
PREMIUM CALCULATION : 
WHY STANDARD DEVIATION SHOULD BE REPLACED 

BY ABSOLUTE DEVIATION 1 

BY DIETER DENNEBERG 

Bremen, FRG 

ABSTRACT 

Average absolute (instead of quadratic) deviation from median (instead of 
expectation) is better suited to determine the safety loading for insurance 
premiums than standard deviation: The corresponding premium functionals 
behave additive under the practically relevant risk sharing schemes between 
first insurer and reinsurer. 
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0. INTRODUCTION 

If one looks into the extensive literature on premium principles one gets the 
impression that actuaries are more or less incontent with the premium 
principles known till now. For example there was not known a nontrivial 
functional on nonnegative random variables, in actuarial terms a premium 
principle for insurance contracts, with the following elementary and plausible 
requirements: PI. The safety loading (premium minus expected value) is 
nonnegative, P2. no ripoff, i.e. the premium does not exceed the maximal 
claim, P3. consistency, i.e. the safety loading does not change if claims are 
augmented by a non-random constant and P4. proportionality, i.e. insuring a 
certain percentage of total damage costs that percentage of full insurance. It 
should be mentioned that the proportionality property P4 despite its practical 
importance is not regarded desirable by all authors (e.g. GERBER). We shall 
discuss that point at the end of section three. 

The present article intends to make actuaries familiar with a broad class of 
functionals with properties P1 through P4. These functionals had been 
developed (by SCHMEIDLER, YAARI and others) during the last decade in the 
context of economic decision theory with the intention to overcome the 
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controversely discussed shortcomings of expected utility theory. Expected 
utility had been used, too, to construct premium functionals as the exponential 
principle, favoured e.g. by GERBER. 

To make things as easy and accessible as possible we confine ourselves to an 
elementary one parameter class of premium functionals of the YAARI type 
(DENNEBERG 1985, 1988a and b). This functional resembles the standard 
deviation principle, where the safety loading is proportional to standard 
deviation. But the volatility measure standard deviation is replaced by average 
absolute deviation from the median and, surprisingly, all works. 

In the first section we compile the properties of average absolute deviation 
from median, a volatility measure which nowadays is nearly forgotten, whereas 
in the first part of our century it enjoyed equal rights with standard deviation 
(e.g. in CZUBER, cf. the discussion in DENNEBERG 1988b). The median being a 
quantile, it is appropriate here and in the sequel to employ the quantile 
function instead of  its inverse function, the usual distribution function. 

The premium functional with safety loading proportional to absolute 
deviation is introduced in the second section and properties P1 through P4 and 
some others--here  we stress only subaddit ivi ty--are verified. 

In section three the basic issue of comonotonicity of several random 
variables is introduced which, in some sense, is opposite to independence. 
Comonotonicity means that the risks involved are not able to compensate each 
other and this property implies additivity of our premiums. If risks are shared, 
e.g. between first insurer and reinsurer, the partial risks are comonotonic for 
most risk sharing schemes, among them all practically relevant ones. Hence our 
premium functional is compatible with the pratice of reinsurance. We discuss 
comonotonic additivity, a property not shared by the standard deviation 
principle, versus independence additivity, a property shared by the variance 
and exponential principles. 

The final section gives an outlook on the more general class of premium 
functionals mentioned above. There is a further well known volatility measure, 
which, like absolute deviation, is associated to that class: the Gini coefficient. 
It might be interesting for pricing reinsurance. 

1. QUANTILE FUNCTION AND ABSOLUTE DEVIATION 

Let X be a random variable to be interpreted as claims from an insurance 
contract or from a portfolio of such claims. We assume the increasing 
distribution function F = F x of X to be known. F(x), x ~  IR, denotes the 
probability of the event X < x. For our purposes the inverse function F' of F is 
better suited to represent the distribution of X than F. Since F, in general, is 
not one to one (e.g. for discrete distributions), we have to be cautious in 
defining F. First, for q in the unit interval [0, 1] we define the q-quantile of X to 
be the interval [ inf x, sup x]. The ½-quantile is the median of X. For 

F(x)  ~ q F(x)  ~ q 

all q ~ [0, 1] outside possibly a countable set the q-quantile of X reduces to a 
single point. Now we define F(q) to be some fixed point of the q-quantile of X. 
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Then MX.'= FP(½) is a median of  X. There is possibly an arbitrariness in the 
definition of FP and M X  but this does not affect the values of  the subsequent 
integrals. For  short the function /~' will be called the quantile function of  X. 

The expectation of X is 

oo I 

E X  "~ I x dF(x)  "~ I l~(q ) dq 
- ¢x::~ 0 

and we will make use of  the absolute and quadratic norms 

IIXIIt := EIXh IIXII2 := (E(X2)) n/2. 

The corresponding volatility parameters  are average absolute deviation from 
median r = r(X) and standard deviation a = a ( X ) :  

z:=IIX-MXIJl ,  a =IIX-EXII2. 

It is natural to take the real numbers M X  and EX as points of  reference in 
defining the respective volatility parameter  since these numbers minimise the 
respective distance from X: 

r = min I IX-a l l l ,  a = min IIX-al l2.  
a e ~  a ~  

I f  one looks for a parameter  to indicate asymmetries of  distributions one 
encounters two main methods. Either one uses higher odd moments,  e.g. 
E(x3), or semivariances. The analogous to the latter in the case of  absolute 
deviation are 

• 1/2 

"r_ .= IF ( q ) -  MXI dq, 
O0 

and one has 

1 

~+ := I IF(q)-MXI dq 
I/2 

E X - M X  = r + - r _ .  

From these equations we derive, that the triple (MX, r _ ,  r+)  of  parameters  
contains the same information about  the distribution of  X as the triple 
(EX, MX, r). 

Finally we prove subadditivity of  r and a, 

z ( X +  Y) _< r ( X ) + r ( Y ) ,  o'(X+ Y) _< o ( X ) + a ( Y ) .  

For standard deviation this is simply the triangle inequality for the norm 11"112. 
In case of  absolute deviation, apart  from the triangle inequality for the norm 
II'[In, one needs the above minimal property of  the median to cope with the fact 
that the median is not additive: 
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z(X+ Y) =IIX+ Y - M ( X +  Y)IIi : min IIY+ Y-all~ ~l lY+ Y - ( M X + M Y ) I I t  
a ~  

IIX- MXlll + II Y -  MYIIt = ~(X) + z ( Y ) .  

In section 3 there will be given a sufficient condition for additivity of  z 
analogous to additivity of  variance a 2 in case of independance. 

2. THE ABSOLUTE DEVIATION PRINCIPLE AND 

E L E M E N T A R Y  PROPERTIES 

Let ~ be an appropriate set of  random variables, e.g. the linear space L I o r  L 2 

of  random variables X on a fixed probability space with finite norm [IXIIi and 
IIXII2, respectively. In our context, a functional 

H:  X ~ ~, X~-~, H X  

is called a premium functional or premium principle. The properties P l through 
P4 from the introduction read in formal terms 

P l .  H X  > E X  

P2. HX_< s u p X  

P3. H ( X + c )  = H X + c ,  c e R  

P4. H ( c X )  = cHX, c >_ O. 

Under  the premium principles, studied in actuarial literature till now, only the 
trivial functionals H = E (net premium principle) and H = sup (maximal loss 
principle) have all four properties. The common standard deviation principle 

H X  = E X + a a ( X ) ,  X e  L 2, with parameter a > 0 

for example, violates P2. Our new premium functional 

H X : =  E X + p z ( X ) ,  X e L  1, with parameter 0 < p _< 1 

is constructed in the same way and will be called absolute deviation principle. 
It is worth mentioning that this functional coincides with the expected value 

principle for special distributions: namely if M X  = 0 and r_ ( X ) =  0, i.e. 
X > 0 and the probability of  no claim is > 1/2. Then H X  = (1 +p)EX.  

The absolute deviation principle can be expressed, too, by the three 
parameters median MX,  average negative and positive deviation ~_ (X) and 
r+ (X) from the median (see section 1): 

H X  = M X - ( I - p )  z_ ( X ) + ( l  +p)  v+ (X). 

In this form the functional can be made plausible, too. The median serves as a 
reference point. Positive deviations, i.e. larger claims, are weighted more than 
negative deviations, i.e. smaller claims, and total weight is one. 

We get an integral representation for the absolute deviation principle if, in 
the last formula, we replace r_ and ~+ by their defining integrals: 
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it/2 it HX = M X - ( I  -p)  (MX-£'x(q)) dq+(I  +p) (Fx(q) -MX)  dq 
~ 0  t12 

i I' = ,/2 Px(q) (1 -p)  dq + Px(q) (1 +p) dq 
O0 I/2 

Let y denote the distribution function on the unit interval with density 1 - p  on 
[0, 1/2[ and l + p  on [1/2, 1], then 

1 

HX = I Fx(q) dT(q). 
o 

Now we can prove the 

Theorem. The absolute deviation principle has properties P1 through P4 and 

PS. Fx -< /~r implies HX _< HY 

P6. H(X+ Y) _< HX+ HY 

PT. H is (Lipschitz-) continuous on Ll: 

IHX-H~ ~ (1 +p) IIX- Y]It. 

In P5 the condition /e' X < /~r (to be formally correct here, take e.g. right 
continuous quantile functions) is equivalent to F x >_ F r  and this condition is 
often called first order stochastic dominance of Y over X. Hence P5 states 
compatibility of H with that stochastic order. P2 is the special case 
Y - sup X. 

Property P6 states subadditivity of the functional H. In the next section we 
will give conditions under which additivity holds. In the general case a formula 
for the deviation H ( X + Y ) - ( H X + H Y )  from additivity can be found in 
DENNEBERG 1985. 

Proof of the theorem. 

PI is plain from the fact that p >_ 0, r (X) > 0. 
P2 is, as we noted already, a special case of P5. 
P3. Fx+c = l~x +c and the assertion follows from the integral representation 

of H. 
P4. For c _> 0 one has/~.x = cFx (for negative c the right hand side would no 

longer be an increasing function). 
P5 is an immediate consequence of integral calculus. 
P6 derives from additivity of expectation and subadditivity of r. 

P7. IHX-HYI = (rx(q)-PPr(q))d~,(q) _< IPx(q)-Pr(q)ld~'(q) 
0 0 

11 I 

_< (1 +p) / IPx(q)-l~r(q)l dq _< (1 +p) )IX- ~ l t .  
d 0 
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The last inequality is stated and proved as a separate lemma. 

Lemma. For  X, Y e L 1 one has 

IIPx-PyII1 _<IIX- Yllt, 

where, on the left hand side, the norm refers to Lebesque measure on [0, 1]. 

Proof. Denote by X v Y the maximum and by X ^ Y the minimum of  the 
random variables X, Y. The inequalities 

XA Y_<X, Y_<Xv Y 

imply 

By integration we get 

IlPx-PrlI~-< I 

Px^ y <_ Px, ;xv 

i rg- ; , , f  _< l x,, Y - ;X^  Y. 

(/~Xv r(q)--/~x^ r(q))dq = E ( X v  Y - X ^  Y) = EIX-  YI =IIX- Ell,. 

3. COMONOTONICITY AND REINSURANCE 

Here we tackle the question under what conditions on X and Y one has 
equality in P6, i.e. additivity of  H. The condition is that X, Y are eomonotonie 
random variables (a term introduced by SCHME1DLER and YAARI), i.e. per 
definitionem that one of  the following equivalent conditions hold: 

(i) (No risk compensation) For  each o90 as point of reference the functions 
f : =  X-X(og0)  and g : =  Y-Y(ogo)  don' t  have opposite signs, i.e. 

If+gt = Ifl+lgL. 
(ii) X = u(Z)  and Y = v(Z)  for some Z and (weakly) increasing functions u, v. 
(iii) X = u ( X +  Y) and Y = v(X+ Y) with continuous, increasing functions u, v 

such that u ( z ) + v ( z )  = z, z e  R. 

These conditions and the proof  of  their equivalence (Satz 7 in DENNE- 
BERG 1989) is valid for real functions X, Y, the distributions don' t  play any 
role. But distributions are essential in the following theorem (Satz 1 in 
DENNEBERG 1989) : 

Theorem. For comonotonic  random variables X, Y the quantile functions 
behave additive, 

ks+ = PPx+ 

Applied to the absolute deviation principle H we get 

PS. H ( X +  Y) = H X +  H Y  for comonotonic X, Y e  L ~ . 
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The proof  of  the theorem uses the fact that for increasing u one has 
P~(x) = u o Fx.  The proof  is easy if all distribution functions and the functions 
u, v in (iii) are one to one. 

Returning for a moment to the first section we, too, have 

z(X+ Y) = z ( X ) + z ( Y )  for comonotonic X, Y~ L I . 

Hence comonotonicity plays the same role for average absolute deviation z as 
independence plays for variance a 2. But notice that independence and comon- 
otonicity are opposite, mutual exclusive properties (except the case where X or 
Y is constant). 

We give typical examples for comonotonic random variables. 

Example. u(x) = x ÷ := max{0, x} and v(x) = - x - ,  where x - : =  ( - x )  +, 
are continuous increasing functions and u(x)+ v(x) = x. Hence, for a random 
variable X, the random variables X + = u(X) and - X -  = v(X) are comono- 
tonic. If X has median MX = 0 (this can be achieved by a translation) 
comonotonicity implies r (X)  = z ( X + ) + r ( X - ) .  This equation is known from 
Section 1 since r ( X  +) = r+ (X)  and z ( - X - ) =  z ( X - ) =  z_ (X)  in case 
MX = 0. 

Example (excess of  loss or stop loss reinsurance). Let Z be total claims and a 
the priority or stop loss point. Define v(z):= ( z - a )  +, u(z):= z - v ( z )  and 
X : =  u(Z), Y:= v(Z). Then X is the part of total claims Z = X +  Y to be 
covered by the primary insurer and Y the pa.rt to be covered by the reinsurer. 
X, Y being comonotonic H is compatible with this type of  reinsurance, 
H[Z] = H[X]+ H[Y]. 

We know already from P4 that H is compatible, too, with proportional 
reinsurance. But we can state more. Condition (ii) or (iii) for comonotonicity in 
connection with P8 says that H is compatible with very general risk sharing 
schemes. One has only the restriction that both risk sharing partners have to 
bear (weakly) more if total claims are higher. There are forms of reinsurance of  
minor or lacking practical importance which injure this condition and which 
are not compatible with H. An example is largest claims reinsurance. 

The essential properties of  our new premium functional have been derived 
now, and before looking on possible generalisations, we will discuss the crucial 
properties: proportionality P4, subadditivity P6 and comonotonic additivity 
P8. First notice that P4 can be derived from P8 using P5 or norm continuity. 
We will compare P6 and P8 with independence additivity. For  the discussion it 
is essential to specify the situation in which a premium functional is to be 
applied. We distinguish two situations. 

If the market for insurance is in equilibrium in the sense that it offers no 
arbitrage opportunity, prices are additive at least for independent risks. Thus 
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premium functionals which are additive on independent risks, e.g. the variance 

1 
principle EX+aa2(X) and the exponential principle - In Ee ax, are candidates 

a 

for modeling market prices. 
On the other hand, subadditive but not additive premium functionals as our 

absolute deviation principle or the standard deviation principle are apt to 
depict the law of large numbers. Hence they are applicable in portfolio 
decisions. Here reinsurance is an important mean, may it be to reduce the ratio 
of the portfolios volatility to the companies equity below a desired limit, or 
may it be to reduce volatility of the various companies portfolios through risk 
exchanges such that, eventually, the companies portfolios become proportional 
to the market portfolio. In such decisions comonotonic additivity P8 which--  
as pointed out above--applies to most risk sharing schemes, is very useful and 
can simplify decisions. Notice that the standard deviation principle is not 
comonotonic additive. 

4.  G E N E R A L I S A T I O N S  A N D  T H E  G | N I  P R I N C I P L E  

As the reader may have guessed already, the representation 

l 

HA" = I JOx(q) dy(q) 
,1 0 

of the absolute deviation principle is capable of generalisation. One can replace 
the piecewise linear function ~ by any distribution function on the unit interval 
[0, 1]. Such a function ~, is called a distortion of probabilities. Condition P1 
means that the graph of ~, lies below the diagonal, y(q) < q. P6 is valid if ~, is 
convex and has bounded density. For P7 bounded density is needed, too, and 
the Lipschitz constant is the supremum Ily'llo~ of the density y'(lly'lloo = I +p  in 
case of the absolute deviation principle). All the other properties remain valid 
without further restrictions. In DENNEBERG 1989 (see also DENNEBERG 1990) 
these assertions are proved and the converse, too : any functional H on L I with 
properties PI through P8 can be represented by the above integral with a 
convex distribution function 7 having bounded density. 

Sometimes the absolute deviation principle may not be appropriate owing to 
the piecewise linearity of 7. For excess of loss or stop loss reinsurance the latter 
implies that the safety loading factor remains constant with rising priority or 
stop loss point, respectively. In practice one rather observes rising safety 
loading factors, too. Already the next simple distortion allows to model this 
phenomenon. For the absolute deviation principle the density can be written as (1) 

y'(q) = l + p s g n  q - - ~  . 
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Replace the signum by the next elementary odd function, the identity: 

The corresponding distortion is the 
y(q) = q + ½ p ( q 2 _ q ) ,  which is convex on [0, 1] 
premium functional is 

where 

1 
H X  = E X  + p -- Gini X, 

2 

quadratic polynomial 
for 0 _ < p <  2, and the 

1 f, 

G i n i X : =  / P ( q ) d q 2 - E X =  E X g i n i X  
d 0 

and gini X is the (normed) Gini coefficient, which is used in economic welfare 
theory as an inequality measure for wealth distributions in populations. The 
usual definition for the Gini coefficient is twice the area between the diagnoal 
and the Lorenz function 

| I q 
- F(p)dp, 

l (q )  E X  o 

I' gini X = 2 ( q - l ( q ) )  dq. 
0 

The equivalence to the above formula is calculated easily with Fubinis theorem. 
Another representation of the Gini coefficient is 

1 
Gini X = - IIX- Yllt 

2 

where Y is a random variable such that X, Y are independent and identically 
distributed (see ZAGIER). This new premium functional could be called the Gini 
principle. 

The above general premium functional can further be generalised. First the 
basic probability measure P or the distorted y o p can be replaced by more 
general set functions. Second--as  in expected ut i l i ty-- the claims in money 
terms can be valued by a non linear utility function. Thus the proportionality 
property P4 could be weakened. Functionals of this type and their axiomatic 
representations are investigated in economic decision theory (see e.g. WAKKER, 
where the literature is discussed, too). 
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ABSTRACT 

We consider exponential smoothing Y~ = ~tX~+(l-at)Y~_l, 0 < ~ < l, in 
experience rating. Here the premium Y~ is determined by the policy's own 
claims history (Xn). In order to uniformize the fluctuation of premiums, it is 
appropriate to use a bigger 0t for the big policies than for the small ones. When 
the size of the policy changes with time, a need arises to change ct corre- 
spondingly. It has recently been shown that changing based on the size of the 
premiums Y, may lead to too low a tariff level. This result is presented here 
and illustrated by means of simulation. Further, some general results are given 
how the changing can be made without a decline in the tariff level. The results 
are applied to a tariff system in which the linking of the smoothing parameter 
to the size of the policy is particularly motivated. 

KEYWORDS 

Exponential smoothing; adaptive smoothing; experience 
chains; big claims; workers' compensation insurance. 

rating; Markov 

I.  INTRODUCTION 

In this paper we consider certain questions related to applications of exponen- 
tial smoothing to premium rating. Especially, we deal with problems concern- 
ing changing the smoothing parameter. 

Let (X,, n >_ 1) be a sequence of random variables. Exponential smoothing 
(Y,) of the sequence (Xn) is defined by 

(1.1) Y, = 0~X,+(1-oOYn_l, 

where ~ is a constant, 0 < ~ < 1. 
Exponential smoothing is often used for defining the premiums Yn on the 

basis of the policy's own claims history (X,) (cf. e.g. [5] and [6]). If the random 
variables X, have a common expectation, then the premiums Y, are (asympto- 
tically) unbiased. With suitable additional assumptions exponential smoothing 
leads to a strong correspondence between cumulative premiums and claims of 
an individual policy. E.g. if the random variables X, are uncorrelated and have 
a common variance, then the variance of the cumulated difference of claims 
and premiums remains bounded (cf. [2], p. 288). 

ASTIN BULLETIN, Vol. 20, No. 2 
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See e.g. [3], [4] and [7] for the connections of exponential smoothing with 
credibility theory. 

Throughout  this paper, X, is interpreted as the total claim amount  at year n, 
or some modification of  it, of  a given policy. 

We consider policies consisting of  distinct similar risks the number of  which 
essentially varies from one policy to another. An example is served by the 
workers' compensation insurance, where the total risk consists of  the risks 
related to the workers of  the policyholder. 

The bigger the smoothing parameter ~ is, the more closely the premiums 
follow the fluctuation of  the claims history. For  policies like the above, the 
fluctuation of  the claims history is relatively bigger for small policies than for 
big ones, where the size of  the policy is measured by the (risk) premium. As a 
consequence, if the same smoothing constant ~ were used for all policies, also 
the premiums of  the small policies would fluctuate more than those of  the big 
ones. Therefore, it is natural to use a smaller ~ for the small policies than for 
the big ones, i.e. to define ~ as a monotonically increasing function of  the 
premium. 

When the size of  the policy changes with time, a need arises to vary ~, as 
above, monotonically, increasingly with respect to the premium. In a recent 
paper [1], it is shown, in case X,, i.i.d., that this kind of  varying procedure leads 
to too low a premium level, cf. (1.3) below. This result is based on the theory of 
Markov chains on a general state space. 

The above paper considers the smoothing procedure 

(1.2) z .  = p ( z . _ , ) x . + ( l - / ~ ( z . _ 0 ) z . _ , .  

where fl is a monotonically increasing function [0, oo) --, [c, d], 0 < c < d < I. 
It follows from Theorem 4 of  [1] that EY, ,  EZ,  converge with a geometric 
convergence rate to their limits Ex, Ez and that 

(1.3) Ez < Ev = EX,.  

This result is based on Theorem 3 of  [I] which states that (Y,) and (Z,) are 
geometrically ergodic Markov chains (see [1] for definition). The limits E r ,  E z 
are the means of  the invariant probability distributions of  the Markov chains 
concerned. These results are presented in Section 2 in greater detail. 

We are concerned in this paper with a reduced model whose stability 
properties can be studied. Our purpose is to call attention to the phenomenon 
where the asymptotic value is below the value expected. We believe that this 
kind of  phenomenon may occur also in more general related models. 

In Section 3 the result (1.3) is illustrated by means of  simulation. 
Sections 4 and 5 deal with how the changing of  the smoothing parameter, in 

certain cases, can be controlled without the above-mentioned descending of  the 
tariff level. In Section 4 we present some general results and in Section 5 these 
are applied to a tariff system, in which linking the smoothing parameter to the 
size of  the policy is motivated, not only because of  the uniformizing of  the 
fluctuation of  premiums as such, but also because of  the equitability of  the 
policies. 
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2. VARYING THE SMOOTHING PARAMETER ON THE BASIS 

OF THE PREMIUMS 

In the following we present results related to varying the smoothing parameter 
as a monotonically increasing function of the premium. These results are 
from [1]. For unexplained concepts the reader is referred to that paper. 

Let X~, n >_ 1 be i.i.d, random variables taking non-negative values. Assume 
EX~ < ~ and that X. has a continuous density function g > 0 on (0, ~ )  (we 
allow P(X.  = O) > 0). 

Let Yo, Zo be random variables taking non-negative values and let iteratively 
f o r n >  I 

Y~ = ~X.+(1-o~)Yn_l,  

Z n .~- j ~ ( Z n _ l ) X n " ~ ( l - ~ ( Z n - l ) ) Z n -  I , 

where ~ ~ (0, 1) and ,8 : [0, or) ~ [c, d] is monotonically increasing, 0 < c < d < 1. 
Here (Y.) and (Z.) are interpreted as (alternative) sequences of premiums 

determined by the annual claims amounts (X.) of a given policy. 
With the above assumptions we have the following results. 

Theorem 2.1. The sequences (Yn) and (Z,) are geometrically ergodic Markov 
chains (with state space S = [0, or)). 

It follows from Theorem 2.1 that the chains (Yn), (Z~) possess unique 
invariant probability measures n r ,  rCz with corresponding means Ey, Ez,  
respectively. 

Theorem 2.2. 

(i) There exist functions Cy, C Z < (x) and constants p r , p z  ~ (0, 1) such that 

(2.1) IEY,-Ey[  _< Cy(yo)p~., 

(2.2) IEZ,,- Ezl _< Cz(zo)p~ 

for all n, for all initial states Yo and for almost all initial states zo (with respect 
to the Lebesgue measure). 

(ii) Ez < E r =  EX,,. 

If the random variables X, and the initial values Yo, Zo take their values in a 
finite interval [0, M], the above result can be sharpened. In this case, under the 
same assumptions as above (in particular, assuming that g is continuous and 
positive on (0, M) and allowing P(X, = O) > O, P(X,  = M) > 0) the result (i) 
of Theorem 2.2 can be replaced by the following one: 

(i') There exist constants Cy,  Cz > 0 and pr ,pze (O,  1) such that 

(2.3) I E Y . -  Erl _< Crp~, 
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(2.4) I E Z , -  Ezl _< Czp~ 

for all n and for all initial states Yo, Zo ~ [0, M].  
In this case the chains (Y,) and (Z,) are uniformly ergodic on the state space 

S = [0, M].  

3. A SIMULATION EXAMPLE 

The purpose of  the simulation is, in a simple case, to give a picture of how 
much smaller E z is than Er,  cf. (1.3). One can broaden the picture by 
examining other cases and using also numerical methods in addition to 
simulation. 

The computing was carried out by an IBM Personal Computer  XT. The 
simulation was arranged as follows. The variables X,,  n >_ l were taken 
independent and uniformly distributed over [0, 1]. We fixed 

Yo=Zo=O.5, 
= 0 . 5 .  

As fl we used 

fl(z) = 0 .2+0.6z ,  0_<z_<  i (thus c =  0.2 and d =  0.8). 

Using the constants and the function fl above, we calculated Yn, Zn, 
n = 10,50. 

We ran the simulation 2000 times and calculated the sample means and 
99%-confidence intervals (using normal approximation) for the variables yn, 
Z ,  and for completeness also for X,,  n = 10,50. 

These quantities are presented in the table below. One can see that Z is 
considerably smaller than Y already at time n = 10. 

TABLE 3.1 

Sample mean Confidence interval 

n = 10 

X 0.5067 0.4902 0.5232 
Y 0.5035 0.4939 0.5131 
Z 0.4696 0.4601 0.4791 

n = 50 

X 0.5077 0.4910 0.5243 
Y 0.5042 0.4947 0.5138 
Z 0.4689 0.4594 0.4783 

The sample mean and its confidence interval were calculated for Zl0 as 
follows, and similarly for the other variables: 
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sample  mean  Z I o -  

2000 

1 E Zio,k, 
2000 k= i 

where Zio, ,  is the value of  Zlo at the k ' th  run, 

confidence interval = Zlo ~ 2.58 - -  

1/2 200O 

z 1 where Sz, io = (Zlo, k-- 't~'lO) 2 
k=l 

SZ, 10 

4. VARYING THE SMOOTHING PARAMETER WITHOUT 

CORRELATION WITH THE CLAIMS HISTORY 

In the following, we consider  certain condi t ions  under  which the varying of  the 
smooth ing  pa rame te r  can be done  wi thout  a decline in the p remium level (cf. 
Theo rem 2.2). First, we show that  this works  if the varying procedure  is such 
that  the smooth ing  pa ramete r s  do not correlate  with the claims history,  see 
T h e o r e m  4.1 below. We then apply  Theo rem 4.1 to a case in which the 
p remium P,  is presented in the fo rm 

(4.1) P, = V,p, ,  

where V is a vo lume measure  o f  the policy and p a measure  of  risk per vo lume 
unit  derived f rom the claims history of  the policy. The  vo lume measure  V can 
be e.g. the n u m b e r  o f  similar subrisks.  It turns out  that,  under  certain 
assumpt ions ,  the varying procedure  o f  the smoo th ing  pa rame te r  can be based 
on V so that  the p remiums  are unbiased,  see Coro l la ry  4.2 below. 

Theorem 4.1. Let (X,) be a sequence of  r a n d o m  variables taking non-negat ive  
values, with EXn = a < ov for  all n. Let Zo > 0 and let 

Z ,  = c% X, + ( l - 0%) Z , _  l , for  n >_ 1, 

where the ot,'s are r a n d o m  variables satisfying the condi t ions  

(4.2) 

and 

(4.3) 

0 < c _ < c % < d <  I 

E((1 - 6tn) (1 - 0c,,_ l ) ' "  (1 - ark+ I) 0tk Xk) = 

E((1 - Otn) (1 -- 0~ n_ I ) ' ' "  (1 -- 0tk+ I) 0tk) EXk 

for  all k, n; k _< n. 
Then  

(4.4) [EZ,-a]  _< I Z o - a l ( 1 - c ) "  for  all n.  
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Proof. We have 

Z~ = O~nXn+(i --ot,,)~n_l Xn_l +(I  --o~,,) (1--O~,,_l)O~n_ 2 Xn_ 2 

+ "'" + ( i - - 0 ~ ) ( 1 - - ~ - 0 ' ' "  (1--~2) 0qXI 

+ (1 - - ~ )  ( l - -0Cn_l) '"  (1--~Xt) [ a + ( Z o - a ) ] .  

Using (4.3) we get 

EZ~ = a E ( o c , + ( l - ~ n ) 0 ~ _ l  + "" + ( 1 - ~ ) ( 1 - c t , _ l ) . . .  (1-oc2)o~ ~ 

+ ( 1 - ~ , )  ( 1 - ~ _ 0 . . -  ( 1 - ~ l ) )  

+ (Zo-a) f((1 -~ . )  (l -~._,). . .  (l -~0).  

It is easy to see that 

~ . + ( 1 - ~ . ) ~ . _ ~  + ... + ( I - ~ . )  ( I - ~ . _ ~ ) - . .  ( 1 - ~ 2 ) ~  

+ ( 1 - ~ . ) ( 1 - ~ . _ 1 ) . - . ( 1 - ~ 1 ) =  1 for a l l n .  

Thus 

(4.5) E Z . - a  = ( Z o - a )  E((I  -0~.) (1 - ~ . _ , ) . . .  (I - ~ l ) ) -  

Since ( 1 - ~ k )  < 1 - c  for all k, the assertion follows from (4.5). 
Note that condition (4.3) does not hold true for (Z.)  in case of  Theorems 2.1 

and 2.2. We apply Theorem 4.1 to a claims process satisfying the following 
assumption. 

Assumption (4.6). Let a risk at year n consist of  N~ subrisks v/.,l . . . . .  V~,N. for 
which 

(1 °) E~..k= a <  oo for a l ln ,  k. 

The numbers of  subrisks N~ are here random variables, ENn < oo for all n. We 
assume that the variables qn,k are independent of  the process (N~). (We allow 
mutual correlation of  the variables r/~,k as well as that of  the variables Nn.) 

N. 
Denote ~. = Z v/~,i and Xn = ~./N~. 

i=1 

Under assumption (4.6) and using the notation above, we have the following 
corollary of  Theorem 4.1. 

Corollary 4.2. Let ~ be a function of  the number of  the subrisks N satisfying 
0 < c_< ~(N)_~ d <  i. Then 

(i) relation (4.4) holds true for the process 

(4.7) Z,, = ~nXn+(1--0~,)Z,_t ,  n > I, 

where ~ = ~(Nn-~), 

(ii) if P,  = Z ,  Nn, then 
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(4.8) 
I E P , -  E~,I 

ENn 
_~ la - zo l  ( l - c )  n, 

where Zo is the initial value of  the process (4.7). 

Proof. 

(i) Clearly, EXn = a for all n. We have to verify condition (4.3). Denote 
( I - c t , )  ... (1--~tk+l)Ctk = ct (k ,n) .  Since the variables qk.i are independent of  
the process (N,,), they are independent of  ~t(k, n). Hence 

(4.9) E(~x(k, n)tTk, i ) = Eo~(k, n)  Erlk, i = aEct(k, n) 

for all k, n, i; k _< n, i _< Nk. Condition (4.3) then follows from (4.9). 

(ii) By the independence assumption of (4.6), E~n = a E N , .  By a similar 
reasoning as in the proof  of Theorem 4.1 and in that of  item (i) above, we see 
that EP~ = aEN~ + (z o - a)E(( l  - ct,) ... (1 - ct t) N,,). Accordingly, the assertion 
follows from condition c < ~tn. 

Consequently, in this case where the varying of the smoothing parameter is 
based on the volume measure N, instead of  the premiums, the premiums keep 
the right level. 

Note that the variables Xn in assumption (4.6) need not be independent of 
the parameters ct~. If, for instance, ~ is a monotonically increasing function of 
the number of the subrisks N, then in case ~ is big (small) then also N is big 
(small) and X is more (less) concentrated. Note also that the variables qn.i, 
i = 1 . . . .  , N, are allowed to be mutually correlated. This fact has significance 
in the application presented in Section 5. 

Condition 1 ° in assumption (4.6) can be weakened. For example, it is easy to 
see that Collorary 4.2 remains valid if condition (1 °) is replaced by the 
following one : 

(2 °) The portfolio is composed of  classes C j, j = 1 . . . . .  m such that each class 
Y j consists of  N~ subrisks r/-~,.i . . . .  , r/,.uo for which 

Erl~.k= a j <  ~ for a l ln ,  k,  

and that the ratios rj = N~/N,, are constants. (In this case a = ~ rjaj.) 
J 

In workers' compensation insurance the subclasses C j can be interpreted as 
different occupational groups. 

5. A TARIF F  SYSTEM IN WORKERS'  COMPENSATION INSURANCE 

The following presentation is founded on a Finnish tariff system for workers' 
compensation insurance. The tariff (in the following FT) is intended for 
medium-sized and bigger employers and is applied since 1983. The tariff aims 
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at a relatively strong correspondence between claims and premiums of individ- 
ual policies. The premium is mainly determined by smoothing the policy's own 
claims history. However, in order to decrease the effects of  large claims 
amounts, also a collective part of  the premium is charged. 

For  each policy, the premium P, of year n is presented in the form (cf. 
4.1) 

(5.1) P .  = V.p.. 

Here V, is the payroll of  the policyholder at year n. The risk per wage 
monetary unit measure Pn will be defined later. Let 

x.=~. lV. ,  

where ~, is the policy's total claims amount  at year n. The purpose of the tariff 
is to smooth the possibly strongly fluctuating time series (X,) to a less 
fluctuating sequence of  coefficients (p,). 

We restrict, in this context, the presentation of  the application of  the tariff to 
the case where there is not any significant trend in (X,,) and the risk structure of  
the policy does not essentially change. (Note that the idemnifications are, for 
the most part, tied to the wage-index and follow this index closely. As a 
consequence, a trend in (X,), caused by inflation, can be regarded as 
negligible.) In case of  a trend or structural change the tariff will not be 
straightforwardly applied. (See e.g. [2] for controlling this type of  situations.) 

The time series (X,) is smoothed, first, by taking a moving average 

(5.2) Xg'  "~ ~ CkXn_k, 
k = l  

where ci _> O, E ci = 1, m < oo. (In FT cl = 0.5, c2 = 0.3, c 3 = 0.2.) 
Then exponential smoothing is applied to (X,*) resulting in the sequence 

(Z,), defined as follows 

(5.3) Z o = zo ,  

Z,  = c%X,*+( l - c t , )Z , , _ l ,  when n > 1, 

where z o is an initial value and ct~'s are the smoothing parameters. (A 
motivation for the double smoothing is that the change in the premiums, 
caused by a large claims amount,  has a flatter shape than what would be the 
case if only exponential smoothing were applied.) We will revert to the 
definition of  ~,'s later. The varying procedure of the smoothing parameters will 
be such that (Z,) can be considered to represent a correct tariff level (cf. 
Section 4 and the discussion at the end of  this section). 

The smoothing procedure (5.3) is such that, as an effect of  a big claims 
amount  in some year, (Z,) can increase remarkably. Consequently, (Z,) is not 
suitable for (p,,), since an even development of  the premiums is desirable from 
the policyholder's point of  view. For this reason, the increase of  the premiums 
is reduced by introducing the variables q,,, defined as follows 
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(5.4) qo = Zo, 
q, = min(Zn ,hq ,_ l ) ,  for n > l ,  

where h > 1 is a coefficient limiting the increase of  the process (q,). (In FT 
h = 1.5.) See Figure 5.1. 

- - X  - - Z  . . . .  q 

FIGURE 5.1. 

Clearly, q~ _< Zn. As mentioned above, (Z,,) can be considered to represent a 
correct tariff level. Due to this, all policies are charged a collective part of  the 
premium corresponding to the expected difference Z n - - q n  over the whole 
insurance portfolio. The coefficient p,, (cf. 5.1) is defined as follows 

p. = (1 + r , , ) q . ,  

where the coefficient r.  is common for all policies and r . q .  V n is the collective 
part of  the premium of  the individual policy in question. (In FT rn has been 
0.02.) 

We turn to the definit ion of the smoothing parameter ~. Since the policies 
consist of several similar risks the number of risks varying from one policy to 
another, the fluctuation of the claims process is steeper for small policies than 
for bigger ones. This steeper fluctuation would be transmitted also to (Z,) i f  
the same smoothing constant were applied for all policies. In this case (q,,) of 
the small policies would differ more from the correct tari f f  level (Zn) than (q,,) 
of the big policies. As a consequence, the small policies would line their pockets 
at expence of the big ones. For this reason, and also for harmonizing the 
fluctuation of the premiums, it is reasonable to use a smaller a-coefficient for 
small policies than for big ones. 

In the following, we first consider the choosing of ~ when a policy starts in 
the tariff  system considered. The insurance portfolio is divided, on the basis of 
the size of the premiums, into classes Ci, i = 1, . . . , / ,  where the classes are in 
increasing order according to the premium size. The limits of the classes are 
adjusted yearly on the basis of the wage-index. For the smoothing parameter of 
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the "med ium-s i zed"  policies has been chosen ~ = 0.2. The purpose of  this 
choice is that the fluctuation of the premiums would be of a suitable magnitude 
from the policyholders point of  view. On the basis of  the insurer's statistics, a 
p a r a m e t e r  0~ i has been associated with every class Ci so that the gain caused by 
the truncation (5.4) would be approximately of  equal size for the different 
classes. This has led to an increasing sequence of  parameters  ~ ,  
0.1 _< 0g i ~ 0.28, i = 1 . . . . .  1. A new policy starts in the tariff system with the 
smoothing parameter  ~ defined by its initial premium. 

The changing of  ~ is carried out on the basis of  the payroll V n of the 
policyholder (cf. 5.1). Every fifth year the size of  the policy, measured by the 
payroll proport ioned to the wage-index, is checked, and if the size has changed 
essentially, the parameter  ~ is changed correspondingly. 

The changing procedure is in accordance with assumption (4.6) (with 2°). 
Note  first that it follows from assumption (4.6) that condition (4.3) holds true 
even if X k in (4.3) is replaced by X k - i ,  Xk -2  or X k - 3 .  As a consequence, 
Corollary 4.2 remains valid if X,* (see 5.2) is substituted for X, in (4.7). 
Further,  it is reasonable to assume that the risks rln, k associated with single 
wage monetary  units k are independent of  the size of  the total payrolls. In 
addition, the straightforward use of  the tariff is restricted to the case where 
there is not a significant trend in (Xn) and the risk structure is stable. Note also 
that assumption (4.6) allows mutual correlations of  the variables q/,,~. 

Accordingly, by Corollary 4.2 (Z,),  and hence (p,), can be considered to 
represent a correct tariff level. 
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