
Recent epidemiological studies in a range of human
populations have shown that low birth weight and
other markers of an adverse intrauterine environ-
ment (low ponderal index, thinness at birth) are asso-
ciated with a much higher incidence of cardiovascular
disease [1, 2], hypertension [3–6] and non-insulin-de-
pendent diabetes mellitus [5, 7] in subsequent adult
life. These relationships are independent of classical
adult risk factors (obesity, smoking, excessive alcohol

intake, social class) which are indeed additive to the
effects of early life [8, 9]. Importantly, this is not
merely disease following very low birth weight or pre-
maturity, but reflects a graded relationship across the
normal range of term birth weights [9]. The associa-
tion between low birth weight and later alterations
in glucose tolerance has now been shown in several
distinct populations [5, 7, 10–14] and these findings
have prompted suggestions that specific events in
prenatal development may programme later meta-
bolic responses and, in particular, the control of
blood pressure and glucose metabolism [5]. The
mechanisms of such prenatal programming are unde-
fined, but Hales et al. [5] has proposed that early nu-
trition is instrumental (the thrifty phenotype hypo-
thesis).

Recently, we proposed an alternative mechanism:
that exposure of the fetus to maternal glucocorticoids
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Summary Recent human epidemiological studies
have linked low birth weight with a substantially in-
creased risk of non-insulin-dependent diabetes melli-
tus in later life. These data suggest that the intrauter-
ine environment plays a crucial role in determining
later glucose homeostasis, but the mechanism is un-
known. We have proposed that exposure of the fetus
to excess maternal glucocorticoids may underpin the
epidemiological findings. Normally placental 11 b -
hydroxysteroid dehydrogenase type 2 (11 b -HSD-2)
protects the fetus from the normally higher maternal
levels of glucocorticoids by inactivating corticoster-
one and cortisol to inert 11-keto products. Here we
show that administration of carbenoxolone, an inhib-
itor of placental 11 b -HSD 2, to pregnant rats, leads
to a significant reduction in average birth weight
(20% fall). At 6 months of age, the male offspring of

carbenoxolone-treated pregnancies had similar
weights to controls, but showed significantly higher
fasting plasma glucose (6.0 ± 0.3 vs 4.8 ± 0.2 mmol/l;
p < 0.01) and exhibited significantly greater plasma
glucose (10% higher) and insulin (38% higher) re-
sponses to an oral glucose load. These effects of car-
benoxolone require intact maternal adrenal glands
suggesting that inhibition of feto-placental 11 b -
HSD 2 is key. These data support the notion that def-
iency of placental 11 b -HSD, by exposing the fetus to
excess maternal glucocorticoids, reduces growth and
predisposes to hyperglycaemia in later life. [Dia-
betologia (1996) 39: 1299–1305]
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might explain the link between low birth weight and
later disease, notably high blood pressure [15]. Glu-
cocorticoids have well-described hypertensive and
hyperglycaemic effects in the adult [16] and adminis-
tration during pregnancy is known to reduce birth
weight of animals and humans [17–19]. In addition,
glucocorticoids are involved in the development and
maturation of various fetal organ systems [20–22]
and both glucocorticoids [23] and other steroid hor-
mones [24] exert permanent “programming” effects
which have been invoked to explain the links be-
tween early life events and later disease. Thus, steroid
hormones act during specific periods of prenatal and
postnatal development to organise or “imprint” per-
manent patterns of tissue responses which persist
throughout life [23, 24]. Indeed, treatment of preg-
nant rats with the synthetic glucocorticoid dexam-
ethasone, in a low dose which only modestly reduces
birthweight, produces permanent rises in blood pres-
sure in the adult offspring [25].

Normally, exposure of the fetus to the much higher
levels of glucocorticoids in the maternal blood is min-
imised by a placental enzyme 11 b -hydroxysteroid
dehydrogenase type 2 (11 b -HSD-2). This enzyme
catalyses the rapid conversion of active, receptor-
binding physiological glucocorticoids (cortisol in hu-
mans, corticosterone in rats) to inert 11-keto deriva-
tives (cortisone, 11 dehydrocorticosterone) while the
type 1 isoform of the enzyme (11 b -HSD-1) is pre-
sent in the liver but not placenta, and favours the re-
verse reaction. 11 b -HSD-2 is highly expressed in
the placental syncytiotrophoblast [26] and maintains
a gradient of cortisol from the maternal to the fetal
circulation [27] (Fig. 1). 11 b -HSD-2 activity in the
placenta is directly related to birth weight both in
rats [25] and humans [28, 29]. Patients bearing muta-
tions of the gene encoding 11 b -HSD-2 have low
birth weight [30]. These data are in keeping with the
hypothesis that fetal glucocorticoid exposure is of im-
portance in determining birthweight; however, any
relationship between placental 11 b -HSD-2 and glu-
cose tolerance in later life is unclear. We have there-
fore examined the effect of administration to preg-
nant rats of carbenoxolone, a potent inhibitor of
11 b -HSD-2 [26], on birth weight and later glucose
tolerance in the adult offspring.

Materials and methods

Carbenoxolone treatment in adrenal intact animals. Female Wi-
star rats (200–250 g, Harlan UK Ltd, Bicester, UK) were main-
tained under conditions of controlled lighting (lights on 07.00–
19.00 hours) and temperature (22 °C) and allowed free access
to food (standard rat chow; 56.3 % carbohydrate, 18.3 % pro-
tein, NaCl 0.7 %; B.S. & S. Scotland Ltd. Edinburgh, UK) and
tap water. In all experiments standards conforming to “The
Principles of Animal Care” (NIH publication No.85-23, re-
vised 1985) were followed. The rats were time-mated and

then given either carbenoxolone (12.5 mg/day in 4 % ethanol-
saline, 0.1 ml, s. c., Sigma, Poole, Dorset, UK) or vehicle alone
(CON) throughout pregnancy. At birth, the offspring were
weighed and then no further treatment was given (to mothers
or pups).

Carbenoxolone treatment in adrenalectomised animals. Non-
pregnant female rats underwent adrenalectomy by the dorsal
approach under halothane anaesthesia and thereafter were
given saline to drink. Controls were sham-operated (SHAM)
and drank water. Blood (for plasma corticosterone estimation)
was subsequently taken at 09.00 hours by tail tipping to assess
the completeness of adrenalectomy. Adrenalectomised
(ADX) animals were time-mated 8–15 days after surgery and
treated throughout pregnancy with carbenoxolone
(ADX + CBX; 12.5 mg/day, s. c.) or vehicle alone (ADX).
Sham-adrenalectomised controls received vehicle.

Measurement of maternal blood pressure, glucose and corticos-
terone. A separate cohort of adrenal-intact pregnant rats were
time-mated and then given either carbenoxolone (CBX;
12.5 mg/day in 4 % ethanol-saline, 0.1 ml, s. c.) or vehicle alone
(CON) throughout pregnancy, as above. To assess blood pres-
sure of the dam, a cannula was inserted into the right carotid
artery under halothane anaesthesia and the animals allowed
to recover for at least 72 h. Blood pressure was measured di-
rectly in conscious, unrestrained animals using a pressure
transducer (Lectromed Multitrace 2; UK) for 10 min on three
separate occasions. Samples for assessment of glucose and
corticosterone were obtained from the same animals at
09.00 hours at least 72 h after cannulation. The coefficient of
variation for the repeated measures of blood pressure was
6.9 % for mean arterial pressure.

Measurement of placental 11 b-HSD activity. Placental 11 b -
HSD-2 activity was assessed in separate groups of carbenox-
olone and control-treated pregnant animals by infusion of
[3H] corticosterone to achieve steady state and subsequent ex-
traction of [3H] corticosterone and [3H] 11-dehydrocorticoster-
one from the blood of the dams, fetal tissues and placenta. On
days 17–21 of gestation animals (5 control, 3 treated with car-
benoxolone 12.5 mg/day throughout pregnancy) were sub-
jected to halothane anaesthesia and the left carotid and right
jugular vein were cannulated. Animals were given a priming
dose of [3H] corticosterone (3 mCi in 0.6 ml 0.9 % NaCl; Amer-
sham, Amersham, UK) and followed by a constant infusion of
0.15 mCi ⋅ min−1 ⋅ 30 ml−1 ⋅ min−1 for a total of 80 min via the
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Fig. 1. Corticosterone in the maternal circulation (derived
from the maternal adrenal), is converted in the placenta to
the inactive form 11-dehydrocorticosterone by action of
11 b HSD 2



jugular catheter. Samples of arterial blood (300 ml with re-
placement of volume with 0.9 % NaCl) were obtained at 20,
40, 60 and 80 min of infusion to ensure steady-state and blood
pressure and pulse rate, measured as above (Lectromed Multi-
trace 2). At 80 min, placental and fetal tissues were removed
and frozen in liquid nitrogen. Steroids were extracted with
ethyl acetate from three placentae and matched fetuses from
each animal and separated by thin layer chromatography [31].
Activity of 11 b -HSD-2 was assessed by the increase in [3H]
11-dehydrocorticosterone from arterial blood to placental tis-
sue.

Oral glucose tolerance test (OGTT). At 6 months of age male
offspring underwent an OGTT. Animals were fasted from
16.00 hours the day before and 2 g/kg glucose (as a 0.5 g/ml so-
lution) was given by gavage between 08.00 and 09.00 hours the
next morning. Blood was taken by tail tipping at 0, 30, 60, 90
and 120 min, centrifuged immediately and the plasma stored
at − 70 °C.

Glucose, insulin and corticosterone assays. Plasma glucose was
determined by an enzymatic (glucose oxidase) method using a
Beckman Synchron CX3 multichannel analyser (Beckman In-
struments Ltd, High Wycombe, UK). The intra-assay and in-
ter-assay coefficients of variation were less than 1 % and
2.2 %, respectively. Plasma insulin was determined as previ-
ously described [32] using rat insulin standards (Novo Nordisk,
Copenhagen, Denmark) and iodinated insulin (Lifescreen,
Watford, UK). The intra-assay and inter-assay coefficients of
variation of this method are less than 10 % throughout the
range. Corticosterone was estimated using a radioimmunoas-
say [33]. The intra-assay coefficient of variation was 3.8 %.

Statistical analysis

All data are expressed as mean ± SEM. Data were compared
using unpaired Student’s t -tests or one or two-way ANOVA
followed by Newman-Keuls post-hoc multiple comparisons
test, where appropriate. Values were considered significant
when p was less than 0.05.

Results

Effect on birth weight of carbenoxolone in adrenal in-
tact and adrenalectomised rats. Administration of car-
benoxolone to adrenally intact pregnant rats led to a
20% reduction in offspring birth weight (CBX
4.54 ± 0.08 g, n = 35; CON 5.68 ± 0.07 g, n = 39; p <
0.01; Fig. 2) but did not affect litter size (CON 9.7 ±
1.1, n = 4; CBX 8.7 ± 1.7, n = 4) or the length of gesta-
tion (CON 22.2 ± 0.2 days; CBX 22 ± 0.1 days).
Adrenalectomy reduced plasma corticosterone levels
in pregnant rats to less than 60 nmol/l, compared to
898 ± 103 nmol/l in the sham-operated controls.
Adrenalectomy itself was associated with a 9 % re-
duction in offspring birth weight, but there was no ad-
ditional effect of carbenoxolone on birth weight in
adrenalectomised animals (Fig. 2). Adrenalectomy,
with or without carbenoxolone, did not affect litter
size (SHAM 7.2 ± 1.3, n = 5; ADX 8 ± 0, n = 4;
ADX + CBX 7.3 ± 2.7, n = 3) or the length of

gestation (SHAM 22.2 ± 0.4 days; ADX 22 ± 0 days;
ADX + CBX 21.7 ± 0.9 days). Adrenalectomised
and sham-operated rats showed similar weight gains
through pregnancy (SHAM 84 ± 7 g; ADX 83 ± 15 g;
ADX + CBX 66 ± 18 g).

Effect of carbenoxolone on maternal blood pressure,
glucose and corticosterone. Treatment with carbenox-
olone had no significant effect on maternal blood
pressure (measured directly in unrestrained rats) on
days 18–20 of pregnancy (CON, systolic 117 ±
2 mmHg and diastolic 86 ± 5 mmHg, n = 4; CBX,
systolic 119 ± 3 mm Hg and diastolic 77 ± 4 mm Hg,
n = 3). Similarly, neither maternal plasma glucose
(CON, 5.3 ± 0.3 mmol/l, n = 4; CBX, 6.4 ± 0.3 mmol/l,
n = 4) nor maternal plasma corticosterone at
09.00 hours (CON 692 ± 172 nmol/l; CBX 647 ±
101 nmol/l) were significantly altered by carben-
oxolone.

Effect of carbenoxolone on placental 11 b-HSD in
vivo. Maternal blood concentrations of [3H] corticos-
terone and [3H] 11-dehydrocorticosterone were simi-
lar in control and carbenoxolone groups at 20, 40, 60
and 80 min (two-way ANOVA), indicative of isotopic
steady-state. Carbenoxolone did not alter the meta-
bolic clearance rate for corticosterone (CON
11.8 ± 0.9 n = 5; CBX 11.0 ± 1.3 ml/min, n = 3) and in-
fused pregnant animals had similar blood pressures
(mean arterial pressure CON 77.2 ± 4.5; CBX
82 ± 5.3 mmHg). There was no difference with treat-
ment in the percentage of total [3H] steroids as corti-
costerone in maternal blood at steady-state (CON
90.8 ± 2.1; CBX 89.5 ± 3.4%). Carbenoxolone treat-
ment reduced placental 11 b -HSD activity (activity
as percentage of matched control: CON 100 ± 9.4;
CBX 63.5 ± 8.6%; p < 0.05) and led to an increase in
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Fig. 2. Effect of carbenoxolone on birthweight. Birth weight
(g) of the offspring of pregnant rats treated with vehicle con-
trol (CON n = 39), carbenoxolone (CBX n = 35), sham
adrenalectomy (SHAM n = 36), adrenalectomy (ADX n = 24)
and adrenalectomy and carbenoxolone (ADX + CBX n = 22)
throughout pregnancy. * p < 0.05 compared with control



[3H] corticosterone as a percentage of total [3H] -ste-
roids in fetal tissues (CON 65.6 ± 1.6; CBX
74.2 ± 2.0%; p < 0.05).

Adult offspring response to an oral glucose load. At
6 months of age, the male offspring of adrenal intact
rats treated with carbenoxolone during pregnancy
displayed higher fasting plasma glucose levels (CON
4.8 ± 0.2; CBX 6.0 ± 0.3 mmol/l; p < 0.01). The plasma
glucose response to an oral glucose load was also
higher in the offspring of carbenoxolone-treated
pregnancies (CON vs CBX repeated measures
ANOVA, f = 5.93, p = 0.02, Fig. 3). The area under
the glucose curve across the OGTT was significantly
(10%) higher for the offspring of carbenoxolone-
treated pregnancies and the response of insulin in
this group was also significantly (38%) greater
(Fig. 4). Body weights were similar at 6 months in all
groups.

Maternal adrenalectomy prevented the effect of
carbenoxolone on offspring glucose tolerance. There
was no difference in glucose tolerance in the offspring
of the adrenalectomised pregnant females with or
without carbenoxolone in terms of either basal glu-
cose or the response of plasma glucose or insulin
(Fig. 4).

Discussion

Carbenoxolone is known to act in vitro as an inhibitor
of placental 11 b -HSD-2 [26]. Here we demonstrate
that administration of carbenoxolone inhibits placen-
tal 11 b -HSD-2 activity in vivo and allows increased
passage of maternal corticosterone to the fetus, at
least within the last week of pregnancy. Further,

carbenoxolone treatment reduces birthweight, an ef-
fect similar to that observed with dexamethasone
[25], a synthetic glucocorticoid which is a poor sub-
strate for 11 b -HSD-2 [26, 34]. Finally, the adult off-
spring of carbenoxolone-treated dams display altered
glucose tolerance, with both higher fasting glucose
and increased glucose and insulin responses to an
oral glucose load in adulthood. The importance of
11 b -HSD-2 in limiting fetal exposure to maternal
glucocorticoid [27, 35] is supported both by the effect
of carbenoxolone to increase [3H] corticosterone ac-
cess to the fetal circulation and the observation that
the effects on both birthweight and offspring glucose
tolerance are dependent on the presence of intact
maternal adrenal glands. This suggests that carbenox-
olone does not have direct effects on the dam, but
acts via increased exposure of the feto-placental unit
to maternal glucocorticoids.

There are many potential mechanisms whereby
carbenoxolone treatment might act to produce glu-
cose intolerance in later life. Maternal factors clearly
contribute to the fetal environment and potentially

R. S.Lindsay et al: Prenatal glucocorticoids and hyperglycaemia1302

Fig. 3. Plasma glucose response to an oral glucose load in off-
spring at 6 months. Pregnant rats received vehicle (—B—
CON n = 18) or carbenoxolone (- - -6- - - CBX n = 14). Treat-
ment was only during pregnancy. Repeated measures
ANOVA, F = 5.93, p < 0.05. ** p < 0.01; * p < 0.05, unpaired
t -test vs control for individual timepoints

Fig. 4. Glucose and insulin responses to an oral glucose load in
offspring of carbenoxolone treated rats. Area under curve for
glucose and insulin in 6-month-old offspring of rats treated in
pregnancy with vehicle control (CON n = 18), carbenoxolone
(CBX n = 14), sham adrenalectomy and vehicle (SHAM
n = 8), adrenalectomy and vehicle (ADX n = 8) and adrenalec-
tomy with carbenoxolone (ADX + CBX n = 8). * p < 0.05
compared with control



to later disease. In particular, the supply of metabolic
fuels from mother to fetus has been proposed to have
long-term effects on offspring metabolism [36] and
this hypothesis has found support in the adverse ef-
fects of maternal hyperglycaemia on offspring glu-
cose handling in human populations [37–39] and ani-
mals models [40–43]. In our model, however, there
was no increase in maternal blood glucose with car-
benoxolone, rendering this potential mechanism un-
likely. Similarly, other indirect effects mediated via
maternal sodium retention and hypertension appear
not to be involved in the action of carbenoxolone in
this study. It seems more probable that carbenox-
olone acts directly on the placenta or fetus to exert
its actions. The lack of effect of carbenoxolone on
birth weight or offspring glucose control in adren-
alectomised rats, strongly points to a mechanism re-
quiring maternal glucocorticoids. This is likely to be
inhibition of placental and/or fetal tissue 11 b -HSD,
which would increase fetal exposure to (maternal)
corticosterone. Other enzymes are also affected by
carbenoxolone in vitro [44, 45], although the concen-
trations required are much higher than the nanomo-
lar Ki for 11 b -HSD [26] and are unlikely to be
achieved in vivo [46]. Moreover, it is more difficult
to conceive how effects on other enzymes might be
dependent upon maternal adrenal products.

Glucocorticoids might act in a number of ways in
the developing animal to provoke later glucose in-
tolerance. Glucocorticoids inhibit insulin release
[47] and islet beta-cell replication in vitro [48, 49].
Thus, increased exposure to maternal glucocorti-
coids may permanently reduce beta-cell mass, later
expressed as impaired glucose tolerance. Equally,
glucocorticoids may act to programme hormonal re-
sponses or metabolic pathways. Glucocorticoids
exert important maturational effects on adrenergic
receptor systems [50, 51] and a variety of key meta-
bolic enzymes [22, 52]. These include phospho-
enolpyruvate carboxykinase, the rate-limiting en-
zyme in gluconeogenesis, which is directly and po-
tently regulated by glucocorticoids at the level of
transcription [53]. Early exposure to glucocorticoids
might programme these systems to alter perma-
nently carbohydrate metabolism. Alternatively, pre-
natal and immediate postnatal stress (and glucocor-
ticoids) are well-documented to programme in-
creased hypothalamic-pituitary-adrenal axis activity
producing glucocorticoid hypersecretion throughout
life [54, 55]. Such an effect is indeed observed after
prenatal dexamethasone exposure [56] and might of
course contribute to hyperglycaemia. Finally, gluco-
corticoids may act indirectly by influencing fetal or
placental expression of key growth factors. In this
regard glucocorticoids regulate the synthesis of insu-
lin-like growth factors 1 and 2, many of their binding
proteins and both receptor subtypes in the fetus and
placenta [57, 58].

Clearly excess glucocorticoid exposure is not the
only determinant of birth weight. Maternal adrena-
lectomy also reduces birth weight, but importantly
the offspring of adrenalectomised pregnancies, al-
though smaller, do not display alterations in glucose
handling. Obviously not all manipulations that atten-
uate birth weight programme hyperglycaemia, a no-
tion supported by the human epidemiological data
which emphasise the importance of thinness (low
ponderal index) rather than merely birth weight per
se [1, 7, 59].

Undernutrition in early life has also been sug-
gested to be of critical importance in determining fe-
tal growth and later disease [8]. This is supported by
the demonstration of impaired endocrine pancreatic
function following protein malnutrition during prena-
tal [60] or early postnatal life [61] in animal models. It
is therefore intriguing to note that maternal protein
restriction during rat pregnancy also attenuates pla-
cental 11 b -HSD activity [62]. Thus, although many
of the molecular details require elucidation, these
data support the hypothesis that placental 11 b -
HSD-2 deficiency, by allowing increased fetal expo-
sure to maternal glucocorticoids, plays a key role in
mediating the effects of deleterious genetic [30] and
maternal environmental factors upon feto-placental
growth and the programming hyperglycaemia and di-
abetes in adult life.
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