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Abstract

Purpose Microvascular invasion (MVI) is a valuable predictor of survival in hepatocellular carcinoma (HCC) patients. This 

study developed predictive models using eXtreme Gradient Boosting (XGBoost) and deep learning based on CT images to 

predict MVI preoperatively.

Methods In total, 405 patients were included. A total of 7302 radiomic features and 17 radiological features were extracted 

by a radiomics feature extraction package and radiologists, respectively. We developed a XGBoost model based on radiom-

ics features, radiological features and clinical variables and a three-dimensional convolutional neural network (3D-CNN) to 

predict MVI status. Next, we compared the efficacy of the two models.

Results Of the 405 patients, 220 (54.3%) were MVI positive, and 185 (45.7%) were MVI negative. The areas under the 

receiver operating characteristic curves (AUROCs) of the Radiomics-Radiological-Clinical (RRC) Model and 3D-CNN 

Model in the training set were 0.952 (95% confidence interval (CI) 0.923–0.973) and 0.980 (95% CI 0.959–0.993), respec-

tively (p = 0.14). The AUROCs of the RRC Model and 3D-CNN Model in the validation set were 0.887 (95% CI 0.797–0.947) 

and 0.906 (95% CI 0.821–0.960), respectively (p = 0.83). Based on the MVI status predicted by the RRC and 3D-CNN 

Models, the mean recurrence-free survival (RFS) was significantly better in the predicted MVI-negative group than that in 

the predicted MVI-positive group (RRC Model: 69.95 vs. 24.80 months, p < 0.001; 3D-CNN Model: 64.06 vs. 31.05 months, 

p = 0.027).

Conclusion The RRC Model and 3D-CNN models showed considerable efficacy in identifying MVI preoperatively. These 

machine learning models may facilitate decision-making in HCC treatment but requires further validation.
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Introduction

Liver cancer is the sixth-most common cancer in the world 

and the fourth cause of cancer-related death worldwide 

(Villanueva 2019). Throughout the world, ~ 841,000 peo-

ple are diagnosed with hepatocellular carcinoma (HCC), 

and ~ 782,000 people die from HCC each year (Bray et al. 

2018). The mainstay treatment for HCC is surgery, includ-

ing hepatic resection and liver transplantation. Despite 

receiving radical surgery, patients still have a high risk of 

recurrence; thus, an accurate preoperative cancer assess-

ment are essential for determining the appropriate surgical 

approach and management strategy to decrease the recur-

rence rate.

Recent studies have proposed the importance of a pre-

operative assessment of microvascular invasion (MVI), 

which can be used to guide therapy in patients with HCC 

(Banerjee et al. 2015; Cucchetti et al. 2010; Hyun et al. 

2018; Lee et al. 2017; Renzulli et al. 2016; Wang et al. 

2018a; Wu et al. 2015; Xu et al. 2019). Studies have shown 

that MVI is an independent histopathological prognostic 

factor associated with survival in all-stage HCC patients 

(Mazzaferro et  al. 2009). Furthermore, MVI has been 

reported to be a better predictor of tumour recurrence and 

overall survival than the Milan criteria (Lim et al. 2011). 

For patients with MVI, a more aggressive treatment strat-

egy may be preferred, such as a wide resection margin or 

anatomical resection for patients receiving hepatic resec-

tion (HR), an ablation margin of at least 0.5–1 cm 360° 

around the tumour for patients receiving ablation, and neo-

adjuvant therapy before surgery (Hirokawa et al. 2014; 

Hocquelet et al. 2016; Nakazawa et al. 2007; Nault et al. 

2018; Zhao et al. 2017). For liver transplantation (LT) in 

patients with HCC, MVI status has been recognized as an 

essential variable for identifying patients who will benefit 

most from LT (Mazzaferro et al. 2009, 2018).

However, the traditional method of identifying MVI is 

based on postoperative microscopic examination of surgi-

cal specimens even though the most important treatment 

decisions are commonly determined before surgery. There-

fore, exploring new methods that can be used to preop-

eratively assess MVI to determine the most appropriate 

treatment strategy for HCC patients is important. Develop-

ments in imaging technology have enabled non-invasive 

assessments of MVI preoperatively (Banerjee et al. 2015; 

Hyun et al. 2018; Lee et al. 2017; Renzulli et al. 2016; 

Wang et al. 2018a; Wu et al. 2015; Xu et al. 2019; Zheng 

et al. 2017).

Advances in imaging technology, together with artifi-

cial intelligence (Bi et al. 2019), have allowed research-

ers to create various diagnostic and treatment models 

and improved the diagnostic efficacy in liver cancer, 

dermatology, ophthalmology, lung and breast cancers, 

neurology, cardiovascular diseases, gastrointestinal endos-

copy, and genetic diseases, etc. (Attia et al. 2019; Chilam-

kurthy et al. 2018; Coudray et al. 2018; Esteva et al. 2017; 

Gurovich et al. 2019; Kermany et al. 2018; Mori et al. 

2018; Rampasek and Goldenberg 2018; Yasaka et  al. 

2018; Zou et al. 2019). The purpose of the current study 

is to develop models using eXtreme Gradient Boosting 

(XGBoost) and deep learning to provide a preoperative 

non-invasive assessment method for MVI in HCC patients. 

An artificial intelligence system for hepatology requires a 

great amount of work, but it is just the beginning of the 

dramatic change that artificial intelligence will bring about 

in medicine.

Materials and methods

This retrospective clinical study was approved by our institu-

tional review board. Because of the retrospective nature of the 

study, patient consent for inclusion was waived. All private 

information of the included patients was erased.

Case cohort

A retrospective cohort from collected from 2010 to 2018 was 

analysed. The inclusion and exclusion criteria were as follows: 

(1) histological diagnosis of HCC; (2) HR or LT received 

as primary therapy; (3) preoperative four-phase contrast-

enhanced computed tomography (CT) performed 2 months at 

most before LT or HR; and (4) available postoperative patho-

logic specimens. Details about pathological assessment of 

MVI and CT imaging protocol are shown in Supplemental 

methods.

Methods overview

The traditional method of assessing MVI status preoperatively 

is to manually collect radiological features, radiomics features 

and clinical variables and develop a predictive model based on 

such collected information. Such models are more interpret-

able but require more manpower and materials. Nowadays, 

deep learning models excel at automated image recognition 

with high efficiency and accuracy. In the current study, we 

developed predictive models by XGBoost in the traditional 

way and also developed a predictive model based on an emerg-

ing algorithm, namely, deep learning, and compared the effi-

cacy of the two methods.
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Predictive models based on XGBoost (Chen 
and Guestrin 2016)

Tumor segmentation

Tumor segmentation was manually and independently per-

formed by three radiologists (A, B and C) (all of the radiolo-

gists had at least 3 years of experience in HCC diagnosis) 

for the three phases of the volume data (the AP, PVP, and 

DP), and the results were reviewed by a radiologist (D) with 

20 years of experience in HCC diagnosis. The segmenta-

tion boundaries were drawn with ITK-SNAP software (https 

://www.radia ntvie wer.com) slice-by-slice for each volume 

along the visible borders of the lesion. The 3D segmentation 

of the tumor provides the volume-of-interest (VOI) for the 

later feature extraction step.

Radiomics feature extraction

Radiomics is defined as the quantitative mapping, that is, 

the extraction, analysis and modelling of many medical 

image features in relation to prediction targets. The funda-

mental principle of radiomics is to extract high-dimension 

features, e.g., first-, second-, and higher-order statistics, to 

quantitatively describe the attributes of the VOI based on 

tomographic data. In the current study, the VOI was the 3D 

tumor region that was manually segmented from the CT 

scan. The radiomics features were extracted from the tumor 

VOI (VOI-full) and 1 cm extended from the VOI boundary 

(VOI-extension) via standard morphology binary dilation. 

To guarantee the extension of the tumor boundary inside the 

liver region, we obtained the liver mask from an automatic 

liver organ segmentation algorithm and discarded the non-

liver regions outside the mask. The segmentation of a typical 

case is shown in Fig. 2. We used the open source PyRadi-

omics package for radiomics feature extraction. For each 

volume of the 3 different phases, we extracted 1217 features 

from the VOI-full and VOI-extension regions, consisting of 

a set of 7302 radiomics features.

Radiological feature extraction

The radiological features of the four-phase CT images of all 

cases were extracted and summarized by the aforementioned 

radiologists, and during this process, they were blinded to 

the pathological and clinical data. Next, the controversial 

cases among the three radiologists (A, B, C) were jointly 

evaluated until a final consensus was reached, and then they 

were finally reviewed by the most senior radiologist (D).

The extracted radiological features are a semantic inter-

pretation of the tumor regions by the radiologists organized 

in a binary format. The summary of the radiological features 

were as follows: (1) liver morphology (normal vs. cirrhosis); 

(2) number of hepatic lobes involved (one lobe involved vs. 

two or more lobes involved); (3) number of tumors (one vs. 

more than one); (4) peritumoral satellite nodule (absence 

vs. presence); (5) maximum diameter of tumor (> 5 cm 

vs. ≤ 5 cm); (6) tumor growth pattern (intrahepatic growth 

vs. extrahepatic growth); (7) intratumoral hemorrhage 

(absence vs. presence); (8) intratumoral necrosis (absence 

vs. presence); (9) tumor margin (smooth vs. nonsmooth); 

(10) enhancing “capsule” (absence vs. presence); (11) AP 

hyperenhancement (absence vs. presence); (12) internal 

arteries (absence vs. presence); (13) peritumoral enhance-

ment (absence vs. presence); (14) mosaic pattern or nodule-

in-nodule pattern (absence vs. presence); (15) nonperiph-

eral washout (absence vs. presence); (16) hypodense halos 

(absence vs. presence); and (17) tumor steatosis (absence vs. 

presence). The largest nodule was evaluated if multiple nod-

ules existed. The definitions of some radiological features 

are shown in Supplemental methods.

Clinical variables

Baseline data of the patients including age, sex, background 

liver disease, diabetes, surgery type, primary tumor size, 

tumor count, α-fetoprotein (AFP) level, aspartate ami-

notransferase (AST) level, alanine aminotransferase (ALT) 

level, prothrombin time (PT), international normalized ratio 

(INR), serum fibrinogen (FBG) level, platelet (PLT) count, 

total bilirubin (TBIL) level, serum creatinine (Scr) level, 

Child–Pugh class, MELD score were recorded.

Feature analysis and predictive model based on XGBoost

Using XGBoost, we developed MVI prediction models 

based on radiological features (the Radiological Model), 

radiomics features (Radiomics Model) and a combination 

of radiological features, radiomics features, and clinical 

variables (Radiological-Radiomics-Clinical (RRC) Model). 

Details about XGBoost model are shown in Supplemental 

methods.

Deep learning: the 3D‑CNN predictive model (Wang 
et al. 2018b)

Convolutional neural networks excel at medical image 

recognition (Hosny et al. 2018; Litjens et al. 2017). A 

3D-CNN Model was developed to assess MVI in an end-

to-end training fashion, in which feature extraction and 

predictive model construction were automatically pro-

cessed by a single neural network. We developed several 

empirical principles to process the input data and guide the 

design of the deep neural networks: (1) the input should 

https://www.radiantviewer.com
https://www.radiantviewer.com
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be a small volume sample that is mostly covered by the 

tumour region to exclude interference from nearby tissues; 

2) the input should be sampled within the tumour region 

to force the network to learn the relevant features of the 

tumour; and (3) the depth of the CNN should not be pro-

found to avoid the overfitting problem due to the limited 

size of the training cohort. According to these principles, 

we proposed a CNN as shown in Fig. 1. The network 

takes three 16 × 64 × 64 patches as input and passes them 

through several intermediate layers to extract deep fea-

tures, which are further fused and fed into the decision 

layers to generate the final MVI assessment result. Details 

about CNN model are shown in Supplemental methods.

Statistical analysis

The performance of the predictive models was evaluated 

by the areas under the receiver operating characteristic 

curve (AUROC) and precision recall curve (AUPRC). 

The accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value and f1 score of the mod-

els were also calculated and are presented. Hanley and 

McNeil analysis was performed to compare the efficacy 

of the proposed models. Recurrence-free survival analyses 

were performed based on the MVI status predicted by the 

XGBoost and 3D-CNN models. Recurrence-free survival 

was defined as the time from the surgery to local, regional, 

or distant cancer relapse or to death due to HCC.

Results

Of the 1618 patients with a diagnosis of HCC at the * 

between 2010 and 2018, a total of 405 patients met the inclu-

sion criteria (flow chart is shown in Supplemental Fig. 1). 

Of the 405 patients, 220 patients (54.3%) were MVI posi-

tive, and 185 patients (45.7%) were MVI negative. The base-

line characteristics of all patients are presented in Table 1. 

All patients were randomly assigned to the training set and 

validation set at a ratio of 8:2. The radiological features 

and baseline characteristics of patients stratified by MVI 

status are presented in Table 2 and Supplemental Table 1, 

respectively.

Development of an MVI prediction model based 
on the 3D‑CNN

In the current study, a 3D-CNN Model was developed to 

assess MVI in an end-to-end training fashion. A graphical 

abstract of the 3D-CNN Model is shown in Supplemental 

Fig. 2, and the detailed schematic of the 3D-CNN Model 

developed to predict MVI status is shown in Fig. 1. The 

performance of the 3D-CNN Model for the identification 

of MVI is presented in Table 3. The AUROC values of 

the 3D-CNN Model in the training set and the validation 

set were 0.980 (95% CI 0.959–0.993) and 0.906 (95% 

CI 0.821–0.960), respectively (Fig. 2a, b). The AUPRC 

values of the 3D-CNN Model in the training set and the 

validation set were 0.99 and 0.90, respectively (Fig. 2c, 

Fig. 1  Schematic of the 3D-CNN model for the prediction of MVI status
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d). To improve the interpretability of the 3D-CNN model, 

we attempted to predict the 15 most important variables 

selected by the XGBoost method and some valuable radio-

logical features of HCC based on the 3D-CNN Model. A 

high prediction accuracy means that the established CNN 

model has encoded the interpretable characteristics to 

assist in the decision-making process in predicting MVI 

status. The performance of the 3D-CNN Model in predict-

ing these features is presented in Supplemental Table 2. 

For example, the AUROC, specificity and sensitivity were 

0.776, 0.923 and 0.564, respectively, in predicting the 

tumor margin status using the 3D-CNN Model.

Development of MVI predictive models based 
on XGBoost (Chen and Guestrin 2016)

Next, we used traditional methods to access MVI status 

preoperatively, that is, manually collecting images and 

clinical information and developing predictive mod-

els based on such collected information. We developed 

MVI prediction models based on radiological features 

(Radiological Model), radiomics features (Radiomics 

Model), clinical variables and their combinations (Radi-

omics-Radiological-Clinical Model, RRC Model) (Fig. 3). 

The performance of the predictive models generated by 

XGBoost is also presented in Table 3. The areas under 

the receiver operating characteristic curves (AUROCs) of 

the Radiological Model in the training set and the vali-

dation set were 0.900 (95% CI 0.776–0.862) and 0.875 

(95% CI 0.761–0.925), respectively. The AUROC values 

of the Radiomics Model in the training set and the vali-

dation set were 0.948 (95% CI 0.918–0.969) and 0.873 

(95% CI 0.781–0.937), respectively. The AUROC values 

of the RRC Model in the training set and the validation 

set were 0.952 (95% CI 0.923–0.973) and 0.887 (95% CI 

0.797–0.947), respectively (Fig. 2).

Importance ranking of variables for predicting MVI 
status by XGBoost

To identify the most vital features in the preoperative 

assessment of MVI status, all variables, including 17 radi-

ological features, 7302 radiomics features and 19 baseline 

characteristics of patients, were evaluated for their impor-

tance in predicting MVI status by the XGBoost method. 

Finally, 129 features were found to contribute to the RRC 

model. Of all the variables, the tumour margin was ranked 

first and was the only radiological feature ranking in the 

top 15 features (Fig. 4), and α-fetoprotein (AFP) level was 

ranked 4th and was the only baseline characteristic ranking 

in the top 15 features. The remaining important variables 

were radiomics features (Table 4).

In the Radiological Model, the five most important radi-

ological features are as follows: margin of tumor, internal 

arteries, hypo-dense halo, peritumoral enhancement and 

lobes involved.

Table 1  Baseline information of the entire cohort

HBV hepatitis B virus, HR hepatic resection, LT liver transplanta-

tion, BCLC Barcelona Clinic Liver Cancer, AFP α-fetoprotein, ALT 

alanine aminotransferase, AST aspartate aminotransferase, PLT plate-

let, PT prothrombin time, INR international normalized ratio, FBG 

fibrinogen, ALB albumin, TBIL total bilirubin, SCr serum creatinine, 

MELD model for end-stage liver disease

Variables All patients (n = 405)

Age, years 48.5 ± 13.4

Sex (male) 344 (84.9%)

Diabetes (yes) 36 (8.9%)

Background liver disease

 HBV infection 346 (85.4%)

 Other 59 (14.6%)

Surgery type

 HR 347 (85.7%)

 LT 58 (14.3%)

BCLC stage

 0 13 (3.2%)

 A 221 (54.6%)

 B 104 (25.7%)

 C 67 (16.5%)

AFP

 < 10 121 (29.9%)

 10–100 78 (19.3%)

 100–400 61 (15.1%)

 400–1000 24 (5.9%)

 > 1000 121 (29.9%)

MVI status

 Positive 220 (54.3%)

 Negative 185 (45.7%)

ALT 54.1 ± 98.7

AST 62.7 ± 156.6

PLT 180.8 ± 85.5

PT 14.4 ± 2.2

INR 1.13 ± 0.24

FBG 3.3 ± 1.2

ALB 39.1 ± 5.0

TBIL 27.7 ± 90.9

SCr 62.3 ± 66.4

Child–Pugh class

 A 340 (84.0%)

 B 54 (13.3%)

 C 11 (2.7%)

MELD score 7.9 ± 4.3
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Table 2  Radiological features 

stratified by MVI status in the 

training set and validation set

Variable Training set Validation set pa

MVI 

negative 

(n = 148)

MVI 

positive 

(n = 176)

p MVI 

negative 

(n = 37)

MVI 

positive 

(n = 44)

p

Tumour count 0.003 0.06 0.46

 1 103 95 27 21

 2 24 25 1 7

 3 4 10 3 3

 > 3 17 46 6 13

Liver cirrhosis 0.67 0.56 0.84

 No 53 59 12 17

 Yes 95 117 25 27

Lobes involved < 0.001 0.001 0.80

 0 108 90 31 21

 1 40 86 6 23

Tumour growth pattern 0.024 0.63 0.53

 Intrahepatic growth 142 157 34 39

 Extrahepatic growth 6 19 3 5

Satellite nodule < 0.001 0.02 0.91

 No 123 114 32 28

 Yes 25 62 5 16

Intratumour haemorrhage 0.27 0.82 0.90

 No 127 143 31 36

 Yes 21 33 6 8

Intratumour necrosis 0.001 < 0.001 1.00

 No 86 69 27 13

 Yes 62 107 10 31

Margin of the tumour < 0.001 < 0.001 0.60

 Smooth 88 26 21 5

 Not smooth 60 150 16 39

Pseudocapsule 0.19 0.08 0.53

 Well-defined 53 51 17 12

 Ill-defined 95 125 20 32

AP hyperenhancement 0.11 0.99 0.54

 No 21 15 5 6

 Yes 127 161 32 38

Internal arteries < 0.001 < 0.001 1.00

 No 96 47 27 10

 Yes 52 129 10 34

Peritumoural enhancement < 0.001 0.02 0.46

 No 137 131 36 35

 Yes 11 45 1 9

Mosaic pattern < 0.001 0.08 0.35

 No 60 36 13 8

 Yes 88 140 24 36

Presence of wash out 0.36 0.99 0.65

 No 20 18 5 6

 Yes 128 158 32 38

Hypo-dense halo 0.003 0.11 0.04

 No 130 170 29 40

 Yes 18 6 8 4

Max diameter (mm) < 0.001 < 0.001 0.73
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Comparison of the predictive models by 3D‑CNN 
and XGBoost

In the training set, the 3D-CNN Model had the high-

est AUROC value among the other models, whereas the 

AUROC value of the Radiological Model was the low-

est. The AUROC value of the Radiological Model was 

lower than that of the Radiomics Model (0.900 vs. 0.951, 

p = 0.0026). The AUROC value of the Radiomics Model 

was comparable to that of the RRC Model (0.951 vs. 

0.965, p = 0.0523), which demonstrated that the radiologi-

cal features and clinical variables did not provide signifi-

cant added value to the Radiomics Model. The AUROC 

value of the 3D-CNN Model was higher than that of the 

Radiomics Model (0.980 vs. 0.951, p = 0.0148). However, 

there was no significant difference between the AUROC 

value of the 3D-CNN Model and that of the RRC Model 

(0.980 vs. 0.965, p = 0.1444).

In the validation set, there were no significant differ-

ences among the AUROC values of the several predictive 

models. The AUROC values of the Radiomics Model and 

the Radiological Model were 0.888 vs. 0.873, p = 0.73. 

The AUROC values of the Radiomics Model and the 

RRC Model were 0.888 vs. 0.897, p = 0.72. The AUROC 

values of the 3D-CNN Model and the Radiomics Model 

were 0.906 vs. 0.888, p = 0.66. The AUROC values of the 

3D-CNN Model and the RRC Model were 0.906 vs. 0.897, 

p = 0.83.

Recurrence‑free survival analysis based 
on predicted MVI status

The median recurrence-free survival (RFS) of the entire 

cohort was 22 months. The median RFS of patients with 

MVI was 6 months. The median RFS of patients without 

MVI was not available because less than half of the patients 

experienced recurrence. Kaplan–Meier survival analyses 

were performed based on the MVI status predicted by the 

RRC Model and 3D-CNN Model (Fig. 5) within the train-

ing set and the validation set. Based on the MVI status pre-

dicted by the RRC Model and the 3D-CNN Model, the mean 

RFS was significantly better in the predicted MVI-negative 

group than that in the predicted-MVI positive group (in the 

training set, RRC Model: 55.30 months vs. 19.99 months, 

p < 0.001; 3D-CNN Model: 50.24 months vs. 23.95 months, 

p < 0.001. In the validation set, RRC Model: 69.95 months 

vs. 24.80 months, p < 0.001; 3D-CNN Model: 64.06 months 

vs. 31.05 months, p = 0.027).

Discussion

A preoperative noninvasive assessment of MVI may be 

essential to guide treatment strategies. In this study, we 

developed models based on image analysis by XGBoost and 

3D-CNN, which may enhance the accuracy of preoperative 

non-invasive assessment of MVI in HCC patients. These 

Table 2  (continued) Variable Training set Validation set pa

MVI 

negative 

(n = 148)

MVI 

positive 

(n = 176)

p MVI 

negative 

(n = 37)

MVI 

positive 

(n = 44)

p

 > 50 49 114 6 33

 ≤ 50 99 62 31 11

Steatosis of the tumour 0.88 0.66 0.11

 No 145 172 36 42

 Yes 3 4 1 2

pa, p value for the test between the training set and the validation set

Table 3  Performance of the MVI predictive models in the validation set

Model AUROC 

(training set)

AUROC (vali-

dation set)

Specificity Sensitivity Accuracy Positive pre-

dictive value

Negative pre-

dictive value

F1 score

Radiological Model 0.900 0.875 0.973 0.659 0.802 0.967 0.706 0.784

Radiomics Model 0.951 0.888 0.757 0.909 0.840 0.816 0.875 0.860

RRC Model 0.965 0.897 0.892 0.818 0.852 0.900 0.805 0.857

3D-CNN Model 0.980 0.906 0.757 0.932 0.852 0.820 0.903 0.872
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machine learning models shown considerable efficacy in 

identifying MVI preoperatively.

Several studies have utilized radiological features or radi-

omics features to predict the status of MVI in HCC. Stud-

ies have reported that radiological features like the tumour 

margin, internal arteries, peritumoural enhancement and 

hypodense halos are essential in predicting MVI (Banerjee 

et al. 2015; Renzulli et al. 2016, 2018; Zheng et al. 2017), 

which is consistent with the current study. With the devel-

opment of computer-assisted diagnosis methods, radiom-

ics analysis has also been adopted to predict MVI status 

in HCC. In the study by Xu et al. (2019), they developed 

a regression model based on radiological features, clinical 

variables and radiomics features to predict MVI status and 

achieved an AUROC of 0.889 in the internal test set. In the 

current study, we also developed the RRC Model based on 

radiological features, radiomics features and clinical vari-

ables using a machine learning method, namely XGBoost. 

The RRC Model achieved an AUROC of 0.897 in the inter-

nal validation set, which is similar to Xu et al. study. We 

also developed models based on radiological features or 

radiomics features, and there were no significant differences 

between the Radiological Model and the Radiomics Model. 

We believe that each of the two methods has its own advan-

tages. Radiological features are easy to understand and prac-

tical in clinical work, however, the accuracy of abstract of 

these features rely on experience of radiologists. Radiomics 

features are pre-defined by experts and quantified by com-

puter, which are independent of experience of radiologists.

The most important highlight of the current study is that 

to the best of our knowledge, this is the first study to develop 

an MVI predictive model based on image analysis using 

Fig. 2  Performance of the predictive models. a The ROC curve of the 

predictive models in the training set. b The ROC curve of the predic-

tive models in the validation set. c The PRC curve of the predictive 

models in the training set. d The PRC curve of the predictive models 

in the validation set
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machine learning methods (XGBoost and a convolutional 

neural network). Both of the models showed substantial effi-

cacy in identifying MVI status. For the construction of the 

RRC Model developed by XGBoost, we collected compre-

hensive and detailed data including radiological features, 

radiomics features (based on manual segmentation) and clin-

ical variables, which required extensive work and manpower. 

Radiomics is now an advanced technique used for image 

analysis. However, the shortcoming of radiomics analysis is 

that the method is based on hand-crafted feature extractors, 

Fig. 3  Schematic of the models developed by XGBoost. The liver 

was automatically segmented by an automatic segmentation algo-

rithm (red part), and the non-liver part of the image was discarded. 

Then, tumor segmentation was completed for each slice by radi-

ologists. The radiomics features were extracted from the tumor VOI 

(VOI-full, blue part) and 1  cm extended from the VOI boundary 

(VOI-ext, yellow part) via standard volume boundary erosion expan-

sion

Fig. 4  The most important feature (the margin of a tumour) for predicting MVI status in the RRC model (Case 1 with a nonsmooth tumour mar-

gin vs. Case 2 with a smooth tumour margin). Case 1 is MVI positive, and Case 2 is MVI negative
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which rely on expert definition and thus do not represent 

the most optimal option (Hosny et al. 2018). In contrast, 

the most important advantage of the 3D-CNN Model is that 

the model achieved high efficacy in identifying MVI status 

automatically with minimal manpower, time and materials. 

For the construction of the 3D-CNN Model, we needed only 

to input images, and clinical data, radiological features or 

radiomics features did not need to be collected. This signifi-

cant efficacy accompanied by high efficiency is the primary 

driver to advance the application of artificial intelligence in 

medicine. Another innovative point of the current study is 

that we provided a new means to explain how deep learning 

can identify MVI. The greatest deficiency of deep learning 

or a CNN is the lack of interpretability. End-to-end predic-

tive models are common in previous studies utilizing deep 

learning. To solve this problem, we extracted the output of 

the second last decision layer as the features to represent 

the CNN model. We evaluated the performance of the CNN 

model regarding the identification of some valuable features 

of HCC (radiological features and radiomics features) in the 

CT images, and the results were satisfactory, indicating that 

the CNN model can predict the status of MVI partly based 

on the explainable features utilized in daily clinical work.

Limitations existed in the current study. First, the accu-

racy of the 3D-CNN Model in identifying radiological fea-

tures and radiomics features requires further improvement as 

we did not intend to construct a model dedicated to identify-

ing these features. We believe that such models can be eas-

ily developed in the future, which may substantially reduce 

the workload of radiologists. Second, this is a single-centre 

study with a relatively small sample size, and the results 

therefore require further validation.

In conclusion, we proposed state-of-the-art models based 

on image analysis by XGBoost and deep learning to provide 

a preoperative noninvasive assessment method for MVI in 

HCC patients. The 3D-CNN model showed considerable 

efficacy in identifying MVI preoperatively with minimal 

manpower, time and material requirements. This model may 

facilitate decision making in HCC treatment. We believe that 

our model may have a substantial impact on the evaluation 

of tumour stages and the selection of appropriate treatments 

for HCC patients. Furthermore, this model may also advance 

the application of artificial intelligence in the area of hepa-

tology. The validity of the model, as well as the long-term 

outcomes of patients who received treatments based on the 

model, requires further investigation.

Table 4  The 15 most important 

features for MVI classification 

in the RRC Model

The 15 most important features in the RRC Model Performance of the 

features in the model

TUMOR_MARGIN 0.079

Arterial_Phase_dilation-log-sigma-4-0-mm-3D_glcm_Imc1 0.037

Delay_Phase_dilation-wavelet-LHH_glszm_GrayLevelNonUniformity 0.037

Delay_Phase_dilation-wavelet-LHH_glszm_SizeZoneNonUniformity 0.026

AFP 0.026

Venous_Phase_dilation-wavelet-LLL_glcm_Imc2 0.021

Arterial_Phase-log-sigma-5-0-mm-3D_gldm_LowGrayLevelEmphasis 0.016

Venous_Phase-original_glcm_SumEntropy 0.016

Venous_Phase-wavelet-HHH_firstorder_Mean 0.016

Delay_Phase-wavelet-LLH_glszm_SmallAreaEmphasis 0.016

Delay_Phase_dilation-wavelet-LLH_firstorder_Skewness 0.016

Delay_Phase_dilation-wavelet-LLL_firstorder_InterquartileRange 0.016

Delay_Phase_dilation-wavelet-LLL_firstorder_Uniformity 0.016

Arterial_Phase-wavelet-LLL_glszm_ZonePercentage 0.011

Venous_Phase-log-sigma-2-0-mm-3D_gldm_SmallDependenceLowGrayLevelEm-

phasis

0.011
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