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Abstract

Epidemiological evidence suggests that low birth weight is associated with an increased risk of cardio-
vascular, metabolic and neuroendocrine disorders in adult life. Glucocorticoid administration during
pregnancy reduces offspring birth weight and alters the maturation of the lung and other organs. We
hypothesised that prenatal exposure to excess glucocorticoids or stress might represent a mechanism
linking foetal growth with adult pathophysiology. In rats, birth weight is reduced following prenatal
exposure to the synthetic steroid dexamethasone, which readily crosses the placenta, or to carbenox-
olone, which inhibits 11b-hydroxysteroid dehydrogenase type 2 (11b-HSD2), the physiological feto-
placental ‘barrier’ to maternal glucocorticoids. As adults, the offspring exhibit permanent hyperten-
sion, hyperglycaemic, increased hypothalamic-pituitary-adrenal (HPA) axis activity and behaviour
reminiscent of anxiety. Physiological variations in placental 11b-HSD2 activity correlate directly
with foetal weight. In humans, 11b-HSD2 gene mutations cause low birth weight. Moreover, low-
birth-weight babies have higher plasma cortisol levels throughout adult life, indicating HPA axis pro-
gramming. The molecular mechanisms may reflect permanent changes in the expression of specific
transcription factors, key among which is the glucocorticoid receptor (GR) itself. The differential pro-
gramming of the GR in different tissues reflects effects upon one or more of the multiple tissue-specific
alternate first exons/promoters of the GR gene. Overall, the data suggest that both pharmacological
and physiological exposure prenatally to excess glucocorticoids programmes cardiovascular, meta-
bolic and neuroendocrine disorders in adult life.
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Introduction

It is now axiomatic that early-life environmental fac-
tors influence prenatal development and may cause
structural and functional changes which persist for
the lifespan. This organisational phenomenon is
termed ‘early-life programming’. Programming factors
include nutrients and hormones. Sex steroid hor-
mones, which are lipophilic and readily cross biological
barriers, are powerful mediators of early-life organis-
ational effects. We therefore suggested that similar
programming effects might also follow prenatal
exposure to other steroid hormones, notably glucocor-
ticoids. Here the evidence for such actions is briefly
reviewed.

Programming

The concept of early-life physiological ‘programming’ or
‘imprinting’ has been advanced to explain the associ-
ations between prenatal environmental events, altered
foetal growth and development, and later pathophysi-
ology (1–4). Programming reflects the action of a
factor during a sensitive developmental period or

‘window’ to affect the development and organisation
of specific tissues that are concurrently vulnerable, pro-
ducing effects that persist throughout life. Of course,
different cells and tissues are sensitive at different
times, so the effects of environmental challenges will
have distinct effects, depending not only the challenge
involved but also upon its timing.

Programming has been examined in several settings.
For hormones, a long and detailed literature has exam-
ined the ‘pharmacology’ of such systems (1). Such
studies have employed exposure of pregnant dams or
newborns to exogenous agents, including toxins,
drugs and hormones, and have then examined the
short- and long-term consequences.

One area that has made the transition to physiology
has been the phenomenon of perinatal programming
by sex steroids. In many vertebrate species, males
show a short burst of androgen secretion around the
time of birth. This permanently programmes steroid
metabolising enzyme expression in the liver, the size,
connection and neurochemistry of specific hypothala-
mic nuclei, and some sexual behaviours (5, 6). Oestro-
gens also exert organisational effects on the developing
central nervous system (CNS) (7). Critically, these
effects can be exerted only during specific perinatal
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periods, but they then persist throughout life, largely
irrespective of any subsequent sex steroid manipula-
tions. The mechanisms reflect sex steroid actions on
the growth, maturation and remodelling of organs
during critical perinatal periods. For instance in the
rat, the sexually dimorphic nucleus of the preoptic
hypothalamic area is larger in males. Testosterone inhi-
bits apoptosis specifically between postnatal days 6 and
10 and selectively in this locus, thus producing the
male adult phenotype (8). So, might glucocorticoids,
used in several antenatal therapeutic settings, also
have long-term effects on offspring physiology?

Glucocorticoid programming

Glucocorticoids and birth weight

Glucocorticoid treatment during pregnancy reduces
birth weight in animal models, including non-human
primates (9–13) and humans (12, 14). Birth weight

reduction is most notable when glucocorticoids are
administered in the latter stages of pregnancy (10),
presumably reflecting the catabolic actions of these
steroids, actions most likely to become manifest as
reduced birth weight during the period of maximum
foetal somatic growth.

In human pregnancy, glucocorticoids are now used
mainly in the management of women at risk of preterm
delivery and, much more rarely, in the antenatal treat-
ment of foetuses at risk of congenital adrenal hyperpla-
sia (CAH). In some studies, antenatal glucocorticoids
are associated with a reduction in birth weight (12,
14), although normal birth weight has been reported
in infants at risk of CAH whose mothers received rela-
tively low-dose dexamethasone in utero from the first
trimester (15, 16). A recent study of pregnant women
with asthma did not find changes in birth weight
with use of inhaled and/or episodic oral glucocorticoids.
Indeed, lack of glucocorticoid therapy is associated with
a reduction in offspring birth weight (17). However, the

Figure 1 Glucocorticoids restrain foetal
growth and alter the trajectory of foetal tissue
maturation. Concentrations of the active glu-
cocorticoid cortisol are high in maternal
blood during pregnancy. This placenta can-
not stop lipophilic steroids crossing to the
foetus, but uses placental 11b-hydroxy-
steroid dehydrogenase type 2 (11b-HSD2)
rapidly to inactivate cortisol to inert cortisone,
thus minimising foetal exposure.

Figure 2 Left panel: placental 11b-hydroxy-
steroid dehydrogenase (11b-HSD) activity
correlates with birth weight in rodents and,
less certainly, in humans. This suggests that
relative deficiency of this barrier to maternal
glucocorticoids, but allowing active forms to
cross to the foetus, correlates with foetal
growth restraint. Centre panel: inhibition of
11b-HSD by maternal treatment with carben-
oxolone (CBX; filled bar/solid line) reduces
birth weight compared with control (open
bar/broken line). Right panels: this produces
higher blood pressure and plasma glucose
levels across an oral glucose tolerance test
(fasting and post-prandial) in the adult,
6-month old offspring.
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effects on placental function of inflammatory mediators
in poorly controlled asthma, the predominant topical
route of steroid administration and the use of predniso-
lone, which is rapidly inactivated by placental 11b-
hydroxysteroid dehydrogenase type 2 and poorly
accesses the foetal compartment (see below), might
underpin these apparently discordant results.

For endogenous glucocorticoids, human foetal blood
cortisol levels are increased in intrauterine growth
retardation and also in pre-eclampsia, implicating
endogenous cortisol in retarded foetal growth (18,
19). Cortisol also affects placental size in experimental
animals, the precise effect depending on the dose used
and its timing during pregnancy (20).

Glucocorticoids and tissue maturation

Glucocorticoids have potent effects upon tissue develop-
ment. Indeed, it is the accelerated maturation of
organs, notably the lung (21), which underpins their
widespread use in obstetric and neonatal practice in
threatened or actual preterm delivery.

Underpinning such actions, glucocorticoid receptors
(GR), which are members of the nuclear hormone
receptor superfamily of ligand-activated transcription
factors, are expressed in most foetal tissues from early
embryonal stages (22, 23). Expression of the closely
related, higher affinity mineralocorticoid receptor
(MR) has a more limited tissue distribution in develop-
ment and is present only at later gestational stages, at
least in rodents (24). Additionally, GR are highly

expressed in the placenta (25), where they are thought
to mediate metabolic and anti-inflammatory effects.
Clearly, systems to transduce glucocorticoid effects
upon the genome exist from early developmental
stages, with complex cell-specific patterns of expression,
and presumably sensitivity, to the steroid ligands (23).

Birth weight and foetal programming

Numerous studies, initially in the UK and then world-
wide, have revealed an association between lower
birth weight and the subsequent development of the
common cardiovascular and metabolic disorders of
adult life, notably hypertension, insulin resistance,
type 2 diabetes and cardiovascular disease deaths
(2, 26–34). These early-life events altering birth
weight are important predictors of adult morbidity
(28, 29, 35). In a study of 22 000 American men,
those born lighter than 2.2 kg had relative risks of
adult hypertension (1.26) and type 2 diabetes (1.75)
compared with average birth-weight adults (29). More-
over, the association between birth weight and later
cardiometabolic disease appears largely independent
of classical lifestyle risk factors (smoking, adult
weight, social class, excess alcohol intake and seden-
tariness), which are additive to the effect of birth
weight (2). The low birth weight–adult disease
relationships are broadly continuous across birth
weights within the normal range (2, 28, 29), although
premature babies also have increased cardiovascular
risk in adult life (36). Additionally, post-natal catch-
up growth also appears to be predictive of the risk of
adult cardiovascular disease (31, 32, 37, 38),
suggesting it is restriction of intrauterine growth
which is important. While such effects might reflect
classical genetic actions, some work has suggested
that the smaller of twins at birth has higher blood
pressure in later life (37), although this has not been
consistently reported (39). Whatever the limitations of
human twin observations, the occurrence of associ-
ations between early-life environmental manipulations
and later physiology and disease risk in isogenic
rodent models strongly implicates environmental fac-
tors, at least in part, in aetiology. It is intriguing that
as blunt a measure of a disadvantageous intrauterine
environment as birth weight has proved to show a rela-
tively robust relationship with later pathophysiology.
Nonetheless, it is generally accepted that birth weight
and other anthropometric indices are just crude mar-
kers; presumably, many insults that may affect offspring
biology do not alter gross birth weight. Inevitably, the
epidemiological data have spawned a host of mechanis-
tic studies in animal models. Two major environmental
hypotheses have been proposed: foetal undernutrition
and overexposure of the foetus to glucocorticoids (2–4).

In evidence for the latter possibility, the major systems
affected in the ‘low-birth-weight baby syndrome’ are
glucocorticoid-sensitive targets. Notably, the syndrome

Figure 3 Key targets of glucocorticoid programming include meta-
bolic tissues, such as liver, visceral adipose tissue, skeletal
muscle and pancreas, and regions of the brain important in cogni-
tion, mood and neuroendocrine control.
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is broadly familiar to endocrinologists since it resembles
both the rare Cushing’s syndrome of glucocorticoid
excess and the common metabolic syndrome conti-
nuum of interassociated cardiovascular risk factors
(type 2 diabetes/insulin resistance, dyslipidaemia and
hypertension). These disorders may be linked by tissue
glucocorticoid excess (40). Even the less recognised
components of the small baby syndrome, such as osteo-
porosis (41), are also key features of Cushing’s syn-
drome. Moreover, at least a proportion of these
physiological systems are also glucocorticoid sensitive
in early life, since cortisol also elevates foetal blood
pressure when infused directly in utero in sheep (42)
and at birth in sheep (43) and humans (44).

Physiology: placental 11b-hydroxysteroid
dehydrogenase type 2

All the points above relate to pharmacological gluco-
corticoid exposures. So, is glucocorticoid overexposure
in utero of any possible physiological relevance? While
lipophilic steroids easily cross the placenta, foetal glu-
cocorticoid levels are much lower than maternal
levels (45, 46). This is thought to be due to 11b-
HSD-2, which is highly expressed in the placenta.
11b-HSD-2 is an NAD-dependent 11b-dehydrogenase
which catalyses the rapid conversion of active physio-
logical glucocorticoids (cortisol and corticosterone) to
inert 11-keto forms (cortisone and 11-dehydrocorticos-
terone) (47). In the placenta, 11b-HSD-2 forms a
potent (48, 49) barrier to maternal glucocorticoids
(Fig. 1), although the barrier is apparently incomplete,
as a proportion of maternal glucocorticoid crosses
intact to the foetus (50). This 10–20% passage of
active maternal glucocorticoid to the foetus perhaps
reflects anatomical bypass of the enzyme, which is
located in the syncytiocytotrophoblast in human pla-
centa (51) and the labyrinthine zone in rodent pla-
centa (52, 53). Indeed, in rodents the peak of the
circadian rhythm of plasma corticosterone penetrates
the 11b-HSD-2 barrier to an appreciable extent (54),
presumably adding to the provision of glucocorticoids
to the foetus for normal key developmental processes
such as maturation of the lung. Dexamethasone is a
poor substrate for 11b-HSD-2 and therefore readily
passes the placenta (51). Betamethasone is similarly
a poor substrate. In contrast, 11b-HSD-2 rapidly
inactivates prednisolone to inert prednisone, so this
widely used steroid is unlikely to have full impact
upon the foetus in vivo.

Placental 11b-HSD-2 and birth weight

Observational studies have related placental 11b-HSD-2
to birth weight. The activity of placental 11b-HSD-2
near term shows considerable interindividual variation
inhumans and rats (55, 56) (Fig. 2). A relative deficiency
of 11b-HSD-2, with consequent reduced placental

inactivation of maternal steroids, has been hypothesised
to lead to overexposure of the foetus to glucocorticoids,
retard foetal growth and programme responses leading
to later disease (3). In support of this idea, lower placental
11b-HSD-2 activity in rats is associatedwith the smallest
foetuses (55). Similar associations have been reported in
humans (17, 56–58), although not all studies have con-
curred (59, 66). Additionally, markers of foetal exposure
to glucocorticoids, such as cord-blood levels of osteocal-
cin (a glucocorticoid-sensitive osteoblast product that
does not cross the placenta), also correlatewith placental
11b-HSD-2 activity (60).

Humans with 11b-HSD-2 deficiency are rarely
reported. However, babies homozygous (or compound
heterozygous) for deleterious mutations of the 11b-
HSD-2 gene have very low birth weight (61), averaging
1.2 kg less than their heterozygote siblings. Although
an initial report suggested that 11b-HSD-2-null mice
have normal foetal weight in late gestation (62), this
appears to have reflected the ‘genetic noise’ of the
crossed (129 £ MF1) strain background of the original
11b-HSD-2-null mouse. Indeed, preliminary data
suggest that in congenic mice on the C57Bl/6 strain
background 11b-HSD-2 nullizygosity lowers birth
weight (63). Additionally, there may also be species
differences. Thus, the mouse shows dramatic late-
gestational loss of placental 11b-HSD-2 gene
expression (24), whereas this occurs later in rat ges-
tation (53), and in humans, placental 11b-HSD-2
activity increases throughout gestation (56). Because
maternal glucocorticoid levels are much higher than
those of the foetus, subtle changes in placental
11b-HSD-2 activity may have profound effects on
foetal glucocorticoid exposure (48, 49).

A common mechanism may underlie foetal program-
ming through maternal undernutrition and glucocorti-
coid exposure. Dietary protein restriction during rat
pregnancy selectively attenuates 11b-HSD-2, but,
apparently, not other placental enzymes (64–66).
Indeed, in the maternal protein restriction model, off-
spring hypertension can be prevented by treating the
pregnant dam with glucocorticoid synthesis inhibitors,
and can be recreated by concurrent administration of
corticosterone, at least in female offspring (67).

Glucocorticoid programming effects and
mechanisms (Fig. 3)

Glucocorticoid programming of the brain

Maternal and/or foetal stressors alter developmental
trajectories of specific brain structures with persistent
effects (for reviews, see (68, 69). Glucocorticoids are
important for normal maturation in most regions of
the developing CNS (70), initiating terminal matu-
ration, and remodelling axons and dendrites, and for
cell survival (71). Prenatal glucocorticoid adminis-
tration retards brain weight at birth in sheep (72),
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delaying maturation of neurons, myelination, glia and
vasculature (73, 74). Exposure to glucocorticoids in
utero has widespread acute effects upon neuronal struc-
ture and synapse formation (75), and may permanently
alter brain structure (76). In rhesus monkeys, treat-
ment with antenatal dexamethasone caused dose-
dependent neuronal degeneration of hippocampal
neurons and reduced hippocampal volume, effects
which persisted at 20 months of age (77). Foetuses
receiving multiple lower-dose injections showed more
severe damage than those receiving a single large injec-
tion. Human and animal studies have demonstrated
that altered hippocampal structure may be associated
with a number of consequences for memory and beha-
viour (78–80).

Given such widespread effects of glucocorticoids, it is
unsurprising that GR and MR are highly expressed in
the developing brain with complex ontogenies to allow
selectivity of effects (81, 82). Whether the receptors
are occupied by endogenous glucocorticoids until late
gestation is less certain, as there is also plentiful 11b-
HSD-2 in the CNS at midgestation (24, 83), which
presumably ‘protects’ vulnerable developing cells
from premature glucocorticoid action. 11b-HSD-2
expression is dramatically switched off at the end of
midgestation in the rat and mouse brain, coinciding
with the terminal stage of neurogenesis (24, 84). Simi-
larly, in human foetal brain, 11b-HSD-2 appears to be
silenced between gestational weeks 19 and 26 (51,
85). Thus, there appears to be an exquisitely timed
system of protection and then exposure of developing
brain regions to circulating glucocorticoids.

The hypothalamic-pituitary-adrenal
(HPA) axis

The hypothalamic-pituitary-adrenal (HPA) axis, and its
key limbic regulator the hippocampus (86), are par-
ticularly sensitive to glucocorticoids and their perinatal
programming actions (68, 87–89). Prenatal glucocor-
ticoid exposure permanently increases basal plasma
corticosterone levels in adult rats (90, 91). This is
apparently because the density of both types of corti-
costeroid receptor, GR and MR, are permanently
reduced in the hippocampus, changes anticipated to
attenuate HPA axis feedback sensitivity. Maternal
undernutrition in rats (92) and sheep (93) also affects
adult HPA axis function, suggesting that HPA program-
ming may be a common outcome of prenatal environ-
mental challenge, perhaps acting in part via alterations
in placental 11b-HSD-2 activity, which is selectively
downregulated by maternal dietary constraint (64,
65). Consequent plasma glucocorticoid excess exacer-
bates hypertension and hyperglycaemia in such prena-
tal environmental programming models (67).
Moreover, tissue glucocorticoid action is further
increased by the documented elevations in hepatic

and visceral adipose tissue glucocorticoid sensitivity
(10, 94).

HPA axis programming also illustrates an important
variable; it often differs between male and female off-
spring of the same litter. Sex-specific programming of
the HPA axis has been reported for prenatal stress in
rats (95, 96). In male guinea pigs, short-term prenatal
exposure to dexamethasone significantly elevates sub-
sequent basal plasma cortisol levels, whereas similarly
exposed females have reduced HPA responses to
stress. In contrast, males exposed to longer courses of
prenatal glucocorticoids exhibit reduce plasma cortisol
levels in adulthood, while females similarly exposed
have higher plasma cortisol levels as adults in the fol-
licular and early luteal phases of their oestrus cycles.
In primates, offspring of mothers treated with dexa-
methasone during late pregnancy have elevated basal
and stress-stimulated cortisol levels (97).

Programming behaviour

Overexposure to glucocorticoids in utero leads to altera-
tions in adult behaviour. Late gestational dexametha-
sone in rats apparently impairs coping in adverse
situations later in life (91). Prenatal glucocorticoid
exposure also affects the developing dopaminergic
system (98, 99), with implications for understanding
the developmental contributions to schizoaffective,
attention-deficit hyperactivity and extrapyramidal dis-
orders. Stressful events in the second trimester of
human pregnancy are associated with increased inci-
dence of offspring schizophrenia (100). Prenatal
exposure to dexamethasone may exert more widespread
effects, since it also increases the susceptibility of the
cochlea to acoustic noise trauma in adulthood (101).

Behavioural changes in adults exposed prenatally to
glucocorticoids may be associated with altered func-
tioning of the amygdala, a structure key to the
expression of fear and anxiety. Intra-amygdala adminis-
tration of corticotrophin-releasing hormone (CRH) is
anxiogenic (102). Prenatal glucocorticoid exposure
increases adult CRH levels specifically in the central
nucleus of the amygdala, a key locus for its effects on
fear and anxiety (91, 103). Prenatal stress similarly
programmes increased anxiety-related behaviours
with elevated CRH in the amygdala (104). Moreover,
corticosteroids facilitate CRH mRNA expression in this
nucleus (105) and increase GR and/or MR in the
amygdala (91, 103). The amygdala stimulates the
HPA axis via a CRH signal (106). Therefore, an elevated
corticosteroid signal in the amygdala, due to hypercor-
ticosteronaemia in the adult offspring of dexametha-
sone-treated dams, may produce the increased CRH
levels in adulthood. A direct relationship between
brain corticosteroid receptor levels and anxiety-like
behaviour is supported by the phenotype of transgenic
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mice with selective loss of GR gene expression in the
brain, which show markedly reduced anxiety (107).

CNS programming mechanisms

In the ‘neonatal handling’ paradigm (70, 108–109),
short (15min daily) handling of rat pups during the
first 2 weeks of life (109) permanently increases hippo-
campal GR levels. This potentiates the HPA axis sensi-
tivity to glucocorticoid negative feedback and lowers
plasma glucocorticoid levels throughout life, a state
compatible with good adjustment to environmental
stress (110, 111). The model is of physiological rele-
vance, since handling enhances maternal care-related
behaviours. Natural variation in such maternal beha-
viour correlates similarly with the offspring HPA physi-
ology and hippocampal GR expression (112). Handling
acts via ascending serotonergic (5HT) pathways from
the midbrain raphe nuclei to the hippocampus (113).
5HT induces GR gene expression in foetal hippocampal
neurons in vitro (114) and in neonatal (115) and adult
hippocampal neurons in vivo (116). The ‘handling’
induction of 5HT requires thyroid hormones that are
elevated by the stimulus in rats and guinea pigs
(117). At the hippocampal neuronal membrane,
recent findings implicate the ketanserin-sensitive
5HT7 receptor subtype, which is regulated by glucocor-
ticoids (118) and positively coupled to cAMP gener-
ation, in the handling effects (119). In vitro, 5HT
stimulation of GR expression in hippocampal neurons
occurs via 5HT7 receptors and is mimicked by cAMP
analogues (114, 120, 121). In vivo, handling stimulates
hippocampal cAMP generation (122), which induces
expression of specific transcription factors, most nota-
bly NGFI-A and AP-2 (119). NGFI-A and AP-2 bind
to the GR gene promoter (123). This pathway might
also be involved in some prenatal programming para-
digms affecting the HPA axis, since last-trimester dexa-
methasone exposure increases 5HT transporter
expression in the rat brain (124, 125), an effect pre-
dicted to reduce 5HT availability in the hippocampus
and elsewhere. Crucial recent data show that NGFI-A
binds to the GR promoter, inducing a specific GR tran-
script (126) (see below).

Cardiovascular and metabolic
programming

Blood pressure

Of all the human data, the link between birth parameters
and adult blood pressure is perhaps best documented
and established. Cortisol infusion into the foetus
in utero elevates blood pressure in sheep (42). Beta-
methasone given to pregnant baboons raises blood
pressure in the foetus (127). Excess cortisol also directly
elevates blood pressure at birth in humans (44) and

sheep (43). For programming to occur, such effects
need to persist.

Treatment of pregnant rats with dexamethasone
reduces birth weight, a deficit reversed by weaning at
21 days of age. However, both male and female adult off-
spring of dexamethasone-treated pregnancies have elev-
ated blood pressure (55). Similarly, adult hypertension is
produced in sheep exposed to excess glucocorticoid in
utero, either maternally administered dexamethasone
or cortisol (128–132). The timing of glucocorticoid
exposure appears to be important; exposure to glucocor-
ticoids during the final week of pregnancy in the rat is
sufficient to produce permanent adult hypertension
(90, 133), whereas the sensitive window for such effects
in sheep is earlier in gestation (134). Such differences
may be primarily due to the complex species-specific
patterns of expression of GR, MR and the isoenzymes
of 11b-HSD (23, 24), which regulate maternal gluco-
corticoid transfer to the foetus and modulate glucocorti-
coid action in individual tissues.

Near identically, inhibition of 11b-HSD by treatment
of pregnant rats with carbenoxolone causes reduced
birth weight along with increased passage of maternal
corticosterone to the foetal circulation (135, 136)
(Fig. 2). As with dexamethasone, prenatal carbenoxo-
lone-exposed rats develop adult hypertension (135).
These effects of carbenoxolone are independent of
changes in maternal blood pressure or electrolytes,
but do require the presence of maternal glucocorticoids;
the offspring of adrenalectomised pregnant rats are pro-
tected from carbenoxolone effects upon birth weight or
adult physiology (135, 136). It must be noted that car-
benoxolone is non-selective and inhibits both 11b-HSD
isozymes and related dehydrogenases, and disrupts gap
junctions at high concentrations (137). However, 11b-
HSD-2 knockout mice also have low birth weight, and
preliminary data suggest that null mice show several
CNS aspects of the prenatal glucocorticoid ‘program-
ming’ phenotype. Since the brain expresses little or
no 11b-HSD-2 in adult life (83, 138), the data imply
a programming effect (139). Certainly, the developing
CNS has high expression of 11b-HSD-2 during critical
developmental windows (84).

The mechanisms of glucocorticoid-programmed
adult hypertension probably involve a variety of
processes. Prenatal glucocorticoid exposure leads to
irreversible reductions in nephron number in rodents
(140) and sheep (141). Antenatal glucocorticoid
exposure also affects foetal and adult vascular responses
to vasoconstrictors, enhancing endothelin-induced
vasoconstriction and attenuating endothelium-depen-
dent vasorelaxation in sheep (142, 143), indicating
microvascular dysfunction. These effects appear to
be vascular bed specific (144). Renin-angiotensin
system receptor density and tissue synthesis are also
affected by antenatal steroid exposure (145), notably
in the foetal kidney (146), where angiotensinogen and
the AT1 and AT2 receptors are increased after
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dexamethasone, accompanied by a reduced glomerular
filtration rate response to angiotensin II. Finally, key
barocontrol centres in the brainstem are altered by pre-
natal glucocorticoid exposure (130). It is likely that a
similar adult phenotype may be produced by distinct
perinatal processes which differ with the timing of the
exposure in a species and inevitably between species.
It is presumably what is at a critical stage of develop-
ment at the time of an environmental insult that
governs the target affected.

The heart

A core finding in low-birth-weight human populations
is an increased risk of cardiovascular death in adults
(33, 147). This may reflect the sum of increased cardio-
vascular risk factors, but primary cardiac programming
might also contribute. Indeed, prenatal glucocorticoid
exposure alters the development of cardiac noradren-
ergic and sympathetic processes (148), increases car-
diac adenylate cyclase reactivity (149) and alters
metabolic processes in the heart such as the glucose
transporter 1, akt/protein kinase B, specific uncoupling
proteins and PPARg, the nuclear receptor for thiazolidi-
nediones and fatty acids (150, 151). Antenatal gluco-
corticoid exposure increases adult calreticulin in the
heart (152); this is important since overexpression of
cardiac calreticulin is associated with cardiac dysfunc-
tion and death. Thus, increased coronary heart disease
deaths in low-birth-weight populations may reflect
programmed primary cardiac dysfunction as well as
the increased prevalence of cardiovascular risk factors.

Programming of glucose-insulin homeostasis
and metabolism

Prenatal overexposure to exogenous or endogenous
glucocorticoids ‘programmes’ permanent hyperglycae-
mia – particularly hyperinsulinaemia – in the adult
offspring in the rat (10, 133, 136), effects confined to
the last third of gestation. Prenatal stress has similar
persisting effects (153). Gestational 11b-HSD inhibition
has similar adult hyperglycaemic effects. Earlier dexa-
methasone exposure or post-partum treatments do
not programme hypergylcaemia/hyperinsulinaemia in
the rat; thus, there is a tight window for this effect
(10, 154). Maternal glucocorticoid administration has
an effect on cord glucose and insulin levels in the
sheep foetus (155), and these effects persist into adult-
hood (131, 134). The ‘window’ of sensitivity is earlier
in proportion to gestation than in the rat. Importantly,
in the sheep, antenatal glucocorticoid exposure alters
adult glucose metabolism whether or not there is
prior foetal growth restriction (156). As expected,
programming clearly relates to foetal exposure to
excess glucocorticoids in utero, rather than any primary
effect of intrauterine growth retardation per se.

Glucocorticoids regulate expression of critical hepatic
metabolic enzymes, notably phosphoenolpyruvate car-
boxykinase (PEPCK), which catalyses a rate-limiting
step in gluconeogenesis. In rats, exposure to excess glu-
cocorticoid in utero leads to offspring with permanent
elevations in PEPCK mRNA and enzyme activity from
a few days postnatally, selectively in the gluconeogenic
periportal region of the hepatic acinus (10). Overex-
pression of PEPCK in hepatoma cells impairs insulin
suppression of gluconeogenesis (157). Transgenic over-
expression of PEPCK in the liver impairs glucose toler-
ance (158). The PEPCK gene is under complex
transcriptional control (159). Intriguingly, increased
expression of GR itself occurs in the liver of dexametha-
sone-programmed rats (10, 160). Moreover, rats
exposed to dexamethasone in utero have greater
plasma glucose responses to exogenous corticosterone,
suggesting increased tissue sensitivity to glucocorti-
coids (10). Similar increases in hepatic GR are seen in
the offspring of undernourished ewes (161), suggesting
that the process is conserved.

Intriguingly, prenatal dexamethasone not only has
effects in the immediate offspring as adults, but also
elevates PEPCK and insulin levels in their own offspring
(162). Such intergenerational effects are becoming
more widely recognised (163). The mechanisms are
uncertain, but appear to follow both male and female
lines, suggesting epigenetic processes.

Pancreas

Prenatal undernutrition impairs pancreatic b-cell
development (164, 165), reducing b-cell mass and
causing glucose intolerance. Foetal pancreatic insulin
content correlates inversely with foetal corticosterone
levels (166). Maternal malnutrition elevates maternal
and foetal corticosterone levels, and preventing the
corticosterone increase in food-restricted dams
restores b-cell mass. The mechanisms by which gluco-
corticoids modulate pancreatic development are not
clear, but dexamethasone downregulates b-cell Pdx-1
and induces C/EBPb, key factors in the induction and
repression respectively of insulin expression (167).

Fat

Antenatal dexamethasone exposure in rats pro-
grammes fat metabolism (94), causing marked increase
in GR expression selectively in visceral adipose tissue in
adult rats (94) and sheep (161). Elevated GR expression
in visceral adipose tissue may contribute to both adi-
pose and hepatic insulin resistance. These changes in
GR expression do not appear to be the result of meta-
bolic derangement in the adult animal, and correction
of the hypercorticosteronaemia and insulin sensitis-
ation are not sufficient to normalise the programmed
changes in GR (160). Leptin concentrations in
human foetal cord blood correlate directly with body
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weight and adiposity at birth (168–172). Antenatal
treatment with dexamethasone in pregnant rats
reduces foetal plasma and placental leptin (133, 173),
and placental expression of the Ob-Rb receptor which
mediates leptin action (173). Intriguingly, concomitant
treatment of malnourished pregnant and lactating rats
with leptin appears to reverse, in part, the adult meta-
bolic effects of antenatal challenge, at least for maternal
malnutrition (174). In contrast, adiponectin (acrp30,
adipoQ), an abundant adipokine that is associated
negatively with fat mass (175) and positively with insu-
lin sensitivity (176), apparently does not relate to birth
weight (177).

The GR gene: a common programming target?

Transgenic mice with a reduction of 30–50% in tissue
levels of GR have striking neuroendocrine, metabolic
and immunological abnormalities (178). The level of
expression of GR is thus critical for cell function. GR
gene expression shows tissue-specific regulation. The
GR promoter is complex, with multiple, tissue-specific,
alternate, untranslated first exons in rats (179) and
mice (180), most within a transcriptionally active ‘CpG
island’. All these mRNA species give rise to the same
receptor protein, as only exons 2–9 encode the protein.
The alternate untranslated first exons are spliced onto
the common translated sequence beginning at exon 2.
In the rat, two of the alternate exons are present in all
tissues which have been studied; however, others
are tissue-specific (179). This permits considerable
complexity of tissue-specific variation in the control of
GR expression without allowing any tissue to become
GR depleted.
Neonatal handling permanently programmes

increased expression of only one of the six alternate
first exons (exon 17) utilised in the hippocampus
(179). Similar effects are seen in the offspring of
mothers which show particularly ‘attentive’ forms of
maternal care (112). Exon 17 contains sites appropriate
to bind the very third messenger/intermediate early
gene transcription factors (AP-2, NGF1-A) induced by
the neonatal manipulation (119).
The next key problem is to understand how discrete

perinatal environmental events can permanently alter
gene expression. Key recent evidence suggests selective
methylation/demethylation of specific promoters of the
GR gene. The putative NGFI-A site around exon 17 is
subject to differential and permanent methylation/
demethylation in association with variations in
maternal care (126). The changes in GR promoter
DNA methylation pattern are associated with altered
histone acetylation and transcription factor (NGFI-A)
binding to the GR promoter (126). Treatment of the
adult offspring brain with a histone deacetylase inhibi-
tor removes the epigenetic differences in histone acety-
lation and DNA methylation, and hence the NGFI-A-
binding changes. This is associated with normalisation

of hippocampal GR expression and HPA axis responses
to stress. The findings suggest a causal relation between
the epigenetic modifications induced by early-life events
in the GR gene promoter and the permanent program-
ming of GR expression in the adult hippocampus. This
process may analogously produce tissue-specific effects
in peripheral organs. Indeed, in liver-derived cells, GR
may mediate differential demethylation of target gene
promoters, effects which persist after steroid withdra-
wal (181). During development, such target promoter
demethylation occurs before birth and may fine-tune
the promoter to ‘memorise’ regulatory events occurring
during development. This novel mechanism of gene
control by early-life environmental events that then
persist throughout the lifespan remains to be confirmed
in other systems.

Human clinical observations

Glucocorticoids such as dexamethasone and beta-
methasone are commonly used to treat foetuses at
risk of preterm delivery. Such synthetic glucocorticoids
enhance lung maturation and reduce mortality in pre-
term infants; a single course of prenatal corticosteroid
is associated with a significant reduction in the inci-
dence of intraventricular haemorrhage and a trend
toward less neurodevelopmental disability (182). How-
ever, a survey of British obstetric departments showed
that 98% were prescribing repeated courses of ante-
natal glucocorticoids (183). There is little evidence of
the safety and efficacy of such a regime (184). Recent
overviews suggest that there is no evidence of
additional benefit from repeated courses of glucocorti-
coid therapy in pregnancy (185, 186), but that clear
conclusions are prevented by the lack of prospective,
randomised, controlled trials and by variations in the
protocols employed (type of glucocorticoid, route and
timing of administration, and number of treatment
courses). Antenatal glucocorticoid administration has
also been linked with higher blood pressure in adoles-
cence (187) and subtle effects on neurological function,
including reduced visual closure and visual memory
(188). Multiple doses of antenatal glucocorticoids
given to women at risk of preterm delivery were associ-
ated with reduced head circumference (12) and an
increased risk of externalising behaviour problems,
distractibility and inattention (189).

In addition, women at risk of bearing foetuses at risk of
CAHoften receive low-dose dexamethasone from the first
trimester to suppress foetal adrenal androgen overpro-
duction. Birth weight in such infants has been reported
as normal (15, 16); however, programming effects of
antenatal glucocorticoids are seen in animal models in
the absence of reduced birth weight (156). Children
exposed to dexamethasone in early pregnancy, because
of the risk of CAH, show increased emotionality, unsocia-
bility, avoidance and behavioural problems (190).
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The human HPA axis also appears to be programmed
by the early-life environment. Higher plasma and urin-
ary glucocorticoid levels are found in children and
adults who were of low birth weight (191–193). HPA
changes precede overt adult disease (194). HPA axis
activation is associated with higher blood pressure,
insulin resistance, glucose intolerance and hyperlipid-
aemia (195). The human GR gene promoter has
multiple alternate untranslated first exons (Reynolds
and Chapman, unpublished observations), analogous
to those found in the rat and mouse. Whether these
are the subjects of early-life regulation and the molecu-
lar mechanisms by which this is achieved remain to be
determined, but muscle GR mRNA levels correlate with
blood pressure and insulin resistance (196, 197).

Conclusions

Prenatal exposure to glucocorticoids may ‘programme’
a range of tissue-specific pathophysiologies. The foetus
may be exposed to exogenous glucocorticoids, to
active steroids of maternal origin or to its own adrenal
products. The outcomes in a host of species and models
are remarkably consistent, with cardiometabolic and
CNS effects predominating. Work on a candidate mech-
anism, GR gene programming, has illuminated a poten-
tial fundamental mechanism underlying this rapidly
emerging biology. Such fine-tuning of foetal physiology
by the environment is conserved and therefore appar-
ently important. Studies are now making headway in
unravelling the underlying processes, a prerequisite
for rational treatments for the consequences of adverse
perinatal environment.
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