
RESEARCH ARTICLE Open Access

Preoperative diagnosis and prediction of
hepatocellular carcinoma: Radiomics
analysis based on multi-modal ultrasound
images
Zhao Yao1†, Yi Dong2†, Guoqing Wu1, Qi Zhang2, Daohui Yang2, Jin-Hua Yu1* and Wen-Ping Wang2*

Abstract

Background: This study aims to establish a radiomics analysis system for the diagnosis and clinical behaviour

prediction of hepatocellular carcinoma (HCC) based on multi-parametric ultrasound imaging.

Methods: A total of 177 patients with focal liver lesions (FLLs) were included in the study. Every patient underwent

multi-modal ultrasound examination, including B-mode ultrasound (BMUS), shear wave elastography (SWE), and

shear wave viscosity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT)

and support vector machine (SVM) for asymmetric data. Through the sparse regulation from the SRT, the proposed

radiomics system can effectively avoid over-fitting issues that occur in regular radiomics analysis. The purpose of

the proposed system includes differential diagnosis between benign and malignant FLLs, pathologic diagnosis of

HCC, and clinical prognostic prediction. Three biomarkers, including programmed cell death protein 1 (PD-1),

antigen Ki-67 (Ki-67) and microvascular invasion (MVI), were included and analysed. We calculated the accuracy

(ACC), sensitivity (SENS), specificity (SPEC) and area under the receiver operating characteristic curve (AUC) to

evaluate the performance of the radiomics models.

Results: A total of 2560 features were extracted from the multi-modal ultrasound images for each patient. Five

radiomics models were built, and leave-one-out cross-validation (LOOCV) was used to evaluate the models. In

LOOCV, the AUC was 0.94 for benign and malignant classification (95% confidence interval [CI]: 0.88 to 0.98), 0.97

for malignant subtyping (95% CI: 0.93 to 0.99), 0.97 for PD-1 prediction (95% CI: 0.89 to 0.98), 0.94 for Ki-67

prediction (95% CI: 0.87 to 0.97), and 0.98 for MVI prediction (95% CI: 0.93 to 0.99). The performance of each model

improved when the viscosity modality was included.

Conclusions: Radiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor

evaluations, including diagnosis, differential diagnosis, and clinical prognosis.

Keywords: Shear wave dispersion, Viscoelasticity, Radiomics approach, Ultrasound, Hepatocellular carcinoma

* Correspondence: jhyu@fudan.edu.cn; puguang61@126.com
1Department of Electronic Engineering, Fudan University, No. 220, Handan

Road, Yangpu District, Shanghai 200433, China
2Department of Ultrasound, Zhongshan Hospital, Fudan University, 180

Fenglin Road, Shanghai 200032, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yao et al. BMC Cancer         (2018) 18:1089 

https://doi.org/10.1186/s12885-018-5003-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-018-5003-4&domain=pdf
mailto:jhyu@fudan.edu.cn
mailto:puguang61@126.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background

Hepatocellular carcinoma (HCC) is the most common

type of primary liver cancer and the most common

cause of death in people with liver cirrhosis [1]. Early

and accurate diagnosis of HCC is of vital importance in

clinical decision-making and treatment. Currently,

although various treatments have been proven effective

in the treatment of HCC, recurrence remains an import-

ant clinical challenge, with its aggressive biological

behaviour and negative impact on overall patient

survival. Conventional B-mode ultrasound (BMUS), as a

non-invasive, easy and safe procedure, is currently the

first-line imaging modality for the diagnosis of HCC.

However, BMUS has a limited role in the clinical

diagnosis of focal liver lesions (FLLs) and of complicated

recurrent lesions. Recent technical advances in shear

wave elastography (SWE) and viscosity ultrasound

increase the diagnostic efficiency of ultrasound and

allow it to evaluate liver stiffness with the aim of asses-

sing hepatic fibrosis and cirrhosis. To date, only a few

studies have focused on the quantification of SWE

stiffness in FLLs [2–4].

More recently, as an emerging method for medical

image processing, radiomics is used to convert medical

images into high-dimensional, mineable features that

reflect underlying pathophysiological information [5].

Radiomics employs a variety of state-of-the-art machine

learning or deep learning techniques to complete a

variety of clinical tasks, which greatly pushed the

development of precision medicine [6]. Microvascular

invasion (MVI) and antigen Ki-67 (Ki-67) are regarded

as high-risk factors for HCC recurrence. As an immuno-

therapy target, programmed cell death protein 1 (PD-1)

has also become increasingly meaningful for the treat-

ment of patients with HCC.

According to previous research, radiomics has great

potential for the diagnosis and treatment of liver diseases.

In a study by Virmani et al. [7], 48 features were extracted

from gray-scale ultrasound images to differentiate normal

livers, cirrhotic livers and HCC. A genetic algorithm and

support vector machine (SVM) were used as feature

selection and classification methods. Owjimehr et al. [8]

performed a wavelet packet transform on the gray-scale

ultrasound image and extracted 61 features to differentiate

normal, fatty and heterogeneous livers. SVM and

k-nearest neighbour classifiers were applied to classify the

images into three groups. Furthermore, some studies ap-

plied artificial neural networks to diagnose abnormal livers

[9], chronic liver disease [10] and HCC malignancy [11].

These studies demonstrate the feasibility of ultrasound

imaging in liver disease diagnosis and imply the great

potential of radiomics analysis.

Current radiomics methods have several limitations

when analysing the data of our study. First, traditional

engineered features (intensity, shape, margin, calcifica-

tion, wavelet, etc.) are designed for different diseases and

are poorly adaptable for HCC. Second, the deep learning

algorithms are easily over-fitted when dealing with data

with a small sample size. Finally, most of the above

studies used a single modal ultrasound imaging, without

utilizing comprehensive information provided by

multi-modal ultrasound images.

Due to its good performance in signal representation

and reconstruction, sparse representation (SR) is widely

used in feature selection [12, 13] and image classification

[14, 15]. By training the optimal texture to represent im-

ages, SR can adaptively learn image features with a small

amount of imaging data. Furthermore, as a nonparamet-

ric model, SR can effectively avoid over-fitting and has

strong robustness [16].

A radiomics analysis system based on SR and SVM

was proposed in our study. We trained the model with

multi-modal ultrasound images and used histology as

the gold standard measure. Our study aims to evaluate

the feasibility of ultrasound radiomics models in the

differential diagnosis and characterization of histologi-

cally proven FLLs and to determine an initial prognosis

of HCC.

Methods

Patients and materials

Between July 2017 and June 2018, 177 consecutive pa-

tients (102 women and 75 men; age range: 15–91 years,

mean: 55.5 ± 10.4 years) who were referred to our insti-

tution for FLL SWE assessment were included in the

prospective study. For patients under the age of 16 years,

informed consent was obtained from a parent and/or

legal guardian. All patients underwent multi-modal

ultrasound examination, including BMUS, shear wave

elastography (SWE), and shear wave viscosity (SWV)

imaging before surgery. The final diagnoses for all 177

patients were based on histopathological results obtained

from liver biopsy during surgery.

Data collected included the patient’s age, gender, and

focal liver lesion location. Among all 177 patients in-

cluded in this study, 66 were excluded, and the exclusion

criteria were as follows: (1) missing important pathology

results; (2) poor imaging quality; (3) accompanied with

other diseases, including cirrhosis and fatty liver.

Characteristics of the 111 FLL patients enrolled are sum-

marized in Table 1, which include patient gender and

age. Statistics show that the gender and age of patients

are related to the benign and malignant classification of

tumors (p < 0.05). In addition, patient age was statisti-

cally related to the type of malignant tumor (p < 0.05).

The flow chart of the proposed radiomics system is

shown in Fig. 1. We first classified the benign and malig-

nant cases. Then, we separated patients with HCC from
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the remaining 65 patients with malignancies. Finally,

multi-modal ultrasound images of 47 patients with HCC

were used to predict PD-1, Ki-67 and MVI indicators of

HCC. Benign tumors in the study mainly include cyst

and focal nodular hyperplasia (FNH). Other malignant

tumors that differ from HCC include adenocarcinoma

and cholangiocarcinoma.

Multi-modal ultrasound examinations were performed

using Toshiba Aplio i900 ultrasound equipment (Canon

Medical, Japan). A PV1-475BX convex array probe (1–

8 MHz) was used. Patients lied in a supine position with

the right arm in maximal extension. The transducer was

positioned in a right intercostal space to visualize the

right liver lobe. Large vessels were avoided. Optimally,

patients were instructed to perform a transient breath

hold in a neutral position. Regions of interest (ROIs)

were placed a minimum of 1–2 cm and a maximum of

8 cm beneath the liver capsule [17]. An ROI was placed

inside the lesion or surrounding the hepatic parenchyma

at the same depth as the lesion. In the ROIs of lesions

and the parenchyma, SWE and viscosity were measured.

A multi-modal ultrasound image includes four differ-

ent modalities, as shown in Fig. 2, where the upper left

panel is an elastography image, the lower left panel is a

gray-scale ultrasound image and the lower right panel is

a viscosity image. The propagation map in the upper

right panel reflects the image quality (> 90% was

considered to be good quality for measurement). The re-

gions with optimal and stable imaging qualities were

manually selected by an experienced sonographer and

marked as ROIs.

Overall design

The overall methods include three steps: feature extrac-

tion, feature selection and classification. First, the SR

dictionary was trained to extract features. Then, an itera-

tive algorithm based on SR was used for feature selec-

tion. Finally, we trained an SVM model with the selected

features. We validated the model by leave-one-out

cross-validation (LOOCV).

Feature extraction

We adopted an SR-based feature extraction method to

extract image features. First, we used the K-singular

value decomposition (KSVD) algorithm to learn the cor-

responding structural texture dictionary from each type

of image [18]. Then, the various types of dictionaries

were combined into a feature extraction dictionary

(FED), and the FED was used to sparsely represent the

test images. The representation coefficients reflect the

relationship between the test images and each type of

dictionary (each class), so the coefficients can be

Table 1 Beseline characters of patients

Parameters All patients Male (N; %) Ages (mean ± variance)

Tumor category

benign 46 21; 46% 50.5 ± 13.4

malignant 65 54; 83% 56.6 ± 8.3

P value – 0.00004 0.0040

Malignant subtyping

HCC 47 41; 87% 55.3 ± 8.4

others 18 13; 72% 60.2 ± 7.0

P value – 0.1550 0.0267

PD-1 prediction

PD-1 present 15 14; 93% 53.0 ± 8.8

PD-1 absent 24 20; 83% 56.2 ± 8.9

P value – 0.3831 0.2782

Ki-67 prediction

≤ 25 21 19; 90% 53.9 ± 9.6

> 25 23 19; 83% 56.6 ± 7.6

P value – 0.4647 0.2441

MVI prediction

MVI present 21 18; 86% 53.9 ± 8.0

MVI absent 22 19; 86% 56.0 ± 8.9

P value – 0.9677 0.3810

Fig. 1 The flowchart of the proposed HCC diagnostic and

prediction system
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classified as the test image features. We used the orthog-

onal matching pursuit (OMP) algorithm to calculate the

SR coefficients and extract the coefficients for features.

The detailed process of feature extraction can be found

in Appendix: Feature extraction.

Feature selection

Redundant and irrelevant features can seriously affect

the performance of the classification. Hence, we adopted

an iterative SR method to select some crucial features

for the classifier. We used sample features to sparsely

represent sample labels, and the absolute value of the SR

coefficient was the importance of the feature. To

improve the stability of feature selection, we performed

iterative SR for feature selection. We selected a partial

sample for SR in each iteration and then averaged the

results of multiple SRs to determine the final coeffi-

cients. Finally, we sorted the features according to the

absolute value of the SR coefficients. Specific mathemat-

ical models for feature selection can be found in Appen-

dix: Feature selection.

Classification

There are many types of classifiers in radiomics, and

SVM is widely used for stability and optimal perform-

ance. In this work, we used LibSVM for classification,

which can solve the problem of sample imbalance [19].

A specific mathematical model of LibSVM is shown in

Appendix: SVM model. By adjusting the penalty factor,

we eliminated the effects of sample imbalance. A re-

ceiver operating characteristic (ROC) curve was used to

show the overall performance of the model. We also

calculated some indexes to evaluate the performance of

the classifier, including accuracy (ACC), sensitivity

(SENS), specific (SPEC) and area under the ROC (AUC).

Cross-validation

Each time LOOCV takes one sample as a test sample,

and all the remaining samples are used as training sets.

This process was repeated until all the samples were

traversed. We used LOOCV to evaluate our model.

Statistical analysis

Descriptive statistics are summarized as the mean ± SD.

The Mann-Whitney U test was used to test whether a

feature has discriminative power in different tasks, and p

values less than 0.05 indicated statistical significance.

SPSS statistics 20.0 software (SPSS, Chicago, IL, USA)

and MedCalc software (V.11.2; 2011 MedCalc Software

bvba, Mariakerke, Belgium) were used to perform the

statistical analysis.

Fig. 2 Multi-modal colour ultrasound image. a. Elastography. b. Propagation map, which reflects the image quality. c. Gray-scale ultrasound. d.

Viscosity modality
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Results

Multi-modal ultrasound image feature extraction and

feature analysis

Because the model establishment process was similar for

the five radiomics models, we used benign and malig-

nant differentiation as an example analysis. A schematic

diagram of the dictionary training is shown in Fig. 3.

Figure 3a shows a blank dictionary that has not been

trained. Because the initial discrete cosine transform

(DCT) dictionary cannot optimally represent the image

information of each category simultaneously, it was

necessary to train different dictionaries that include the

texture structure features of each type based on the

DCT dictionary. We use the KSVD algorithm to train

the dictionary, and we finally obtained a dictionary with

rich texture information, as shown in Fig. 3b.

The overall flowchart of feature extraction is shown in

Fig. 4. We manually selected three corresponding square

measurement areas as the ROIs in the multi-modal im-

ages. The size of the dictionary we used in this study is

64 × 256. A dictionary contains 256 atoms, correspond-

ing to 256 sparse coefficients, which can be taken as 256

features. In the case of using only gray-scale ultrasound

images, two dictionaries need to be trained separately

for the two categories, so a total of 512 features can be

extracted. Particularly, when extracting features from

elastography or viscosity modality images, because the

image is three channels (RGB), we first performed HSV

(hue, saturation, value) conversion on the RGB images.

Then, we used the hue (H) and value (V) channels to

train the dictionary separately. Hence, for elastography

or viscosity images, we trained four dictionaries to

obtain 1024 features. Finally, after multi-modal feature

combination, the gray-scale modality (GM), gray-scale

and elastography modality (GEM) and gray-scale, elasto-

graphy and viscosity modality (GEVM) corresponded to

512, 1536 and 2560 features, respectively.

We randomly selected two cases (one benign and the

other malignant) to analyse the features of their GM

images. The feature amplitudes of the two cases and two

corresponding benign and malignant dictionaries are

shown in Fig. 5. Figure 5a and b correspond to benign and

malignant dictionaries, respectively, and they together

form an FED. In the two dictionaries, 512 atoms corres-

pond to 512 features of a case. It is obvious that the two

dictionaries have quite different textures and that the

malignant dictionary has more structural information.

The linear combination of atoms in FED makes up the en-

tire ROI, and the different feature magnitudes represent

the different proportions of atoms. The special region in

Fig. 5 is marked by a red arrow. The area with the highest

amplitude of the benign patient is located in the feature

interval corresponding to the benign dictionary (1 to 256),

while the area with the highest amplitude of the malignant

patient is located in the 257 to 512 feature interval, which

corresponds to the malignant dictionary. This result

indicates that the image of the benign case is mainly

composed of textures from the benign dictionary, while

the image of the malignant case is mainly composed of

textures from the malignant dictionary. This significant

difference can distinguish benign and malignant tumors

effectively.

Feature selection results

Eliminating redundant and invalid features is critical to

the performance of the classifier. As an example, we

analysed the importance of feature selection in benign

and malignant tumor classification. Figure 6 shows a

comparison of the performance of the features before

and after feature selection. Under all imaging modalities,

each evaluation indicator of the model has been

improved by feature selection. Figure 6a shows a com-

parison of the ROC curves of the models. The dashed

line and solid line correspond to the results before

feature selection and after feature selection, respectively.

The histogram in Fig. 6b describes the AUC before and

after feature selection. The blue bar represents the AUC

before feature selection, while the yellow bar corresponds

to AUC after feature selection. The results clearly show

Fig. 3 A schematic diagram of dictionary training. a. Initial DCT dictionary; b. dictionary after training
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Fig. 4 The overall flowchart of feature extraction. Features were extracted from different modal images and then combined. GM represents the

gray-scale modality; GEM represents the gray-scale and elastography modality; GEVM represents the gray-scale, elastography and

viscosity modality

Fig. 5 Benign and malignant dictionaries and the feature amplitudes of the two cases. The feature amplitudes of the two cases are concentrated

in different areas so that they can be distinguished. a. Benign dictionary; b. malignant dictionary; c. feature amplitude of the benign case; d.

feature amplitude of the malignant case
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that our feature selection strategy has achieved good re-

sults. The detailed statistical results are shown in Table 2.

Classification of benign and malignant liver tumors

A total of 111 cases were used in this experiment, of

which 65 were malignant cases. We compared the per-

formance of GM, GEM and GEVM in the classification

of benign and malignant liver tumors. Some indicators

of the model are summarized in Table 3.

The AUCs of GEVM and GEM reach 0.94 (95% confi-

dence interval [CI]: 0.88 to 0.98) and 0.89 (CI: 0.81 to

0.94), respectively, which are 0.06 and 0.01 higher than

that of GM (CI: 0.80 to 0.93). The AUC of GEVM is

0.05 higher than that of GEM. The ROC curves of these

models are shown in Fig. 7. We calculated the statistical

significance level of the AUCs for GM and GEVM

(p = 0.14). Although the application of multi-modal

images increased the AUCs, multi-modal images do

not exhibit significant differences from single BMUS

in terms of differentiation between benign and malig-

nant tumors.

Malignant liver tumor subcategories

A total of 47 HCC and 18 other malignant tumor cases

(11 adenocarcinoma cases and 7 cholangiocarcinoma

cases) were studied in this experiment. The AUC of GM

reached 0.90 (CI: 0.85 to 0.96). The AUCs of GEM and

GEVM are slightly greater than that of GM, reaching

0.92 (CI: 0.86 to 0.97) and 0.97 (CI: 0.93 to 0.99),

respectively. The ROC curves of these models are shown

in Fig. 8. The calculation results show that there are sig-

nificant differences between GM and GEVM (p = 0.04).

The application of multi-modal images achieved better

results in distinguishing the subtypes of malignant

tumors. The results for classification of the subtypes of

malignant liver tumors are shown in Table 4.

PD-1, Ki-67, and MVI indicator prediction

The classification criterion of PD-1 is whether or not the

indicator is expressed. The Ki-67 indicator is classified

by a 25% threshold value (≤25% or > 25%). The MVI

indicator is divided into two categories according to low

risk and high risk. The prediction results of the three

indicators are summarized in Table 5. The ROC curves

of each indicator are shown in Fig. 9. GEVM resulted in

significant differences in the AUCs of the three pre-

dictive indicators (p = 0.02 for PD-1, p = 0.04 for

Ki-67, p = 0.0006 for MVI) relative to those of GM.

Better performance can be obtained by predicting

three indicators using multi-modal ultrasound images.

Fig. 6 Comparison of benign and malignant classification model performance before (dashed line) and after (solid line) feature selection. a.

Comparison of the ROC curves of the model. b. Histogram comparison of model performance. Both figures show that feature selection has

achieved good effects

Table 2 Performance comparison of models before and after feature selection

GM GEM GEVM

AUC ACC SENS SPEC AUC ACC SENS SPEC AUC ACC SENS SPEC

BF 54 55 52 57 42 54 40 74 56 60 82 30

AF 88 82 80 83 89 84 85 83 94 88 91 86

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear

wave elastography modality, GEVM gray-scale, shear wave elastography and viscosity modality, BF before selection, AF after selection. The auc, acc, sens and spec

are expressed as a percentage
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Discussion

Multi-modal ultrasound technology increases the

diagnostic efficiency of ultrasound and makes it possible

to diagnose FLL before surgery. In contrast to the

evaluation of diffuse parenchymal liver disease, little is

known about FLL characterization using SWE or SWV

technology. Here, we investigate the value of

multi-modal ultrasound technology for the differential

diagnosis of benign and malignant FLLs using radiomics

analysis. Previously, Dong et al. [20] applied ElastPQ

measurements for differential diagnosis of benign and

malignant FLLs and successfully found the optimal

threshold of shear wave speed. Ozmen et al. [21] used

the optimal threshold of SWE to differentiate benign

and malignant liver tumors and obtained an AUC of

0.77. However, the cut-off values of measurement for

differentiating benign and malignant liver tumors tend

to show great variability. In our study, innovative

multi-modal ultrasound images were used to diagnose

liver tumors. By converting the images into

high-throughput features, radiomics was used to mine

the rich texture information in the patient images in

order to classify the images. We found that malignant

tumor images have more complex textures and more

structural information. The experimental results also

show that the model has achieved good results on the

classification of benign and malignant liver tumors (0.94

AUC for differentiating between benign and malignant

liver tumors).

The most common type of histology of primary liver

cancer is HCC, which represents 90% of cases [22, 23].

Difficulties in treatment and poor prognosis make it

important to accurately detect HCC. In addition, early

diagnosis of HCC is also crucial for optimizing

treatment options. In a study by Thomas et al.,

alpha-fetoprotein (AFP) was used to detect HCC [24].

However, AFP is only a supplement to the ultrasound

image information, and the accuracy of detecting HCC

is not satisfactory. In our experiments, multi-modal

ultrasound images were used to directly distinguish

between HCC and other malignancies noninvasively,

and the model performed well (0.97 AUC for liver tumor

subtyping). This result illustrates the great potential of

ultrasound images for tumor diagnosis.

Patients with HCC have a poor prognosis due to a

high recurrence rate. It has been reported that the

5-year recurrence rate of primary liver cancer is as high

as 45%~ 60% [25]. We mainly studied two factors that

Table 3 Diagnostic performance of GM,GEM and GEVM for

classifying benign and malignant tumors

AUC(%) ACC(%) SENS(%) SPEC(%)

GM 88 82 80 83

GEM 89 84 85 83

GEVM 94 88 91 86

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS

sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear

wave elastography modality, GEVM gray-scale, shear wave elastography and

viscosity modality

Fig. 7 Receiver operating characteristic (ROC) curves of benign and

malignant classifications

Fig. 8 Receiver operating characteristic (ROC) curves of

tumor subcategories

Table 4 Diagnostic performance of GM,GEM and GEVM for liver

tumor subtyping

AUC(%) ACC(%) SENS(%) SPEC(%)

GM 90 89 83 91

GEM 92 92 89 94

GEVM 97 97 89 100

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS

sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear

wave elastography modality, GEVM gray-scale, shear wave elastography and

viscosity modality
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affect the recurrence of liver cancer. One of the factors

is MVI. MVI has been reported as one of the major risk

factors related to HCC recurrence and represents a poor

prognosis [26, 27]. Many previous studies have focused

on identifying radiologic features (such as tumor size,

tumor margin, and number of lesions) in various types

of medical images for the preoperative prediction of

MVI [28–30]. However, the best predictive feature of

MVI in HCC remains controversial. In addition, another

study used a radiomics nomogram to predict MVI pre-

operatively, resulting in a C-index of 0.84 [31]. However,

the results of these studies are not satisfactory. Our

radiomics-based model achieved better results (0.98

AUC) in predicting MVI than did previous studies using

multi-modal ultrasound images.

Another factor we studied that has an effect on HCC

recurrence is Ki-67. A previous study suggested that a

higher Ki-67 index confers poor prognosis in patients with

HCC [32–34]. Clinically, immunohistochemistry is needed

to detect the Ki-67 index. Studies have analysed the

correlation between the expression of other proteins (such

as PDIA3) and Ki-67 [35]. However, to the best of our

knowledge, no study has applied medical images to pre-

dict Ki-67 noninvasively. Our results (0.94 AUC for Ki-67

prediction) demonstrated that it is feasible to noninva-

sively predict Ki-67 based on radiomics. In our study, we

successfully determined MVI and Ki-67 for HCC progno-

sis by applying multi-modal ultrasound images.

Recent studies have shown that immunotherapy is a

promising approach for HCC treatment and that PD-1 is

crucial for tumor immunity [36]. Accurate assessment of

PD-1 can be useful in assessing the range of applications

of PD-1/PD-L1 blockers in liver cancer patients. In

addition, an increase in PD-1 predicts a poorer progno-

sis for HCC [37]. The prediction of PD-1 is important

for the progression and postoperative recurrence of

HCC. The model we built for PD-1 prediction has

achieved good results (0.97 AUC for PD-1 prediction).

By integrating multi-modal ultrasound image informa-

tion, the radiomics model can determine PD-1

noninvasively.

To investigate the effects of feature selection on classi-

fier performance, we compared the performance of

models before and after feature selection in benign and

malignant tumors. Feature selection truncates redundant

and invalid features, so the model becomes robust. The

experimental results show that the performance of the

model after feature selection is better than that

before feature selection (significant level in ROC

curves, p < 0.0001).

There are some limitations to our research. It should

be mentioned that our study lacks multi-centre valid-

ation, which would provide more convincing results. In

addition, more samples should be collected to build a

more robust model. Furthermore, we employed only the

image information from diseased livers, and some text

Table 5 Performance of GM,GEM and GEVM for indicators prediction

PD-1 Ki-67 MVI

AUC ACC SENS SPEC AUC ACC SENS SPEC AUC ACC SENS SPEC

GM 84 85 80 88 86 84 86 83 85 84 86 81

GEM 94 90 93 88 92 89 86 91 95 93 91 95

GEVM 97 92 100 88 94 93 95 91 98 95 91 100

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear wave

elastography modality, GEVM gray-scale, shear wave elastography and viscosity modality, PD-1 programmed cell death protein 1, Ki-67 antigen Ki 67, MVI micro

vascular invasion. The auc, acc, sens and spec are expressed as a percentage

Fig. 9 Receiver operating characteristic (ROC) curves of indicator prediction. a. ROC curve of PD-1 prediction. b. ROC curve of Ki-67 prediction. c.

ROC curve of MVI prediction
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descriptions of the cases and biomarkers were not

applied.

Conclusions

In summary, we successfully established an HCC diagno-

sis and prognosis system based on ultrasound radiomics

and proved its potential feasibility and effectiveness.

Simultaneously, we demonstrated the potential value of

multi-modal ultrasound-based radiomics analysis in

computer-aided diagnosis (CAD).

Appendix

Feature extraction

The SR method can adaptively learn and extract texture

features of images. First, we exploited the KSVD algo-

rithm to train the dictionary corresponding to different

categories. This algorithm trains different categories of

dictionaries by iteratively updating each atom in the

dictionary. We denote i ∈ {1, 2,…, I} as all sample cat-

egories. Di is the corresponding i-class dictionary. Then,

the process of feature extraction can be written as:

α̂¼ arg minα y−Dαk k22þμ αk kp ð1Þ

where y is classifier label; D = [D1,D2,⋯,DI] is a collec-

tion of all SR dictionaries; α is the SR coefficients, which

can be considered as features of the samples; α̂ is the

estimated value of α; ‖∙‖p represents the lp norm; μ is

the regularization parameter. μ‖α‖p can be regarded as

the error term that can be discarded. We used the OMP

algorithm to solve (1) to obtain the image features.

Feature selection

Different from the traditional feature selection method,

the SR method adopts the strategy of the sliding win-

dow, so it can comprehensively utilize the information

of all samples in the window. An iterative process can be

expressed as:

d̂
kð Þ
¼argmind s kð Þ

−F kð Þd
�

�

�

�

2

2
þε dk k0 ð2Þ

where s(k) is the label used for the k-th iteration; F(k) is

the feature selected for the k-th iteration; ε is a small

constant; d̂
ðkÞ

is the coefficient calculated by the k-th it-

eration. Then, we calculated the average of d̂
ðkÞ

for the

k-th iteration:

d kð Þ¼
1

k

X

k
i¼1 d̂

kð Þ
ð3Þ

The d(k) was used for feature selection. After the iter-

ation, each feature obtained a score that combines all

the sample information due to the averaging operation.

The higher the score, the higher the importance of

the feature. In this way, the feature selection results

are obtained.

SVM model

The LibSVM model can solve the sample imbalance

problem by adjusting different penalty coefficients. The

improved SVM mathematical model can be written as:

minw;b;ξ

1

2
ωTωþCþ

X

yi¼1

ξiþC−

X

yi¼−1

ξi ð4Þ

subject to yi ωTϕ xið Þþb
� �

≥1−ξi ð5Þ

ξi≥0;i¼1;…;l

where ω is the hyperplane normal vector and b is the

bias, which collaboratively determines the hyper-

plane; ϕ(xi) is the feature vector mapped by xi; yi is the

sample label; ξi is a small constant; C+(−) is the penalty

parameter, which assigns weights to different propor-

tions of samples. By assigning an appropriate C, we can

eliminate the sample imbalance problem.
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