
excretion and that loss of glomerular anionic content may
be associated with increased urinary GAG excretion.
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Prenatal Diagnosis of Myotonic Dystrophy Using Fetal
DNA Obtained from Maternal Plasma, Paola Amicucci,1,2

Massimo Gennarelli,3 Giuseppe Novelli,1,2* and Bruno Dallapic-
cola1,2 (1 Department of Biopathology and Diagnostic Im-
aging, Tor Vergata University of Rome, Via Di Tor Ver-
gata 135, 00133 Rome, Italy; 2 CSS-Mendel, Piazza Galeno
3, 00161 Rome, Italy; 3 Istituto di Ricovero e Cura a
Carattere Scientifico, Fatebenefratelli, Via Pilastroni 4,
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Myotonic dystrophy (DM; MIM 160900) is an autosomal
dominant disorder associated with expansion of an un-
stable CTG trinucleotide repeat in the 39 untranslated
region of the DM kinase gene (DMPK) on chromosome
19q13 (1 ). Patients are heterozygous for expanded alleles
in the range of 50–4000 repeats (1 ). The molecular diag-
nosis of DM routinely is performed by analyzing the CTG
number on genomic DNA extracted from various biolog-
ical sources, including trophoblast cells sampled at 10–11
weeks of amenorrhea during the first trimester of preg-
nancy (2, 3). We evaluated the possibility of using mater-
nal plasma for prenatal diagnosis of DM, by monitoring
the pregnancy of an unaffected woman whose husband
was affected by DM (70 CTG repeats).

All participants gave oral and written informed con-
sent.

A blood sample (;10 mL) was collected at 10 weeks of
gestation before chorionic villus sampling (CVS) and was
centrifuged at 3000g for 10 min. Plasma was carefully
removed from EDTA-containing tube and centrifuged
again at 3000g for 10 min. DNA was then extracted from
2 mL of the centrifuged plasma with a QIAamp Blood Kit
(Qiagen). The elution volume of the final step was 300 mL.
Genomic DNA was also extracted from chorionic villi and
peripheral blood lymphocytes of both parents.

To check for the presence of fetal DNA in maternal
plasma, we performed microsatellite DNA analysis
(CSF1PO) and Y-specific PCR (amelogenin) amplification
after having ascertained that the fetus was a male (Fig. 1,
A and B). DMPK CTG repeat amplification was carried
out as reported previously (2 ) with a slight modification.
A first round of PCR consisting of 15 cycles (30 s at 94 °C,
1 min at 62 °C, 5 min at 68 °C, and a final elongation of 5
min at 68 °C), was performed in 30 mL of reaction mixture,
using 25 pmol each of forward and reverse primers
DMK9003 (59-CACAGGCTGAAGTGGCAGTTCCA-39)
and DMK11111 (59-TGTCGGGGTCTCAGTGCATCCA-
39) (2 ), and 5–10 mL of the extracted DNA. We reamplified
1 mL of this first-round reaction, using 25 pmol each of
forward and reverse primers MDY-1D (59-GCTC-
GAAGGGTCCTTGTAGCCG-39) and MDY-Z2A (59-TTC-
CCGAGTAAGCAGGCAGA-39) (3 ) for 40 additional cy-
cles, using the same cycling and reaction conditions.
Amplicons were separated by 1% agarose gel electro-
phoresis and blotted onto a nylon membrane. Filters were
hybridized with (CTG)5

32P-labeled oligonucleotide as
described (3 ). The same protocol was used for genomic
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DNA extracted from CVS and peripheral blood lympho-
cytes.

CTG-expanded alleles were detected in paternal DNA
(70 CTG repeats), maternal plasma DNA (150 CTG re-
peats), and trophoblast DNA (150 CTG repeats). A single
wild-type allele of approximately five CTG repeats was
found in the maternal genomic DNA (Fig. 1C).

To demonstrate that large, CTG-expanded DMPK al-
leles (up to 2000 CTGs) can be detected in maternal
plasma, we performed a long-PCR to amplify an 8-kilo-
base DNA fragment of the basic protein Y2 (BPY2) gene
mapping to the Y-chromosome (Fig. 1D). PCR consisting
of 35 cycles (2 min at 94 °C, 30 s at 65 °C, 6 min at 68 °C,
and a final elongation of 5 min at 68 °C) was performed in
30 mL of reaction mixture using 25 pmol each of forward
and reverse primers 7R (59-GGTATCTGAAGCTGGG-
TATATGAC-39) and 7F (59-AGATAACATCCATCGTG-
GCTCTG-39; A. Pizzuti, unpublished data), and 5–10 mL
of plasma extracted DNA.

These results support the possibility of performing
prenatal diagnosis of DM with maternal plasma. At
present, this test seems appropriate only for monitoring
paternally inherited expanded alleles. Noninvasive DM
prenatal diagnosis was reported previously by our group
on trophoblast cells retrieved from the lower part of the
uterine cavity (4 ). However, the amount of fetal DNA
recovered with that procedure is low compared with the
amount of fetal DNA recovered from maternal plasma
(4–6). We conclude that this noninvasive method, which
allows first-trimester DM prenatal diagnosis using mater-
nal plasma, has the potential to become an alternative
procedure in selected cases.

This work was supported by grants from Italian Telethon
(Project 1061) and the Italian Ministry of Health.
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Fig. 1. Electropherograms of alleles at the CFSPO locus (A) and X-Y
amelogenin PCR products (B), autoradiograph of CTG expansion at the
DMPK locus (C), and gel showing amplification of BPY2 (D).
(A and B), electropherograms of maternal genomic DNA (M), paternal genomic
DNA (P), fetal genomic DNA (CVS), and maternal plasma DNA (PL). (C), lane 1,
maternal genomic DNA; lane 2, paternal genomic DNA; lanes 3 and 4, fetal
genomic DNA at two different concentrations; lanes 5 and 6, maternal plasma
DNA at two different volumes (3 and 5 mL) of the QIAamp elution. (D), lane 1, DNA
size marker; lane 2, paternal DNA; lane 3, fetal genomic DNA; lanes 4–6,
maternal plasma DNA at different volumes (3 and 5 mL) of the QIAamp elution;
lane 7, negative PCR control (water).
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