Letter to the Editor # Prenatal phthalate and early childhood bisphenol A exposures increase asthma risk in innercity children To the Editor: We previously reported that inner-city childhood asthma was independently associated with measures of early childhood exposure to bisphenol A (BPA)¹ and prenatal, but not childhood, exposures to di-*n*-butyl phthalate and butylbenzyl phthalate (BBzP).² Here, we evaluate whether these 2 classes of endocrine-disrupting chemicals interact to increase the risk of asthma. We evaluated 292 inner-city women and their children aged 5 to 11 years from the Columbia Center for Children's Environmental Health birth cohort of pregnant women who delivered between 1998 and 2006. Enrollment, exclusion criteria, and a description of the cohort have been reported previously. Subjects were selected for the present study on the basis of the availability of (1) measurements of phthalates in spot urine collected from the mother during pregnancy (33.9 \pm 3.1 weeks' gestation) and BPA in child urine at ages 3 (n = 237), 5 (259), and/or 7 (n = 161) years; (2) data on child asthma and wheeze-related outcomes; and (3) availability of model covariates. Demographic characteristics of Columbia Center for Children's Environmental Health subjects are provided in Table E1 in this article's Online Repository at www.jacionline.org. All participants gave written informed consent. Samples were analyzed at the Centers for Disease Control and Prevention for concentrations of monobenzyl phthalate (MBzP, metabolite of BBzP), mono-*n*-butyl phthalate (MnBP, metabolite of di-*n*-butyl phthalate), and BPA. Consistent with our previous approach, mean urinary postnatal BPA concentrations were calculated across samples of children aged 3 to 7 years, except for a small subset (n = 10) missing respiratory questionnaire data after age 6 years for whom the mean BPA was calculated for ages 3 to 5 years. Specific gravity was measured using a handheld refractometer (Atago PAL 10-S, Bellevue, Wash) to control for urinary dilution. Repeat questionnaires, including the International Study of Asthma and Allergies in Childhood, were administered to the parent at child ages 5, 6 7, 9, and 11 years (n = 1202 questionnaires, average 4.1 per child). Children with report in the last 12 months of any of the following asthma-related symptoms on 1 or more questionnaire were referred to an allergist or a pulmonologist for asthma diagnosis using standardized criteria: wheeze or whistling in the chest, a cough that lasted more than a week, other breathing problems, and/or use of asthma rescue or controller medication. Children without any of these asthma-related symptoms on the repeat questionnaires were classified as nonasthmatic. Children were evaluated for persistent wheeze (≥ 3 reports of wheeze in the last 12 months on ≥ 3 International Study of Asthma and Allergies in Childhood questionnaires), exercise-induced wheeze (≥1 report in the last 12 months of the child's chest sounding wheezy during or after exercise), and report of emergency care visits in the last 12 months to a doctor, clinic, or emergency room for asthma, wheeze, or other breathing problems on 1 or more repeat questionnaire. Variables assessed as potential confounders have been described^{1,2} and were retained in the models if they were significant (P < .05) and/or their inclusion resulted in more than 10% change in the predictor variables (see this article's Online Repository at www.jacionline.org). Before statistical analyses, the 1 prenatal MBzP and 15 postnatal BPA concentrations below the limit of detection (0.22 μ g/L [MBzP] and 0.4 μ g/L [BPA]) were assigned a value of half the limit of detection. Metabolite concentrations were right-skewed and transformed using the natural logarithm. In analyses in which metabolites were categorized, we adjusted concentrations by specific gravity before ranking as described previously.⁶ Consistent with our previous approach,² we used a modified Poisson regression to generate relative risk (RR), and variance estimates for dichotomized outcomes (ie, child asthma) using the methods of Zou.⁷ Analyses were conducted using SPSS 21 (IBM, Armonk, NY). Results were considered significant at P < .05. A total of 168 of 292 (57.5%) children had a history of asthma-related symptoms on repeat questionnaires. Of these, 142 were evaluated by a study allergist or pulmonologist; 86 were diagnosed with current asthma and 56 with asthma-related symptoms but without current asthma. The remaining 124 children had no history of asthma-like symptoms and were classified as nonasthmatic. A total of 44 of 217 (20%) children had persistent wheeze, 62 of 292 (21%) had exercise-induced wheeze, and 98 of 292 (34%) had emergency care visits for asthma or other respiratory problems. A significant association between child (ln)BPA concentrations and respiratory outcomes was observed only among those children whose mothers had prenatal MBzP concentrations above but not below the median. For children with prenatal MBzP concentrations above the median, the RR per log unit increase in child BPA concentrations was 1.46 (95% CI, 1.14-1.87) for child current asthma; 1.89 (95% CI, 1.29-2.78) for persistent wheeze; 1.67 (95% CI, 1.17-2.40) for exercise-induced wheeze; and 1.47 (95% CI, 1.13-1.89) for emergency care visits. The multiplicative interaction between child (ln)BPA and higher versus lower prenatal MBzP was significant for asthma (P = .001) but not for other outcomes (Fig 1). Table I presents associations between asthma and wheezerelated outcomes among children with both prenatal MBzP and child BPA concentrataions above the median compared with children with one or both measurements below the median. There was a highly significant increase in RR for all these outcomes among children with both prenatal MBzP and child BPA above the median. In contrast, there was no increase in RR if only one of the endocrine-disrupting chemicals but not both were above the median (*P* values ranged from 0.12 to 0.94, data not shown). There were no significant interactions between (1) prenatal BPA and either prenatal MBzP or MnBP concentrations or (2) prenatal MnBP and child BPA concentations on the risk of child asthma, frequent wheeze, exercised-induced wheeze, or emergency care visits (data not shown). Using 2 analytic approaches, we found a novel and significant association between child BPA and risk of child asthma and other wheeze-related symptoms among inner-city children whose mothers had higher but not lower prenatal measures of exposures to BBzP. These findings suggest the possibility of a "multihit" model such that higher prenatal BBzP exposures may render the child more susceptible to adverse effects of BPA on the airways FIG 1. Association between child (In)BPA concentrations by strata of higher versus lower prenatal MBzP (above and below median) and child asthma (A), exercise-induced wheeze (B), persistent wheeze (C), and emergency care vists (D). Models controlled for maternal asthma, household smoke exposure, maternal prenatal BPA, maternal prenatal specific gravity, maternal prenatal demoralization, child age at asthma diagnosis or classification as nonasthmatic (Fig 1, A), and child sex (Fig 1, B-D). Mutiplicative interactions between postnatal (In)BPA concentrations and higher versus lower prenatal MBzP were also evaluated for each outcome (Fig 1, A-D). *P< .01 and **P< .001. **TABLE I.** Asthma-related outcomes among children with both maternal prenatal MBzP and child BPA above the median versus one or both below the median | Relative risk (95% CI) | | | | | |-------------------------------|-----------------------------------|-----------------------------------|-------------------|--| | Childhood asthma
(n = 210) | Persistent
wheeze
(n = 217) | Exercise-induced wheeze (n = 292) | • , | | | 1.67 (1.25-2.23)* | 2.02 (1.22-3.35)† | 1.76 (1.13-2.72)† | 1.71 (1.25-2.34)* | | Models controlled for maternal asthma, household smoke exposure, prenatal BPA, maternal prenatal specific gravity, maternal prenatal demoralization, child age (at the time of asthma diagnosis included in asthma model only), and child sex (in models of other asthma-related outcomes). during early childhood. Although potential mechanisms for this hypothesis need to be evaluated and results require replication, findings are of concern given that exposures to these compounds are ubiquitous in the United States and other countries. Robin M. Whyatt, DrPH^a Andrew G. Rundle, DrPH^{a,b} Matthew S. Perzanowski, PhD^a Allan C. Just, PhD^c Kathleen M. Donohue, MD, MS^{a,d} Antonia M. Calafat, PhD^e Lori Hoepner, MPH^a Frederica P. Perera, DrPH, PhD^a Rachel L. Miller, MD^{a,d,f} From ^athe Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY; ^bthe Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; ^cthe Department of Environmental Health, Harvard School of Public Health, Boston, Mass; ^dthe Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY; ^cthe National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Ga; and ^fthe Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University, College of Physician and Surgeons, New York, NY. E-mail: rmw5@columbia.edu. This study was supported by the National Institute of Environmental Health Sciences (NIEHS) (grant nos. R01ES014393, RC2ES018784, R01ES13163, and R01ES08977 and NIEHS/EPA P01 ES09600/RD 83214101 and P30ES009089); the John and Wendy Neu Family Foundation; the Blanchette Hooker Rockefeller Fund; the New York Community Trust; and the Millstream Fund. The findings expressed in this article are the opinions of the authors and do not necessarily reflect the official position of the Centers for Disease Control and Prevention. Disclosure of potential conflict of interest: This study was funded by the National Institutes of Health (NIH) (R01ES014393, RC2ES018784, R01ES13163, R01ES08977, P01 ES09600, and P30ES009089) and the Environmental Protection Agency (RD 83214101). L. Hoepner's institution has received grants from the National Institute of Environmental Health Sciences (NIEHS) (R01ES014393, RC2ES018784, R01ES13163, R01ES08977, P01ES09600, R01ES013543, and R01ES014400) and the Environmental Protection Agency (RD83450901); she has received consultancy fees from Transcendent International. R. L. Miller and her institution have received funding from the National Institute of Environmental Health Sciences (R01ES014393, RC2ES018784, R01ES13163, R01ES08977, and P01ES09600) and the Environmental Protection Agency (RD83214101). M. S. Perzanowski has received or has grants pending from the National Institute of Environmental Health Sciences (R014400), the Centers for Disease Control and Prevention (CDC-TP-13001), and the Department of Housing and Urban Development (NYHHU003, NYHHU0021); and has received support for travel and other meeting-related expenses from ThermoFisher. R. M. Whyatt has received funding from National Institute of Environmental Health Sciences (R01ES021482, R01ES013543, R01ES014393, RC2ES018784) and the Environmental Protection Agency (RD83214101). K. M. Donohue has received support from the National Institute of Environmental Health Sciences (RC2ES0187894), the National Heart, Lung and Blood Institute (HHSN268200625233C, N01HC95161), and the ALPHA Foundation (CU110766). F. P. Perera and her institution have received funding from the National $[*]P \le .001.$ $[\]dagger P \leq .01.$ J ALLERGY CLIN IMMUNOL VOLUME ■■■, NUMBER ■■ Institute of Environmental Health Sciences (P01ES09600, P30ES009089), the Environmental Protection Agency (RD83214101), the John and Wendy Neu Family Foundation, the Blanchette Hooker Rockefeller Fund, the New York Community Trust, and the Millstream Fund. A. Just received support the National Institute of Environmental Health (R01ES014393, T32ES007069, K99ES023450). A. G. Rundle is a member of the board of EHE International. The rest of the authors declare that they have no relevant conflicts of interest. ### **REFERENCES** - Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol 2013;131:736-42. - Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, et al. Asthma in inner-city children at 5-11 years of age and prenatal exposure to phthalates: the Columbia Center for Children's Environmental Health. Environ Health Perspect. Sept 17, 2014 [E-pub ahead of print]. - Perera F, Viswanathan S, Whyatt R, Tang D, Miller RL, Rauh V. Children's environmental health research-highlights from the Columbia Center for Children's Environmental Health. Ann N Y Acad Sci 2006;1076:15-28. - Kato K, Silva MJ, Needham LL, Calafat AM. Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/ high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 2005;77:2985-91. - Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem 2005;77: 5407-13. - Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 2004;112:1734-40. - Zou GA. modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159:702-6. http://dx.doi.org/10.1016/j.jaci.2014.07.027 ### **METHODS** Eighteen- to 35-year-old women who self-identified as African American or Dominican were enrolled through prenatal clinics at Harlem Hospital and New York Presbyterian Hospital. Women were excluded if they reported active smoking or use of other tobacco products or illicit drugs; had diabetes, hypertension, or known HIV; had their first prenatal visit after the 20th week of gestation; or had resided in the study area for less than 1 year before pregnancy. Family history of asthma was not a required inclusion criterion. Study subjects' characteristics are presented in Table E1. The 292 subjects did not differ significantly from the remaining 435 subjects in the Columbia Center for Children's Environmental Health cohort by race/ethnicity, maternal prenatal marital status and education level, household income, prenatal and postnatal tobacco smoke, or maternal history of asthma (all P values $\geq .16$). All participants provided written informed consent, children aged 7 years and older provided assent, and the institutional review boards at the Columbia University Medical Center and the Centers for Disease Control and Prevention approved the study. Variables assessed as potential confounders were selected on the basis of our previous analyses of prenatal MBzP and postnatal BPA as described earlier $^{\rm E1,E2}$ and were retained in the models if they were significant (P < .05) and/or their inclusion in the model resulted in more than 10% change in predictor variables. The variables assessed as potential confounders included maternal age, maternal education, maternal history of asthma, race/ethnicity, household smoke exposure (from others during pregnancy because the cohort was restricted to nonsmoking pregnant women at enrollment and from the mother and/or others during childhood because some mothers began smoking after delivery), number of previous live births, breast-feeding history, maternal prenatal BPA concentrations, child age at asthma diagnosis or classification as nonasthmatic, child sex, and child body mass index. Maternal prenatal demoralization (measured by using a 27-item Psychiatric Epidemiology Research Instrument-Demoralization Scale E3) was also assessed because it has been previously associated with wheeze among children in the cohort. E4 Prenatal and postnatal urinary specific gravity concentrations were included in models to control for urinary dilution. We did not collect a validated history of all child viral illnesses from cohort subjects by questionnaire because we did not believe that we could do so reliably at the onset of the study. Therefore, we were not able to determine whether child viral illnesses were potential confounders. Child postnatal MBzP and MnBP concentrations were not controlled because they were not associated with any of the outcomes (all P values \geq .4) and inclusion did not alter results over those presented here. The cohort was predominantly full-term (97% \geq 37 weeks' gestation) and neither gestational age nor birth weight was a confounder. #### **REFERENCES** - E1. Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol 2013;131:736-42. - E2. Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, et al. Asthma in inner-city children at 5-11 years of age and prenatal exposure to phthalates: the Columbia Center for Children's Environmental Health. Environ Health Perspect Sept 17, 2014 [E-pub ahead of print]. - E3. Dohrenwend BS, Krasnoff L, Askenasy AR, Dohrenwend BP. Exemplification of a method for scaling life events: the Peri Life Events Scale. J Health Soc Behav 1978;19:205-29. - E4. Reyes M, Perzanowski MS, Whyatt RM, Kelvin EA, Rundle AG, Diaz DM, et al. Relationship between maternal demoralization, wheeze, and immunoglobulin E among inner-city children. Ann Allergy Asthma Immunol 2011;107:42-9.e41. **TABLE E1.** Maternal and child characteristics (n = 292) | Maternal age (y), mean ± SD | 25.3 ± 4.8 | | | |---|------------------|--|--| | Maternal asthma, n (%) | 71 (24.3) | | | | Maternal ethnicity, n (%) | | | | | Dominican | 189 (64.7) | | | | African American | 103 (35.3) | | | | Maternal education, n (%) | | | | | <high school<="" td=""><td>106 (36.3)</td></high> | 106 (36.3) | | | | High school or general educational development | 106 (36.3) | | | | >High school | 80 (27.4) | | | | Maternal marital status, n (%) | | | | | Never married | 194 (66.4) | | | | Married* | 84 (28.8) | | | | Separated, widowed, divorced | 14 (4.8) | | | | Child age and sex | | | | | Child age (y), mean \pm SD \dagger | 8.2 ± 1.9 | | | | Child sex (female), n (%) | 157 (53.8) | | | | Household tobacco smoke exposure | | | | | Others in the home prenatally‡ | 93 (31.8) | | | | Maternal and others early to mid-childhood | 129 (44.2) | | | | Maternal MBzP (ng/mL), geometric mean (95% CI) | 13.2 (11.4-15.5) | | | | Child BPA (ng/mL),§ geometric mean (95% CI) | 3.9 (3.5-4.3) | | | ^{*}Includes women living with a partner for more than 7 years. $[\]dagger Age$ at asthma diagnosis for those diagnosed with current asthma and at the last negative screen for asthmalike symptoms for those classified as nonasthmatic. [‡]The study excluded active smoking women during pregnancy. $Mean\ concentrations\ in\ samples\ of\ children\ aged\ 3\ to\ 7\ years,\ except\ children\ (n=10)$ missing respiratory questionnaire data after age 6 years for whom the mean BPA was calculated for ages 3 to 5 years.