expansion of industrial, urban, and traffic emissions have
significantly increased the air pollution especially over the last two decades [Ghude et al., 2013]. Climate
change can further influence air quality, as studies have shown, causing O3 and PM2.5 to increase in many
developing regions of the world [Horowitz, 2006; Fang et al., 2013].

Measurement data from National Ambient Air Quality Monitoring networks [Central Pollution Control Board
(CPCB), 2014], satellite observations, estimates from emission inventories, and regional model calculations
[Ghude et al., 2013; Jena et al., 2015a] unambiguously show elevated levels of air pollutants in many regions
of India. Therefore, the potential risk to health is higher for populations in these regions. As indicated by the
2011 census of India’s statistics, around 32% (~0.4 billion people) of India’s 1.2 billion population lives in
urban areas. About 78% of the total 141 cities in the country exceed the PM2.5 standard, 90 cities have critical
levels, and 26 have the most critical levels, exceeding the PM standard by over 3 times [CPCB, 2014]. The
Global Burden of Disease estimates ranks pollution as the fifth largest killer in India [World Health
Organization (WHO), 2014]. Estimates of the respiratory mortality show India to rank second among the coun-
tries globally affected by PM2.5 [Silva et al., 2013] and O3 pollution [Lelieveld et al., 2013]. It is anticipated that
recent upward trends in transportation, industrial and energy sectors, urbanizations, population growth in
India along with climate change will raise the levels of O3 and PM2.5 in the future, which could worsen the
vulnerability of a growing population.

Over the past decades, numerous studies have estimated premature mortality associated with O3 and PM2.5

pollution on global to regional scales using high-resolution global chemistry transport models [Silva et al.,
2013; Lelieveld et al., 2013; Fang et al., 2013] or surface-based measurements [Cohen et al., 2004] and using
satellite measurements [Van Donkelaar et al., 2010; Global Burden of Diseases (GBD), 2010; Brauer et al.,
2012; Apte et al., 2015]. Most of these studies were focused on the United States and Europe and relatively
little work has been devoted to India. Studies that relate air quality and human health have been performed
only focusing on a few urban areas of India [Gupta, 2011; Guttikunda and Goel, 2013; Chate et al., 2013;
Nagpure et al., 2014] using aggregated data of local air quality. This study assesses the impact of only outdoor
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air quality on health for all of India on district scale. To our knowledge, the present study is the first high-
resolution district-scale modeling study for India to investigate and quantify premature mortality due to O3

and PM2.5 exposure. Here we estimate the burden of present-day anthropogenic air pollution on premature
human mortality using a high-resolution regional chemistry transport model with anthropogenic emissions
from Hemispheric Transport of Air Pollution (HTAP)-v2, combined with the latest district-wise population
count data sets [India Office of the Registrar General and Census Commissioner, 2011] for India. It should be
noted that themodel is unable to simulate microenvironments (such as near roadways) and our analysis does
not consider indoor exposure from cooking and heating.

Our estimates of PM2.5-caused premature mortalities are based on GBD [2010], applying integrated exposure
response functions developed by Burnett et al. [2014], which accounts for health effect at even higher
exposure concentrations. We have estimated premature mortalities due to ischemic heart disease (IHD), cer-
ebrovascular disease (CEV, stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC) for
adult population, and acute lower respiratory illness (ALRI) for infants (<5 years old) linked to PM2.5 exposure.
For estimating COPD linked to O3 exposure we used the exposure response function by Ostro [2004].
Additionally, this study calculates the economic loss and lost life expectancy due to PM2.5 exposure.
Surface O3 and PM2.5 concentrations over India vary significantly among the Indian states, largely due to
differences in emission patterns and regional meteorology (Figure S1 in the supporting information).
Therefore, we also address the state-wise impacts of air quality degradation on premature mortality,
economic cost, and lost life expectancy.

2. Method
2.1. Regional Chemistry Modeling

We used version 3.6.1 of the regional Weather Research and Forecasting model coupled with chemistry
(WRF-Chem) to simulate hourly surface O3 and PM2.5 distributions for the entire year of 2011 at 36 km
horizontal resolution in order to resolve urban and rural regions. The model was driven by National
Centers for Environmental Prediction Final (GFS/FNL) meteorological reanalysis fields. The model uses
MOZART-4 gas-phase chemistry linked to the GOCART aerosol scheme. The GOCART aerosol model simulates
five major types of aerosols, namely, sulfate, black carbon, organic carbon, dust, and sea salt. Anthropogenic
emissions of CO, NOX, SO2, NMVOC, PM10, PM2.5, and BC/OC are taken from the HTAP-v2 inventory
[http://edgar.jrc.ec.europa.eu/htap_v2/]. Fire emissions were provided to the model using the Fire
INventory from NCAR (FINNv1). More details on the modeling setup are discussed by Jena et al. [2015b].

Kumar et al. [2012] discuss in detail the validation of meteorological fields over India and shows that the index
of agreement for important meteorological parameters is greater than 0.6, indicating that WRF-Chem is
capable of simulating the variations around the observed mean. Detailed descriptions of the chemistry
simulations, including a discussion of the anthropogenic, biogenic and fire emissions, chemical boundary
conditions, and meteorological inputs are given by Ghude et al. [2013] and Jena et al. [2015a]. We evaluate
the model performance by comparing modeled aerosol optical depth (AOD550) with MODIS AOD550

(Figure S2), and simulated monthly mean PM2.5 and O3 with observations from different ground sites in
India (Figures S3 and S4). The model reproduces the observed distribution of AOD550 very well (mean
bias =�0.08 ± 0.1) but shows lower values over the Indo-Gangetic Plain (IGP) region. The model also repro-
duces the seasonality of surface PM2.5 of the sites in India. Both observations and model results show the
largest PM2.5 concentrations for Delhi and Agra, but the model tends to overestimate summertime and
underestimate wintertime values (Figure S3). For ozone, the model shows a similar seasonality as the
observations, but for most sites the model is biased high throughout the year. While the PM2.5 model bias
is relatively low, the model bias is large for surface O3 (about 10–30 ppb) at some of the sites in India. Most
of these observational sites are situated in urban/suburban locations which generally represent very local
conditions and may not be indicative of the overall model performance. High NOX emissions [Jena et al.,
2015b], coarser model grid spacing [Kumar et al., 2012], and underestimation of dry deposition [Martin
et al., 2014] could also be contributing factors that may lead to an overestimation of ozone production
and should be investigated in further detail. As will be discussed later, we try to account for the high model
bias in O3 when estimating premature mortality.
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2.2. Health Impact

The latest district-wise population count and age structure data set used in this work is taken from the
Registrar General and Census Commissioner, Government of India for the year 2011 (Figure 1a). These
district-wise population data are mapped to the 36 km model grid using GIS-based statistical methodol-
ogy. According to the Census 2011, around 31% (37 million) of the residents are 0–14 years old and 5%
(~6.6 million) of the residents are above 65 years old. Approximately, 32% of this population (in all age
groups) resides in urban areas.

The premature mortality attributable to anthropogenic O3 and PM2.5 has been estimated employing the
human health impact function given in Burnett et al. [2014], Lelieveld et al. [2015], and Apte et al. [2015] for
present-day concentrations. To estimate the premature mortalities we combined the results with epidemio-
logical exposure response functions by using the following relationship:

ΔM ¼ δc RR� 1ð Þ½ �=RR�P (1)

In equation (1), ΔM is a function of the baseline mortality rate of a particular disease category δc for countries
estimated by the World Health Organization (WHO) [2012]. P is the population count for the specific age
category. In this work the baseline mortality rate for a specific disease is obtained from the WHO health
statistics and health information system. RR is relative risk and (RR� 1)/RR is the attributable fraction.
Burnett et al. [2014] developed integrated exposure response functions that constrain the shape of the C-R
relationship using mortality data for even higher PM2.5 exposure concentration, which may represent the
countries where PM2.5 levels can be much higher such as East and South Asia. The value of RR attributable
to PM2.5 exposure is calculated for different disease categories for adults (IHD, CEV (stroke), COPD, and LC,
and acute lower respiratory illness (ALRI) for infant population). Here we have used RR derived by Burnett
et al. [2014] that parameterizes the dependence of RR on concentration (X) based on the metaanalysis of
observed data:

RR ¼ 1þ α 1� exp�b X � X0ð Þρ½ �f g (2)

For each disease categories, X0 represents the theoretical minimum-risk concentrations (range: 5.8–8.0μgm�3).
We also adopted the bounds representing the 95% confidence interval (CI) which was derived by Burnett et al.
[2014] from 1000 sets of coefficients and exposure response functions based on Monte Carlo simulations. For
estimating COPD linked to O3 exposure we applied the exposure response function by Ostro [2004]:

RR ¼ X þ 1ð Þ= X0 þ 1ð Þ½ �δ (3)

where X0 = 37.6 [Lim et al., 2012] and is the average of the range of 33.3–41.9 ppbv O3, and δ is 0.1521
[Lim et al., 2012]. More discussion on uncertainties and sensitivity calculations that address the shape of
exposure response function is given in detail in Burnett et al. [2014] and Lim et al. [2012].

Figure 1. Distribution of (a) district-wise India’s population and total premature mortalities due to (b) PM2.5 and (c) O3
exposure in 2011. (Unit: premature mortalities per grid box) (AP (Andhra Pradesh), AR (Arunachal Pradesh), AS (Assam),
BR (Bihar), CG (Chhattisgarh), DL (Delhi), GA (Goa), GJ (Gujarat), HP (Himachal Pradesh), HR (Haryana), JH (Jharkhand), JK
(Jammu and Kashmir), KA (Karnataka), KL (Kerala), MH (Maharashtra), ML (Meghalaya), MN (Manipur), MP (Madhya Pradesh),
MZ (Mizoram), NL (Nagaland), OR (Orissa), PB (Punjab), RJ (Rajasthan), SK (Sikkim), TN (Tamil Nadu), TR (Tripura), UK
(Uttarakhand), UP (Uttar Pradesh), WB (West Bengal)).
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Using the model-simulated annual mean PM2.5 and O3 fields, the premature mortalities for five different
diseases are estimated for population in each model grid. The state and national level mortalities are
estimated for the year 2011 by summing all grid within the state and national boundaries (Figure 1a).
We find higher O3 and PM2.5 concentrations over most of the densely populated regions but with a
strong seasonal variability (Figure S1).

We also evaluate state and nationwide economic cost of the health impact associated with the PM2.5 and O3

exposure during 2011. We used the value of the statistical life (VSL) to evaluate the cost of premature mor-
talities. VSL is widely used in the USA and Europe in cost-benefit analysis to assess the benefits of saving lives
[OECD, 2014]. In India, estimates of VSL on original country-specific studies are scarce. Therefore, the benefits
transfer approach has been applied, with estimates of VSL from developed countries being transferred after
adjusting for differences in income or national per capita output as suggested in OECD [2014] and Chen et al.
[2015]. To establish the India-specific VSL we used the following equation:

VSLIc ¼ VSLDb� GIC=GDCð Þβ � 1þ %ΔP þ%ΔYð Þβ (4)

VSLIc is estimated VSL for India for current year, VSLDb is adopted VSL for developed countries (e.g., USA
or Europe) for the base year, GIC and GDC are the Gross Domestic Product per capita at the Purchasing
Power (PPP) in India and developed countries for the current year, %ΔP and %ΔY are the percentage
increase in consumer price and real GDP per capita growth in India from base year to current year,
respectively. β is income elasticity of VSL. Using this approach, we estimate a VSL of USD 1.1 million
for India in 2011 (see Supporting Information S1).

For calculating lost life expectancy due to PM2.5 exposure we followed the estimate in Pope et al. [2009]. As
per their estimate, an increase of 1 μg/m3 in PM2.5 exposure decreases mean life expectancy by about
0.061 ± 0.02 years. This estimate is derived for higher-income countries, where average PM2.5 concentrations
are lower than those found for India and may introduce some additional uncertainties in our estimates.

3. Results
3.1. Health Impact Assessment

Figure 1a shows the population distribution for India in 2011, while Figures 1b and 1c show estimates of
PM2.5-related premature mortalities (per grid box) linked to CEV, COPD, IHD, LC, and ALRI, and O3-related
mortalities by COPD in 2011, respectively. The estimated premature mortalities are a function of both the
population and air quality in each grid cell resulting in high premature mortalities in heavily polluted and
populated areas. As seen in Figure 1, premature mortality is widespread in India. The Indo-Gangetic Plain
(IGP) shows highest estimated premature mortalities due to both ground level PM2.5 (300–800 excess
cases/grid box) and O3 (25–60 excess cases/grid box), followed by Southern India (Tamil Nadu and Kerala),
and Mumbai-Gujarat Industrial corridor. Among the different polluted areas, the largest share of premature
mortalities is in the IGP region with about 42% for PM2.5 exposure and 45% for O3 exposure. This is a point
of concern because one eighth of the world population resides in this region and most models and future
projections based on Representative Concentration Pathways (RCPs) emission scenarios predict significant
increase in O3 and PM2.5 concentrations from this region due to climate change [Horowitz, 2006; Fang
et al., 2013]. The number of cases of prematuremortalities due to PM2.5 exposure from IGP region is estimated
to be ~240,000. (95%CI: 140,000–300,000). This is equivalent to the estimate of 240,000 (in 2005) deaths
globally attributed to PM2.5 contribution from surface transportation [Chambliss et al., 2014]. Substantial
premature mortalities due to PM2.5 (300–600 excess cases/grid boxes) and O3 (10–40 excess cases/grid
box) exposure are also seen in the northeastern India, although this region is moderately populated. This
region shows less influence from anthropogenic activities [Ghude et al., 2013] but elevated levels of PM2.5

and surface O3 during premonsoon time as a result of biomass burning [Jena et al., 2015a] (Figure S1).
Figures 1b and 1c also distinguish metropolitan areas and big cities such as Delhi, Mumbai, Kolkata, and
Bangalore as locations where air pollution causes a significant number of premature mortalities.

To illustrate the state-wise pattern of premature mortalities, we present a bar chart (Figures 2a and 2b) showing
the excess number of cases due to PM2.5 andO3 exposure for various health outcomes (Adults: IHD, CEV (stroke),
COPD, and LC; infants: ALRI). The state with the highest premature mortalities due to PM2.5 exposure is Uttar
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Figure 2. Estimates of the state-wise premature mortalities due to (a) PM2.5 and (b) O3 exposure for various health outcomes
(TOMR, CARD, RESP, and COPD) in 2011. (c) State-wise premature mortalities estimated from the satellite-derived and
simulated PM2.5 concentrations.
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Pradesh (UP), which accounts for about 15% (about 86,000 excess cases) of all premature mortalities in India
during 2011, followed by Maharashtra (MH, 10%), and West Bengal (WB, 9%) and Bihar (BR, 8%). Other states
with high premature mortalities due to PM2.5 are Andhra Pradesh (AP), Tamil Nadu (TN), Gujarat (GJ),
Karnataka (KA), Madhya Pradesh (MP), Orrisa (OR), and Rajasthan (RJ), which collectively make up for 32% of
the countrywide premature mortalities. For O3-related mortalities by COPD, the greatest premature mortalities
are found in UP, with about 5500 excess cases (about 18%), followed by BR (11%), WB (9.5%), and MH and AP
(7%). It can be seen that, prematuremortalities due toO3 exposure for other states show a similar pattern to that
of PM2.5 premature mortalities.

The premature mortalities for different health outcomes are summarized in Table 1. Our estimate of
nationwide premature mortalities related to PM2.5 exposure in 2011 is about 570,000 people (47
people per 105 population) with the 95% confidence interval, 320,000–730,000. For adults (age
>25 years) premature mortalities linked to IHD, CEV (stroke), COPD, and LC are estimated to be about
250,000 (95%CI: 190,000–310,000), 190,000 (95%CI: 70,000–240,000), 120,000 (95%CI: 61,000–160,000),
and 2700 (95%CI: 1000–3600) people, respectively. Premature mortalities (ALRI) for children <5 years
old are estimated at about 7300 (95%CI: 4900–9000). Our nationally aggregated estimate of O3-related
premature total mortality by COPD is about 31,000 (95%CI: 23,000–39,000) people, which agrees very
much with the estimate by Lelieveld et al. [2015].

In addition to simulated PM2.5 concentration, we determined the annual estimate of ground level PM2.5

using column aerosol optical depth (AOD) [Van Donkelaar et al., 2010] from the MODIS satellite instru-
ments and coincident simulated vertical aerosol profiles from simulations described in section 2.1
(see Supporting Information S1). We further estimated premature mortalities from the satellite-derived
surface PM2.5 for 2011 similar to estimates made in recent studies [GBD, 2010; Brauer et al., 2012; Apte
et al., 2015]. Figure 2c shows the comparison between premature mortalities estimated from the satellite
and simulated PM2.5 concentrations for different states of India, and Table 1 shows the comparison for
the different health outcome. It can be seen that satellite-based total mortalities are a little bit higher
than the simulated PM2.5 exposure. Our nationwide estimated premature mortalities from satellite-
derived PM2.5 exposure is about 601,000 people, which is about 6% higher than the estimate derived
from the simulated PM2.5 exposure. The total number of mortalities estimated (both from simulated
and satellite-derived PM2.5 concentration) in this study compares closely to the WHO [2014] estimate
of 0.62 million, Apte et al. [2015] estimate of 0.57 million, and Lelieveld et al. [2015] estimate of 0.62 million
(South Asia) deaths due to air pollution in India. It is double in magnitude to that of 300,000 deaths globally
caused by human impact of global warming and climate change [GBD, 2010]. It should be noted that premature
mortalities estimated in this study is in addition to near-source exposure such as indoor cooking and heating
[Lim et al., 2013].

Simulated O3 concentrations are positively biased by about 10–30 ppb over the India region. Therefore, the
estimated premature mortalities (31,000) due to O3 exposure might be on the higher side. In order to see the
impact of bias on estimated premature mortalities due to O3 exposure we performed additional calculations
by reducing O3 amount by 15 ppb over the entire simulation domain. Assuming that the bias in O3 (15 ppb) is
entirely due to the model performance (and all other factors are correct) and representative for all of India,
the bias-corrected mortalities are estimated to be about 12,000 people.

Table 1. Premature Mortalities Due To PM2.5 and O3 Exposure in India During 2011

Health Endpoints
Premature Mortalities (95% CI)

(Simulated PM2.5)
Premature Mortalities

(Satellite PM2.5)

1 Ischemic heart disease (IHD)a 250,000 (190,000–310,000) 260,000
2 Cerebrovascular disease (CEV, stroke)a 190,000 (70,000–240, 000) 200,000
3 Chronic obstructive pulmonary disease (COPD)a 117,000 (61,000–165,000) 135,000
4 Lung cancer (LC)a 2,700 (1,000–3,600) 3,100
5 Acute lower respiratory illness (ALRI)b 7,300 (4,900–9,000) 8,200
6 COPD due to O3

a 31,000 (23,000–39,000)

aFor adult population (>25 years old).
bFor infants (<5 years old).
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Estimated mortalities are subject to several sources of uncertainty including uncertainties in the model para-
meterizations (e.g., emissions and physical/chemical parameterizations) and uncertainties in the exposure
response functions (e.g., RR values). Taking into account the variability in various emissions for South Asia,
the uncertainty in PM2.5 emissions could be as much as 30% [Kurokawa et al., 2013]. This adds an uncertainty
of about 12% in the estimated premature mortalities due to PM2.5 exposure. Additional sources of uncertain-
ties in our estimate lie in the use of a specific chemical mechanism to simulate PM2.5 and O3 concentration.
The GOCART aerosol scheme used in the present simulation does not include nitrate and Secondary Organic
Aerosol (SOA) production; therefore, nitrate and SOA are missing in the simulated PM2.5 concentration. The
relative contribution of nitrate and SOA in PM2.5 is estimated to be 10% and 15% in India [Behera and Sharma,
2010], which adds uncertainty of about 3% and 5%, respectively, in the estimated premature mortalities due
to PM2.5 exposure. Variability in different NOX emission inventories in India leads to an uncertainty of about
15% in daytime-simulated O3 concentration [Jena et al., 2015b], which adds uncertainty of about 36% in the
estimated premature mortalities due to O3 exposure. Overall uncertainty due to combination of above input
parameters translate into about 21% in our premature mortality estimates. RR values used in this study are
derived from the integrated exposure response functions that constrain the shape of the C-R relationship
using mortality data for higher PM2.5 exposure concentration; however, it is based on epidemiological cohort
studies conducted in other parts of the globe, which may not necessarily represent conditions in South Asia.
This requires future region-specific epidemiological research for constraining the shape of the PM2.5

concentration-response relation. Due to the lack of India-specific epidemiological exposure response func-
tions it is hard to quantify related uncertainties in our premature mortality estimates.

We calculated the nationwide and statewide economic cost due to premature mortalities linked to PM2.5

and O3 exposure using equation (4). We computed VSL for India to be about 1.1 million USD in 2011
adjusted by GDP per capita on PPP basis. The state-wise economic cost due to premature mortality of
PM2.5 and O3 exposure is largest in Uttar Pradesh (98 billion USD) followed by Maharashtra (62 billion
USD), West Bengal (57 billion USD), and Bihar (53 billion USD) (Figure 3a). On a national scale, we esti-
mate the economic cost to be about 640 (350–800) billion USD2011 annually because of total premature
mortalities due to PM2.5 and O3 exposure under modeled present-day pollution levels. The total GDP of
India was 1840 billion USD and total expenditure on health (public plus private) as percentage of GDP in
2011 for India was 3.9% [OECD, 2013], i. e., approximately 60 billion USD. The economic cost due to PM2.5

and O3 exposure estimated in this study is much larger than the total health expenditure by government
in 2011.

We further estimated health burden in terms of life years lost due to PM2.5 exposure following the estimates
given in Pope et al. [2009]. Nationally, PM2.5 exposure is estimated to cause a life year lost of about 3.4
± 1.1 years, on average. However, the regional variability is significant. Figure 3b shows the estimated life
years lost due to annual averaged PM2.5 exposure by state. The lowest lost life expectancy is noticed in
Jammu Kashmir (~0.6 ± 0.2 years) followed by Himachal Pradesh and Sikkim (~1.2 ± 0.4 years). Delhi suffered
the greatest lost life expectancy of about 6.3 ± 2.0 years, followed by west Bengal (6.1 ± 1.9 years) and Bihar
(5.7 ± 1.9 years), which are also the top three polluted states in India (Figure 3a). This is a point of concern
because overall average life expectancy is already low (64 years) in India; ranked 150 worldwide in 2012
and future increase in PM2.5 concentration may worsen the situation.

4. Conclusion

Our study suggests that the widespread PM2.5 and O3 pollution under present emission levels considerably
impact human mortalities and life expectancy in India. The present-day premature mortalities due to PM2.5

(~570,000) and O3 (31,000) exposure caused economic cost of approximately 640 billion USD, which is a
factor of 10 higher than total expenditure on health by public and private expenditure in India. Simulated
O3 concentrations are positively biased (about 10–30 ppb) over the India region, which might put our
estimated premature mortalities (31,000) due to O3 exposure on the high side. Our bias-corrected total mor-
talities estimate is less than half of this, about 12,000 people. In April 2015, the Union Environmental Ministry
of Government of India launched a national Air Quality Index as a major aggressive initiative for improving air
quality in urban areas for air pollution mitigation and to meet clean-air standards for reducing the
public health risk. Our estimates on premature mortalities, economic loss, and life lost years provide
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important information to elective members and policy makers to propose or impose emission controls to
benefit reduced public health risk due to exposure to outdoor air pollution. Therefore, these results may have
important policy implications considering the projected future increase in PM2.5 and O3 and implementation
of revised air quality standard for India.
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