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Abstract

Background: Methylphenidate (MPH) is a commonly-used medication for the treatment of children with Attention-De�cit/
Hyperactivity Disorders (ADHD). However, its prescription to adults with ADHD and narcolepsy raises the question of how the 
brain is impacted by MPH exposure during pregnancy. The goal of this study was to elucidate the long-term neurobiological 
consequences of prenatal exposure to MPH using a rat model.
Methods: We focused on the effects of such treatment on the adult dopamine (DA) system and on the reactivity of animals 
to natural rewards.
Results: This study shows that adult male rats prenatally exposed to MPH display elevated expression of presynaptic DA 
markers in the DA cell bodies and the striatum. Our results also suggest that MPH-treated animals could exhibit increased 
tonic DA activity in the mesolimbic pathway, altered signal-to-noise ratio after a pharmacological stimulation, and decreased 
reactivity to the locomotor effects of cocaine. Finally, we demonstrated that MPH rats display a decreased preference and 
motivation for sucrose.
Conclusions: This is the �rst preclinical study reporting long-lasting neurobiological alterations of DA networks as well as 
alterations in motivational behaviors for natural rewards after a prenatal exposure to MPH. These results raise concerns about 
the possible neurobiological consequences of MPH treatment during pregnancy.
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Introduction

Methylphenidate (MPH) is a psychostimulant medication that 
acts on the dopamine (DA) and noradrenergic neurotransmis-
sions by blocking the DA and norepinephrine transporters (DAT 
and NET) in the striatum and the prefrontal cortex (Wilens, 
2008). It is commonly prescribed for treating children with 
Attention-De�cit/Hyperactivity Disorders (ADHD; Fone and 
Nutt, 2005), who are characterized by impairing levels of hyper-
activity, impulsivity, and/or inattention (American Psychiatric 
Association, 2013). ADHD has a worldwide pooled prevalence 
of ~5% in school-aged children with boys being 3 to 6 times 
more affected than girls (Polanczyc et al., 2007). About 65% of 
ADHD cases with childhood onset persist until adulthood, with 
a pooled prevalence of adult ADHD estimated at ~2.5% (Faraone 
et al., 2000; Simon et al., 2009), albeit with fewer gender differ-
ences (Murphy, 1996; Simon et al., 2009; DeZwaan et al., 2012; 
Dideriksen et al., 2013). Because MPH has a favorable ef�cacy/
tolerance ratio (Faraone and Buitelaar, 2010), it has been used 
in children but also in adults with ADHD over the recent years 
(Banaschewski et al., 2006). In addition, MPH is also prescribed 
in adults with narcolepsy (Billiard, 2008). Although the prescrip-
tion of MPH is not recommended during pregnancy, the poten-
tial bene�ts can outweigh the risks in some cases (Dideriksen 
et al., 2013; Bolea-Alamanac et al., 2014). This raises questions 
about MPH effects on the early developing brain and stresses the 
importance of evaluating the long-term consequences of prena-
tal exposure to MPH on the brain fetus.

Clinical studies, although limited by concurrent use of other 
psychostimulants, have suggested that such treatment does 
not increase the risk of congenital malformations (Dideriksen 
et al., 2013). Few preclinical studies have investigated the long-
term behavioral consequences of in utero exposure to MPH in 
murine models and those few have reported decreased anxi-
ety-related behaviors and altered executive functions in adult-
hood (McFadyen-Leussis et al., 2004; Lloyd et al., 2013). However, 
the long-term neurobiological modi�cations underlying these 
abnormalities are still unknown.

Studies have suggested that MPH may cross the placental bar-
rier, like other amphetamine derivatives (Shah and Yates, 1978; 
Burch�eld et al., 1991; Bolea-Alamanac et al., 2014). Moreover, MPH 
has a higher af�nity for the DAT than for the NET (Gatley et al., 
1996), and has been suggested to mainly target DA neurotrans-
mission (Wilens, 2008), which is critical for brain development 
and plays a role in the adult brain (Levitt et al., 1997). Thus, we 
investigated whether prenatal exposure to MPH early in the gesta-
tion (during the development of the DA system) could impact DA 
neurobiology in adult animals. To this aim, we used a rat model 
of prenatal exposure to MPH during the last week of gestation in 
order to cover the period in which DA neurons are formed and 
developed in the rat brain (Olson and Seiger, 1972). The neuro-
anatomical consequences of a prenatal MPH exposure on the DA 
system were evaluated in the adult animals by quantifying tyros-
ine hydroxylase (TH) expression, as well as DAT- and DA-receptor 
density in DA brain regions. The functional consequences of such 
exposure has also been investigated by measuring the metabolic 
activity of DA-related areas using micro positron emission tomog-
raphy (microPET) imaging, and by quantifying the basal function 
and reactivity of the mesolimbic DA pathway to cocaine stimu-
lations using in vivo microdialysis, c-Fos immunohistochemistry, 
and locomotor activity measurements. Since MPH is a psycho-
stimulant medication, we also examined the behavioral reactivity 
of these animals to a natural reward using the operant respond-
ing for sucrose and sucrose preference paradigms that depend on 
mesolimbic DA transmission (Hajnal et al., 2004).

Materials and Methods

Animal Model

This study was performed using 48 pregnant Wistar rats (CERJ) 
that arrived in the laboratory at gestational day (GD) 6 (with an 
inferred conception at GD0). The pregnant females were individ-
ually housed in a room with a 12-hour light/dark cycle (lights on 
from 07:00 to 19:00 hours) under steady temperature (21 ± 1°C) 
and humidity (55 ± 5%) with access to food and water ad libitum. 
The animals were treated in accordance with the European 
Community Council Directive 2010/63/EU for laboratory animal 
care and with Regional Ethical Committee authorizations.

Each pregnant dam was randomly assigned to the experi-
mental or control group and injected subcutaneously (s.c.) with 
the D-threo enantiomer of MPH (10 mg/kg/day; Sigma-Aldrich) or 
saline from GD13 to GD20, because the DAT and NET targeted 
by MPH appear during the second gestational week in the rat 
(Herlenius and Lagercrantz, 2004). The s.c. pathway was chosen 
to minimize the stress and ensure MPH injections to the pregnant 
females. Only male progeny were selected, and were grouped by 
a maximum of 3 animals per cage. The experiments were per-
formed at postnatal day 70, considering the litter as the statisti-
cal unit, i.e., only one male per litter was used for an experiment. 
Six additional pregnant Wistar dams were used to assess the 
pharmacokinetic pro�le of an acute subcutaneous injection of 
MPH (10 mg/kg) during the second gestational week. The protocol 
of this experiment is depicted in the Supplementary Materials.

Scintigraphic Imaging

Metabolic scintigraphic imaging using 2-deoxy-2-(18F)�uoro-d-
glucose (18FDG; Cyclopharma Tours) was performed on control 
and MPH animals in basal conditions (n = 7 and 6, respectively). 
Because the local uptake of 18FDG re�ects the cerebral meta-
bolic rate of glucose (CMRglc), such in vivo analysis provides a 
regional analysis of the brain metabolic status (Sokoloff et al., 
1977; Phelps et al., 1979). Each rat was anesthetized using iso�u-
rane (Baxter) and catheterized in the tail vein for 18FDG injection. 
Each animal was placed on a thermo-regulated bed (Minerve) 
and centered in the �eld of view of the Explore VISTA-CT 
microPET camera (GE Healthcare). A  CT-scan was performed 
for attenuation correction of the PET images and a list-mode 
PET acquisition of 60 minutes started after the bolus injection 
of 18FDG (18.5 MBq/100 g) followed by a saline �ush. After data 
reconstruction using a 2-D OSEM algorithm, all the images were 
coregistered and normalized for tissue activity in the whole 
brain. Quantitative results were expressed as mean ± standard 
deviation (SD) and were presented on z-score maps. The values 
of 18FDG uptake in the regions containing DA cell bodies and 
projection areas (frontal cortex, dorsal and ventral striatum, 
amygdala, hippocampus, thalamus, and hypothalamus) were 
derived from these images using a set of regions of interests 
(ROI) already de�ned by Schiffer and colleagues (Schiffer et al., 
2006) in PMOD v3.2 software (PMOD Technologies Ltd, Zurich, 
Switzerland). More details related to image processing and data 
analysis are available in the Supplementary Materials section.

Microdialysis

DA levels were investigated in control and MPH rats (n  =  7 
for each group) using in vivo microdialysis in the shell part of 
the nucleus accumbens (NacSh). Based on the number of ani-
mals, these experiments were performed under anesthesia to 
reduce inter-animal variability. Each rat was anesthetized using 
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iso�urane and placed in a stereotactic apparatus (Stoelting) and 
its body temperature was maintained at 37.5 ± 1°C throughout 
the experimentation using a thermostated bench (CMA150, 
CMA/Microdialysis). A hole was drilled to place a 2 mm microdi-
alysis probe (CMA11, CMA/Microdialysis) at the site of implan-
tation according to the Paxinos and Watson atlas (AP +1.6, ML 
+0.75, DV -7.6; Paxinos and Watson, 2008). The probe was per-
fused at a �ow rate of 2.2 µL/min with arti�cial cerebral spinal 
�uid (Na2HPO4 2 mM, NaCl 145 mM, KCl 5 mM, MgCl2 1.2 mM, 
CaCl2 1.2 mM) using a CMA syringe pump (CMA/Microdialysis). 
DA levels were quanti�ed at basal conditions and after acute 
cocaine injection (2 mg/kg, i.v.; Sigma-Aldrich) to stimulate DA 
release. Details related to DA quanti�cation are available in the 
Supplementary Materials section.

c-Fos Immunohistochemistry

These experiments were performed on control and MPH rats 
after i.v. saline (n  =  8 for controls and n  =  5 for MPH rats), or 
cocaine injections (n = 8 for controls and n = 12 for MPH rats; 
acute condition; 2 mg/kg i.v.; Sigma-Aldrich). Brie�y, each rat 
was anesthetized (with 4% iso�urane), injected with saline or 
cocaine, and perfused with heparin-NaCl solution followed by 
4% paraformaldehyde in 0.1 M phosphate-buffered saline solu-
tion 90 minutes after treatments (Graybiel et  al., 1990; Brown 
et  al., 1992). Next, the protocol detailed for TH immunohisto-
chemistry was performed using a rabbit polyclonal anti-c-Fos 
antibody (1:10000; sc-52, Santa Cruz Biotechnology). Details 
related to data analysis are available in the Supplementary 
Materials section.

TH Immunohistochemistry

Brain slices obtained for the c-Fos experiments in basal condi-
tions were used for TH quanti�cation (n = 8 and 5 for control and 
MPH rats, respectively). Free-�oating sections were incubated for 
24 hours at 4°C with rabbit polyclonal anti-TH antibody (1:500; 
AB152, Santa Millipore), and for 2 hours at room temperature 
with a biotinylated goat anti-rabbit IgG antibody (1:400; Vector 
Laboratories). Tissue sections were further processed using the 
ABC Vectastain Elite kit (Vector Laboratories) and 3.3’-diamin-
obenzidine detection. The analyses of TH immunohistochemis-
try are detailed the Supplementary Materials section.

Autoradiography

The DAT and D2 receptors (D2R) were quanti�ed in the sub-
tantia nigra pars compacta (SNc) and ventral tegmental area 
(VTA) (DAT: n = 6 per group; D2R: n = 5 and 6 for control and 
MPH rats, respectively) and in the striatum (DAT: n = 6 and 8; 
D2R: n = 5 and 8 for control and MPH rats, respectively) using 
[125I]-PE2I (prepared according to Chalon et  al., 1999) and [3H]-
YM-09151-2 (PerkinElmer), and the D1 receptors (D1R) were 
quanti�ed in the striatum (n = 5 and 8 for control and MPH rats) 
using [3H]-SCH-23390 (PerkinElmer) using the methodology pre-
viously detailed by Chalon et al. (1999) and Bouchez et al. (2008). 
For more details, see the Supplementary Materials section.

Cocaine-Induced Locomotor Activity

The locomotor activity of adult control and MPH rats (n = 9 and 
8, respectively) was assessed using a circular corridor (50 cm 
diameter) equipped with a digital camera and was quanti�ed 
using the Ethovision XT70 Software (Noldus) during 10-minute 
sessions. All rats were habituated to the apparatus for one week 

and then tested for their locomotor activity in basal conditions, 
and 10 minutes after an acute cocaine injection (15 mg/kg i.p.).

Operant Responding for Sucrose

This was performed in control and MPH rats (n = 8 and 7, respec-
tively) to evaluate motivation for sucrose. Animals were food-
restricted (15 g/day/rat) and placed in Coulbourn experimental 
chambers controlled by Graphic State interfaces and software 
and equipped with 2 levers and a pellet dispenser. First, 10 daily 
sessions of 30 minutes each were conducted using a �xed ratio 
1 (FR1) schedule of reinforcement. One press on the active lever 
resulted in the delivery of a sucrose pellet followed by a 5-sec-
ond refractory period and a 10-second time-out period. Next, rats 
were tested under a progressive ratio (PR) schedule for 4 daily ses-
sions (Solinas and Goldberg, 2005). Each session lasted 180 min-
utes, or ended after 30 minutes if the rat did not activate the lever.

Sucrose Preference

Control and MPH rats were also tested for their preference for 
sucrose (n = 6 for both control and MPH rats). The week before each 
experiment, rats were housed individually and handled daily, with 
access to a 2% sucrose solution (Sigma) in 10 mL pipettes during 
1 hour for 5 consecutive days, 1.5 hour after the lights turned off 
and 1.5 hour before the lights turned on. The preference between 
sucrose and water was assessed during 30 minutes for 3 consecu-
tive days at the beginning and at the end of the dark cycle. The 
position of the pipettes was alternated at each session to prevent 
position-biased drinking. Results were expressed as percentages 
of preference for sucrose: (sucrose intake/total intake) x 100.

Pharmacokinetic Experiments

Pharmacokinetic experiments were conducted on 6 pregnant 
rats exposed to an acute s.c. injection of D-threo-MPH (10 mg/
kg). Pregnant dams were anesthesized using iso�urane and a 
catheter was inserted into the femoral artery for blood sam-
pling. Blood samples of approximately 50 µL were collected just 
before and 10, 20, 30, 60, 90, 120, 150, 180, 210, and 240 min after 
MPH injection. Each blood sample was immediately centrifuged 
to harvest the plasma, which was then frozen at -80°C.

Analyses of plasma samples were performed on a UPLC 
Ultimate® 3000 system (Dionex), coupled to a Q-Exactive Mass 
Spectrometer (Thermo Scienti�c), operated in the positive elec-
trospray ionization mode. For the detailed methodology, see the 
Supplementary Materials section.

Statistical Analyses

The statistical analysis of MicroPET data is detailed in the 
Supplementary Material section. The effects of prenatal treatment, 
cocaine injections, and their interactions on DA release in the 
NacSh were assessed using a two-way ANOVA in addition to a one-
way ANOVA with Dunnett’s adjustment for intra-group effects of 
cocaine injections. In addition, the comparison of basal DA levels 
in control and MPH rats was performed using an bilateral unpaired 
t-test. Intergroup comparisons between averaged control and 
MPH values of TH/c-Fos expression, DAT, D2R and D1R densities 
were also performed using a bilateral unpaired t-test. Intragroup 
comparisons to evaluate the effects of cocaine injections on c-Fos 
expression were examine using a bilateral paired t-test. A two-way 
ANOVA was performed to examine the effects of prenatal treat-
ment, cocaine injections, and their interactions on the locomotor 
effects of cocaine. In addition, unpaired and paired t-tests were 
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performed to assess the intergroup differences in locomotor activ-
ity in basal conditions, and the intragroup effect of cocaine, respec-
tively. A two-way ANOVA was used to assess the effects of prenatal 
treatment, cocaine injections, and their interactions on sucrose 
consumption during operant responding.

Results

Prenatal MPH Treatment Alters the Expression of TH, 
DAT, D1R and D2R in Adulthood

Using TH immunohistochemistry, we observed that adult rats 
prenatally treated with MPH displayed an increased number of 
tyrosine hydroxylase positive (TH+) cells in the DA cell bodies 
that was only signi�cant in the SNc [t(10) = 3.04, p = 0.012 and 
t(10) = 1.99, p = 0.075 in the SNc and VTA, respectively; Figure 1A]. 
In addition, increased TH expression was detected in terminal DA 
regions such as the striatum and in the Nac [t(11) = 2.76, p = 0.019 

and t(11) = 3.50, p = 0.005 in the medio and latero-dorsal striatum, 
respectively; t(11) = 5.36, p < 0.001 and t(11) = 4.90, p < 0.001 in the 
shell and core parts of the Nac, respectively; Figure 1B].

The autoradiographic data showed that MPH and control 
rats had similar DAT densities in the SNc/VTA [t(10)  =  0.50, 
p  =  0.627 and t(10)  =  1.11, p  =  0.295 in the SNc and VTA, 
respectively], and that MPH rats had higher DAT density in 
the striatum compared to controls [t(12) = 3.49, p = 0.045 and 
t(12) = 3,94, p = 0.002 in the dorsal and ventral striatum, respec-
tively; Figure 2A]. MPH rats also displayed elevated D2R den-
sity in the SNc/VTA compared to controls [t(9) = 2.73, p = 0.023 
and t(9)  =  2.34, p  =  0.044 in the SNc and VTA, respectively], 
and similar density in the striatum [t(11)  =  1.81, p  =  0.097 
and t(11) = 0.55, p = 0.590 in the dorsal and ventral striatum, 
respectively; Figure 2B]. Prenatal MPH treatment did not led to 
modi�cations in the D1R density in the striatum [t(11) = 0.48, 
p = 0.644 and t(11) = 0.70, p = 0.499 for the dorsal and ventral 
striatum, respectively; Figure 2C].
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Figure 1. Quanti�cation of tyrosine hydroxylase positive (TH+) cells in the dopamine cell bodies and tyrosine hydroxylase (TH) immunostaining in the striatum. (A) 

Mean number of TH+ cells/mm2 ± standard deviation (SD) in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) (n = 8 and 4 for control and 

methylphenidate [MPH] rats, respectively), and representative examples of immunostaining. (B) Mean absorbance of TH immunostaining ± SD in the dorsomedial 

striatum, dorsolateral striatum, core, and shell of the nucleus accumbens (n = 8 and 5 for control and MPH rats, respectively), and representative examples of immu-

nostaining. Statistical analyses were performed using a bilateral unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001).
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MPH-Treated Rats Show Metabolic Abnormalities in 
DA Regions

Figure  3 shows that MPH rats displayed increased 18FDG 
uptake in an area containing the SN/VTA [from -4.68 to 
-6.36 mm from bregma; t(11) = 4.10, p < 0.001 and t(11) = 3.40, 
p  =  0.001 in the left and right hemispheres, respectively] 
where DA neurons are located. MPH rats also showed a 
decreased 18FDG uptake in DA projection areas, including the 
right cingulate cortex [from 3.72 to 2.76 mm from bregma: 
t(11)  =  -3.70, p  =  0.002], the striatum [centro-dorsal part 
from 2.52 to -1.56 mm from bregma: t(11)  =  -3.40, p  =  0.004 
and t(11) = -5.60, p < 0.001 in the left and right hemispheres, 
respectively; right ventral part from 2.52 to -1.28 mm from 
bregma: t(11) = -4.70; p < 0.001], and the thalamus [from -1.08 
to -4.68 mm from bregma: t(11)  =  -4.40, p  =  0.002], with the 
exception of the left hypothalamus, in which we detected an 

increased uptake [lateral part from -2.16 to -4.20 mm from 
bregma: t(11) = 3.60, p = 0.003]. No difference in 18FDG uptake 
was observed in other DA regions.

Prenatal MPH Exposure Leads to Modi�cations in 
DA Levels and c-Fos Expression in the Shell of the 
Nucleus Accumbens

As shown in Figure 4A, MPH-treated rats displayed higher basal 
extracellular DA concentrations than controls [t(12)  =  7.42, 
p < 0.001] in the NacSh. Besides, cocaine injection and the pre-
natal treatment had an effect on the percentages of basal DA in 
control and MPH rats [cocaine effect: F(10,120) = 73.38, p < 0.001; 
prenatal treatment effect: F(1,12)  =  4.87, p  =  0.012; Figure  4B]. 
Indeed, the maximum percentage of basal DA after the cocaine 
injection in the NacSh was signi�cantly lower in MPH-treated 
rats than in controls [t(12) = 4.42, p < 0.001].
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Figure 2. Quanti�cation of the dopamine transporters (DAT), D1 receptors (D1R), and D2 receptors (D2R) in the dopamine cell bodies and striatum and striatum. (A) 

DAT density in the substantia nigra pars compacta (SNc), ventral tegmental area (VTA), dorsal striatum, and ventral striatum were quanti�ed using [125I]-PE2I. The aver-

aged [125I]-PE2I binding in each area is presented for control (n = 6) and methylphenidate (MPH) rats (n = 6 and 8 in the SNc, VTA and striatum, respectively), in addition 

to representative autoradiograms. (B) D2R density in the SNc, VTA, dorsal striatum, and ventral striatum quantitated via [3H]-YM-09151-2 binding. The averaged [3H]-

YM-09151-2 binding in each area is presented for control (n = 5) and MPH rats (n = 6 and 8 in the SNc, VTA and striatum, respectively), in addition to representative 

autoradiograms. (C) D1R density in the dorsal striatum and ventral striatum quantitated via [3H]-SCH-23390 binding. The averaged [3H]-SCH-23390 binding in each area 

is presented for control (n = 5) and MPH rats (n = 8). Statistical analyses were performed using a bilateral unpaired t-test (*p < 0.05; **p < 0.01).
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In addition, Figure 5 shows that a prenatal MPH treatment 
led to an elevated number of c-Fos+ cells in the NacSh in adult-
hood in basal conditions [t(9) = 6.70, p < 0.001]. Moreover, while 
an acute cocaine injection increased c-Fos expression in the 
NacSh of control rats [t(10)  =  5.47, p < 0.001], no further c-Fos 
increase was observed in MPH rats in this condition [t(13) = 0.02, 
p = 0.982].

Prenatal MPH Exposure Results in Long-Lasting 
Impairments in Behavioral Sensitivity to Cocaine

As shown in Figure 6, similar locomotor activities are observed in 
basal conditions for control and MPH rats [t(15) = 1.02, p = 0.323]. 
Statistical analyses revealed an effect of cocaine injection on the 
locomotor activity [F(1,15) = 20.53, p < 0.001] but also highlighted 
an effect of the prenatal treatment [F(1,15) = 6.94, p = 0.019]. In 
fact, adult rats prenatally exposed to saline showed signi�cantly 
increased locomotor activities after an acute cocaine injection 

[t(8) = 4.74, p = 0.002], while rats prenatally exposed to MPH did 
not [t(7) = 1.79, p = 0.116].

MPH Rats Showed No Preference and Less 
Motivation for Sucrose

For sucrose reinforcement experiments, both MPH and control 
rats learned the task leading to a similar amount of sucrose 
pellets being retrieved at the last session under an FR1 
schedule [Figure 7A; prenatal treatment effect: F(1,12) = 2.07, 
p = 0.176; session effect: F(9,108) = 111.98, p < 0.001; interac-
tion: F(9,108) = 2.38, p = 0.017], even though MPH rats acquired 
the self-administration behavior more quickly than con-
trols [last signi�cant difference between sessions 4 and 5 for 
MPH rats: F(9)  =  46.35, p < 0.001; last signi�cant difference 
between sessions 6 and 7 for control rats: F(9)  =  25.75, p  < 
0.001]. However, the last ratio completed by MPH rats under a 
PR schedule was signi�cantly lower than that of control rats 
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Figure 3. Representation of the modi�cations in 2-deoxy-2-(18F)�uoro-d-glucose (18FDG) uptake re�ecting brain metabolic activity in the dopamine (DA) brain regions of 

adult male rats prenatally exposed to methylphenidate (MPH) vs. controls in basal conditions (n = 6 and 7, respectively). For each region, images of the generated z-score 

maps fused with an MRI template are presented (upper part), as well as a summary of the antero-posterior signi�cant modi�cations on representative coronal plates 

of the Paxinos and Watson atlas (lower part; increases and decreases in 18FDG uptake in red and blue, respectively; student’s two-tailed t-test; p < 0.01).
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[Figure  7B; t(40)  =  2.11, p  =  0.041]. No signi�cant differences 
were observed between initial and �nal weights of MPH or 
control rats during these experiments [t(12) = 1.84, p = 0.0911 
for initial weights; t(12)  =  1.25, p  =  0.235 for �nal weights; 
Figure S1].

For sucrose preference experiments, control rats exhibited a 
strong preference for sucrose over water, while MPH rats showed 
no preference [Figure 7C; t(10) = 13.79, p < 0.001]. No differences 
in total amount of liquid ingested were observed between the 
groups at each session [Figure  7D; prenatal treatment effect: 
F(1,8)  =  0.18, p  =  0.681; inter-session effect: F(5,40)  =  1.40, 
p = 0.247].

MPH Pharmacokinetic Pro�le After an Acute s.c. 
Injection

Figure S2 shows that an acute s.c. injection of MPH in pregnant 
dams led to a maximum MPH plasma concentration (308 ± 68 ng/
mL) 2 hours post-injection. In addition, MPH plasma levels only 
slowly decreased 4 hours post injection (240 ± 42 ng/mL).

Discussion

In this study, we found that adult rats prenatally exposed to 
MPH displayed abnormalities in the DA system, an altered reac-
tivity to cocaine injection at the neurochemical and behavioral 
levels, and decreased preference and motivation for a natural 
reward such as sucrose. Altogether, these results suggest that in 

utero exposure to MPH may alter normal brain development and 
may result in long-lasting malfunctioning of the reward system.

At the presynaptic level, adult rats prenatally exposed to 
MPH exhibited an increased number of TH+ cells in the SN/
VTA and increased TH expression in the striatum. This could 
be explained by the fact that these animals have an elevated 
number of DA neurons or that more neurons reach the detec-
tion threshold for TH. Moreover, an increased metabolic activ-
ity was observed in the SN/VTA. Although the spatial resolution 
of microPET imaging is limited and cannot differentiate the SN 
compacta from the reticulata containing DA and GABAergic 
neurons, respectively, these results could be due to an elevated 
DA activity in adult rats prenatally exposed to MPH. Increased 
basal levels of extracellular DA were detected by in vivo micro-
dialysis in the NacSh of MPH rats. Because we did not use the 
no-net-�ux method for DA quanti�cation, the observed basal 
DA concentrations are confounded by modi�cations of probe 
ef�ciency between in vitro calibration and in vivo experiments. 
However, basal DA concentrations of control rats were in agree-
ment with those previously reported in the NacSh (Frank et al., 
2008). The theory of microdialysis suggests that a higher DA 
reuptake increases probe ef�ciency (Chefer et al., 2009). As MPH 
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Figure  6. Quantitation of the locomotor activity of adult methylphenidate 

(MPH) and control rats in basal conditions and after acute or repeated cocaine 

injection(s) (15 mg/kg i.p.). The mean locomotor activity (meter per 10 minutes) 

± standard error of the mean is presented for each group (n = 9 and 8 for control 

and MPH rats, respectively) in each condition. A two-way analysis of variance 

was performed to assess the effects of prenatal treatment, conditions, and their 

interactions; intra-group comparisons were performed using one-way ANOVA 

followed by Dunnett’s post hoc analysis (*p < 0.01).
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rats displayed higher DAT density, their basal DA levels should 
be underestimated in our study, further supporting an enhanced 
basal DA transmission in these animals. DATs in the striatum 
are exclusively localized in the axonal membranes of the DA 
neurons (Maiya and May�eld, 2004) and the D2R in the SN/
VTA are mainly localized in the soma and dendrites (Meador-
Woodruff et al., 1989). Such elevations in these presynaptic DA 
markers could be due to an increased number in DA neurons, 
leading to a hyperDA function in MPH rats as suggested by the 
microPET results.

On the postsynaptic side, adult rats prenatally exposed to 
MPH exhibited decreased metabolic activity in the striatum 
with no modi�cations in the density of DA receptors. This could 
be due to an elevated post-synaptic D2 neurotransmission, as 
an increased D2 neurotransmission has been shown to reduce 
the glutamatergic activation of the striatopallidal medium spiny 
neurons (Surmeier et al., 2007). Tonic DA is thought to modulate 
D2 neurotransmission (Grace et al., 2007) due its higher af�n-
ity for D2R than for D1R (Maeno, 1982; Rich�eld et  al., 1989), 
thus these data further support an increased tonic DA activ-
ity in adult rats prenatally exposed to MPH. In addition, an 
increased basal expression of c-Fos was observed in the NacSh 
of these animals. Although this may appear contradictory to the 
decreased metabolic activity already described, studies already 
show opposite results between c-Fos immunohistochemistry 
and 14C-2-deoxyglucose experiments (Cochran et  al., 2002). In 
addition, several studies already suggest that c-Fos expression 

re�ects more a genomic response at the cell body level than an 
index of neuronal activity (Cirelli and Tononi, 2000; Gozzi et al., 
2012). Moreover, D2R stimulation by selective agonists has been 
reported to increase c-Fos expression in the Nac (Yamada et al., 
2007). Thus, the elevated basal expression of c-Fos detected in 
the NacSh could be a consequence of a hyperactive D2 neuro-
transmission in the MPH rats.

We further explored the impact of these post-synaptic adap-
tations on the functionality of the mesolimbic pathway by inves-
tigating the effects of DA stimulation, induced by cocaine, on 
the extracellular DA levels and c-Fos expression in the NacSh of 
these animals. Based on the hyperactivity of the DA neurons and 
on the increased DAT density in the striatum, we expected that 
cocaine stimulation would have increased effects in these rats. 
Interestingly, acute cocaine injection induced a lower elevation 
of the percentages of basal DA levels in MPH rats than in con-
trols. This can be attributed to an increase in basal levels of DA 
in these animals and can be interpreted as a decreased signal-
to-noise ratio of the mesolimbic DA transmission in response to 
external stimulations. Moreover, c-Fos expression in the NacSh 
was not further increased by the cocaine injection in MPH rats, 
contrary to what was observed in control animals. This lack of 
c-Fos reactivity also suggests an impacted signal-to-noise ratio 
of the DA transmission. Thus, these pre- and post-synaptic 
molecular adaptations may lead to decreased behavioral reac-
tivity of these animals to DA stimulations. This was further sup-
ported by the lack of increased locomotor activity induced by a 

S1 S2 S3 S4 S5 S6
0

5

10

15

20

Sessions

T
o

ta
l a

m
o

u
n

t o
f 

liq
u

id
 in

g
e

s
te

d
 (
m

L
)

Controls

MPH

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Sessions

N
u

m
b

e
r 
o

f p
e

lle
ts

Controls

MPH

Controls MPH
0

20

40

60

80

100

S
u

c
ro

s
e

 P
re

fe
re

n
c
e

 (
%

)

Controls MPH
0

100

200

300

400

L
a

s
t R

a
tio

 C
o

m
p

le
te

d

A. B.

C. D.

*

****

Figure 7 . (A) Changes in the mean ± standard error of the mean (SEM) number of sucrose pellets retrieved by methylphenidate (MPH) rats and controls (n = 7 and 8 for 

MPH and control animals, respectively) during a 2-hour �xed ratio 1 (FR1) schedule lasting 10 days. (B) Mean ± SEM break point de�ned as the last ratio completed for 

sucrose intake under a progressive ratio (PR) schedule of 4 days for MPH rats and controls (n = 7 and 8 for MPH and control rats, respectively). (C) Sucrose preference in 

adult male rats prenatally exposed to MPH and in controls (n = 6 for both groups). (D) Total amount of liquid ingested at each session of sucrose preference for controls 

and MPH rats. Statistical analyses were performed using a bilateral unpaired t-test for inter-group comparisons (*p < 0.05; **p < 0.0001) and one-way analysis of variance 
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cocaine injection in the adult rats prenatally exposed to MPH, in 
sharp contrast to what was observed in controls. As no modi-
�cations in motor development have been observed in several 
studies dealing with prenatal MPH exposure (McFadyen-Leussis 
et al., 2004; Panos et al., 2014), we assume that our behavioral 
data are not confounded by such developmental alterations.

The NacSh is critical for reward-related information pro-
cessing (Di Chiara, 2002) and accumbal DA is clearly involved 
in reward-related and motivational tasks (Salamone and Correa, 
2012). Therefore, we hypothesized that the neurobiological alter-
ations previously described in MPH rats would lead to behav-
ioral modi�cations in reward processes. Consistent with this 
hypothesis, MPH rats showed no preference for sucrose over 
water and had a decreased motivation to obtain sucrose pellets 
in a progressive-ratio operant procedure. These results were not 
confounded by weight modi�cations during this experiment 
between MPH and control rats, suggesting that the reactivity 
to natural rewards was dampened in these animals. Thus, the 
similar rate of response to sucrose pellets observed during the 
FR1 schedule for both groups may seem surprising; however, 
the operant response for sucrose requires food restriction to 
drive behavior while the sucrose preference protocol does not. 
Interestingly, MPH rats show higher levels of visits to the food 
trough in the �rst �ve days of the food reinforcement experi-
ment than control rats (data not shown) without showing dif-
ferences in the number of reinforcements obtained, which 
are indeed very low. Therefore, this effect cannot be explained 
by consumption behavior, and is more likely to be due to an 
increased exploratory behavior and possibly reduced anxi-
ety, as already suggested in adult mice prenatally exposed to 
MPH (McFadyen-Leussis et  al., 2004). Overall, these data show 
a lower neurobiological response to cocaine in adult rats pre-
natally exposed to MPH and a decreased motivation for natural 
rewards, as already described in studies which reported the con-
sequences of adolescent exposure to MPH (Bolanos et al., 2003; 
Carlezon et al., 2003).

Interestingly, prenatal exposure to methamphetamine in rats 
has been shown to induce a tolerance to the effects of cocaine 
in adult rats (Šlamberová et al., 2012). Similarly to our results, 
these animals display increased basal DA levels in the Nac 
(Bubenikova-Valesova et  al., 2009). In contrast, prenatal expo-
sure to cocaine has not been shown to alter DA basal levels and 
seems to enhance the rewarding potency of cocaine in adult-
hood (Heyser et al., 1992; Keller et al., 1996; Lin and Kellogg, 1996; 
Rocha et al., 2002; Estelles et al., 2006; Malanga et al., 2007 2009). 
MPH is often related to cocaine in terms of mechanism of action, 
but it has a greater af�nity for the DAT and NET than for the 
serotonin transporter when compared to other amphetamine 
derivatives, while cocaine has similar af�nities for the mono-
amine transporters (Han and Gu, 2006). Based on the critical role 
of serotonin in brain development, such distinct pharmacologi-
cal pro�les could underlie the different results observed in these 
animal models of prenatal exposure to psychostimulants.

Our primary aim was to investigate how early developmen-
tal disruption of the DA neurotransmission could impact adult 
brain functions. Therefore, we injected a high non-toxic dose of 
D-threo-MPH, as L-threo-MPH has been reported to be ineffec-
tive (Ding et al., 1997). This was performed during the second 
week of gestation in rats, the time at which DAT starts to be 
expressed during rat brain development (Olson and Seiger, 1972; 
Levitt et al., 1997; Herlenius and Lagercrantz, 2004). From a clini-
cal perspective, this developmental period roughly corresponds 
to most of the �rst trimester in humans (Rice and Barone, 2000). 
Thus, this protocol is expected to model an early prenatal 

exposure to MPH. The dose of MPH used in our experiments was 
expected to lead to higher maximum plasma levels of MPH than 
those observed in MPH-treated humans (Swanson and Volkow, 
2003; Spencer et al., 2006; Hysek et al., 2014), as con�rmed by our 
pharmacokinetic data. Thus, this can be viewed as a limitation 
for the extrapolation of our results to clinical data. Gerasimov 
and colleagues (2000) suggested that MPH administered per os 
(p.o.) at the dose of 5 mg/kg or i.p. at the dose of 2 mg/kg should 
model a clinical MPH treatment. However, it has been shown to 
lead to higher plasma peak levels (Kuczenski and Segal, 2002) 
that occur roughly 30 min after administration, and exert a short 
half-life in contrast to what is observed in humans (Wargin 
et  al., 1983; Patrick et  al., 1984; Aoyama et  al., 1990; Bakhtiar 
and Tse, 2004). To overcome these pharmacokinetic differences, 
other studies used multiple daily MPH treatments (Komatsu 
et al., 2012; Panos et al., 2014). Interestingly, the pharmacokinetic 
pro�le we obtained after an acute s.c. MPH injection seems to 
be comparable to what is observed in humans (Swanson and 
Volkow, 2003; Spencer et  al., 2006; Hysek et  al., 2014), and it 
would be interesting to further explore this route of administra-
tion for the modeling of clinical MPH administration in rats. As 
suggested by others, modeling clinical MPH treatments in ani-
mals is dif�cult and cannot only rely on the maximum plasma 
levels (Kuczenski and Segal, 2002).

This study is the �rst reporting neurobiological alterations in 
adult male rats prenatally exposed to MPH. In addition to pre-
vious reports suggesting decreased anxiety and altered execu-
tive functions after such treatments (McFadyen-Leussis et  al., 
2004; Lloyd et al., 2013), we found that adult male rats prenatally 
exposed to MPH show alterations in the mesolimbic DA system 
that result in alterations in the reactivity to natural and phar-
macological rewards. Although the extrapolation of these pre-
clinical data to clinical conditions is limited, this work suggests 
that prenatal MPH exposures could represent a long-term and 
maybe permanent risk for the future child.
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Pharmaceuticals from June 2009 to December 2010. He received 
support to attend meetings from Eli Lilly and Co. in 2008 and 
from Shire in 2009–2010.
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